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1. INTRODUCTION
Markovian Arrival Processes (MAPs) [9] are a general

class of point processes which admits, hyper-exponential,
Erlang, and Markov Modulated Poisson Processes (MMPPs)
as special cases. MAPs can be easily integrated within
queueing models. This makes MAPs useful for evaluating
the impact of non-Poisson workloads in networking and for
quantifying the performance of multi-tiered e-commerce ap-
plications and disk drives [8,10].

In this work, we provide scalar closed-form formulas for
moments and autocorrelation coefficients of general MAPs
(see [7] for matrix-form computation of Markov chain de-
scriptors). These closed-form formulas are used to define
new MAPs with predefined stochastic properties.

1.1 Markovian Arrival Processes
A MAP(n) is specified by two n×n matrices, a stable ma-

trix D0 and a nonnegative matrix D1, that describe transi-
tion rates between n states. Each transition in D1 produces
a job arrival; D0 instead describes background transitions
not associated with arrivals. Q = D0 + D1 is the infinites-
imal generator of the underlying continuous-time Markov
chain. We focus on the inter-arrival (or equivalently ser-
vice) time description of arrival processes. For a MAP(n),
inter-arrival time moments and autocorrelations are com-
puted using the probability vector πe of the embedded pro-
cess with irreducible stochastic matrix P = (−D0)

−1D1,
where πee = 1 and e is a column vector of 1’s of the appro-
priate dimension. The MAP inter-arrival times are phase-
type distributed with k-th moment

E[Xk] = k!πe(−D0)
−ke, k ≥ 0, (1)

and squared coefficient of variation

CV2 = 2E[X]−2πe(−D0)
−2e − 1.

The lag-k autocorrelation of inter-arrivals is

ρk =
E[X]−2πe(−D0)

−1P k(−D0)
−1e − 1

CV2 , k ≥ 1. (2)

Throughout the paper we refer to the (D0, D1) representa-
tion as the Markovian representation of a MAP.

2. SPECTRAL CHARACTERIZATION
We obtain a spectral representation of MAPs, i.e., a sim-

ple scalar representation of (1)-(2) based on spectral prop-
erties of (−D0)−1 and P . This allows to represent the
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MAP moments and autocorrelations in terms of few scalar
parameters, rather than by formulas using matrices.

2.1 Characterization of Moments
We begin by describing the moments (1) in terms of the

spectrum of (−D0)
−1. Recall that the characteristic poly-

nomial φA ≡ φA(s) of a n × n matrix A is

φA = sn + α1s
n−1 + . . . + αn−1s + αn,

which is a polynomial in s with roots si equal to the eigen-
values of A. We consider the Cayley-Hamilton theorem [4],
by which the powers of A satisfy Ak = −

Pn
j=1 αjA

k−j , for
k ≥ n, i.e., matrix powers are linearly dependent accord-
ing to the coefficients1 of φA. Because MAP moments are
computed in (1) from matrix powers of (−D0)−1, they are
linearly dependent.

Lemma 1. In a MAP(n), any n+1 consecutive moments
are linearly dependent, i.e.,

E[Xk] = −
P

j=1...n bjE[Xk−j ], E[X0] = 1, k ≥ n, (3)

where bj = mjk!/(k − j)!, and mj is the coefficient of sn−j

in φ(−D0)−1 .

Proof. Using the Cayley-Hamilton theorem,

E[Xk] = −k!πe(
P

j=1...nmj(−D0)
−(k−j))e (4)

which immediately proves the theorem by (1).

Observing that the coefficients of a characteristic polynomial
φA are functions of the eigenvalues of A, we can derive the
relation between eigenvalues of (−D0)

−1 and moments.

Theorem 1. Let (−D0)−1 have n eigenvalues, among
which only m ≤ n eigenvalues θt ∈ C, 1 ≤ t ≤ m, are
distinct. Let qt be the multiplicity of θt,

P
t=1...m qt = n.

Then the moments may be computed as

E[Xk] =
P

t=1...m k! θk
t

P
j=1...qt

Mt,jk
j−1, (5)

E[X0] =
P

t=1...m Mt,1 = 1, (6)

and the constants Mt,j’s are independent of k.

Proof. Note that (3) is an homogeneous linear recur-
rence of order n in E[Xk]/k! with constant coefficients mj .
Its closed-form solution has the same structure of (5) and
depends on n constants Mt,j ’s and on the roots of the char-
acteristic equation of (3) that are immediately found to be
the eigenvalues of (−D0)

−1.
1The αj ’s are easily computed, e.g., with the MATLAB
function poly.



Observing that the Mt,j and θt are no more than 2n param-
eters and that the Mt,j ’s are linearly dependent due to the
condition E[X0] = 1, we have the following corollary.

Corollary 1. A MAP(n) process can fit up to 2n − 1
independent moments.

Corollary 1 shows that only 2n − 1 parameters are needed
to impose the maximum number of fittable moments, and
stresses the redundancy of the Markovian representation [11].

2.2 Characterization of Autocorrelation
The spectral characterization can be extended to auto-

correlations by considering the spectrum of P , which deter-
mines the properties of the matrix powers P k in (2).

Lemma 2. In a MAP(n), any n + 1 consecutive autocor-
relations are linearly dependent, i.e.,

ρk = −
P

j=1...n ajρk−j , ρ0 = 1
2

`
1 − 1

CV2

´
, k ≥ n, (7)

where aj is the coefficient of sn−j in φP and
Pn

j=1 aj = 0.

Proof. We want to prove that
P

j=0...n ajρk−j = 0, where
a0 = 1. By definition of ρk, this is equivalent to prove

X
j
aj(πe(−D0)

−1P k−j(−D0)
−1e − E[X]2) = 0.

The last equation is indeed true if
Pn

j=0 ajP
k−j = 0 andPn

j=0 aj = 0, and the first relation holds true by the Cayley-
Hamilton theorem; the second relation follows by the stochas-
ticity of P , as we have that its largest eigenvalue is always
γ1 = 1 and thus for s = γ1 it is φ(P ) = 0 =

Pn
j=0 aj ,which

finally proves ρk = −
P

j=1...n ajρk−j . The formula for ρ0

follows by evaluating (2) for k = 0, i.e.,

ρ0 = (E[X]−2πe(−D0)
−2e − 1)/CV2 =

`
1 − 1/CV2

´
/2.

since πe(−D0)
−2e = E[X2]/2 = (1 + CV2)E[X]2/2.

Using a proof analogous to that of Theorem 1, it is possible
to relate ρk with the eigenvalues of P and characterize the
maximum number of fittable autocorrelations.

Theorem 2. Let γt ∈ C, 1 ≤ t ≤ m, be an eigenvalue of
P with multiplicity rt, and where γ1 = 1. Then

ρk =
P

t=2...m γk
t

P
j=1...rt

At,jk
j−1, (8)

ρ0 =
P

t=2...m At,1, k ≥ 1, (9)

where the At,j’s constants are independent of k.

Observing that the distinct At,j and γt in (8) are no more
than 2n − 2, and that fixing CV2 imposes ρ0, we have the
following corollary.

Corollary 2. A MAP(n) process can fit up to 2n − 2
independent autocorrelations ρk, k ≥ 1. With given CV2,
the maximum independent coefficients become 2n − 3.

Similarly to the moments, (8) has a much simpler structure
than the corresponding Markovian formula (2).

2.3 Example: MAP(2) Characterization
MAP(2)s are popular MAP models thanks to their small

parametrization space of just six parameters. MAP(2) char-
acterization results are first given in [3] using matrix expo-
nentials. Here we illustrate the simplicity of characterizing

MAP(2)s using spectral methods, by immediately deriving
the structure of MAP(2) moments and autocorrelations from
the results of the previous sections. From (5), for θ1 '= θ2

E[Xk] = k!M1,1θ
k
1 + k!(1 − M1,1)θ

k
2 , (10)

and up to three independent moments may be fitted. Simi-
larly, the autocorrelations are

ρk = γk
2 A2,1 = γk

2 ρ0 =
γk
2

2

„
1 − 1

CV2

«
, k ≥ 1, γ2 ∈ R,

(11)
which can fit a single autocorrelation for fixed CV2. Eqn.
(11) indicates that the MAP(2) offers limited versatility in
exploring the impact of non-renewal workloads on systems
or fitting trace data, since the autocorrelations are always
geometrically decaying if |γ2| < 1. Based on the spectral
results, we consider a more general class of MAPs for fitting.

3. MAP PROCESS DESIGN
Defining MAPs with predefined moments and autocorre-

lations is necessary for fitting data traces, for model sen-
sitivity analysis, and for the design of processes with spe-
cific theoretical properties. The general problem is difficult
and several approaches have been investigated, e.g., [1,2,5],
but important issues remain open. For instance whenever
a trace’s autocorrelation exhibits oscillations that would re-
quire complex eigenvalues, no simple way is known to im-
pose this behavior to the inter-arrival times2. We address
the problem by a technique based on the Kronecker product.

3.1 Kronecker Product Composition
We create a MAP(n) by composition of a set of smaller

MAPs, typically MAP(2)s. Previous work has intended
MAP composition as a superposition of J processes [1,9]

{Dsuper
0 , Dsuper

1 } = {D1
0⊕D2

0⊕· · ·⊕DJ
0 , D1

1⊕D2
1⊕· · ·⊕DJ

1 },

where ⊕ is the Kronecker sum operator. Obtaining a certain
autocorrelation for the superposed process requires imposing
the eigenvalues of P super = (−Dsuper

0 )−1Dsuper
1 , but this can

be prohibitive since P super has eigenvalues that are not in
simple relation with the entries of Dj

0 and Dj
1, 1 ≤ j ≤ J .

To tackle this problem, we propose a different approach
which we call Kronecker product composition (kpc), i.e.,

{Dkpc
0 , Dkpc

1 } = {(−1)J−1D1
0 ⊗ · · ·⊗ DJ

0 , D1
1 ⊗ · · ·⊗ DJ

1 }

where ⊗ is the Kronecker product. We assume that all eigen-
values of Dj

0 and P j = (−Dj
0)

−1Dj
1 are distinct, and require

that all J processes, except at most one, have Dj
0 diagonal.

Recall that when a MAP has diagonal D0, its coefficient of
variation cannot be less than one. In general, Dkpc

0 is not
diagonal since one of the J processes does not have restric-
tions on its Dj

0 matrix, hence the composed process may
also have CV2 < 1. The properties of {Dkpc

0 , Dkpc
1 } follow

recursively from those of {−D1
0⊗D2

0, D
1
1⊗D2

1} given below.

Theorem 3. The moments of {−D1
0⊗D2

0, D
1
1⊗D2

1} are
E[Xk] = E[Xk

1 ]E[Xk
2 ]/k!, where E[Xk

j ] is the k-th moment

2Circulant matrices have been used for assigning the depen-
dence structure of the counting process, e.g., in [6]. However,
the technique does not immediately extend to the joint prob-
lem of fitting moments and autocorrelations of inter-arrivals.
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Figure 1: MAP(4) processes with varying low-lag
autocorrelations

of the process {Dj
0, D

j
1}. In particular, the squared coeffi-

cient of variation satisfies 1+CV 2 = (1+CV 2
1 )(1+CV 2

2 )/2,
and CV 2

j is the squared coefficient of variation of {Dj
0, D

j
1}.

Theorem 4. The autocorrelation of {−D1
0 ⊗ D2

0, D
1
1 ⊗

D2
1} satisfies

CV 2ρk = (CV 2
1 )ρ1

k + (CV 2
2 )ρ2

k + (CV 2
1 CV 2

2 )ρ1
kρ2

k,

where ρj
k is the lag-k autocorrelation of {Dj

0, D
j
1}. In par-

ticular, the eigenvalues 1, γ2, γ3, . . . of P kpc, which shape the
autocorrelation, are obtained by the Kronecker product of the
eigenvalues of P 1 = −(D1

0)
−1D1

1 and P 2 = −(D2
0)

−1D2
1.

The above relations simplify the generation of processes with
predefined properties of the moments and autocorrelations,
and can be proved by properties of the Kronecker product.

3.1.1 Example: Closed Model Sensitivity
Applications of kpc span from fitting trace data to pro-

cess design. We give a simple example related to the sen-
sitivity analysis of a closed queueing network composed by
two or three queues in series. The network population is set
to N = 50 jobs. The mean service rate is identical at all
queues and equal to µ = 1 job/s. The service process at the
first queue is a MAP(4) obtained by kpc of two MAP(2)s;
the other queues have exponential service. Using kpc, we
vary the two largest autocorrelation eigenvalues γ2 and γ3

of the MAP(4) to investigate how different dependence pro-
files may impact on the network throughput. Some of the
generated service processes are shown in Figure 1; the net-
work throughput computed by global balance is given in
Table 1. The first row refers to the renewal case where the
MAP(4) is exponential with the mean µ = 1 job/s and no
autocorrelation. The following rows explore the impact of
different MAP(4) autocorrelations for CV2 = 20, e.g., in the
fifth row it is shown that γ2 = 0.999 decreases the through-
put to 0.507 job/s, a −33.4% degradation with respect to
the renewal case; in the next row it is shown that adding an
eigenvalue γ3 = 0.700 has a negligible effect with respect to
the previous case (−33.5% versus −33.4%).

These results stress the importance of accounting for non-
renewal features, since up to 35% of the throughput can
be affected by autocorrelation at a single queue, although
the degradation seems to be mitigated when the number of
queues is increased. Further, the last part of the table shows
that the workloads in Figure 1, although quite different, per-

Table 1: Throughput [job/s] for different MAP(4)
service processes at queue 1

Queue 1 MAP 2 Queues 3 Queues
γ2 = 0.000, γ3 = 0.000 0.762 (renewal) 0.261 (renewal)
γ2 = 0.700, γ3 = 0.000 0.701 (-8.0%) 0.254 (-2.7%)
γ2 = 0.900, γ3 = 0.000 0.621 (-18.5%) 0.237 (-9.2%)
γ2 = 0.950, γ3 = 0.000 0.577 (-24.2%) 0.226 (-13.4%)
γ2 = 0.999, γ3 = 0.000 0.507 (-33.4%) 0.211 (-19.2%)
γ2 = 0.999, γ3 = 0.700 0.506 (-33.5%) 0.211 (-19.2%)
γ2 = 0.999, γ3 = 0.900 0.502 (-34.1%) 0.211 (-19.2%)
γ2 = 0.999, γ3 = 0.950 0.496 (-34.9%) 0.209 (-19.9%)

form almost identically, with the throughput degradation al-
ways between −33.4% and −34.9%. This suggests the need
for further investigation on the actual impact of low-lag coef-
ficients on the performance of closed models. Observations
of this type are impossible with MMPP(2)s or MAP(2)s,
and promote the kpc method to improve understanding of
systems under non-renewal workloads.

4. CONCLUSION
We have proposed a spectral characterization of moments

and autocorrelation which simplifies the analysis of MAP pro-
cesses. Our method applies to MAP characterization and
synthesis. In particular, the kpc method allows to define
easily MAPs with predefined moments and autocorrelations.
Ongoing work includes the fitting of traffic traces using kpc.
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