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Abstract—We propose a traffic fitting algorithm for Markovian In this paper we tackle the above issues by developing
Arrival Processes (MAPs) that can capture statistics of any characterization and fitting methods for Markovian Arrival
order of interarrival times. By studying real traffic traces, we Processes (MAPs), a class of Markovian models developed

show that matching higher order properties, in addition to
first and second order descriptors, results in increased quesing by Neuts [28] that encompasses MMPP and PH processes as

prediction accuracy with respect to other algorithms that mly ~ Special cases. We describe the properties of the inteaarriv
match the mean, coefficient of variation, and autocorrelatins. time (IAT) process of a MAP and use these properties to derive

The result promotes the idea of modeling traffic traces usinghe  accurate fitting algorithms for network traffic.
interarrival time process instead of the counting processhat is There are several works in the literature that have focused

g:gg frrsg;ee?]ttlg Z:gpé?f);ﬁzilltntgﬁ/;%l;SuﬁZ’ butfor which higher on fitting Markovian traffic models by exactly parametergin

We proceed by first characterizing the general properties of MAPS/MMPPs with two or thre.e. states [8], [11], [16], [17],_
MAPs using a spectral approach. Based on this characterizain, [23]. The small state space minimizes the costs of queueing
we show how different MAP processes can be combined together analysis, but it places significant assumptions on the form
using Kronecker products to define a larger MAP with predefined ¢ the autocorrelations. For instance. a MMEP cannot

properties of interarrival times. We then devise an algoribm . - . )
that is based on this Kronecker composition and can accuratg fit negative autocorrelations, while the M{#) autocorrela

fit traffic traces. The algorithm employs nonlinear optimization ~tion function is geometrically decreasing with constantaje
programs that can be customized to fit an arbitrary number rate [17].

of moments and to meet the desired cost-accuracy tradeoff. In [3] Andersen and Nielsen develop a general fitting
L S oo B A o 901 fo model LR aff races by superposiion o
proposed f}tting methods achieve ingreased p’rediction accacy several MMPRZ) sources [14]. The algorlthm matches flrs_t
with respect to other state-of-the-art fitting methods. and second order descriptors of the counting process, i.e.,
the mean traffic rate, the Hurst parameter, and thellag-
autocorrelation in counts, has low computational costs and
captures the properties of the classic Bellcore LRD tratgs [
[24].

Markovian models provide a convenient way of evaluat- Following a different approach, Horvath and Telek [20]
ing the performance of network traffic since their queueingpbnsider the multifractal traffic model of Riedi et al. [28hd
analysis enjoys established theoretical results and efiici obtain a class of MMPPs which exhibits multifractal behavio
solution algorithms [27]. Although unable to directly geste [32]. According to this result, one may fit network traffic by
traffic with long-range dependent (LRD) behavior, Markeviafirst computing an unnormalized Haar wavelet transform ef th
models can approximate accurately LRD traffic in severtace and then by determining the MMPP process which best
ways, e.g., by superposition of flows with short-range depematches the variance of the wavelet coefficients at difteren
dent (SRD) behavior over many time scales. This is knowime scales. Simulation results on the Bellcore Aug89 trace
to be sufficient for the evaluation of real systems since t#ow that this algorithm achieves better accuracy than the
performance effects of LRD traffic becomes nil beyond a finiteuperposition method in [3], but at the expense of a larger
number of time scales [12]. state space.

One of the main obstacles to the Markovian analysis of Recently, several research efforts [16], [17], [21]-[28} a
network traffic is model parameterization, which often riegg  directed toward the accurate fitting of the IAT process iadte
to describe the interaction of several tens or hundredsatést of the counting process that is considered in [3] and [20].
Even for basic Markov Modulated Poisson processes (MMPHTs can be harder to measure than counts [18], but simple
or phase-type renewal processes (PH), few results exist &ralytical expressions are available for their moments and
their exact parameterization and they are restricted toetsodlag correlations [15]. Instead, only the first three moments
of two or three states only [5], [11], [16], [17], [23]. Due toof a counting process are known and yet only the first two
the lack of characterization results, it is also impossitlle are easy to manipulate [14]. Several authors have shown that
establish general properties of these processes. fitting the mean, coefficient of variation and autocorrelas
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characterization of IAT moments, autocorrelations, arghér

e e owerrd|  order moments. These observations clarify the capalsilitfe
___Third-Order Fit general MAPs, provide necessary conditions for fitting, and
— simplify the analysis of small processes.

2) Hyperexponential Fitting\We develop in Section IV the
moment matching algorithm for hyperexponential traffic and
illustrate its accuracy using real traffic traces of the fméd
Traffic Archive [1]. The algorithm is also instrumental toeth

. . . = LI general traffic fitting algorithm presented later in the pape
g kiog 0 1P *log1 10 3) Compositional definition of MAR): In Section V
fo 1 Aut " o MAPIMIL i behaviorl(&D%) of we propose the compositional method based on Kronecker
MAP(32) finge of the LEL-PKT.5 race [1]. The MAPS have dnticasi PPOJUCtS that can easily generate a MAPwith predefined
and second order properties of the interarrival processpba has also an Properties of IATs from the composition of smaller procssse
accurate fitting of third order properties for which the otigeinstead loose. eg., MAF{2)5_ While traditional superposition is convenient

only for imposing first and second order properties of counts
our method is more flexible and gives complete control of the
is insufficient to predict queueing behavior [4], [13], [25]IAT statistics at all orders.
therefore fitting the higher order properties of the IAT e  4) MAP Fitting: Exploiting the previous results, we develop
seems a natural way to achieve increased prediction agcurae Section VI the general fitting algorithm which first deter-

To build intuition on the importance of higher order propemines the optimal values of IAT moments, autocorrelations,
ties we first present an experiment on the LBL-PKT-5 trace ahd higher order descriptors using nonlinear optimizatoml
the Internet Traffic Archive [1]. Figure 1 shows two diffetensuccessively finds the MAP which best matches these target
MAP models we obtained for this traffic trace. The two MAPsalues. The approach is numerically stable and the fitting is
have identical first and second order properties of the IATsually performed in a few minutes. Comparative analyses in
process, namely same mean, same coefficient of variati®action VIl on the Bellcore Aug89 trace and on Seagate Web
(CV), and same autocorrelation function. Mean and CV aface [30] show that our algorithm achieves increased acyur
IATs are identical to the sample values, the autocorreidiio with respect to existing methods.
is also quite good. However, one model also matches the thirdSection VIII draws final conclusions. The final appendix re-
order statistics, i.e., the skewness and the bispectrunf i@ ports the MAPs used to fit the traces discussed in Section VII.
sample IAT process, while the other has a quite loose fit of
these descriptors. The strikingly different queueing ftsahs Il. IAT PROCESS INMAPS
of the two models, as shown in Figure 1, stress the importanceéd MAP(n) is specified by twon x n matrices: a sta-
of higher order properties in network traffic. ble matrix D, with nonnegative off-diagonal entries and a

In this paper, we consequently propose to fit network traffitonnegative matrixD; that describe transition rates between
using higher order properties of the IAT process in additiom states. Each transition if>; produces a job arrivalD,
to the usual first and second order descriptors. Becauseeof describes instead background transitions not associatibd w
general difficulty in imposing even basic autocorrelatiomns arrivals. The matrixQ = Do + D, is the infinitesimal
the IAT process, we first derive characterization resultg thgenerator of the underlying Markov process. In the speeiséc
simplify fitting. Starting from these characterization ukts, where D, is a diagonal matrix, the process is a MMRF.
we obtain two MAP fitting algorithms: an efficient hyperex- We henceforth focus on the interval stationary process
ponential moment matching algorithm which applies to teaffthat describes the IATs. For a MAR), this is described
that is approximately renewal and a more versatile algarithoy the embedded discrete-time chain with stochastic matrix
based on nonlinear optimization that still matches momen#® = (—Do) ' D;, with probability vectorr,, m.e = 1,
but can also accurately fit general traffic. The latter athoni Wheree is a column vector of’s of the appropriate dimension.
is based on a new MAP definition technique, called Kroneckket P be irreducible with a simple unit eigenvalug = 1.
Product Composition (KPC), which is able to generate MAPBhen, its IAT is phase-type distributed withith moment
With p_red_efined moments, autocorrelations, and higherrorde E[X" = klm.(—Do)*e, k>0, 1)
statistics in IATs. Compared to the state-of-the-art fifimeth-
ods in [3] and [20], the proposed algorithm shows improvedhich implies that CV = 2E[X]~?m.(—~Dg) %e — 1. The
queueing prediction accuracy at similar computationatoslag- autocorrelation coefficient is
In addition, ?t QOes not plgce limitations on the numbgr and ,, — (B[X] 2m.(—Dg) ' P*(-Dy) e — 1)/CV2. (2)
order of statistical properties that can be matched forféidra

trace, thus enabling the selection of the best cost-acguracHigher order moments of the IAT process can be described
tradeoff. in terms ofjoint momentsLet X; be thei-th IAT from an

Our detailed contributions can therefore be summarized itrary starting epoch, = 0, and consider a sequence
follows: i1y Xigs -+, Xip, Where0 < i3 < ig < ... < ir. The

1) MAPR(n) Characterization:After reviewing the IAT pro- moments ofL COI’lS?CUtIVE‘ IATs are given by
cess in MAPs, in Section Ill we propose a general spectral H(i,k)=E[X' X[ X[,
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wherei = (i1,42,...,1L) andk = (k1,ka,...,kr). The mo- where the constant®/; ;'s are independent k. In particular,
ments H (i, k) capture nonlinear temporal relations between

— -1
samples and are known to completely characterize a MAP My = me(=Do); e, (10)
[4], [33]. They are computed as [33] where (—Dy); ! is the ¢-th spectral projector of(—Dg)~?,
ﬂ . i.e., the product of the right and left eigenvectors fipr
H(i k) Hkl yRpiTi-i e (3) _ .
Proof: Denoting by (—Dy), - and M, the spectral

projector and nilpotent matrix of—D,)~! associated to the

where forl = 1, i is set toig = 0. Noting that it is always . -
Prrotig g (g) S uces ?n e casbi 110 (1) Yy zgrgao?_tiloisclg?ﬂt, the generalized spectral decomposition of

In the remaining of this paper and if not otherwise stated,
MAP descriptors refer to the IAT process. Further, we use the (—=Do) "t = Z (0,(—Do); ' + M), k>0

notation (Dg, D) or ((—Dy)~!, P) to uniquely specify a =1 m
MAP. L
where it is M} = 0, M(—Dy);' = (~Do);'M,,
I1l. CHARACTERIZATION OF MAP(n) PROCESSES M(—=Dy),* = 0 and (—Dy); '(=Do),* = 0, t # p
We now obtain a spectral characterization of IAT momen@erefore, for allc > 0 we have
and autocorrelations, i.e., a scalar representation o{)1) K _ 1 k
based on spectral properties 6f D)~ and P. This sim- (=Do) _(tlz:m(et( Do)~ + Mt))
plifies the analysis of MAP moments and autocorrelations, as — 1 A
we show with some examples. = Z (6:(=Do);~ + M)
t=1...m
A. Characterization of Moments minfa LEY
: . : = oF Do) 0, ' M
We begin by describing the moments (1) in terms of the t:lzm ¢ ; (z>( )i (6, "
spectrum of(—Dg)~!. Recall that the characteristic polyno-
mial of an x n matrix A4 is where we used in the last passage that 0 being(—D )—
. i an invertible matrix. Inserting the last formula for D)%
¢(A) =" +a1s" + ...+ an1s + an, (4) into (8) we get after some manipulations
which is a polynomial ins with roots s; equal to the eigen- min{qs,k+1} )
valges ofA. Consider the_Caery-Hamllton theorem [19], by E[X"] = Z ok Z ( )M\t L (1)
which the powers ofA satisfy o Py -1
AF=— 3" a;A"I k>n (5) where
j=l..n Mt,i = ﬂe((—DO)_l)t(G;IMt)l_le. (12)

that is, matrix powers are linearly dependent. Because M
moments are computed in (1) from powers(efD,)~*, they
are linearly dependent.

'%Fr)le last expression is equivalent to (1) by expanding the
binomials and grouping the coefficients /of. This yields the
following equivalence
Lemma 1. In a MAP(n), anyn + 1 consecutive moments are

qt . .
linearly dependent according to the relation M, = Z 8(2(_171)1)]\/5 .. (13)
! —~  (i-
EX*=- ) (ﬂ) BE[X*1), E[X°) =1, k > n, ’
A Nk =) where thes(m,n) is the Stirling number of the first kind

_ (6) giving the coefficient ofc™ in z(z—1)(z—2)--- (x—m+1).
wherem; is the coefficient 0"~/ in ¢((—Dy)~!). Finally, the condition), M, = 1 is obtained by evaluating

Proof: Using the Cayley-Hamilton theorem, (8) for k = 0 and noting that[X°] is alwaysE[X?] = 1. m

k1 _ 1 - (k—7) Corollary 1. If 6, has algebraic multiplicityg; = 1, then
EX"] = k'ﬂ-@(ijl. »1;(—=Do) )e (7) M, —0for j > 2.
which immediately proves the lemma by (1). ] ]
Since the coefficientsn; are functions of the eigenvalues ~ Proof: In this case the nilpotend; of the ¢-th Jordan
of (—Dy,)~! we can derive a closed-form formula f&H X *]. block is zero and in (13) the only non-zero projectois ;.
n
Theorem 1. Let (—Do)~" havem < n distinct eigenvalues  Note that formula (8) is more general than a standard
0: € C, 1 <t <m. Letq, be the algebraic multiplicity of;, spectral decomposition ¢t D)~ since it also holds for de-

2 _t=1..m ¢+ = n- Then the IAT moments are given by fective, i.e., non-diagonalizablé-D,)~!. This is extremely
Z k! oF Z M, k7Y, 8) important, since ngl-knowr_w processes, e.g., the Erlarmg pr
T m Pl cess, haveD, that is not diagonalizable and thus the usual
spectral decomposition based on this assumption cannot be
Z My =1 ©) applied.

t=1...m



Example 1. We show how to apply Theorem 1 for theB. Characterization of Autocorrelation

analytical characterization of a MAP. Consider the MAP The spectral characterization can be extended to autecorre

=22 A A 0 0 0 lations using the properties of the powd?s in (2).

Do=| 0 =A Al Di=10 0 0, A=0 omnma2 ina MAP(n), anyn + 1 consecutive autocorrela-

0 0 —A A 0 0 tions are linearly dependent according to the relation
The left eigenvector of for ; = 1 is w, = [1,0,0]%. Since
=— aipe—i, po=(1—-1/CV?) /2, k>n, (15
9-kA~k (1 —2-k)\—k A~k P J;n sn=g po = (1=1/CV7)/ (15)
(-Dy) F =1 0 Ak AR _
0 0 Ak wherea; is the coefficient 0"~/ in ¢(P) and}_"_, a; = 0.
from (1) itis E[X*] = k!m.(—Dg) *e = (k+1)!I\~*. How- Proof: We want to prove thad_, , , ajpe—; = 0,

ever this approach does not generalize easily to larger lnod#herea, = 1. By definition of p, this Is equivalent to prove
because obtaining a closed-form expression(feD,)~* on 1 pk—j 1 o

larger examples can be difficult. We show that the spectral Z_j aj(me(=Do) ™ P77 (=Do)" e — E[XT) = 0.
characterization can analyzB[X*] without the need of a The last equation follows if we can show that

closed-form formula fof — D) ~*. We first computeE[X| = q%:n a,P" = 0 and Y"_,a; = 0. But the former
j J - j=0"1 :

=0 ;
olds true by the Cayley-Hamilton theorem, while the
latter follows by the stochasticity oP, since for the unit

eigenvaluey; = 1itis ¢(P) = 0 = >>7_;a;. This proves
Pk = — 2 i—1. naiPk—;- The formula forp, follows by

22"t and E[X?] = 6A~2, and observe that the eigenvalues
(—Do)~ ! ared; = (2\)~! andf; = A1 with multiplicity
q1 = 1 and ¢ = 2. Imposing E[X] and E[X?] in (8),
we find Ml,l =0, ]\/[271 =1- M171 =1, Mg,g =1,
and substituting back we finally get[X*] = k!0; "M, ; + evaluating (2) fork — 0, i.e
K10y * (Mg + kMa o) = (k + 1)IAF, T

-2 -2 2 2
A consequence of Lemma 1 is that one can study thH& ~ (EIX]#me(=Do) e —1)/CV* = (1-1/CV%) /2.
necessary conditions for the feasibility bf, without explicit = sincer.(—Dy) 2e = E[X%]/2 = (1 + CVH)E[X]?/2. m
computation of the eigenvalués. Because stability oo is  Similarly to Theorem 1, we can obtain a closed-form
granted if and only ifRe(—6; ') < 0,1 <t < m, we can use expression of.
the Routh-Hurwitz testq] on ¢((—Dg)~!) to study when a

given set of moments ensures stability. This is shown in tH&€orem 2. Lety, € C, 1 < ¢ < m, be an eigenvalue
following example. of P with algebraic multiplicityr;. If vy = 0 assume that

o ’ ) its geometric multiplicity equals its algebraic multiptig i.e.,
Example 2. The coefficientsn;’s of a MAP(2) are obtained the -, associated Jordan blocks have all order one. Then the

solving (6) forn = {2, 3} and are given by autocorrelation function of a MAP is
E[X3] —SE[X]E[XQ] %E[XQ]2 —E[X]E[X3] & -
™ BREXE-EXY) T 3QEX] - EX7) pe= D D, Akl k2 (16)

t=2...m j=1...r¢
The Routh-Hurwitz table for the characteristic polynonaél o 1 2
(—=Dg)~! has first column1,my, ms]”. The stability of Dy o= Z A= (1=1/CV7)/2, (7)
follows if the coefficientsn; have alternating sign, implying _ _
that Re(6;) > 0 = Re(—b‘fl) < 0. From the formulas for Where theA; ;'s constants are independent/ofin particular,
my, andmso we see that in a MAR) this requires: Apy = E[X]‘ere(—Do)‘lPt(—Do)‘le/Cvz, (18)
2 . 3 21 3 212 -1
CV2 > 1 'E[Xg] - méx(?’E[X]E[XQ]’;E[XQ ]2 E[X]il) in which P, is thet-th spectral projector ofP, that is, the
CV® <1:E[X°] <minBE[X]E[X"], s E[X"]"E[X]™").  product of the right and left eigenvectors associated;to

Similar conditions can be obtained for larger processesg, e. Proof: The proof is similar to the proof of Theorem 1.
the stability of the MAR3) can be studied as a function of itS| gt s assume first that £ 0 for all £. If »; has multiplicity
first 2n — 1 = 5 moments. r¢, the generalized spectral decompositionRgives [2]

We also observe that if—D,)~! is diagonalizable, then _
m = n and the projectord/, ; are in simple relation to the P= t—lz: (P +Ny), k=0
IAT cdf since o

t=2...m

Doz —2/6, where N, is the nilpotent matrix associated 1@, N;* = 0,
Fla)=1-me"e=1- Z M e L (14 N,P,=P;N,;, andN,P, = 0, t # p. Therefore,

t=1...n

. - _ k
which follows by the relation ediog(=01 =0 = Pk:( Z (VtPtJrNt)) = Z (vePy + Ny)*
diag(e % ",...,e=%") and the computational formula for t=1...m t=1...m
M, 1. Note that (14) allows an efficient numerical computa- min{re—1k}

; - : _ k —1n7.\i
tion of useful quantities such as the percentiles of the IAT = o Z (i)Pt(% N, k>0.

distribution. t=1...m i=0



Inserting the last formula forP* into (16) we get after for k > 0. The rest of the proof is similar to the proof of

algebraic manipulations Theorem 2. ]
min{re k1) _ We conclude by remarking that the distindt ;'s and~;'s

_ Z k Z < k )g _ in (16) are no more thagn — 2. Thus a MARn) process
Pr T i—1)7h" can fit up to2n — 2 independent autocorrelatiopg, k£ > 0.

t=1...m i=1

For a given CV, p, is fixed and the maximum number of
where independent coefficients beconts — 3.

fAlt.,i = B[X]2m.(— Do) "' Py(7; *No,) " (~ Do) ~'e/CV2. We now pr_ese_nt three examples illustrating respectively: _
« the application of the previous results to the characteri-

Grouping the coefficients of’, we have zation of two classes of MARB) and MAR4) that can
T s(i—1,5— 1) ~ be employed to match traces with complex eigenvalues
A= Z ,7’1'141&,1-, (29) in autocorrelations (Example 3);
i=j (i —1)! « the computation of the projectork ; in the difficult case

of a process with defectiv® (Example 4);
« A comparison of the non-negligible impact of a defective
P on the autocorrelations (Example 5).

where thes(m,n)’s are the Stirling number of the first kind.
Finally, the relation forA, ; follows immediately by (19).m
From Lemma 2 we see that the functippwhen evaluated
in k = 0 assumes the valug, = (1 — 1/CV?)/2. Although Example 3. The Circulant MMPP is proposed in [25] to
this coefficient does not admit any statistical interpietat insert complex eigenvalues in the autocorrelation of caunt
since the autocorrelation function is by definitigh = 1 According to our results, this approach can be generalized
for k = 0, it is useful to consider this limit value sinceto the IAT process by simply defining a MAP with circulant
the conditionp, = »°, A;1 can simplify the computation P and/or (—Dy)~!. In particular, if D, is diagonal, the
of projectors. The valug, can also help in manipulating resulting MAP admits a quite simple characterization. Defin
the autocorrelation coefficients, since it is often obs@rvép,,ps, ..., p,], pn=1— > j4n Pj, t0 be the first column of
that increasingp, produces a generalized increase of athe circulant matrixP. Since in a circulan® it is 7. = e/n,
autocorrelations. For instance, in the special case of a (AP from (1) we haveE[X*] = (n~1k!) 3, 0.
process, it follows from (16) that, = v5po and therefore the  Using Theorem 2 we can also study autocorrelations. For
autocorrelations increases monotonically as a functiopyof instance, in the case = 3 the circulant matrix has two iden-
tical or complex conjugate eigenvalues, which implies from
the condition onds ;1 + As 1 = po that Ay = As1 = po/2.
Now letting y2 = |y2|e?*2,

Corollary 2. If +; has algebraic multiplicityr; = 1, then
A ;=0forj>2.

Proof: If all nilpotents N, are zero, then the only non-

: : , 3A
zero projector in (19) is4; ;. B |y = (1/2)\/(3p1 —1)243A2,, wy = arctang,
Without loss of generality, we assume in the rest of the ’ (3p1—1)
paper thaty;| > |v41|, j = 1,...,n — 1. According to this with A, ; = p; — p;, the autocorrelation is

ordering, the asymptotic decay of the autocorrelation tionc

. . . Jkwa —Jjkw2
is geometric with ratey; (unlessy, = —1 and p; does not o = polya2lF (¢ te )
converge to zero a8 — +00). We complete the analysis in 2
Theorem 2 by studying the following degenerate case. Higher order cases are similar. E.g., for = 4 after few
manipulations we get

= poly2|" cos(kws).

Corollary 3. If P has ry eigenvalues equal to zero and

belonging to Jordan blocks of ordé, 12, ...,1d, then ok = Aa1v" + Apa|ys|* cos(kwy),
j=1...r¢ t=2...m—1 j=1...r¢ A A \/m AVIDS
— = = arcta :
where Ya 1,2 + As34, |'Yb| 12 T QT3 wy rctan A1737

_ _ _ CV2(0y — 02 + 03 — 6,)?
= E[X]| 2m.(—Do)"Y(N,)*(-=Dy)"te/CV?, (20 Ayq = 42T
Mk,j = E[X] (=Do)” (N;)*(=Do) "€/ (20) 1 (O3 + 02 + 62+ 61)°

in which N j, Nf)‘fj = 0, is the nilpotent associated to thewhere the eigenvalues are denoted by the indicasdb since
Jordan block of ordet}, and ; is equal to zero fok > [}. the asymptotic decay rafg.| can be eithef,| or ||

s Ap1=po— Aa1,

Proof: The generalized spectral decompositionffis Example 4. Consider the MAR5) with (—=Dg)~! =

i diag(1,2,3,4,5) and
Pk:( Z N07j+ Z (VtPt"'Nt)) =

0 A A XA A 1 00 0 0

j=1l...ro t=1..m—1 A 0 A A A O N1 0 0
min{re—1,k} P=10 2\ 0 X X ,J=]/0 0 X 1 0
]{ _ i 9 9

= > No;+ >ow > <i)Pt(% "Ny, 0 0 3x 0 A\ 00 0 X 1
j=1...m0 t=1..m—1 i=0 0 0 0 4\ 0 00 0 0 X



N Defective

Non-Defective

A comparison ofpzef and pzde-f is shown in Figure 2.

C. Higher-Order Statistics

We conclude by observing that the characterization given fo
moments and autocorrelations generalizes in a similaidash
to the joint moments (3), since these functions consist of
powers of(—Dy)~! and P. For example, in the case where

both matrices are diagonalizable ahd= 2, we have
H(@i k) = EIX[ X2 = > > Hyby!,
t

=l...nil=1...,n

(21)

Inter—Arrival Time Autocorrelation
’

where the joint moment projectdi, ; is a constant indepen-
dent of7 and k and which is computed from the product of
the spectral projectors d¢f-D,)~! and P.

From (3) it can be seen that for genefathe joint moment
projector is not in simple relation with the projectavs; ; and
A;+, since it is obtained by first multiplying several projestor
where = 0.25 andJ is the Jordan canonical form &. Pis  ((—Do)™"): and P, and then weighting the result using the
defective withys = A = 0.25, 7, = 4, and the autocorrelation 7 Probabilities. Therefore, moment and autocorrelatiomgt
coefficients are given by algorithms, which impose the eigenvalugsand~; and the

projectors M, ; and A; ;, still leave degrees of freedom to
= 4 (Az1 + Ag ok + Ao 3k* + A 4K?) i o 5 hi

P = "2(A21 2,2 2,3 2,487 ), assign the projectors of higher order moments.

The computation of the spectral projectors and nilpotent

matrices of P is performed following the same steps of the IV. HYPEREXPONENTIALFITTING

proof of Theorem 2, see [2] for computational formulas for The high variability of packet transmission delays makes it
the projectorsP, and the nilpotents\;. In particular, the €asy to find network traffic traces with CV> 1, and most
A, constants are obtained by (19) and are giverdby = of the traffic traces in the Internet Traffic Archive [1] have
8.160 - 1072, Agy = —2.843- 1071, Ay3 = 1.565 - 1071, this property. For this class of processes, our charaeteriz
Agy = —2.076-10"2, tion results immediately suggest an efficient hyperexptiaken
fitting algorithm, see [10] for previous work. This will be
important in the general fitting algorithm presented at the
end of the paper, but can also be used independently to fit
a hyperexponential PH process of a network traffic trace with

L L L L L L L L
1 2 3 4 5 6 7 8 9 10

Lag k

Fig. 2. Autocorrelations for the defective and non-defec# of Example 5

Az 1 = po.

Example 5. The defective stochastic matrRR . ; with Jordan
canonical form

1 0 0 0 1 -2 -4 -6 4 o

00 0 0 1 19 -5 5 CV~? > 1. Note that here we focus only on fitting the sample
J = 00 1/2 1 V= 1 -3 4 94 |- distribution, since we assume that the process is renewal.

00 0 1/2 1 3 7 —93 Observing that theM; ;'s and 6;'s aren + m < 2n

parameters subject tp°, M;; = 1, we see from (8) that a
MAP(n) can fit up to2n — 1 independent moments. A similar
conclusion has been recently obtained by the analysis of the
underlying PH-type distribution [33]. Givein — 1 sample
moments, it is possible to fi?[X*] by a hyperexponential
PH process using (6)-(8) by the algorithm in Figure 4. Ac-
cording to the computational formulas fat; ; in the proof

of Theorem 1, the diagonal form d?, implies thatM = «,
and the moments have the forf{X*] = k!>, 7. ,0F. As

a result, the PH processD,, —DyeM) is renewal since
P =eM = emn. has rank one and thug =0, t > 2.

where J = VflPder, has two eigenvalues, = 1/2,
v3 = 0 with multiplicities r» = 2, r3 = 1. Consider
the MAP(4) (D = diag(—72, 17, =58, —52), — Do P 4 ),
imposing p; and ps in (16) we getds; = 6.5978 - 1073,
A2,2 = —3.5763 - 10_3, A3,1 = po — A271 = 1.9669 - 10_17
and the autocorrelation is

P = (Az1 + Asak)rh.

If we consider a similar non-defectivé, .y with same
eigenvalues an@ matrix, but Jordan canonical form

Lo o0 0 Example 6. Using the moment matching algorithm in Figure

J=V PV = 00 0 0 4, we determine a hyperexponential procesgPHhivhich fits
00 1/2 0|’ the first five moments of the LBL-PKT-5 trace. The moment
00 0 1/2 matching algorithm returns the following values:

the related MAP (Do, —DoPy4er) has a different auto- yr, | — 00262134, My, = 0.3847399, Ms, = 0.5890467,

correlation despite the fact that the eigenvalues and the
multiplicities are identical. Imposing; andpz, we getd; ; =
6.5978'1073, AQ_’Q = 0.0, A3_]1 = pO—AQ_’l = 1.9669'1071,

thus
ndef

PRl = Ay q4b.

U1 = 00200142, 65, = 0.0090486, 65 = 0.0022153.

The central picture in Figure 3 shows the accurate ccdfdittin
obtained by the PE8) with the above projectors and eigenval-
ues. The first five moments are matched exactly; higher order
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Fig. 3. Distribution fitting of three traces of the Interna@ffic Archive [1] using the algorithm in Figure 4. The comaiitnal costs are negligible.

Fig. 4. HYPEREXPONENTIALMOMENT MATCHING ALGORITHM process, we define a different process composition method
which we call Kronecker Product Composition (KPC). Given

Step 1 Use 2n — 1 consecutive sample moments i i ,
E[X], E[X2, ..., E[X?"~1] to parameterize the linear J MAPs {D{, D1}, we define the KPC process as the MAP

system composed by[X?] = 1 _an(_j (6) fork = {Dlgpc’lepC} ={(-1)"'D{®---@DJ,D!®-.-@ D]}
n,n+1,...,2n— 1. If the system is singular ot = 1

the PHn) is exponential with mear’[X]. Otherwise where® is the Kronecker product operator [6]. It can be easily
go to Step 2. shown by the properties of the Kronecker product tR&° =
Step 2 Solve for the values; and determine the roots  —(D{P°) "' D™ = P'@...@ P’ andn’?° = rl@- . .@n?,

of ¢_pyy-1 = s" +m s mis + my thus our composition generates an embedded proBP&8§
which are the eigenvalugs of (—Dg)~!. If any 6, is with simple structure.

complex or a non-positive real, then drapX>"—!] and In order to generate a valid MAP, the KPC requires that
E[X?"~2] and restart with @ H (n — 1). at leastJ — 1 composing processes have diagodd} as

Step 3 Parameterize the linear system defined by (8) we discuss later in Example 7. Nevertheless, because one
for k =0,...,n and solve for thel; ,'s. If any M, , MAP can be arbitrary, the KPC does not place modeling

is complex or a non-positive real, then drép.X "1 restrictions.

and E[X?"~2] and restart with & H (n — 1). The basic property of a MAP obtained by KPC is that
Step 4 Return the proces®D, —DyeM) with Dy = we can easily impose its eigenvalues and projectors in both
diag(—@l_,}, e —9;,{[) andM = [My1,..., My moments and autocorrelations as we show later in Theorem 3.

Equivalently, one may impose directly moments and autocor-
relation values, as described in Theorem 4. This is impbrtan
because, by the characterization in Section lll, the fittirig
real traffic is essentially an inverse eigenvalue problentte
moLnSents are also mﬁtc_hed closely, e.g., the sample momgfknyalues of? and(— D). Inverse eigenvalue problems
EX®] = 2.7044 - 107" is well approximated by the RH) 56 notoriously hard, but the KPC method provides an effecti
which hasE[X*] = 2.7908 - 10~"". Similar quality levels are oy tion. A MAR(n) can be defined to assume an arbitrary
achieved also for the BC-pOct89 and LBL-TCP-3 traces alggmper of autocorrelation and moment values, with the only
shown in Figure 3. Note that, because these traffic traceslaré, 4 tical difficulty of limiting the order of the resulting AP.
significantly autocorrelated, fitting the underlying distition, |, the rest of the section, we show how one can a priori
although accurately, is clearly insufficient for predigtitheir yotermine moments and autocorrelations of the KPC process

queueing behavior. For this reason, we focus in the restef e the knowledge of the properties of the composing MAPs.
paper on the more difficult problem of fitting the traffic pro-

cess and its temporal dependence structure. Neverthéiess,

algorithm presented in this section can be successfullpt@do A. KPC Process Characterization

!f thle O]E)se(;ved net\lNorkhtrafflc IS ellr;pr_ommlatelyhrenevg:éand Without loss of generality we studﬁngpC, D™} for the

1S ZSO . unvallmenta to the general fitting algorithm present . cq; _ 9 The results presented here recursively characterize
In Section VI. also the case > 2.

Theorem 3. Let MAP, = {D¢, D¢} and MAR, = {D},, D%}
be MAPs of ordem, and n;, respectively, and assume that

The accurate fitting of LRD network traffic requires modelg)g‘J is a diagonal matrix. Lety?, 6%, A%, and M, be the

composed by many states; e.g., the MAP fittings of thegenvalues and projectors of MAPLet 57, 6, AL, and
Bellcore Aug89 trace in [3] and [20] employ = 16 and As%, be the equivalent descriptors of MAPThen the KPC
n = 32 states, respectively. Since traditional superposition

is not meant to impose higher order properties of the IAT MAP, ® MAP, = {—D¢ @ D}, D} ® D}}

V. COMPOSITIONAL DEFINITION OF LARGE PROCESSES



is a MAP of ordern,n;, with eigenvaluesy, = 'yg'yg, 0, = Proof: The proof follows similarly to the proof of Theo-

626>, and projectors rem 4 by considering (3). [

My =M MY, Ay = (A%, CV3) (Al cv?)/cv?,  Example 7. To motivate the assumption on the diagonal
’ e ’ " - structure of theD}’s, consider the KPC of the MAR)
1 |=3a  « 1 |la «
Proof: The relations for the eigenvalues follow from D, = {20‘ _40[} Dy = [a OJ (26)

basic properties of the Kronecker product [6]. The projecto .
associated t@; = 26" is with the MMPR?2)

My =m.((—=Do) *)e D} = [_25 b ],Df_ {5 0]. (27)

6 =30 0 20
=(ml@nl)((~Do)~")j @ ((=Do)~")j(e" @ €”) \ fthe ¢ has diagom, thus the KPC i
L ag( Py=1ana (b () \—1\b by _ nga b one of the two processes has diagoh#), thus the is
=(me((=Do) ™ )pe”) (me((=Do)™")ge”) = My, Mg, the infeasible MAR4) with negative off-diagonal entries

forall 1 <p<ng 1<qg<ng.

p

Similarly, the projector ofy, = v2+} is 65 35 25 —& 5 0 & 0
Avt =EIX]"*me(~Do) "' Pu(~Do) 'e/CV", Do = ig :gg —_856 ig Du= g 206 g 205 ’
=E[X]72(B[X A} ,CVQ)(E[X"]? A3 ,CV})/CV?, ~25 60 45 —12 0 25 0 20

=(A2,CV2)(4%,CV})/CV2, | ; _
whereé = af. If any process has diagon&}/, the negative
B anti-diagonal ofDy becomes zero and the result is feasible.

Theorem 4. Moments and autocorrelations of the KPC satisfExample 8. It is known that MAR2) and MMPR2) processes
k k k have IAT autocorrelation; that cannot be greater thans,
EIXT] = BIX ] BIX]/R, (22) see [17]. The fitting of real traces requires to address this
CV2pr = (CV2)pi + (CV2)pl + (CVECV2)pipt, (23) Problem, but to the best of our knowledge no examples of
MAP(n)s with largep; have been given in the literature. An
where the quantities in the right-hand side refer to MAPexample can be easily generate by KPC. Consider a process
and MAFb In particular the relation forE[Xk] |mmed|ate|y {DS’D‘{’} with quite |a|’ge autocorrelation, e.d., the MAP

implies
pa_ [F10000 0 T . 10000 1
1+CV?=(14+CVH)(1+CV)/2. (24) o= 1 0 —101|"7t 7| 1 100]°
Proof: We begin by proving (22). Using the properties ofvhich has lagt autocorrelationp; = 0.485 andCV,2 = 49.5.
the Kronecker product [6] we have We seek for a MAP { D}, D4} which may produce; > 0.5

by KPC, and we focus on the case where this process is PH-

k1 _ —k
E[X"] = klme(—Do) e type renewal, thug? = 0, for all k. From (23)-(24) we have

— Ll(0 b\(_((_1\2—1pa b\\—k(_a b
kl(me ®7Tz)( ((a BC Dob®_fo)) (eb ®e’) Covey ov? .
= kl(mg @ m.)((Dg) ™" @ (Dg) ") (e @ €”), PE=\vz )P = (1+CV2)(1+CV2)/2 -1 Ples
and multiplying by(—1)~2* which equals one for alt € N and to increase the autocorrelation it is sufficient to sedec
H 2 2 2 H
E[X’“] — k(=) 2’“(rg(Dg)"“ea)(r’;(Dg)"“eb) process withC'V,”* such thatC'V, > C'V*. For instance,

= kl(x%(—D%) " *e®)(x(—=Db) Feb =5 5 0 0 00
( 2( 0,3 (me(=Do) ") D=1 -25 1|,D'=105 0 0,
= E[XT]|E[X5]/kK!. 0 0 -1 1 0 0
Equation (23) follows the same steps as (22) by ConSideriflgPH-type renewal with C¥/ = 0.584, and from (24) we
(2)- ® have CV =39.0 < CV2. As expected the KPC of the two

The two theorems provide a complete characterization ﬁlfAPs yields a MARG) with p; = 0.616 which addresses
first and second order IAT properties of the KPC process. Tﬂ‘?e MAP(2) limit pp < 0.5. Proceéses with even larger

KPC also simplifies the definition of higher order StatiStiC%lutocorreIation can be obtained with a similar approach
We have this characterization of the joint moments of the '

composed process. VI. GENERAL MAP FITTING ALGORITHM
Theorem 5. The joint moments of MAR2 MAP, satisfy Using KPC, we define a general-purpose fitting algorithm
Ha@,g)Hb(;’,;) for network traffic._We illustrate the algorithm in the case
AT (25)  where the/ composing MAPs used in the KPC are an arbitrary
MAP(2) (indexj = 1) andJ — 1 MAP(2)s with diagonal
being H* (i, k) and H°(i, k ) the joint moments ofDj,D{} Dy, but the method works with minor modifications also with
and {Dg, Dl{}, respectively. other processes. The algorithm proceeds in three steps.

H( k) =




Fig. 5. AUTOCORRELATION ANDCV?2 FITTING [STEP1] Fig. 6. MOMENT AND HIGHER-ORDERFITTING [STEP 2]

minimize Z (pr — Pr)? minimize Z (H(i, k) — H(i, k))?
kEK (i,F)eH
subject to subject to
(CV2 — CV')? < tolgye, (E[X] — E[X])? < tolgyx,
Ibey2(§) < CV2(j) < ubeyz2(4), Vied; (E[X®] — E[X?))? < tolg[xs],
1by, () < 72(J) < ubs,(4), Vied;  lbgx(j) < EX]() < ubgx(d), Vijed;
where Ibgxs)(j) < E[X3)(j) < ubgxs)(7), Vjed;
oV — sample CV?, where
pr — sample autocorrelation, VkeK E[X] « sample E[X],
CV? «— (24) recursively using CV?(j), Vjeld, E[X?] «— sample E[X?],
(i) — % (1 3 12 . > o) YkeK.Y el E[X] « (22) recursi\./ely usilllg E[X](j),' V]: eJ,
CV<(j) E[X?] « (22) recursively using E[X?](j), Vj€J,
pr < (23) recursively using px(J), VEeK\Vjed  EXY(j) — (14+SCV({H)(E[X]())?, Vijeld.

. o —2

Step 1 - Autocorrelation an€V? Fitting. Let CV~ be the the meansE[X](j) and third momentsE[X?](j) for all
sample CV; similarly, let 5, be the sample autocorrelationj € J. Indeed, the second momeni&X?2|(j) are readily
computed on a set of lads, and letJ = {1,2,...,J}. We gptained from the C¥(;j) for given E[X](j). As shown by

fit second order IAT properties by the nonlinear optimizatiothe motivating example in Figure 1, given fixed autocorietat
program in Figure 5. The fitting algorithm is essentiallyaste 53 C\2 there exist many possible valid processes; we thus
square algorithm constrained to the properties of the KR. Tso|ye a new nonlinear optimization program to select the one
result of the optimization are two sets €) and~2(j) for  that results in better fitting of higher order properties AT

4 € J which specify the optimal C¥ and autocorrelation for on a set of sample joint momenES(f, k) for (Z k) € H. The
each of the/ MAPs used in the KPC. For each variable, a sg{gnlinear program is given in Figure 6. For MA&Ps we use

of upper and lower bounds are imposed, euev2(j) and  the following moment bounds [16]
Ibcyz(j) are respectively upper and lower bounds on the value

CV?(j) to be determined by the solver. Since &Y) and Ibex)(j) = V2E[X?], ubgx)(j) = +oc,
~2(j) are constrained by proper bounds, they can be always _ )
chE)s)en to be feasible for a MAP), see [16] for existing %E[XS](]) = V(L5 + EX?P/B[X], ubpixs(j) = +oc.
bound formulas. If the optimization uses processes otrar th Step 3 - MARn) Generation Given the target optimal
the MAP(2), the feasibility constraints given below need twalues for theF[X](5), CV2(5), E[X?](j),v2(j) we generate
be adjusted accordingly. In all experiments we set the uppBe.J MAPs as follows. The/ — 1 diagonal MAPs are usually
bound on the CV to beubcy2(j) = oo, j € J. Further, for feasible since the constraints on moments and autocooresat
the arbitrary MAR2) we have are sufficient for feasibility [16]. The related values bf; ;
. . . andé, ; are computed from the first three moments using the
lbeyz(1) = 05, by, (1) = =1, uby, (1) =1 -, fitting g\lgorithm in Section IV and exploiting tha@t[X2](j) =
being e an arbitrarily small positive quantity. The remaining1 + CV?(j))(E[X](j))?. The matrix P(j) is immediately
J — 1 MAP(2)s with diagonalD, can be shown to have specified by the vectoM = [M;;,1 — M;;] = = and
hyperexponential marginal probabilities, and we set by v2(j) = det(P(j)). For the arbitrary MAP2) we use
. , , standard fitting algorithms, see e.g., [8], [11]. WheneVer t
lbev2(7) =146 by, (j) =0, uby,(j) =1—e. fitting results in infeasible processes (e.g., negativesra
The valuetolcy: is a tolerance on the exact matching of théd, or in the off-diagonal elements ab,), we perform a
CVZ. On certain traces where the value of the lagutocor- least square fitting to best match the tardgtX?](j) and
relation p; differs significantly fromp, = (1 — 1/CV?)/2, ~,(j) while keeping fixedE[X](j) and E[X?](j). Once that
flexibility on the C\2 fitting avoids an excessive constraining/ feasible MAPs are obtained, the final process is immediately
to impose the passage through which can result in bad computed by KPC.
fitting of autocorrelation at high lags. We conclude the section by remarking that with
Step 2 - Moment and Higher-Order Fittin@nce that the MMPP(2)s/MAP(2)s, the fitting algorithm cannot include
optimal values of CV(j) and,(j) are obtained after one complex eigenvalues in the IAT autocorrelations. These may
or more runs of the previous algorithm, we search for thHee included by also using one or more circulant MAR or
missing parameters required to define valid M2, namely MAP(4)s such as those described in Example 3, but this may
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easily yield processes with several tens or hundreds adsstat In the fitting of the joint moments, we have performed
This state space explosion associated to the use of citculseveral experiments and obtained the best results by matchi
matrices has been pointed out also in the fitting of the cagntia set of moment&[X,;, X;, X;,], which implicitly define the
process [7] and remains an open problem. However, we ehispectrum of the IAT process [9]. This seems to be more
pirically observe that many traffic traces that exhibit nplét important than matching momenE[XfllXi’f] of the IATs,
complex eigenvalues in the counting process often have lAidhich did not result in improved queueing prediction accyra
autocorrelation that does not require complex eigenvaluesth respect to a standard second order fitting. Without loss
and this makes MAR)-based IAT fitting sufficient more of generality we seti; = 1 and fit E[X;X;,X,,] on a
frequently than counting process-based methods. Fomiosta square grid of10? or 252 points (i2,i3) generated by the
Figure 7 compares the Welch power spectrum density (PSOartesian product of two identical sets of logarithmically
estimate of the IAT and counting processes on the Bellcospaced points iril, 10]. The pointE[X; X1 X1] = E[X?] is
Aug89 trace. The counting process is obtained by computiatyvays included in this grid, thus in Step 2, see Figure 6,a&te s
the arrivals in10° consecutive times slots of identical durationol z xs) = +oo to give more flexibility to the least-squares;
AT = 10~2sec. The figure for the counting process indicatem all experiments we instead impose exact matching p¥ |
power in the low frequency spectrum, whereas the IAT processd C\, thustolg(x) = 0 andtolcy> = 0. Compared to the
does not show any significant complex sinusoid and thus camtocorrelation, the least square fitting of joint momeptnss

be approximated effectively by real eigenvalues only. more difficult and the nonlinear optimizer can occasionally
return infeasible solutions. Thus, several runs may be exted
to find a good local optimum, which is nevertheless obtained
in a few minutes.

The computational costs of the final MARP) generation is
negligible. We also remark that small corrections of ermrse
behaviors are possible without the need of re-running thiesen
fitting algorithm. For instance, to obtain a slower asymiptot
decay rate for the autocorrelations it is possible to inseehe

O O omaized Freq . O ORomaizedmeq .+ value of the largest(j) and regenerate the MAR).
Finally, the evaluation of the queueing behavior of theditte
Fig. 7. Comparison of the power spectrum of the IAT procesd #re  MAP is done with an implementation of the analytical method
counting process for the Bellcore Aug89 trace. The countiragess shows for the solution of a MAP/D/1 process in [26] and using a
power density in the complex spectrum which is instead gizé in IATS. ! .
numerical tolerance for convergenceeof 101, Details on
the experimental results are given in the rest of the section

Welch PSD - IAT Process Welch PSD - Counting Process
60

50

o

Power/freq (dB/rad/sample)
@
o

Power/freq (dB/rad/sample)

VIl. EXPERIMENTS
We present a comparison of our algorithm with the besB. Bellcore Aug89--/D/1 queue

available algorithms for Markovian analysis of LRD traffic, we first compare with the queueing predictions of the
that is, the method of Andersen and Nielsen (A&N) in [3fodels in [3], [20] using the Bellcore Aug89 on a first-come-
and the multifractal approach of Horvath and Telek (H&T) iflirst-served queue with deterministic service and differen
[20]. We first describe the experimental methodology, later ytjlization levels. This is the standard case for evalgatin
report fitting results on the Bellcore Aug89 trace [1], [24Ha the quality of LRD trace fitting, e.g., [3], [20], [21]. The
a recently measured Web traffic trace obtained at Seagate g@gfic trace consists 0f0° IAT samples collected in 1989

presented in [30]. at the Bellcore Morristown Research and Engineering fgcili
and shows a clear LRD behavior, see [24] for details. We
A. Experimental Methodology run the algorithm described in Section VI to determine a

We apply the algorithm described in Section VI as folMAP(16) which accurately fits the trace. The size of this
lows. We first fit the autocorrelation on a set tf® — 104 MAP is similar to those employed in previous work, which
logarithmically-spaced lags ranging in a large intervagy.e @€ composed byG states (A&N) or32 states (H&T). Due to
[1,10]. Previous work has often limited to match IAT autohe limited length of the trace, we fit all autocorrelationstie
correlations ir{1, 104], but we have observed that the choice dfterval[1, 2- 10%, since at higher lags the sample values are
a larger lag interval can result in increased modeling amur Significantly affected by noise. The result of this fit is ®th
at heavy traffic where second order properties are fundahefccurate, as shown in Figure 8, and is obtained in less than
for queueing prediction [31]. The solution of the least sgsa "€ minuté. In the second phase of the aIgonthm,_ the joint
program in Figure 5 is usually very efficient (of the ordefOmentsE[X1.X;, X;,] are matched on a square grid 2if
of seconds), and only a few runs are needed for an accur@@nts. On this instance, the computational cost of the famog
match. Here we consider four MAPY & 4): good fitting of N F|gu_re 6 is low, approximately thirty secon_ds. The values
the autocorrelation is also possible with only two or thre@f the first three moments of the MARS) are given in Table
MAPs, but the remaining degrees of freedom are usually, _ -

In both figures 8 and 11 we do not report the acf fitting of A&N ah&IT

insufficient to match accurately hlgher order properties gfnce these methods do not match IAT autocorrelations, wtatcarrelations
IATSs. in counts.
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Fig. 8. Fitted autocorrelation for the Bellcore Aug89 traceng the program in Figure 5.
TABLE |
MAP(16) FITTING OF THE BELLCOREAUG89 TRACE USING THE ALGORITHM OFSECTION VI
BC-Aug89 Trace MAR16)
E[X] 3.1428 -10~°  3.1428 - 10 °
cv? 3.2236 - 10° 3.2235 - 10°
E[X3] 2.0104-107%  1.1763-107°
~a n/a 9.9995 - 10~1
BC-Aug89 - MAP/D/1 - Utilization 20% BC-Aug89 - MAP/D/1 - Utilization 50% BC-Aug89 - MAP/D/1 - Utilization 80%
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Fig. 9. Queueing predictions for the Bellcore Aug89 traceaoqueue with deterministic service.

I; the entries of each composing MMER/MAP(2) are given traffic, but the dependence effects are still not as stronig as
in the appendix. slightly higher utilization values, i.e., f@0%—70% utilization

In order to assess the accuracy of the fit, we compare t{see, e.g., [3]). All methods initially overestimate thealre
queueing prediction of our model with the MMPPs obtainegrobability, but for higher values aof our method is closer
in [3], [20] for utilization levels of 20%, 50%, and 80%. to the trace values than A&N and H&T which predict a large
All traces have a quite good match of the individual queugrobability mass also after = 103.
probabilities. In Figure 9 we plot the complementary cdf Finally, in the case oB80% utilization all three methods
(ccdf) of queue-length probabilitieBr(queue > x), which perform well, with our algorithm and the H&T being more
accounts also for the residual queueing probability mass aorecise than A&N. The final decay of the curve is again
thus shows the impact of the tail probability. 2i% utilization  similar, but the KPC method resembles better the simulated
the effects of the long-range dependence seems minimal, arate.
the probability mass is spread over few lags. Our methodsgive Overall, the result of this trace indicates that the KPC
almost the same results of the multifractal technique, evhiapproach seems more effective than both H&T and the A&N
the method of A&N seems to underestimate the queueingethods, while preserving the smallest representatigh (
probability for the smallest values af, which also affects states) of the A&N method. It also interesting to point owttth
the rest of the ccdf. the fitting leaves room for further improvements, espegiall

The intermediate case fo50% utilization is generally in the 50% case which is difficult to approximate. This may
difficult to capture, since the network is approaching heawgdicate that significant information about the IAT processy
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BC-Aug89 - MAP/M/1 - Utilization 20% BC-Aug89 - MAP/M/1 - Utilization 50% BC-Aug89 - MAP/M/1 - Utilization 80%
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Fig. 10. Queueing predictions for the Bellcore Aug89 traceaocqueue with exponential service.

be captured by statistics of higher order than the bispertru Queueing results for this trace are shown in Figure 12. Here
we compare with an implementation of the A&N algorithm
[3]. The A&N MAP(16) fitting is obtained by the algorithm
C. Bellcore Aug89—/M/1 queue parameters] — 0.85682, p — 0.74503, A\* — 3.3185, n — 5,

In the second experiment we evaluate the robustness of the= 4.
fitting under different variability in the service procedsis Although the performance effects of Web traffic on a server
is important to assess that the fitting captures the essenigmore often modeled by a queue with exponential service, we
properties of the traffic process, and thus can provide ateurperform the comparison here assuming a deterministiccervi
results regardless of the context in which the fitted MAP isme, since the results on the Bellcore trace indicate thiat t
used. In Figure 10 we plot comparative results for a4M//1  case is more difficult to approximate. Predictions on/&D /1
queue using in input the same MAPs considered before. Ageue at utilization levels 020%,50%,80% are shown in
we can see, KPC performs better than in théD/1 case, Figure 12. The KPC method is more accurate than the A&N
and it is now able to capture well the tail decay also for thiting in the case$0% and80% while the case0% is hard
80% utilization. A possible explanation of this behavior igso approximate for both methods. This reinforces the viglidi
that the autocorrelation in the flow becomes more importast the observations on the Bellcore trace: IAT fitting is more
if the queueing process is more variable, therefore moggfective as soon as the effect of the temporal dependence
accurate autocorrelation fitting becomes necessary umndér shecomes evident. Thg0% and80% utilization levels for the
conditions. In comparison, the other methods seem insteackiPC method are cases of almost perfect fits. In particular,
suffer by the increase in variability of the process, as shovor the 50% case the analytical results indicate that the tail
by the overestimates which are significantly greater than fobability is zero with respect to machine accuracy foe

the —/D/1 case. This indicates that KPC is more robust thag1891, while the simulated queue drops to zerofor 61002.
counting-process based fittings.

VIII. CONCLUSION
D. Seagate Web Traffic Trace,/D/1 queue o .
We have presented several contributions to the Markovian

In order to provide a comparison on traffic traces that agg,a\ysis of network traffic described in terms of packet or
representative of other network traffic, we implemented theq est interarrival times. We have obtained a spectrat cha
A&N method? and compared its counting process fitting Withyterization of moments and autocorrelation which simeglifi
our methqd on the HTTP Web.trafflc t_race.presented in [3Qhe analysis of MAP processes and proposed a new class
The trace is composed IBy6-10° interarrival times of requests ot circylant MAPs which exhibit complex eigenvalues in the
at the storage system of a Web server, and has a long-rapge spectrum. On the basis of this spectral characterizatio
dependence that is stronger than the BC-Aug89, see [30] {p& have obtained an algorithm for fitting hyperexponential
the Hurst coefficient estimates. Thanks to the larger size pitic by means of small PH processes. Experimental results
the sample, we now fit the autocorrelation in the larger sgf, yraces of the Internet Traffic Archive indicate high aaoyr
of lags [1,10°] using only10? logarithmically-spaced points | the second part of the paper, we have studied the

since the autocorrelation function is less noisy than f@& thy.finition of large MAPs by Kronecker Product Composi-

Bellcore traceésee Figure 11. The joint moments are therdfitttion (KPC), and shown that this provides a simple way to
on a grid of10

A points. The valuesotl)f_ the 1;|3r|st three ?OTehntéreate processes with predefined moments and correlations
of the related MAR16) are reported in Table II; each of theg; 5 orgers. A least square fitting procedure based on the

composing MMPF2)/MAP(2) are given in the appendix. properties of these processes has been described. Detailed

5 _ » , _ comparisons with other state-of-the-art fitting methodsella

For this trace we do not report fitting results using the H&Tltifractal h . h hat KPC id . d
method because we were unable to implement it. For the Bellrace used C.tn. the counting-process s OW.t at proviaes 'mprOV?
in the previous subsection, we use the MAP given in [20]. fitting of LRD traces that require models that capture their
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APPENDIX

KPC Fitting - Bellcore Aug89 Trace. The Bellcore Aug89
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