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Abstract The main advantage of MAPs is that they can be easily
integrated within queueing systems or queueing networks,
We present the KPC-Toolbox, a collection of MATLAB and then used in the computation of performance metrics
scripts for fitting workload traces into Markovian Arrival  such as mean response times or server utilizations [4]. How-
Processes (MAPs) in an automatic way. We first presentever, it is often prohibitive to derive MAPs that can repro-
detailed sensitivity analysis that builds intuition on @i duce the characteristics of real workloads with temporal de
trace descriptors are most important for queueing. This pendence. The main reason for this difficulty is the vast pa-
sensitivity analysis stresses the importance of matchingrameterization space of MAPs. Matching accurately traces
higher-order correlations (i.e., joint moments) of the pro  with time-varying characteristics may require assignimg t
cess inter-arrival times rather than higher order moments jumping rates between several tens of states, a task that mus
of the distribution and provides guidance on the relative im be supported by proper software tools which currently do
portance of different descriptors on queueing. Given that not exist.
the MAP parameterization space can be very large, we fo-  In this paper, we introduce the KPC-Toolbox, a set of
cus on first determining the order of the smallest MAP that MATLAB scripts for automatic fitting of real workload
can fit the trace well, using the Bayesian Information Cri- traces using MAPs. The KPC-Toolbox takes as input a trace
terion (BIC) for determining the best order-accuracy trade of inter-arrival times, automatically searches for thetloes
off. Having determined the order of the target MAP, the der of the MAP that can fit the trace accurately, and then
KPC-Toolbox automatically derives a MAP that captures derives a MAP which captures the most essential statistical
accurately the most essential features of the trace. Ex-features of the real workload. The underlying technology
tensive experimentation illustrates the effectiveneshe®f is the recently-proposed Kronecker Product Composition
KPC-Toolbox in fitting traces that are well-documented in (KPC) fitting method for MAPs [6]. KPC reduces fitting
the literature as very challenging to fit, showing that the problems to determining the characteristics of small MAPs
KPC-Toolbox provides a simple and powerful solution to composed by no more than two phases. These MAPs can be
fitting accurately trace data into MAPs. easily fitted with closed-form formulas and are later com-
posed into a large MAP by Kronecker products. A simi-
lar compositional approach, instead based on MAP super-
1 Introduction position, has been widely-used in past MAP fitting litera-
ture [1]. The novelty of KPC is that the method is able for
Markovian Arrival Processes (MAP) are a class of ne first time to impose moments or correlatiaisny or-
Markov-modulated processes [15] used for fitting real ger o the resulting MAP, while superposition methods are
workload traces with time-varying characteristics, &, mostly limited to first and second-order statistical descri
approximating workloads with short- or long-range depen- iors (e.g., mean arrival intensity, variance-time curvext
dent behavior [1, 10]. Traces of this type are commonly cap pe largely insufficient for accurate queueing predictio
found in networks and systems, such as disk drives or €-[2]. We further stress the generality of KPC pointing out

commerce applications [17, 14]. Accurate models of thesenat in addition to processes with time-varying charaster
traces are indispensable in the capacity planning process,

otherwise t_he robustness of capacity planning models may ity theory of KPC is described in the technical report [6] thavail-
be undermined [4, 14]. able online.




tics, it can also fit traces into renewal processes if no auto-a detailed theoretical treatment of properties of MAPs on
correlation exists in the trace. In such cases, the tool ean b which KPC is based upon, we direct the interested reader to
used for moment fitting and a phase-type (PH-type) renewal[6]. Here, we present the tool implementation of the KPC
process is returned. as well as new results that aid the tool user in finding a best
An open fundamental problem is determining which MAP fitting in an automatic way.
trace descriptors to fit in the target MAP. To give in- 2.1 MAP Representation
tuition on this problem, we study the performance of a A MAP(N) [15] can be expressed as a continuous-time
MAP/M/1 queue in order to determine the best moments Markov chain (CTMC) withN phases and an absorbing
and correlations to be matched by KPC. We observe thatstate. Upon entering the absorbing state from phaae in-
higher-order statistical descriptors that are changed by aterarrival time samplé\T}, is generated by considering the
modification of the skewness (e.qg., tail of the distribution cumulative time passed from when the CTMC was started.
higher-order correlations) can result in dramatic perfor- Then, the CTMC is re-started from a phagewith proba-
mance changes. Instead, performance is sometimes inserbility p, ... Intuitively, the stochastic matri® = {p; s },
sitive to the coefficient-of-variation and to the autoctare  called theembedded process the MAP, allows to create
tions values. We also give evidence that the higher-ordertemporal dependence between consecutive valuésipf
correlations (i.e., joint moments [19]), rather than thié ta as it connects the sampling process of two consecutive
or the higher-order moments of the distribution, are more inter-arrival times. This allows to create temporal depen-
likely to be responsible of performance differences of the dent workloads and generalizes PH-type renewal processes
MAP/M/1 system. Guided by the above observation, the [15], for which the only difference is that the probability
KPC algorithm focuses on matching the higher-order cor- p, ., = a is independent of.
relations rather than the higher-order moments of the-inter ~ The most frequently used MAP representation is the
arrival times. (Dy, D1) description [13]. If the CTMC of the MAP has
A fundamental innovation of the KPC-Toolbox is to de- an infinitesimal generatdp of order N, the (Dy, D;) rep-
termine automatically the order of the MAPs used in fit- resentation is obtained by filtering the transitionsbhc-
ting (i.e., the number of phases to be used in the underlyingcording to whether or not they lead to an absorption. That
CTMC). Order selection in MAPs is an important issue be- is, Dy has the same diagonal gsbut its off-diagonal el-
cause the MAP order can dramatically affect the running ements are the rates of transitions thatndd jump to the
times of fitting. To the best of our knowledge, no criteria absorbing stateP; includes only transitions to the absorb-
have been proposed in previous work for determining the ing state and is immediately computed as the matrix that
size of a MAP. The KPC-Toolbox tackles this issue with an assureg) = Dy + D;. In this representation, the embed-
order-selection technique based on the Bayesian Informa-ded process is given by = (—Dg) 1 D;.
tion Criterion (B1C) [18], that is a widely-accepted method For fitting, the fundamental property of thé,, D;)
for determining the best order-accuracy tradeoff in fitting representation is the simplicity of evaluating MAP fedlsibi
models such as ARIMA processes. We use a recursive charity. A MAP is feasible if Dy is invertible,( is irreducible,
acterization of the MAP autocorrelations given in [6] as in- and all entries 0Dy andD; are non-negative except for the
put to BIC to evaluate the best MAP order to use. diagonal of Dy. These conditions can be easily checked.
The paper is organized as follows. Background on Other representations are possible, é(g-Dy)~*, P), but
MAPs is given in Section 2. In Section 3 we present a it is hard to discriminate without computing, and D; if
sensitivity analysis on théd/ AP/M/1 queue that guides they produce a valid MAP. We do not consider these repre-
KPC to decide which moments and autocorrelations aresentations in the rest of the paper.
the most important and should thus be matched. Sec-2.2 Moment Matching
tion 4 introduces the KPC-Toolbox and the néw C- Fitting a trace requires to capture the properties of a time
based order selection method. We illustrate the effective-series in terms of distribution and correlations betweemn-sa
ness of the tool using the case studies in Section 5. Fi-ples, which jointly summarize the observed patterns. Be-
nally, Section 6 concludes the paper and outlines futurecause of the difficulty in obtaining robust estimates of the
work. The KPC-Toolbox is available for download at probability density function, moment matching is largely

http://www.cs.wm.edu/MAPQN/kpctoolbox.html used in fitting, e.g., [11, 19]. This also allows a compact
representation of the most important characteristics ef th
2 Markovian Arrival Processes trace.

The inter-arrival time distribution of a MAP is PH-type
distributed, thus moments are obtained from standard the-
ory of PH-type distributions as

Here we provide a simple introduction to Markovian Ar-
rival Processes and explain some fundamental difficulties
of MAP fitting. We also summarize the Kronecker Prod-
uct Composition (KPC) fitting method for MAPs [6]. For E[X* = k\Z.(-Do) ke, k=1,2,..., (1)



where®. P = 7. The vectorz, is independent of the last As an example of Kronecker product, if the original pro-
visited phase before absorption, which means that temporatesses hav®, matrices
dependence does not affect the inter-arrival time distribu
tion. For this reason, fitting algorithms for PH-type distri De — [—am 0 } Db = {_blﬂl b2 ]
butions can be also applied to MAP distribution fitting [16]. 0 —ag2| 0 boi —bas]’

A popular approach to matching the temporal depen-
dence structure is to use second-order properties of tbe tra
[1], such as the correlations

wherea; ; > 0 andb; ; > 0 are nonnegative real numbers,
then the composition yield®y = — D¢ @ D where

EX;Xj41] = 7e(—Do) ' P*(—=Do) e, k=1,2,. .., —a11by a1abie 0 0

T @) Do = ai1ba1 —ar1b22 0 0
whereX; and X are inter-arrival times spaced by- 1 0 0 —a1,2bb1,1 a1=2bg=2
arrivals. The autocorrelation function is a normalizatidn 0 0 a1,202,1  —041,202,2

these values, i.e., is a feasibleDy matrix, having negative elements on the

 Te(=Do) ' P*(~Dy)"'e — E[X]? E— 01 main diagonal only. The last feasibility.condition is algay
Pk = SE[X2] — E[X]? » R=U, L, enfc_>rced_ by KPC if a_lt least one matrix betwe@g and
D} is a diagonal matrix (e.g[)¢ in the previous example);
Equation (2) is more difficult to fit to real data than (1) be- otherwise the zero entries |.|qD‘OI Q Dg are rep|aced by
cause ofP* that accounts for the temporal dependence. In pegative values that make the MAP infeasible. Note that
addition, imposing a certain distribution by (1) reduces th  thjs condition does not place constraints on the genelity
degrees of freedom for manipulating the matrices in (2), be- the KPC method since one matrix can always be arbitrary.

causeD, andr. have been already constrained to set some - The logic behind the KPC definition (3) is that the Kro-
momentsE[X *]. This builds intuition on the main issue of pecker product satisfies the algebraic relations

inter-arrival time fitting in MAPs: we need to control the

properties of moments and correlationsjbintly manipu- (A®B)(C®D) = AC®BD, (A®B)™* = A"*@B~*,
lating products of matrices appearing in (1)-(2). Separate

fitting of moments and correlations has been recently at-Which allow to decompose matrix products and inversions
tempted [11] and can work successfully on small processes,in terms of similar operations on smaller matrices. For in-
but the underlying optimization suffers from numerical in- Stance,(—=Do)~! = (=Dg)~' @ (—=Dg)~" and similarly
feasibility on larger MAPs. The KPC method presented it can be shown thaP = P* @ P’ and@. = 7¢ ® 7,

in the next section provides instead a simple divide-and-Where the indexes and b refer to M AP* and M AP".

conquer approach of fitting both (1)-(2) in large MAPs. From these relations, it is easy to show that moments and
2.3 Fitting Large MAPs: Kronecker Product correlations are decomposed as well. For example, the
Composition (KPC) mean of the KPCM AP® ® M AP" is decomposable as

Kronecker Product Composition (KPC) is a new tech- E[X] = ga[X]Elb[X]’ wr;err]eEa_[-]_ anIdEb[-] denc;e mg'
nigue proposed in [6] for imposing moments and correla- ments and correlations of the origina proce a 8N
tions of arbitrary order to a MAP. The idea is to use fun- M AP,. The general decomposition formulas are as follows

damental properties of the Kronecker (or tensor) product EIXH =E [XF1 B [X*/k 4
operator [3] to simplify the control of the matrix products 7] alXT1E[X7]/R, @)
and inversions appearing in (1)-(2). The aim of KPC is to
provide a simple way to match a set of moments and auto-
correlations by composing together small MAPs, typically
MAPs with two phases that can be fitted easily with closed- I 5 B w 5
form formulas [8, 9]. BIXGX 50X rrn] = Bal X5 X500 X ]

Given MAP® = {Dg, D%} and M AP® = {D}, D!}, X Ep[ X5 X XTypnl/ (ulvl2!). (6)
we define the KPC of the two processes as the new MAP

E[X;X 1] =FEo[X; X 11| Ep[ XX 41), 5)

and generalize similarly to higher-order moments [6],,e.0.

The KPC technique, shown above for the case of two

MAP*® MAP® = {Dy, D} = {—~D2® D}, D¢ ® D%}, MAPs, generalizes in a recursive fashion to KPC of sev-

3) eral processes. For example, the mean of the composi-
where® denotes the Kronecker product operatod/IfA P* tion MAP* @ MAP® @ MAP¢ is given by E[X] =
hask, phases and/ AP hasK; phases, then the process FE,[X|Ey[X]|E.[X].
M AP*® M AP® hasK, K, phases. This suggests that the Formulas (4)-(6) state that the MAP fitting of real traces
KPC operator should be used parsimoniously to preservecan always be re-formulated in a divide-and-conquer fash-
model compactness. ion as follows:assign moments and correlations of smaller
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Tace/ We perform a sensitivity analysis in two phases. We first
evaluate theM AP(2)/M/1 sensitivity and later confirm
our observations using a larger MAB process defined
by the KPC of two MAR2)s. Concerning the first anal-
ysis on the MAR2), the process is studied as a function
of its first three normalized moments (mean inter-arrival
time M EAN, squared coefficient-of-variatiofiC'V', and
! skewness$ K EW) and the lagt autocorrelation coefficient
05 . e e e p1 of inter-arrival times. A fundamental difficulty in the
k= number ofjobs in the system (queue + service) analysis is that a variation of a single parameter may re-
sult in several modifications of the process, e.g., any vari-
ation of SKEW results in a simultaneous change of the
skewness of the distribution, of the tail of the distribuatio
of higher-order moments, and of higher-order correlations
(e.g., the bicorrelationB[X; X ;1 1, X1 k4] in (6)). Thisis
a consequence of linear dependencies that relate moments
MAPs such that their composition (3) yields a MAP with and correlations in a MARV) [6]. Only first and second-
prescribed moments and correlations by (4)-(Bhe KPC- order moments and correlations are unaffected by changes
Toolbox presented in Section 4 defines an automatic fittingof SKEW. Our conjecture is that higher-order correla-
scheme based on the KPC divide-and-conquer approach. tions, such as the bicorrelations (6), rather than the tail
of the distribution or the skewness, are the main determi-
3 What is Important for Fitting? nant of the quality of the fitting. We will provide evidence
of this claim in Section 3.3; before, we will generically
Before describing the features of the KPC-Toolbox, we call “higher-order properties” the moments and correfetio
focus our attention on a challenging, but fundamental,-ques changed in @/ AP(2) by a variation ofS K EW for fixed
tion: what statistical descriptors are the most importanti AMEAN, SCV, andp;.
fitting by MAPs? A standard approach in current litera-  The sensitivity analysis is performed as follows. Recall
ture is to match the most important moments and correla-that for alM AP/M /1 queue, the queue-length probabilities
tion coefficients using the simplest available model, @g., decay asymptotically aB(n = k) ~ con*, wheren, is the
two-phase MAR2) process. For example, the first three decay rate (also called caudal characteristic [15])a@ris a
momentsE[X], E[X?], E[X?], and the lagt correlation  positive constant [15]. We investigate the sensitivityhof t
E[X;X+1], which determines the lagautocorrelation: M AP/M /1 results by determining the queue-length value
are sufficient to fully parameterize a MAB), see [8, 9] for x wheren® < 1078, Results for different values of the
fitting formulas. Matching these four parameters is often threshold are qualitatively similar. Intuitively, represents
considered a viable approach to fit a trace; however, we ar-a position of the queue-length distribution after which the
gue that this frequently results in models with poor predic- probability values are in practice too small to affect perfo
tive capabilities. For example, Figure 1 shows the simdlate mance. If theM AP/M /1 queue is nearly-insensitive to a
queue-length probabilities for Brace/M /1 queue driven M AP parameter (e.g., a moment), we expedb change
by the Bellcore Aug89 trace inter-arrival tinfel2] and slightly under variations of that parameter, i.e., the shaip
compares them with the probabilities ofdd AP (2)/M /1 P(n = z) should not be altered significantly. Therefore,
queue, where the MAR) matches exactly the first three we check sensitivity to a fitting parameter by evaluating the
moments and the lagautocorrelation of the Bellcore trace.  sensitivity of “the threshold’; the analysis is done for dif-
The results clearly show the poor modeling accuracy of the ferent server utilization levels € [0.1,0.9] by varying the
MAP(2) fitted with this approach. mean of the exponential service process.
The experiment in Figure 1 motivates the investigation 3.2 MAP(2) Fitting

IJC[E;; ?E[ction: we Ttudyhn(ljj_melrgca.lly the_ ﬁensitivity of trr"e We first investigate the sensitivity of the AP(2) /M /1
/M/1 que(t;g- :/Ilqulg f |§tr| L_:_tr']on \,N't, resgec_t ot el results with respect t§CV, SK EW, andp,. We focus on
parameters used in ltting. The aim is to derive qual- g casegC1 > 1 and autocorrelations, > 0, which are

|§at|ve recommendations for the best moments and c:orrela—the most frequently found in real traces.
tions to be matched.

Sensitivity to SKEW. We consider a MAR2) with

2The Bellcore Aug89 trace is widely used in the literaturedecuracy unitary mean MEAN = 1, SCV = 19: L =
evaluation of fitting techniques. 0.446 (which corresponds to an autocorrelation decay rate

=K

P[queue—length

Figure 1. Inaccurate queue-length predictions of a
MAP (2) fitted by exact matching of the trace’s most im-
portant moments and correlations.
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Figure 2. Impact of SKEW and SCV on the decay rate of theM AP(2)/M /1 queue-length probabilities for different
utilization values. Lower skewness values imply heavier tail and lower highelepcorrelations; this overall results in dramatic
changes in the queue performance.

pr/pk—1 = 099, for £ = 1,...,400.), and evalu- queue-length probabilities are weakly sensitiveSto'V’.
ate the case$ KEW = 5 and SKEW = 100. The From now on, we focus on the most difficult case where
value SK EW = 100 represents a distribution with light the tail is not too small and specifically we consider MAPs
tail, since the large asymmetry places most of the proba-with SKEW = 5 andSK EW = 15, where the 99th per-
bility mass around small values; converseff{ EW = centile of SKEW = 5 is in the rang€11.7, 16.2], while

5 has a fat tail. Similar considerations apply to the for SKEW = 15itisin [5.6,9.6]; in the previous section,
higher-order correlations: if we normalize the bicorrielas for SK EW = 100 the 99th percentile is ifit.4, 4.5].

E[X;Xj1 X1k, 9. a8 The sensitivity to theSCV is evaluated by setting
E[X;X;41X4x] — E[X]? SCcv = 5 or SCvV = 10. Sir_me in general a qhange
E[X?] - E[X]? ) of SCV implies also_a change in the autocorrelations [6],
for SCV = 10 we either keep the same of the model
it is easy to verify numerically thesf K EW = 5hasacon-  for SCV = 5 or the same index of dispersidiDC =
siderably larger temporal dependence tBdnEW = 100. SCV(1 4+ 2372, pr)- The results of the experiments
Figure 2(a) shows the impact 6fK EW on the thresh-  are shown in Figure 2(b) and Figure 2(c). The value of
old z: for all utilization levels, the threshold is- 1000 SKEW is again fundamental: i K EW = 5, the im-
times larger ifS K EW = 5 instead ofSK EW = 100, i.e., pact of theSCV is mostly at low utilization, otherwise
the performance degrades dramatically 0 EW = 5 for SK EW = 15 only the high utilization is affected by
with the tail of the queue-length probabilities being osder a change ofSCV. The choice of fixingp; or IDC im-
of magnitude longer than f& K EW = 100. Itis striking pacts only at larger loads and suggests that the differences
to see that the impact &f KK EW is considerable also at uti- between the two figures cannot be attributed to the auto-
lizations as low ap = 0.1, where the variation of is even correlations only. Explaining the large difference betwee
maximal (about three orders of magnitude). Figure 2(b) and Figure 2(c) is difficult and the tail of the
The result indicates that the higher-order properties af- distribution does not give any clear intuition behind these
fected by a change &(f K EW can have a remarkable influ- effects. Instead, a more detailed analysis of temporalmepe
ence on queueing predictions. We remark that if the samedence reveals that thdistancebetween bursty arrival peri-
experiment is performed after setting all autocorrelaimn  ods is dramatically changed B3C'V andSK EW, e.qg. for
zero, the variations of under changes &§ K EW are not SKEW = 5the autocorrelation in counts [7] between con-
as dramatic. This is an indication that a long tail in the secutive bursty periods of length= M EAN is p{ = 0.91
distribution or higher-order moments may be insufficient for SCV = 10 andp§ = 0.57 for SCV = 5, while for
to capture alone thd/AP/M/1 queueing performance, SKEW = 15 the two cases are similar. This suggests that
which is consistent with the claim that higher-order carel the busy period of the queue may be substantially affected
tions are the main determinants of queueing performance. by the SCV and SK EW changes and this could reason-
Sensitivity to SCV. We have performed several exper- ably explain the very different results in Figure 2(b)-2(c)
iments for different values o§C'V, SK EW, andp,, and Once again, this stresses the importance of matching corre-
found that for large skewness (e.§.K EW = 100), the lations, which clearly shape the average distance between

O =




bursty periods. MAP(2) SCvV  SKEW p1
Sensitivity to p;. Due to limited space, we do not report MAP, 19 19.82 0.468

figures for this case and limit only to summarize our find- MAP, 4 85.88  0.371

ings. We have evaluated different MAPs 8€V = 10, MAP, 19 77.51  0.468

SKEW =5o0r SKEW = 15, andp; € [0.0,0.446]. The MAP, 4 210.8  0.371

results indicate the following properties: StK EW = 15, MAP, @ MAP, 49 5777  0.482

then p; mostly impacts for utilization values larger than MAP.® MAP; | 49 57.77  0.482

70% with a gap of two orders of magnitude forbetween

the extreme cases; = 0.0 (z ~ 10%) andp; = 0.446 Table 1. MAP input parameters used in the KPC ex-

(z =~ 10°). For utilization values smaller tha30% and periment. All MAPs have\/ EAN = 1.

SKEW = 15 the queue is almost insensitive to changes
in p1. Conversely, folSK EW = 5 the thresholdc varies
up to two order of magnitude under changesoffor all ) o ) ) o
utilization values. This is consistent with our previousdfin Since the two distributions are virtually identical in teym
ings that the higher-order properties are critical for adjoo ©f tail decay, we would expect reasonably similar perfor-
fitting, but also stresses that for medium-high utilizatian ~ Mance if the distribution would be the main determinant
good match of the autocorrelationsaivaysfundamental. ~ Of the M AP/M/1 queue performance. However, Figure
Summary. The experiments performed in this section 3 shows that the variation of the threshaldin the two
indicate that it may be difficult to fit real traces by relaying Cases is extreme. Except for the high-utilization case eher
on first and second order properties of the trace only. Thethe results must converge because of the identical value
higher-order properties controlled K EW affect dra- of the index of dispersiod DC' of the two MAF’S, the re-
matically the performance of ATAP/M/1 queue. Also ;ults of MAP. ® M AP, are orders of magmtuQe worse
SCV and autocorrelations remain very important, although in terms of performance thal/ AP, © M AP,. This con-
we have found some insensitivity for certain combinations firms our intuition that fitting higher-order correlatiors i
of utilization andS K EW values; in light of this last obser- ~ fundamental. Further, it appears consistent with the very
vation, it also appears quite difficult to discriminate whic ~ different counting-process fitting approach in [10], which
is more important betweeSCV and p;, as their relative illustrates th_e importance of fitting higher-order propest
impact changes with the utilization and thié& EW values. ~ Of the counting process. o
In the next section, we complete our analysis on higher- Summary. Matching higher-order correlations in the
order properties by investigating which is the most impor- KPC-Toolbox has priority over matching higher-order mo-

tant for the performance of thel AP/M /1 queue: higher- ~ ments or the tail of the distribution. In practice, it is reas
order moments or higher-order correlations. able to assume that matChing the first two-three moments of

3.3 General MAP Fitting the distribution _of temporal dependen.t trgceg, may be suffi-
o ) cient for capturing the impact of the distribution on queue-
We use KPC to discriminate whether higher-order cor- ing performance. All residual degrees of freedom of the
relations are more important than higher-order moments inmodel should be spent into matching correlations of differ-
fitting traces with temporal dependence. We proceed as fol-ent orders. Due to the cost of computing on a real trace
lows. We consider twall AP(2) processes AP, and 3 |arge number of correlations with more than three terms,
M AP, such that the resulting KPG/ AP, ® M AP, has  the correlationsE[X; X, ] and E[X; X1 X, -] are
fat tail and temporal dependence, and we study the resultingsften the most practical descriptors to be matched. Note
thresholdz as a function of the utilizatiop. Then, we re-  giso that higher-order correlations of the tyPEX 2 X 1]

peat the experiment using two differemtAP(2) processes  gre included as special casest; X, 1 X, 1 kiz).
M AP, andM AP, such that the resultinfif AP, ® M AP,

has sam_eMEAN, SCV SKEW, e}nd approximately the 4 The KPC Toolbox

same tail of the distribution and higher-order moments as

MAP, ® MAP,. Table 1 gives the parameters of the The KPC-Toolbox is a set of MATLAB scripts for fitting
MAPs used. The key difference is th&f AP, ® M AP, real traces into MAPs. The toolbox implements an algo-
and M AP. ® M AP, have considerably different higher- rithmic solution of the divide-and-conquer fitting problem
order correlations, i.e., while the inter-arrival time @r- defined by KPC, see [6]. Several design choices have been
relationsp;, are identical, the autocorrelations of coupfs made to strike a good balance between simplicity of use
reveal that the temporal dependencelMfAP. @ M AP, and accuracy of fitting; in particular, the underlying figin
(pf = 0.82) is much larger than I AP, ® MAP, paradigm is based on the sensitivity analysis results found
(0§ = 0.32); similar conclusions are obtained from the nor- in Section 3. In the next subsections we outline the key
malized bicorrelation8;,. ideas behind the design of the KPC-Toolbox.



S linear system of equations (7), i.e.,

Pk+1 = a1+ a2pk—1 + ...+ ANPE-_N+1,
Prt+2 = a1pky1 +a2pr  + ...+ aNPE-N+2,

=108
N
o,

Pktm = @1Pk+m—1 + @2Pk+m—2 + - + ANPk—N+m-
8
] The linear system is solved efficiently by linear regression
S to compute the residual sum of squareSs = >, (pr —
01 02 03 oS0, 07 0809 pr)?. Linear regression of hundreds of equations (7) can
be solved with small time and space requirements, usually
Figure 3. Effects of higher-order temporal dependence ina feW Sgconds. In particular, the _KPOTOOlbOX uses
on the M AP(4)/M/1 queue performance. logarithmically-spaced autocorrelatiops & € [1,10°], to
parameterize the linear system (8). If the trace hasisip
relatively to the normalizing constaht, oz, then its corre-
lation structure should be relatively easy to fit with a MAP,
41 Order Selection apd the resu_lt§ of the KPC-Toolbox are expected to pro-
vide a good fitting model because the temporal dependence
~ structure can be matched well by a MAP. Otherwise, large
The KPC-Toolbox approach to MAP order selection is pgg values indicate that MAPs are unlikely to provide a
based on a recursive characterization of MAP autocorre-good fitting of the considered trace and, if no ordéhas

lations found in [6]. We consider the trace autocorrela- good RSS value, other models with higher-order or different
tions and, using the characterization in [6], we bound from f.5m MAPs should be considered.

above the goodness-of-fit of a MAN') model, for differ- After this first evaluation, we use the comput&$.s

ent choices of the ordeN. From these values, we select \gjyes for different choices of the model siZ€ <

the bgs_t order using an information-;heoretic approach. Fo {2,4,8,16,32,64} to select the best trade-off between ac-
simplicity, we consider autocorrelations, but the.appmac curacy and model size as follows. We adopt the Bayesian
may be easily extended to evaluate moments or higher-ordejnformation Criterion BI0)[18] as quantitative method to

correlations using the formulas in [6]; this is leftas afétu  ogtimate the best trade-off. TR C is defined as (18]
extension of the KPC-Toolbox.

Threshold x where n*

It is possible to show that MAP moments and correla- BIC(N) = mlog (R_SS) + Nlogm,
tions satisfy simple linear recurrence expressions [6]; Fo m
example, the autocorrelatiopg of a MAP with N phases

. where, in our applicatioryn is the number of autocorre-
satisfy

lations p;, used in the regression. According to its defini-
tion [18], the BIC should be intended as a cost function,
Pk = Q1Pk—1 + Q2pr—2 + ... +anpu—n, k>N, (7) i.e., lower values ofBIC denote better trade-offs. Thus,
the best order is immediately selected 8§ = {N :

. i miny BIC(N)}, and itis used by the KPC-Toolbox as the
where theu,, coefficients are computed from the eigenval- o choice for the MAP order. Indeed, similar criteria may

_ —1
ues ofP = (=Do)™ Dy _[6]' Therefore, anecessaryon- be defined by replacing@/C with similar cost-accuracy
d'“OF‘ forAa good matching of th_measuredrace autocor- objective functions, e.g., the Akaike Information Criteri
relat|0nSp;.c is that they can be fltted.agcurately b)_/ .(7) for (AIC). However, theBIC is known to be better thanIC
some choice of the coefficienis,. This is not asufficient  5¢ the number of available observations becomes asymptot-

cc_)ndition, unless the;’s are constrained in siqn and mag- ically large [18] and is therefore used by KPC-Toolbox as
nitude to be generated from a feasible MAP); unfortu- 4,4 et available information-criterion method.

nately, feasibility expressions for thg,’s are prohibitive We conclude by remarking that, in the special case of

to obtain for large MAPs because of the high-order of the 5 a5 that are not autocorrelated, the BIC order selection
nonlllnear equat|0ns.|nvolved. For this reason, our order se . thod does not apply, but the KPC toolbox can be used
lection approach relies only on necessary conditions. to fit a PH-type renewal process by manually specifying the

We select the best MAP ordéf* by (7) as follows. Fora  number of moments desired for the fitting. Matching the
trace we consider, autocorrelation coefficiengs, and give first five moments is often sufficient for very accurate dis-
a preliminary evaluation of MARV) fitting by defining a tribution fitting, see [6] for case studies.



4.2 KPC-Toolbox Fitting Algorithm The resulting MAP(2)s are finally composed by KPC into a
Starting from the observations in the previous section, MAP(N™) that is returned to the user. More precisely, the

we have implemented the KPC-Toolbox fitting algorithm tEreg sta&ispdesgribed abo(;/e arr? run Se‘fl?r:al tirlnes_ to ﬁ?d
as follows. The KPC-Toolbox first performs thB/C the best to be returned to the user. The selection al-

order selection and determines the optimal numbes gorithm operates as follows. The KPC-Toolbox first runs
log, N* of MAP(2)s to be composed by KPC. Then, the several times stage 1 while keeping stored the solutions tha
2 . ’

tool searches for an actual set bBMAP(2)s that can match produced the best teRSS value of the stage 1 optimiza-

accurately the first three moments, the autocorrelatiows, a t!on. Thlen, stdage 2is ruln s_rer\]/ersllbt(l:m_?s fl(t))r each of the sglu-
the bicorrelations of the trace. The number of autocor- tions selected In stage 1. The -Toolbox returns as best

relations and bicorrelations to be fitted can be specified MAP the stag.e 2 solu_tion aSSOCiaFed to th_e overa!l lowest
by the user, otherwise the KPC-Toolbox uses by default RSS for the t_)|correlat|ons. According to this sglec_uc_)n ap-
500 logarithmically-spaced autocorrelation coefficients and proach, the flna! MAP should have a hlgh-qua!|ty f|tt-|n_g of
100 bicorrelation values obtained from a grid o x 10 the agtocorre!atlons(stage 1) an(_j a nearly-optlmal fm_xhg
logarithmically-spaced points. The range of sampling is se the bicorrelations (stage 2) and is thus consistent with the
by default to lags irf1, 107] for the autocorrelations and to sensitivity analysis conclusions presented in Section 3.
lags in[1, 10°] x [1, 10°] for the bicorrelations.

The KPC-Toolbox fitting algorithm is organized around 5 Numerical Experiments

three stagesSC'V and autocorrelation KPC fittingstage We conclude with experiments on the accuracy of the
1); mean, skewness and bicorrelation KPC fittistage 2; KPC-Toolbox in fitting both real and synthetic traces.

generation of the final MAPstage 3. In the first stage,  Consistently with the sensitivity analysis, we focus our
the KPC-Toolbox fits the measured autocorrelatippdy evaluation on the queueing prediction accuracy for a
searching the values &fC'V and lagd autocorrelation for ~ —/M/1/FCFS queue and we fit two traces:

each MAP(2) that minimize the residual sum-of-squares
RSS = Y, (px — pr)?, wherepy, is the measured auto-
correlation andp;, is the autocorrelation of the final KPC
process. It can be shown by (4)-(5) thtcan be computed
directly from the values ofC'V and lag-1 autocorrelation
of each composing MAP(2) without the need of imposing ¢ Bellcore Aug89 trace this is a benchmark case for
at this stage mean and skewness for the MAP(2)s, see [6]  evaluating the quality of long-range dependent trace

e Seagate Web traceThis trace is composed 8.6 x
108 interarrival times of requests at the disk drive of a
Web server, see [17] for a description of this trace and
related analyses of its temporal dependence structure.

for a closed-form formula. The optimization program used fitting approximations [1, 10, 11]. The traffic con-
in stage 1 also includes a constraintimposing that the max-  sists of 1 million inter-arrival time samples collected
imum error between the measur€d'V and the KPC pro- in 1989 at the Bellcore Morrison Research and Engi-
cessSCV must be less that0%. neering facility.

Mean and skewness of the MAP(2)s are determined
during stage 2 of the fitting algorithm, where we matchwith ~ We remark that the two traces are used also in the
a least-squares approach the bicorrelations, mean and skewnanually-performed fitting experiments in [6]. However,
ness of the trace. The only significant difference with re- the results presented here are generatedmatically and
spect to the previous stage is that we also impose constraintnot manually, using the KPC-Toolbox. In this section, we
on the feasible mean and skewness values for the composcompare the results for the Seagate and the Bellcore traces
ing MAP(2)s. This is because, upon fixing t§€'V and with the manually-generated results in [6] in order to prove
lag-1 autocorrelation values found in stage 1, not all com- that the automatic fitting approach compares very well with
binations of mean and skewness evaluated in stage 2 wouldime-consuming manual fitting.
result in feasible MAP(2)s; this issue is tackled by adding 5.1 Order Selection Results
to the optimization program the feasibility constraintsrid For each of the three traces, the KPC-Toolbox
in [9]. Note also that throughout the entire stage 2 each out-runs the BIC order selection for different orders, i.e.,
put couple(M EAN, SKEW) has a one-to-one mapping {4,8,16,32,64. The results of theBIC order selection
with a specific coupl¢SCYV, p1) determined by the previ-  are shown in Figure 4. For the Bellcore Aug89 trace, the
ous stage. At the end of this stage, we move to determiningBIC selection in Figure 4 indicates that order 16 is the best
a (Dg,D,) representation of the results. choice, order 32 is a close candidate, while the other orders

In the final stage 3, we use the values of the first three are significantly worse in terms @&1C. Similarly, for the
moments and lag-1 autocorrelation coefficient found in the Seagate Web trace, thI C criterion indicate a best order
first two stages to determine thé{,D;) representation of 16 phases. These results are consistent with our man-
of each MAP(2) using the closed-form formulas in [8, 9]. ual fitting experience, since we were never able to fit MAPs



x10°* BC—Aug89 Trace

overlaps the trace up to the queue length equal0103.
Further, as shown in comparison with the manual fitting,
the queueing prediction accuracy for the KPC is compara-
ble with the best in the literature [6] with the additionahbe
efit that KPC automatically generates the MAP while other
methods require exhaustive manual tuning to obtain a good

-9.67

(O
g 97

. MAP. Similarly with the Seagate Web trace, as utilization
B PR - - increases, the fitted MAP(16) captures more accurately the
MAP Order gueueing behavior of the Trace/M/1 queue. For utilization
(a) BellCore Aug89 levels 50% and 80%, the fitted MAP captures the beginning
S Seagate Web Trace probabilities of the queue length very well. Also in this

| case, the result is comparable with the manually fitted MAP
\ determined in [6] and also plotted in the figure.

g 108 |

‘ 6 Conclusion

‘ In this paper, we have presented the KPC-Toolbox, a set
\// of MATLAB scripts for fitting workload traces into MAPs.
e wm o One of the greatest challenges in MAP fitting is to (a) de-

cide the order of the MAP that is necessary to fit the trace
data and (b) determine the relative importance of the vari-
ous stochastic descriptors to be of the trace that should be
matched by the MAP. The KPC-Toolbox meets the above
challenges with a novel approach that uses & cri-
terion to determine the best order-accuracy trade-off for a
MAP and by using optimization to explore a vast parameter
with less than 16 phases that could reproduce effectively th space of alternatives such that the most important stachast
Seagate and Bellcore traces queueing performance. In parProperties of the trace are captured by the resulting MAP.
ticular, to the best of our knowledge, the best available fit- Detailed queueing analysis that confirms the importance
ting for the Bellcore Aug89 trace have either 16 or 32 states Of matching higher-order correlations (i.e., joint mongnt
[1, 10], which further confirms the reliability of th8IC rather than higher order moments is used to guide the opti-
results in Figure 4. mization.

: The tool implements the theoretical results of [6], and

5.2 Queueing Results . . . o o
_Q 9 guided byBIC and the various derived criteria for fitting,

In figures 5 and 6, we present the complementary cu-jt produces good MAP fittings of challenging traces in an
mulative distribution function (CCDF) of the queue length 5y tomaticway. Experimental results on real traces from
probabilities for aM AP/M/1 queue and the empirical ot the systems and networking domains show the effec-
CCDF obtained by simulating th€race/M/1 queue. The  tieness of deriving a MAP that captures well the workload
CCDFs of theM AP/M/1 queue are obtained by solving  characteristics. Although the robustness of the toolbax ha
the underlying quasi-birth death process using MAMSolver peen extensively examined and has been shown successful
(available ahttp://www.cs.wm.edu/MAMSolveriThe ser-  \ith a large set of traces that are not presented here due

vice rate of the exponential server is adjusted to tune theiq |5ck of space, we intend to extend the theory and the

load of the server at different utilization levels. We ploét 0] implementation so that it can also apply to traces with
gueueing distributions at utilizations 20%, 50%, and 80%, arbitrary autocorrelation functions (e.g., periodicitgm-

standing for the low, medium and high load, respectively.  plex eigenvalues). Ongoing work also includes the trace
The Bellcore Aug89 trace has been identified as a dif- preprocessing for noise reduction to improve the stability

ficult trace to fit and thus extensively used in the litera- of fitting. The KPC-Toolbox is available for download at

ture of MAP fitting to evaluate the effectiveness of fitting ptp:/mmww.cs.wm.edu/MAPQN/kpctoolbox.html
[5]. At 20% utilization level, the fitted MAP(16) under-

estimates the queueing probabilities. When the utiliratio
increases, the queueing probability prediction impro¥és.
50% utilization level, the fitted MAP captures the smalland  This work was supported by the National Science Foun-
medium queue lengths probabilities better than the 20% uti-dation under grants ITR-0428330 and CNS-0720699, and
lization level. At80% utilization, the fitted MAP(16) almibs by Seagate Research.

(b) Seagate Web

Figure 4. Order selection for the BellCore Aug89
trace and the Seagate Web trace.
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