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1 Introduction

Markovian models provide a convenient way of evaluating the performance of

with long-range dependent (LRD) behavior, Markovian models can approx1mate
accurately LRD traffic in several ways, e.g., by superposition of flows with short-
range dependent (SRD) behavior over many time scales. This is known to be

earher Works ha\/e focused on ﬁttmg network trafﬁc models by parameteriz-
ing Markovian Arrival Processes (MAPs) or MMPPs with exactly two or three
states [4-8]. The small state space minimizes the costs of queueing analysis, but

pla(’pq giﬁp1ﬁr‘aA t assumptions on the form of the antocorrelations.
In [9] Andersen and Nielsen develop a general fitting algorithm to model LRD
traffic traces by superposition of several MMPP(2) sources [10]. The algorithm

has low computational costs but only matches first and second order descrlptors
of the counting process. Following a different approach, Horvdth and Telek [11]
consider the multifractal traffic model of Riedi et al. [12], and obtain a class
of MMPPs which exhibits multifractal behavior [13]. Simulation results on the
Bellcore Aug89 trace show that this algorithm achieves better accuracy than the
superposition method in [9], but at the expense of a larger state space.

To tackle the above issues, we develop new characterization and fitting meth-
ods for MAPs. We first characterize the general properties of interarrival time
(IAT) processes using a spectral approach. Based on this characterization, we
show how different MAP processes can be combined together using Kronecker
products to define a larger MAP with predefined properties of interarrival times.
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We then devise an algorithm based on this Kronecker composition method, which
can be customized to fit an arbitrary number of moments and to meet the de-
sired cost-accuracy tradeoff. Numerical results of the fitting algorithm on real

other state-of-the-art fitting methods.

2 IAT Processes in MAPs

A MAP(n) is specified by two n x n matrices: a stable matrix Dy and a nonneg-
ative matrix D; that describe transition rates between n states. Each transition

of the underlymg Markov process.
We focus on the interval stationary process that describes the Inter-Arrival
TimeS(IATS) For a MAP(n) this is descmbed by the embedded discrete-time

vector T, Where w.e = 1 and e is a column Vector of 1’s of the appropnate
dimension. Then, its IAT is phase-type distributed with k-th moment
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Higher order moments of the IAT process can also be described as special
cases of jomt moments Let X; be the i-th IAT from an arbitrary starting epoch
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where 2 = (4.4 irYand b = (ky ks L) The moments (2. LY can-
aere 1 21,%2,...,%L,) anad ® (K1, K2, ,p ). 1116 moments 12,8 ) ¢ap
ture nonlinear temmporal relationg hetween samnles and are known to comnlately
ture noniinear temporal reiaticns petween Sampies ana are Xnown 1o compietery

2.2 Spectral Characterization of Moments

We obtain a spectral representation of moments for MAPs, a simple scalar repre-
sentation of (1) based on spectral properties of (—Dg) ™. This allows to represent
the MAPmoments in terms of few scalar parameters, rather than by formulas
using matrices. We begin by describing the moments (1) in terms of the spec-
trum of (—Dy)~!. Recall that the characteristic polynomial of a n x n matrix
Ais

P(A) =s"+ 18" 4 an_18+ anm,
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which is a polynomial in s with roots s; equal to the eigenvalues of A. Consider
the Cay]ey—Hamllton theorem [16} bjy Wthh the powers of A satlsfy A’C
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Because MAP moments are computed in ( ) from powers of (—Dg) ™!, they are

Observing that (3) is an homogeneous linear recurrence of order n in E[X*]/k!

are éiven by

2.3 Spectral Characterization of Autorrelations

The spectral characterization can be extended to autocorrelations using the
properties of the powers P*in (2). Analogous to the procedures obtaining spec-
tral characterization of moments, we first establish a linear recurrence formula
for n 4+ 1 consecutive autocorrelations and then derive closed form formulas for
Pk-

Theorem 2. Let 4w € C, 1 <t < m, be an eigenvalue of P with algebraic
multiplicity r. If v¢ = O assume that its geometric multiplicity equals its algebraic
multiplicity, i.e., the r; associated Jordan blocks have all order one. Then the
autocorrelation function of a MAP is

pr= D Y Akl k21 (7)
j=1...1¢

t=2...m

> A =(1-1/CVY))2, (8)

t=2...m
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Air = E[X]| 21 (—Do) ' Piy(—Dy) le/CV?, (9)

in which Py is the t-th spectral projector of P, that is, the product of the right
and left eigenvectors associated to ;.
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We define a new composition method for combining two MAPs into one larger

tocorrelations in all orders.
The new composition method is based on the Kronecker product of matrices
and it applies to the operation of MAPs, we call it the Kronecker product of

and ny, respectiveiy, and assume at least one of the two MAPs has a diagonalized

Dy, without loss of generality, assume Dg is a diagonal matrix. The Kronecker
Product of MAP, and MAP, is defined as

MAP, @ MAP, = {~D¢ ® D}, D¢ ® D'},
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pr ov1des formulas relating the statistics of the composed pI ocess and composltlon
processes provable via the bas1c elgenvalue properties of Kronecker product and
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where the quantities in the right-hand side refer to MAP® and MAP. In partic-

ular the relation fm“ I*/IX l zmmedmtel /im plzes

1+ C0V? = (1+ 0V (1 + CV2)/2. (12)

The relationship between moments of the composed MAP process and the
composition MAP processes generalizes in the similar fashion to the joint mo-
ments.

Theorem 4. The joint moments of MAP, ® MAPy,where at least one of the
MAP, and MAPy has diagonalized Dy, satisfy

Hi,k)YH (i, k)
kilko!- - k!

being H%(i,k) and H%(i,k) the joint moments of {D&, DS} and {D% D4},
respectively.

H(i, k) = : (13)
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To generate a valid KPC process, we require at least J — 1 composing pro-
cesses have diagonalized DY, according to Theorem 3. Nevertheless, because one

We illustrate the algorithm in the case where the .J co?nposing MAPs used in the
KPC are an arbitrary MAP(2) and J — 1 MAP(2)s with diagonal Dy, but the
method works with minor modifications also with other processes. The algorithm

IiPC; (2) Step 2-Given fixed autocorrelation and CV? there exist many possible
valid processes; we thus solve a new nonlinear optimization program to select
E[X] and E[X?3] that results in better fitting of higher order properties of IATs

We show the effectweness of our KPC fitting algorithm using the Bellcore
Aug89 trace on a ﬁrst -come- -first- served queue Wlth determlmsmc service and
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collected ir t the Bellcore Morri Engin
and shows a clear LRD behavior [19]. We present a comparison of o algonthm
with the best-available algorithms for Markovian analysis of LRD trafﬁc, that is,
the method of Andersen and Nielsen (A&N) in [9] and the multifractal approach
of Horvath and Telek (H&T') in [11].

We run the KPC fitting program described above and determine a MAP(16)
which accurately fits the trace. The size of this MAP is similar to those employed
in previous work, which are composed by 16 states (A&N) or 32 states (H&T).
The values of the first three moments of the MAP(16) are given in Table 1.
We compare the queueing prediction of the three models for utilization levels
of 20%, 50%, and 80%. In Figure 1 we plot the complementary cdf (ccdf) of
queue-length probabilities Pr(queue > z), which accounts also for the residual
queueing probability mass and thus shows the impact of the tail probability.

At 20% utilization, our method gives almost the same results of the multifrac-
tal technique, while the method of A&N seems to underestimate the queueing
probability for the smallest values of z. The intermediate case for 50% utilization
is generally difficult to capture, since the network is approaching heavy traffic,

but the dependence effects are still not as strong as in slightly higher utilization



Table 1. MAP(16) fitting of the Bellcore Aug89 Trace using the KPC algorithm

BC-Aug89 Trace MAP(16)
E[X] 13.1428 - 1077 3.1428 - 10~ °
CV? 13.2236-10° 3.2235-10°
E[X®] |2.0104-107° 1.1763 - 107°

Y2 n/a 9.9995 - 107!

BC-Augs? — MAP/D/1 - Utifization 20% BC-AugB? - MAP/D/ — Utiization 50% BC-AugB? - MAP/D/ — Utilization 80%

e rm—

1022
1072
1072

107*
1074
1074

Pr(queue @ x) [log]

Pr(queue > x) [log]
Pr(queue @ x) [log]

10-°
10-°

trace.

Overall, the result of this trace indicates that the KPC approach seems more
effective than both H&T and the A&N methods, while preserving the smallest
representation (16 states) of the A&N method. Tt also interesting to point out
that the fitting leaves room for further improvements, especially in the 50% case
WIllLIl lb ulm(,um to dppl oxnnane. _L Illb IIldy lIl(ll(,dI;e T;IldI/ blgIllHLdIH} HIIOI IIldEl()Il
about the IAT process may be captured by statistics of higher order than the
bispectrum.

4 Conclusion

We have presented several contributions to the Markovian traffic analysis. We
have obtained a spectral characterization of moments and autocorrelation which
simplifies the analysis of MAP processes. In the second part of the paper, we
have studied the definition of large MAPs by Kronecker Product Composition
(KPC), and shown that this provides a simple way to create processes with
predefined moments and correlations at all orders. Detailed comparisons with
other state-of-the-art fitting methods show that KPC provides improved fitting
of LRD trace.
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