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Time Series Fitting Models
Motivating problem : model a sequence of data points as a
stochastic process Xt with known mathematical structure
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Model Requirements :

1. Capture the distribution (y-axis value)

2. Capture the temporal dependence (x-axis placement)

3. Analytical tractability

4. Integration in larger models

5. Compactness

6. Scalability of fitting algorithms
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Some Popular Time Series Models...

Markovian models

1. Phase-type (PH-type) renewal processes (no order)

2. Markov-modulated processes (MMPPs, MAPs)

Gaussian models

1. Brownian motion (RBM, FBM), stochastic calculus

2. Autoregressive models (AR, ARMA, ARIMA, FARIMA,. . . )

Signal-processing methods

1. Fourier transforms

2. Wavelets
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Taxonomy
Hierarchy of processes with increasing fitting capabilities :

◮ Renewal models : capture distribution, ignore sample order
◮ Nonrenewal models : capture both distribution and ordering

PH-TYPE

EXPONENTIAL

HYPER-EXPONENTIAL

ERLANG

COXIAN

MMPP

MAP

RENEWAL PROCESSES

NON-RENEWAL PROCESSES

◮ Advantages : Reusability, analytical tractability, large literature
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Outline

1. Markovian Fitting Models

2. Renewal Processes (Distribution Fitting)

3. Markovian Arrival Processes (MAPs)

4. Kronecker Product Composition (KPC)
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Markovian Fitting Models
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Markovian Fitting Models

Basic idea :

◮ we consider a Markov chain with an absorbing state

◮ initial state is state k with probability αk

◮ data point ≡ time Xt between initialization and absorption

◮ time series ≡ sequence of initialization→absorption cycles

Fitting :

◮ determine state space and jump rates such that Xt has same
distribution and temporal dependence of the time series

◮ the Markov chain is then a model of the time series
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Example : Hyper-exponential renewal process

l1

Absorbing state

State 1

State 2

l2

α1

α1

α2

α2

Model :

Q =





−λ1 0 λ1

0 −λ2 λ2

0 0 0



 , ~α = (α1, α2, α3 ≡ 0), α1 + α2 = 1

◮ PDF : Pr [Xt = x ] = α1λ1e
−λ1x + α2λ2e

−λ2x

◮ Moments : E [X k
t ] = k![α1(−λ1)

−k + α2(−λ2)
−k ]

◮ Renewal model : Pr [Xt |Xt−k ] = Pr [Xt ], ∀k
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Fitting a Hyper-exponential renewal process
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Empirical Moments : E [S ] = 0.981, E [S2] = 3.059, E [S3] = 14.83
Model fitting by moment matching (E [X k

t ] ≡ E [Sk ]) :






















[α1(−λ1)
−1 + α2(−λ2)

−1] = E [S ]

2[α1(−λ1)
−2 + α2(−λ2)

−2] = E [S2]

6[α1(−λ1)
−3 + α2(−λ2)

−3] = E [S3]

α1 + α2 = 1

Solution (λ1 = 0.0932, λ2 = 1.6197, α1 = 0.4184, α2 = 0.5816)
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Goodness-of-fit

Fitted model :

Q =





−0.0932 0 0.0932
0 −1.6197 1.6197
0 0 0



 , ~α = (0.4184, 0.5816, 0)

Empirical vs model cumulative distribution function :
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Integration in existing Markov models
Motivation : hyper-exponential times Xt for a transition A → B

Integration steps :
◮ model Xt as a small Markov chain with states sk , 1 ≤ k ≤ K
◮ augment state A to track the value of sk
◮ use B in place of the absorbing state of Xt

◮ modify the transitions B → A to initialize Xt according to α

Integration Example :

l

State 1

m

State 2 l1 State 2

l2

State 1’’

State 1’

mα1
α2
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Markovian Fitting Models : Pros and Cons

Advantages :

◮ Markov models are analytically tractable

◮ Extensive literature available (also textbooks)

◮ Easy to integrate in larger Markov models

◮ Important distributions are simple to model (e.g., Erlang,
hyper-exponential)

◮ Support for temporal dependence in a Markovian setting

Drawbacks :

◮ Lack of compactness : for general distribution and state space
size can be large (16-32 states)

◮ Fitting algorithms are still investigated
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Markovian Arrival Processes (MAPs)
PH-type Renewal Process :

l1

Absorbing state

State 1

State 2

l2

α1

α1

α2

α2

Markovian Arrival Process :

l1

Absorbing state

State 1

State 2

l2

α1

p11

p12

l1

Absorbing state

State 1

State 2

l2

p21

p22
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Markovian Arrival Processes (MAPs)

MAPs subdue all fitting models based on Markov chains
Features :

◮ The state space is a general Markov chain (⇒ MAP samples
are PH-type distributed)

◮ MAPs make each sample dependent on the actions taken to
generate the last sample (⇒ temporal dependence). In a
MAP, after absorption from state k, we restart from state i

with fixed probability pk,i . Thus, the initialization vector
~α = (α1, . . . , αK ) is replaced by a transition matrix

P = [pk,i ], 1 ≤ k ≤ K , 1 ≤ i ≤ K ,

which depends on past history (i.e., state k).
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MAP representation

MAP(K ) ≡ MAP with K states (excluding absorbing state)

Q =





−λ1 0 λ1

0 −λ2 λ2

0 0 0



 ,P =

[

p1,1 p1,2

p2,1 p2,2

]

,

Equivalent (D0,D1) description :

◮ D0 represents transitions not directed to the absorbing state

◮ D1 = −D0P includes absorption + initialization information

D0 =

[

−λ1 0
0 −λ2

]

,D1 =

[

p1,1λ1 p1,2λ1

p2,1λ2 p2,2λ2

]

,
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“Alternating” Hyper-exponential MAP
Simplest example of temporal dependent MAP :

D0 =

[

−λ1 0
0 −λ2

]

,D1 =

[

0 λ1

λ2 0

]

Sampling alternates between an exponential with mean λ1 = 1 and
an exponential with mean λ2 = 100.
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Consecutive samples (lag one) are negatively correlated in
magnitude, samples spaced by two lags are positively correlated.
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Integration of MAPs in existing Markov models
Motivation : MAP times Xt for a transition A → B

Integration steps :
◮ model Xt as a small Markov chain with states sk , 1 ≤ k ≤ K
◮ augment state A to track the value of sk
◮ use B in place of the absorbing state of Xt

◮ augment state B to track the last visited state
◮ modify the transitions B → A to initialize Xt according to P

Integration Example :

l

State 1

m

State 2 l1

State 2’

l2

State 1’’

State 1’

m
p

11

m

State 2’’

p

p
21

p
12
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MAP Distribution

Define ~πe = ~πeP = ~πe(−D0)
−1D1, ~1 = (1, 1, . . . , 1) .

Moments :
E [X k ] = k!~πe(−D0)

−k~1

Cumulative distribution function (CDF) :

F (x) = 1 − ~πee
D0x~1

Probability density function (PDF) :

f (x) = 1 − ~πee
D0x(−D0)~1

Fitting methods for MAP distribution (i.e., assign D0 and ~πe) :

◮ Inversion of closed-form formulas (e.g., moment matching)

◮ EM-algorithms
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MAP Temporal Dependence

Temporal dependence : the distribution of Xt depends on the past
sampled values Xt−1,Xt−2, . . . ,Xt−k . In MAPs we restrict our
attention to finite k.
Frequently used descriptions of temporal dependence :

◮ Joint probabilities : Pr[Xt ,Xt−1, . . . ,Xt−k ]

◮ Joint moments : E [X a0
t X a1

t−1 · · ·X
ak

t−k ]

◮ Normalized joint moments : e.g., autocorrelation coefficients

ρk =
E [XtXt−k ] − E [X ]2

E [X 2] − E [X ]2
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MAP Temporal Dependence

Temporal dependence can be described in MAPs by closed-form
formulas depending on D0 and D1.
Joint probabilities :

Pr[Xt = x0, . . . ,Xt−k = xk ] = ~πe(
∏k

i=0e
D0xi D1)~1

Joint moments :

E [X a0
t X a1

t−1 · · ·X
ak

t−k ] = ~πe(
∏k

i=0ak !(−D0)
−ak−1D1)~1

Autocorrelation coefficients :

ρk =
~πe [(−D0)

−1D1]
k(−D0)

−1~1 − E [Xt ]

2~πe(−D0)−1~1 − E [Xt ]
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Fitting a time series by a Hyperexponential MAP(2)
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D0 =

[

−λ1 0
0 −λ2

]

,D1 =

[

p1,1λ1 p1,2λ1

p2,1λ2 p2,2λ2

]

We determine the MAP(2) parameters by matching
E [S ],E [S2],E [S3], imposing p1,1 + p1,2 = 1, p2,1 + p2,2 = 1, and
matching the autocorrelation function.
When there are only two states, this is given by :

ρk =
1

2
(1 − E [Xt ]

2(E [X 2
t ] − E [Xt ]

2)−1)γk
2 , γ2 = 1 − p2,1 − p1,2,

thus we need only to impose γ2.
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Fitting a time series by a Hyperexponential MAP(2)

Time Series : E [S ] = 0.846, E [S2] = 2.445, E [S3] = 15.03,
ρ1 = 0.2898
Model fitting by moment and autocorrelation matching :























[
p2,1

p2,1+p1,2
(−λ1)

−1 +
p1,2

p2,1+p1,2
(−λ2)

−1] = E [S ]

2[
p2,1

p2,1+p1,2
(−λ1)

−2 +
p1,2

p2,1+p1,2
(−λ2)

−2] = E [S2]

6[
p2,1

p2,1+p1,2
(−λ1)

−3 +
p1,2

p2,1+p1,2
(−λ2)

−3] = E [S3]
1
2 (1 − E [Xt ]

2(E [X 2
t ] − E [Xt ]

2)−1)(p2,1 + p2,2) = ρ1

Solution (λ1 = 0.4183, λ2 = 1.9273, p2,1 = 0.0083, p1,2 = 0.0017)
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Fitting a time series by a Hyperexponential MAP(2)
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General MAP(K) Fitting
Real time series can show complex distribution or correlations that
cannot be fitted accurately by simple two state models.
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No MAP(2) can fit the above autocorrelation, because in MAP(2)

ρk ∝ γk
2 , γ2 ∈ ℜ

If K > 2 we can fit complex temporal dependence patterns, but it
becomes increasingly difficult to do moment matching because of
the non-linearity of the systems and the large number of
parameters involved. E.g., a MAP(4) requires assigning 28
parameters to set D0 and D1.
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Kronecker Product Composition (KPC)
MAPa = {Da

0 ,Da
1}, MAPb = {Db

0 ,Db
1 }, their KPC is the MAP

MAPa ⊗ MAPb = {D0,D1} = {−Da
0 ⊗ Db

0 ,Da
1 ⊗ Db

1 },

where ⊗ denotes the Kronecker product operator and Da
0 must be

diagonal. For example, if the original processes have D0 matrices

Da
0 =

[

−a1,1 0
0 −a2,2

]

,Db
0 =

[

−b1,1 b1,2

b2,1 −b2,2

]

,

then the composition yields D0 = −Da
0 ⊗ Db

0 , i.e.,

D0 =









−a1,1b1,1 0 a1,1b1,2 0
0 −a2,2b1,1 0 a2,2b1,2

a1,1b2,1 0 −a1,1b2,2 0
0 a2,2b2,1 0 −a2,2b2,2








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KPC Properties

KPC is a divide and conquer approach to MAP(K) fitting. That is,
the composed process has moments, correlations, joint moments,
and autocorrelations that are in simple relation with those of
MAPa and MAPb, e.g.,

E [X k
t ] =Ea[X

k
t ]Eb[X

k
t ]/k!, (1)

E [XtXt+k ] =Ea[XtXt+k ]Eb[XtXt+k ], (2)

E [XtXt+kXt+k+j ] =Ea[XtXt+k ]Eb[XtXt+kXt+k+j ] (3)

KPC fitting problem : impose the moments and correlations of
small MAPs such that their KPC process matches the moments
and correlations of the trace.
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KPC Toolbox

Input : the number J of MAP(2)s to be composed by KPC and the
set of moments/correlations to be matched.

Fitting - Phase 1 : the non-linear optimization seeks for the set of
autocorrelations of the small MAP(2)s that composed would
minimize |ρKPC

k − ρk |.

Fitting - Phase 2 : the actual (D0,D1) representation of each
MAP(2)s is determined. All residual degrees of freedom not
assigned by Phase 1 are used to best match moments and
higher-order correlations.
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KPC Fitting Example

Fitting of real traces with 106 samples.
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Good matching of ρk over many lags (1 ≤ k ≤ 100, 000).
Distribution moments almost identical to the trace up to E [X 5

t ].
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Conclusion

◮ Markovian fitting models can model accurately both
distribution and order of samples

◮ Integration in larger Markov model is main motivation for
their popularity

◮ MAP(2) models can be fitted accurately with closed-form
formulas

◮ MAP(K) models currently investigated, KPC is the
best-available fitting technique
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