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Abstract

We present the KPC-Toolbox, a collection of MATLAB
scripts for fitting workload traces into Markovian Arrival
Processes (MAPs) in an automatic way. We first present
detailed sensitivity analysis that builds intuition on which
trace descriptors are most important for queueing. This
sensitivity analysis stresses the importance of matching
higher-order correlations (i.e., joint moments) of the pro-
cess inter-arrival times rather than higher order moments
of the distribution and provides guidance on the relative im-
portance of different descriptors on queueing. Given that
the MAP parameterization space can be very large, we fo-
cus on first determining the order of the smallest MAP that
can fit the trace well, using the Bayesian Information Cri-
terion (BIC) for determining the best order-accuracy trade-
off. Having determined the order of the target MAP, the
KPC-Toolbox automatically derives a MAP that captures
accurately the most essential features of the trace. Ex-
tensive experimentation illustrates the effectiveness ofthe
KPC-Toolbox in fitting traces that are well-documented in
the literature as very challenging to fit, showing that the
KPC-Toolbox provides a simple and powerful solution to
fitting accurately trace data into MAPs.

1 Introduction

Markovian Arrival Processes (MAP) are a class of
Markov-modulated processes [15] used for fitting real
workload traces with time-varying characteristics, e.g.,for
approximating workloads with short- or long-range depen-
dent behavior [1, 10]. Traces of this type are commonly
found in networks and systems, such as disk drives or e-
commerce applications [17, 14]. Accurate models of these
traces are indispensable in the capacity planning process,
otherwise the robustness of capacity planning models may
be undermined [4, 14].

The main advantage of MAPs is that they can be easily
integrated within queueing systems or queueing networks,
and then used in the computation of performance metrics
such as mean response times or server utilizations [4]. How-
ever, it is often prohibitive to derive MAPs that can repro-
duce the characteristics of real workloads with temporal de-
pendence. The main reason for this difficulty is the vast pa-
rameterization space of MAPs. Matching accurately traces
with time-varying characteristics may require assigning the
jumping rates between several tens of states, a task that must
be supported by proper software tools which currently do
not exist.

In this paper, we introduce the KPC-Toolbox, a set of
MATLAB scripts for automatic fitting of real workload
traces using MAPs. The KPC-Toolbox takes as input a trace
of inter-arrival times, automatically searches for the best or-
der of the MAP that can fit the trace accurately, and then
derives a MAP which captures the most essential statistical
features of the real workload. The underlying technology
is the recently-proposed Kronecker Product Composition1

(KPC) fitting method for MAPs [6]. KPC reduces fitting
problems to determining the characteristics of small MAPs
composed by no more than two phases. These MAPs can be
easily fitted with closed-form formulas and are later com-
posed into a large MAP by Kronecker products. A simi-
lar compositional approach, instead based on MAP super-
position, has been widely-used in past MAP fitting litera-
ture [1]. The novelty of KPC is that the method is able for
the first time to impose moments or correlationsof any or-
der to the resulting MAP, while superposition methods are
mostly limited to first and second-order statistical descrip-
tors (e.g., mean arrival intensity, variance-time curve) that
can be largely insufficient for accurate queueing prediction
[2]. We further stress the generality of KPC pointing out
that, in addition to processes with time-varying characteris-

1The theory of KPC is described in the technical report [6] that is avail-
able online.



tics, it can also fit traces into renewal processes if no auto-
correlation exists in the trace. In such cases, the tool can be
used for moment fitting and a phase-type (PH-type) renewal
process is returned.

An open fundamental problem is determining which
trace descriptors to fit in the target MAP. To give in-
tuition on this problem, we study the performance of a
MAP/M/1 queue in order to determine the best moments
and correlations to be matched by KPC. We observe that
higher-order statistical descriptors that are changed by a
modification of the skewness (e.g., tail of the distribution,
higher-order correlations) can result in dramatic perfor-
mance changes. Instead, performance is sometimes insen-
sitive to the coefficient-of-variation and to the autocorrela-
tions values. We also give evidence that the higher-order
correlations (i.e., joint moments [19]), rather than the tail
or the higher-order moments of the distribution, are more
likely to be responsible of performance differences of the
MAP/M/1 system. Guided by the above observation, the
KPC algorithm focuses on matching the higher-order cor-
relations rather than the higher-order moments of the inter-
arrival times.

A fundamental innovation of the KPC-Toolbox is to de-
termine automatically the order of the MAPs used in fit-
ting (i.e., the number of phases to be used in the underlying
CTMC). Order selection in MAPs is an important issue be-
cause the MAP order can dramatically affect the running
times of fitting. To the best of our knowledge, no criteria
have been proposed in previous work for determining the
size of a MAP. The KPC-Toolbox tackles this issue with an
order-selection technique based on the Bayesian Informa-
tion Criterion (BIC) [18], that is a widely-accepted method
for determining the best order-accuracy tradeoff in fitting
models such as ARIMA processes. We use a recursive char-
acterization of the MAP autocorrelations given in [6] as in-
put toBIC to evaluate the best MAP order to use.

The paper is organized as follows. Background on
MAPs is given in Section 2. In Section 3 we present a
sensitivity analysis on theMAP/M/1 queue that guides
KPC to decide which moments and autocorrelations are
the most important and should thus be matched. Sec-
tion 4 introduces the KPC-Toolbox and the newBIC-
based order selection method. We illustrate the effective-
ness of the tool using the case studies in Section 5. Fi-
nally, Section 6 concludes the paper and outlines future
work. The KPC-Toolbox is available for download at
http://www.cs.wm.edu/MAPQN/kpctoolbox.html.

2 Markovian Arrival Processes

Here we provide a simple introduction to Markovian Ar-
rival Processes and explain some fundamental difficulties
of MAP fitting. We also summarize the Kronecker Prod-
uct Composition (KPC) fitting method for MAPs [6]. For

a detailed theoretical treatment of properties of MAPs on
which KPC is based upon, we direct the interested reader to
[6]. Here, we present the tool implementation of the KPC
as well as new results that aid the tool user in finding a best
MAP fitting in an automatic way.
2.1 MAP Representation

A MAP(N) [15] can be expressed as a continuous-time
Markov chain (CTMC) withN phases and an absorbing
state. Upon entering the absorbing state from phases, an in-
terarrival time sample∆Tk is generated by considering the
cumulative time passed from when the CTMC was started.
Then, the CTMC is re-started from a phases′ with proba-
bility ps,s′ . Intuitively, the stochastic matrixP = {ps,s′},
called theembedded processof the MAP, allows to create
temporal dependence between consecutive values of∆Tk,
as it connects the sampling process of two consecutive
inter-arrival times. This allows to create temporal depen-
dent workloads and generalizes PH-type renewal processes
[15], for which the only difference is that the probability
ps,s′ = αs′ is independent ofs.

The most frequently used MAP representation is the
(D0, D1) description [13]. If the CTMC of the MAP has
an infinitesimal generatorQ of orderN , the(D0, D1) rep-
resentation is obtained by filtering the transitions ofQ ac-
cording to whether or not they lead to an absorption. That
is, D0 has the same diagonal asQ but its off-diagonal el-
ements are the rates of transitions that donot jump to the
absorbing state;D1 includes only transitions to the absorb-
ing state and is immediately computed as the matrix that
assuresQ = D0 + D1. In this representation, the embed-
ded process is given byP = (−D0)

−1D1.
For fitting, the fundamental property of the(D0, D1)

representation is the simplicity of evaluating MAP feasibil-
ity. A MAP is feasible ifD0 is invertible,Q is irreducible,
and all entries ofD0 andD1 are non-negative except for the
diagonal ofD0. These conditions can be easily checked.
Other representations are possible, e.g.((−D0)

−1, P ), but
it is hard to discriminate without computingD0 andD1 if
they produce a valid MAP. We do not consider these repre-
sentations in the rest of the paper.
2.2 Moment Matching

Fitting a trace requires to capture the properties of a time
series in terms of distribution and correlations between sam-
ples, which jointly summarize the observed patterns. Be-
cause of the difficulty in obtaining robust estimates of the
probability density function, moment matching is largely
used in fitting, e.g., [11, 19]. This also allows a compact
representation of the most important characteristics of the
trace.

The inter-arrival time distribution of a MAP is PH-type
distributed, thus moments are obtained from standard the-
ory of PH-type distributions as

E[Xk] = k!~πe(−D0)
−k~e, k = 1, 2, . . . , (1)



where~πeP = ~πe. The vector~πe is independent of the last
visited phase before absorption, which means that temporal
dependence does not affect the inter-arrival time distribu-
tion. For this reason, fitting algorithms for PH-type distri-
butions can be also applied to MAP distribution fitting [16].

A popular approach to matching the temporal depen-
dence structure is to use second-order properties of the trace
[1], such as the correlations

E[XjXj+k] = ~πe(−D0)
−1P k(−D0)

−1~e, k = 1, 2, . . . ,
(2)

whereXj andXj+k are inter-arrival times spaced byk − 1
arrivals. The autocorrelation function is a normalizationof
these values, i.e.,

ρk =
~πe(−D0)

−1P k(−D0)
−1~e − E[X ]2

2E[X2] − E[X ]2
, k = 0, 1, . . .

Equation (2) is more difficult to fit to real data than (1) be-
cause ofP k that accounts for the temporal dependence. In
addition, imposing a certain distribution by (1) reduces the
degrees of freedom for manipulating the matrices in (2), be-
causeD0 and~πe have been already constrained to set some
momentsE[Xk]. This builds intuition on the main issue of
inter-arrival time fitting in MAPs: we need to control the
properties of moments and correlations byjointly manipu-
lating products of matrices appearing in (1)-(2). Separate
fitting of moments and correlations has been recently at-
tempted [11] and can work successfully on small processes,
but the underlying optimization suffers from numerical in-
feasibility on larger MAPs. The KPC method presented
in the next section provides instead a simple divide-and-
conquer approach of fitting both (1)-(2) in large MAPs.
2.3 Fitting Large MAPs: Kronecker Product

Composition (KPC)
Kronecker Product Composition (KPC) is a new tech-

nique proposed in [6] for imposing moments and correla-
tions of arbitrary order to a MAP. The idea is to use fun-
damental properties of the Kronecker (or tensor) product
operator [3] to simplify the control of the matrix products
and inversions appearing in (1)-(2). The aim of KPC is to
provide a simple way to match a set of moments and auto-
correlations by composing together small MAPs, typically
MAPs with two phases that can be fitted easily with closed-
form formulas [8, 9].

GivenMAP a = {Da
0 , Da

1} andMAP b = {Db
0, D

b
1},

we define the KPC of the two processes as the new MAP

MAP a ⊗MAP b = {D0, D1} = {−Da
0 ⊗Db

0, D
a
1 ⊗Db

1},
(3)

where⊗ denotes the Kronecker product operator. IfMAP a

hasKa phases andMAP b hasKb phases, then the process
MAP a ⊗MAP b hasKaKb phases. This suggests that the
KPC operator should be used parsimoniously to preserve
model compactness.

As an example of Kronecker product, if the original pro-
cesses haveD0 matrices

Da
0 =

[

−a1,1 0
0 −a2,2

]

, Db
0 =

[

−b1,1 b1,2

b2,1 −b2,2

]

,

whereai,j ≥ 0 andbi,j ≥ 0 are nonnegative real numbers,
then the composition yieldsD0 = −Da

0 ⊗ Db
0 where

D0 =









−a1,1b1,1 a1,1b1,2 0 0
a1,1b2,1 −a1,1b2,2 0 0

0 0 −a1,2b1,1 a1,2b1,2

0 0 a1,2b2,1 −a1,2b2,2









is a feasibleD0 matrix, having negative elements on the
main diagonal only. The last feasibility condition is always
enforced by KPC if at least one matrix betweenDa

0 and
Db

0 is a diagonal matrix (e.g.,Da
0 in the previous example);

otherwise the zero entries in−Da
0 ⊗ Db

0 are replaced by
negative values that make the MAP infeasible. Note that
this condition does not place constraints on the generalityof
the KPC method since one matrix can always be arbitrary.

The logic behind the KPC definition (3) is that the Kro-
necker product satisfies the algebraic relations

(A⊗B)(C⊗D) = AC⊗BD, (A⊗B)−k = A−k⊗B−k,

which allow to decompose matrix products and inversions
in terms of similar operations on smaller matrices. For in-
stance,(−D0)

−1 = (−Da
0)−1 ⊗ (−Db

0)
−1 and similarly

it can be shown thatP = P a ⊗ P b and~πe = ~πa
e ⊗ ~πb

e,
where the indexesa and b refer to MAP a and MAP b.
From these relations, it is easy to show that moments and
correlations are decomposed as well. For example, the
mean of the KPCMAP a ⊗ MAP b is decomposable as
E[X ] = Ea[X ]Eb[X ], whereEa[·] andEb[·] denote mo-
ments and correlations of the original processesMAPa and
MAPb. The general decomposition formulas are as follows

E[Xk] =Ea[Xk]Eb[X
k]/k!, (4)

E[XjXj+k] =Ea[XjXj+k]Eb[XjXj+k], (5)

and generalize similarly to higher-order moments [6], e.g.,

E[Xu
j Xv

j+kXz
j+k+h] = Ea[Xu

j Xv
j+kXz

j+k+h]×

× Eb[X
u
j Xv

j+kXz
j+k+h]/(u!v!z!). (6)

The KPC technique, shown above for the case of two
MAPs, generalizes in a recursive fashion to KPC of sev-
eral processes. For example, the mean of the composi-
tion MAP a ⊗ MAP b ⊗ MAP c is given by E[X ] =
Ea[X ]Eb[X ]Ec[X ].

Formulas (4)-(6) state that the MAP fitting of real traces
can always be re-formulated in a divide-and-conquer fash-
ion as follows:assign moments and correlations of smaller
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Figure 1. Inaccurate queue-length predictions of a
MAP(2) fitted by exact matching of the trace’s most im-
portant moments and correlations.

MAPs such that their composition (3) yields a MAP with
prescribed moments and correlations by (4)-(6). The KPC-
Toolbox presented in Section 4 defines an automatic fitting
scheme based on the KPC divide-and-conquer approach.

3 What is Important for Fitting?

Before describing the features of the KPC-Toolbox, we
focus our attention on a challenging, but fundamental, ques-
tion: what statistical descriptors are the most important in
fitting by MAPs? A standard approach in current litera-
ture is to match the most important moments and correla-
tion coefficients using the simplest available model, e.g.,a
two-phase MAP(2) process. For example, the first three
momentsE[X ], E[X2], E[X3], and the lag-1 correlation
E[XjXj+1], which determines the lag-1 autocorrelationρ1,
are sufficient to fully parameterize a MAP(2), see [8, 9] for
fitting formulas. Matching these four parameters is often
considered a viable approach to fit a trace; however, we ar-
gue that this frequently results in models with poor predic-
tive capabilities. For example, Figure 1 shows the simulated
queue-length probabilities for aTrace/M/1 queue driven
by the Bellcore Aug89 trace inter-arrival times2 [12] and
compares them with the probabilities of aMAP (2)/M/1
queue, where the MAP(2) matches exactly the first three
moments and the lag-1 autocorrelation of the Bellcore trace.
The results clearly show the poor modeling accuracy of the
MAP(2) fitted with this approach.

The experiment in Figure 1 motivates the investigation
in this section: we study numerically the sensitivity of the
MAP/M/1 queue-length distribution with respect to the
parameters used in MAP fitting. The aim is to derive qual-
itative recommendations for the best moments and correla-
tions to be matched.

2The Bellcore Aug89 trace is widely used in the literature foraccuracy
evaluation of fitting techniques.

3.1 Evaluation Methodology
We perform a sensitivity analysis in two phases. We first

evaluate theMAP (2)/M/1 sensitivity and later confirm
our observations using a larger MAP(4) process defined
by the KPC of two MAP(2)s. Concerning the first anal-
ysis on the MAP(2), the process is studied as a function
of its first three normalized moments (mean inter-arrival
time MEAN , squared coefficient-of-variationSCV , and
skewnessSKEW ) and the lag-1 autocorrelation coefficient
ρ1 of inter-arrival times. A fundamental difficulty in the
analysis is that a variation of a single parameter may re-
sult in several modifications of the process, e.g., any vari-
ation of SKEW results in a simultaneous change of the
skewness of the distribution, of the tail of the distribution,
of higher-order moments, and of higher-order correlations
(e.g., the bicorrelationsE[XjXj+kXj+k+z ] in (6)). This is
a consequence of linear dependencies that relate moments
and correlations in a MAP(N) [6]. Only first and second-
order moments and correlations are unaffected by changes
of SKEW . Our conjecture is that higher-order correla-
tions, such as the bicorrelations (6), rather than the tail
of the distribution or the skewness, are the main determi-
nant of the quality of the fitting. We will provide evidence
of this claim in Section 3.3; before, we will generically
call “higher-order properties” the moments and correlations
changed in aMAP (2) by a variation ofSKEW for fixed
MEAN , SCV , andρ1.

The sensitivity analysis is performed as follows. Recall
that for aMAP/M/1 queue, the queue-length probabilities
decay asymptotically asP (n = k) ∼ c0η

k, whereη is the
decay rate (also called caudal characteristic [15]) andc0 is a
positive constant [15]. We investigate the sensitivity of the
MAP/M/1 results by determining the queue-length value
x whereηx < 10−8. Results for different values of the
threshold are qualitatively similar. Intuitively,x represents
a position of the queue-length distribution after which the
probability values are in practice too small to affect perfor-
mance. If theMAP/M/1 queue is nearly-insensitive to a
MAP parameter (e.g., a moment), we expectx to change
slightly under variations of that parameter, i.e., the shape of
P (n = x) should not be altered significantly. Therefore,
we check sensitivity to a fitting parameter by evaluating the
sensitivity of “the threshold”x; the analysis is done for dif-
ferent server utilization levelsρ ∈ [0.1, 0.9] by varying the
mean of the exponential service process.

3.2 MAP(2) Fitting
We first investigate the sensitivity of theMAP (2)/M/1

results with respect toSCV , SKEW , andρ1. We focus on
the casesSCV > 1 and autocorrelationsρk > 0, which are
the most frequently found in real traces.

Sensitivity to SKEW . We consider a MAP(2) with
unitary meanMEAN = 1, SCV = 10, ρ1 =
0.446 (which corresponds to an autocorrelation decay rate
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Figure 2. Impact of SKEW and SCV on the decay rate of theMAP (2)/M/1 queue-length probabilities for different
utilization values. Lower skewness values imply heavier tail and lower higher-order correlations; this overall results in dramatic
changes in the queue performance.

ρk/ρk−1 = 0.99, for k = 1, . . . , +∞.), and evalu-
ate the casesSKEW = 5 and SKEW = 100. The
valueSKEW = 100 represents a distribution with light
tail, since the large asymmetry places most of the proba-
bility mass around small values; conversely,SKEW =
5 has a fat tail. Similar considerations apply to the
higher-order correlations: if we normalize the bicorrelations
E[XjXj+1Xj+k], e.g., as

θk =
E[XjXj+1Xj+k] − E[X ]3

E[X3] − E[X ]3
,

it is easy to verify numerically thatSKEW = 5 has a con-
siderably larger temporal dependence thanSKEW = 100.

Figure 2(a) shows the impact ofSKEW on the thresh-
old x: for all utilization levels, the threshold is∼ 1000
times larger ifSKEW = 5 instead ofSKEW = 100, i.e.,
the performance degrades dramatically forSKEW = 5
with the tail of the queue-length probabilities being orders
of magnitude longer than forSKEW = 100. It is striking
to see that the impact ofSKEW is considerable also at uti-
lizations as low asρ = 0.1, where the variation ofx is even
maximal (about three orders of magnitude).

The result indicates that the higher-order properties af-
fected by a change ofSKEW can have a remarkable influ-
ence on queueing predictions. We remark that if the same
experiment is performed after setting all autocorrelations to
zero, the variations ofx under changes ofSKEW are not
as dramatic. This is an indication that a long tail in the
distribution or higher-order moments may be insufficient
to capture alone theMAP/M/1 queueing performance,
which is consistent with the claim that higher-order correla-
tions are the main determinants of queueing performance.

Sensitivity to SCV . We have performed several exper-
iments for different values ofSCV , SKEW , andρ1, and
found that for large skewness (e.g.,SKEW = 100), the

queue-length probabilities are weakly sensitive toSCV .
From now on, we focus on the most difficult case where
the tail is not too small and specifically we consider MAPs
with SKEW = 5 andSKEW = 15, where the 99th per-
centile ofSKEW = 5 is in the range[11.7, 16.2], while
for SKEW = 15 it is in [5.6, 9.6]; in the previous section,
for SKEW = 100 the 99th percentile is in[4.4, 4.5].

The sensitivity to theSCV is evaluated by setting
SCV = 5 or SCV = 10. Since in general a change
of SCV implies also a change in the autocorrelations [6],
for SCV = 10 we either keep the sameρ1 of the model
for SCV = 5 or the same index of dispersionIDC =
SCV (1 + 2

∑

∞

k=1
ρk). The results of the experiments

are shown in Figure 2(b) and Figure 2(c). The value of
SKEW is again fundamental: ifSKEW = 5, the im-
pact of theSCV is mostly at low utilization, otherwise
for SKEW = 15 only the high utilization is affected by
a change ofSCV . The choice of fixingρ1 or IDC im-
pacts only at larger loads and suggests that the differences
between the two figures cannot be attributed to the auto-
correlations only. Explaining the large difference between
Figure 2(b) and Figure 2(c) is difficult and the tail of the
distribution does not give any clear intuition behind these
effects. Instead, a more detailed analysis of temporal depen-
dence reveals that thedistancebetween bursty arrival peri-
ods is dramatically changed bySCV andSKEW , e.g. for
SKEW = 5 the autocorrelation in counts [7] between con-
secutive bursty periods of lengthT = MEAN isρc

1 = 0.91
for SCV = 10 andρc

1 = 0.57 for SCV = 5, while for
SKEW = 15 the two cases are similar. This suggests that
the busy period of the queue may be substantially affected
by theSCV andSKEW changes and this could reason-
ably explain the very different results in Figure 2(b)-2(c).
Once again, this stresses the importance of matching corre-
lations, which clearly shape the average distance between



bursty periods.
Sensitivity to ρ1. Due to limited space, we do not report

figures for this case and limit only to summarize our find-
ings. We have evaluated different MAPs forSCV = 10,
SKEW = 5 or SKEW = 15, andρ1 ∈ [0.0, 0.446]. The
results indicate the following properties: ifSKEW = 15,
then ρ1 mostly impacts for utilization values larger than
70% with a gap of two orders of magnitude forx between
the extreme casesρ1 = 0.0 (x ≈ 103) andρ1 = 0.446
(x ≈ 105). For utilization values smaller than30% and
SKEW = 15 the queue is almost insensitive to changes
in ρ1. Conversely, forSKEW = 5 the thresholdx varies
up to two order of magnitude under changes ofρ1 for all
utilization values. This is consistent with our previous find-
ings that the higher-order properties are critical for a good
fitting, but also stresses that for medium-high utilizations a
good match of the autocorrelations isalwaysfundamental.

Summary. The experiments performed in this section
indicate that it may be difficult to fit real traces by relaying
on first and second order properties of the trace only. The
higher-order properties controlled bySKEW affect dra-
matically the performance of aMAP/M/1 queue. Also
SCV and autocorrelations remain very important, although
we have found some insensitivity for certain combinations
of utilization andSKEW values; in light of this last obser-
vation, it also appears quite difficult to discriminate which
is more important betweenSCV andρ1, as their relative
impact changes with the utilization and theSKEW values.
In the next section, we complete our analysis on higher-
order properties by investigating which is the most impor-
tant for the performance of theMAP/M/1 queue: higher-
order moments or higher-order correlations.

3.3 General MAP Fitting
We use KPC to discriminate whether higher-order cor-

relations are more important than higher-order moments in
fitting traces with temporal dependence. We proceed as fol-
lows. We consider twoMAP (2) processesMAPa and
MAPb such that the resulting KPCMAPa ⊗ MAPb has
fat tail and temporal dependence, and we study the resulting
thresholdx as a function of the utilizationρ. Then, we re-
peat the experiment using two differentMAP (2) processes
MAPc andMAPd such that the resultingMAPc⊗MAPd

has sameMEAN , SCV , SKEW , and approximately the
same tail of the distribution and higher-order moments as
MAPa ⊗ MAPb. Table 1 gives the parameters of the
MAPs used. The key difference is thatMAPa ⊗ MAPb

andMAPc ⊗ MAPd have considerably different higher-
order correlations, i.e., while the inter-arrival time autocor-
relationsρk are identical, the autocorrelations of countsρc

k

reveal that the temporal dependence ofMAPc ⊗ MAPd

(ρc
1 = 0.82) is much larger than inMAPa ⊗ MAPb

(ρc
1 = 0.32); similar conclusions are obtained from the nor-

malized bicorrelationsθk.

MAP (2) SCV SKEW ρ1

MAPa 19 19.82 0.468
MAPb 4 85.88 0.371
MAPc 19 77.51 0.468
MAPd 4 210.8 0.371

MAPa ⊗ MAPb 49 57.77 0.482
MAPc ⊗ MAPd 49 57.77 0.482

Table 1. MAP input parameters used in the KPC ex-
periment. All MAPs haveMEAN = 1.

Since the two distributions are virtually identical in terms
of tail decay, we would expect reasonably similar perfor-
mance if the distribution would be the main determinant
of the MAP/M/1 queue performance. However, Figure
3 shows that the variation of the thresholdx in the two
cases is extreme. Except for the high-utilization case where
the results must converge because of the identical value
of the index of dispersionIDC of the two MAPs, the re-
sults ofMAPc ⊗ MAPd are orders of magnitude worse
in terms of performance thanMAPa ⊗ MAPb. This con-
firms our intuition that fitting higher-order correlations is
fundamental. Further, it appears consistent with the very
different counting-process fitting approach in [10], which
illustrates the importance of fitting higher-order properties
of the counting process.

Summary. Matching higher-order correlations in the
KPC-Toolbox has priority over matching higher-order mo-
ments or the tail of the distribution. In practice, it is reason-
able to assume that matching the first two-three moments of
the distribution of temporal dependent traces may be suffi-
cient for capturing the impact of the distribution on queue-
ing performance. All residual degrees of freedom of the
model should be spent into matching correlations of differ-
ent orders. Due to the cost of computing on a real trace
a large number of correlations with more than three terms,
the correlationsE[XjXj+k] and E[XjXj+kXj+k+z ] are
often the most practical descriptors to be matched. Note
also that higher-order correlations of the typeE[X2

j Xj+k]
are included as special cases ofE[XjXj+kXj+k+z ].

4 The KPC Toolbox

The KPC-Toolbox is a set of MATLAB scripts for fitting
real traces into MAPs. The toolbox implements an algo-
rithmic solution of the divide-and-conquer fitting problem
defined by KPC, see [6]. Several design choices have been
made to strike a good balance between simplicity of use
and accuracy of fitting; in particular, the underlying fitting
paradigm is based on the sensitivity analysis results found
in Section 3. In the next subsections we outline the key
ideas behind the design of the KPC-Toolbox.
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Figure 3. Effects of higher-order temporal dependence
on theMAP (4)/M/1 queue performance.

4.1 Order Selection

The KPC-Toolbox approach to MAP order selection is
based on a recursive characterization of MAP autocorre-
lations found in [6]. We consider the trace autocorrela-
tions and, using the characterization in [6], we bound from
above the goodness-of-fit of a MAP(N) model, for differ-
ent choices of the orderN . From these values, we select
the best order using an information-theoretic approach. For
simplicity, we consider autocorrelations, but the approach
may be easily extended to evaluate moments or higher-order
correlations using the formulas in [6]; this is left as a future
extension of the KPC-Toolbox.

It is possible to show that MAP moments and correla-
tions satisfy simple linear recurrence expressions [6]. For
example, the autocorrelationsρk of a MAP with N phases
satisfy

ρk = a1ρk−1 + a2ρk−2 + . . . + aNρk−N , k ≥ N, (7)

where theak coefficients are computed from the eigenval-
ues ofP = (−D0)

−1D1 [6]. Therefore, anecessarycon-
dition for a good matching of themeasuredtrace autocor-
relationsρ̂k is that they can be fitted accurately by (7) for
some choice of the coefficientsak. This is not asufficient
condition, unless theak’s are constrained in sign and mag-
nitude to be generated from a feasible MAP(N); unfortu-
nately, feasibility expressions for theak’s are prohibitive
to obtain for large MAPs because of the high-order of the
nonlinear equations involved. For this reason, our order se-
lection approach relies only on necessary conditions.

We select the best MAP orderN∗ by (7) as follows. For a
trace we considerm autocorrelation coefficientŝρk and give
a preliminary evaluation of MAP(N) fitting by defining a

linear system of equations (7), i.e.,























ρ̂k+1 = a1ρ̂k + a2ρ̂k−1 + . . . + aN ρ̂k−N+1,

ρ̂k+2 = a1ρ̂k+1 + a2ρ̂k + . . . + aN ρ̂k−N+2,
...

...
...

ρ̂k+m = a1ρ̂k+m−1 + a2ρ̂k+m−2 + . . . + aN ρ̂k−N+m.
(8)

The linear system is solved efficiently by linear regression
to compute the residual sum of squaresRSS =

∑

k(ρ̂k −
ρk)2. Linear regression of hundreds of equations (7) can
be solved with small time and space requirements, usually
in a few seconds. In particular, the KPC-Toolbox uses500
logarithmically-spaced autocorrelationsρ̂k, k ∈ [1, 105], to
parameterize the linear system (8). If the trace has lowRSS
relatively to the normalizing constant

∑

k ρ̂2
k, then its corre-

lation structure should be relatively easy to fit with a MAP,
and the results of the KPC-Toolbox are expected to pro-
vide a good fitting model because the temporal dependence
structure can be matched well by a MAP. Otherwise, large
RSS values indicate that MAPs are unlikely to provide a
good fitting of the considered trace and, if no orderN has
good RSS value, other models with higher-order or different
from MAPs should be considered.

After this first evaluation, we use the computedRSS
values for different choices of the model sizeN ∈
{2, 4, 8, 16, 32, 64} to select the best trade-off between ac-
curacy and model size as follows. We adopt the Bayesian
Information Criterion (BIC) [18] as quantitative method to
estimate the best trade-off. TheBIC is defined as [18]

BIC(N) = m log

(

RSS

m

)

+ N log m,

where, in our application,m is the number of autocorre-
lations ρ̂k used in the regression. According to its defini-
tion [18], theBIC should be intended as a cost function,
i.e., lower values ofBIC denote better trade-offs. Thus,
the best order is immediately selected asN∗ = {N :
minN BIC(N)}, and it is used by the KPC-Toolbox as the
best choice for the MAP order. Indeed, similar criteria may
be defined by replacingBIC with similar cost-accuracy
objective functions, e.g., the Akaike Information Criteria
(AIC). However, theBIC is known to be better thanAIC
as the number of available observations becomes asymptot-
ically large [18] and is therefore used by KPC-Toolbox as
the best-available information-criterion method.

We conclude by remarking that, in the special case of
traces that are not autocorrelated, the BIC order selection
method does not apply, but the KPC toolbox can be used
to fit a PH-type renewal process by manually specifying the
number of moments desired for the fitting. Matching the
first five moments is often sufficient for very accurate dis-
tribution fitting, see [6] for case studies.



4.2 KPC-Toolbox Fitting Algorithm

Starting from the observations in the previous section,
we have implemented the KPC-Toolbox fitting algorithm
as follows. The KPC-Toolbox first performs theBIC
order selection and determines the optimal numberJ =
log2 N∗ of MAP(2)s to be composed by KPC. Then, the
tool searches for an actual set ofJ MAP(2)s that can match
accurately the first three moments, the autocorrelations, and
the bicorrelations of the trace. The number of autocor-
relations and bicorrelations to be fitted can be specified
by the user, otherwise the KPC-Toolbox uses by default
500 logarithmically-spaced autocorrelation coefficients and
100 bicorrelation values obtained from a grid of10 × 10
logarithmically-spaced points. The range of sampling is set
by default to lags in[1, 105] for the autocorrelations and to
lags in[1, 105] × [1, 105] for the bicorrelations.

The KPC-Toolbox fitting algorithm is organized around
three stages:SCV and autocorrelation KPC fitting (stage
1); mean, skewness and bicorrelation KPC fitting (stage 2);
generation of the final MAP (stage 3). In the first stage,
the KPC-Toolbox fits the measured autocorrelationsρ̂k by
searching the values ofSCV and lag-1 autocorrelation for
each MAP(2) that minimize the residual sum-of-squares
RSS =

∑

k(ρ̂k − ρk)2, whereρ̂k is the measured auto-
correlation andρk is the autocorrelation of the final KPC
process. It can be shown by (4)-(5) thatρk can be computed
directly from the values ofSCV and lag-1 autocorrelation
of each composing MAP(2) without the need of imposing
at this stage mean and skewness for the MAP(2)s, see [6]
for a closed-form formula. The optimization program used
in stage 1 also includes a constraint imposing that the max-
imum error between the measuredSCV and the KPC pro-
cessSCV must be less than10%.

Mean and skewness of theJ MAP(2)s are determined
during stage 2 of the fitting algorithm, where we match with
a least-squares approach the bicorrelations, mean and skew-
ness of the trace. The only significant difference with re-
spect to the previous stage is that we also impose constraints
on the feasible mean and skewness values for the compos-
ing MAP(2)s. This is because, upon fixing theSCV and
lag-1 autocorrelation values found in stage 1, not all com-
binations of mean and skewness evaluated in stage 2 would
result in feasible MAP(2)s; this issue is tackled by adding
to the optimization program the feasibility constraints found
in [9]. Note also that throughout the entire stage 2 each out-
put couple(MEAN, SKEW ) has a one-to-one mapping
with a specific couple(SCV, ρ1) determined by the previ-
ous stage. At the end of this stage, we move to determining
a (D0,D1) representation of the results.

In the final stage 3, we use the values of the first three
moments and lag-1 autocorrelation coefficient found in the
first two stages to determine the (D0,D1) representation
of each MAP(2) using the closed-form formulas in [8, 9].

The resulting MAP(2)s are finally composed by KPC into a
MAP(N∗) that is returned to the user. More precisely, the
three stages described above are run several times to find
the best MAP to be returned to the user. The selection al-
gorithm operates as follows. The KPC-Toolbox first runs
several times stage 1 while keeping stored the solutions that
produced the best tenRSS value of the stage 1 optimiza-
tion. Then, stage 2 is run several times for each of the solu-
tions selected in stage 1. The KPC-Toolbox returns as best
MAP the stage 2 solution associated to the overall lowest
RSS for the bicorrelations. According to this selection ap-
proach, the final MAP should have a high-quality fitting of
the autocorrelations (stage 1) and a nearly-optimal fittingof
the bicorrelations (stage 2) and is thus consistent with the
sensitivity analysis conclusions presented in Section 3.

5 Numerical Experiments
We conclude with experiments on the accuracy of the

KPC-Toolbox in fitting both real and synthetic traces.
Consistently with the sensitivity analysis, we focus our
evaluation on the queueing prediction accuracy for a
−/M/1/FCFS queue and we fit two traces:

• Seagate Web trace: This trace is composed by3.6 ×
106 interarrival times of requests at the disk drive of a
Web server, see [17] for a description of this trace and
related analyses of its temporal dependence structure.

• Bellcore Aug89 trace: this is a benchmark case for
evaluating the quality of long-range dependent trace
fitting approximations [1, 10, 11]. The traffic con-
sists of 1 million inter-arrival time samples collected
in 1989 at the Bellcore Morrison Research and Engi-
neering facility.

We remark that the two traces are used also in the
manually-performed fitting experiments in [6]. However,
the results presented here are generatedautomatically, and
not manually, using the KPC-Toolbox. In this section, we
compare the results for the Seagate and the Bellcore traces
with the manually-generated results in [6] in order to prove
that the automatic fitting approach compares very well with
time-consuming manual fitting.
5.1 Order Selection Results

For each of the three traces, the KPC-Toolbox
runs theBIC order selection for different orders, i.e.,
{4,8,16,32,64}. The results of theBIC order selection
are shown in Figure 4. For the Bellcore Aug89 trace, the
BIC selection in Figure 4 indicates that order 16 is the best
choice, order 32 is a close candidate, while the other orders
are significantly worse in terms ofBIC. Similarly, for the
Seagate Web trace, theBIC criterion indicate a best order
of 16 phases. These results are consistent with our man-
ual fitting experience, since we were never able to fit MAPs
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Figure 4. Order selection for the BellCore Aug89
trace and the Seagate Web trace.

with less than 16 phases that could reproduce effectively the
Seagate and Bellcore traces queueing performance. In par-
ticular, to the best of our knowledge, the best available fit-
ting for the Bellcore Aug89 trace have either 16 or 32 states
[1, 10], which further confirms the reliability of theBIC
results in Figure 4.

5.2 Queueing Results
In figures 5 and 6, we present the complementary cu-

mulative distribution function (CCDF) of the queue length
probabilities for aMAP/M/1 queue and the empirical
CCDF obtained by simulating theTrace/M/1 queue. The
CCDFs of theMAP/M/1 queue are obtained by solving
the underlying quasi-birth death process using MAMSolver
(available athttp://www.cs.wm.edu/MAMSolver/). The ser-
vice rate of the exponential server is adjusted to tune the
load of the server at different utilization levels. We plot the
queueing distributions at utilizations 20%, 50%, and 80%,
standing for the low, medium and high load, respectively.

The Bellcore Aug89 trace has been identified as a dif-
ficult trace to fit and thus extensively used in the litera-
ture of MAP fitting to evaluate the effectiveness of fitting
[5]. At 20% utilization level, the fitted MAP(16) under-
estimates the queueing probabilities. When the utilization
increases, the queueing probability prediction improves.At
50% utilization level, the fitted MAP captures the small and
medium queue lengths probabilities better than the 20% uti-
lization level. At 80% utilization, the fitted MAP(16) almost

overlaps the trace up to the queue length equal to8 × 103.
Further, as shown in comparison with the manual fitting,
the queueing prediction accuracy for the KPC is compara-
ble with the best in the literature [6] with the additional ben-
efit that KPC automatically generates the MAP while other
methods require exhaustive manual tuning to obtain a good
MAP. Similarly with the Seagate Web trace, as utilization
increases, the fitted MAP(16) captures more accurately the
queueing behavior of the Trace/M/1 queue. For utilization
levels 50% and 80%, the fitted MAP captures the beginning
probabilities of the queue length very well. Also in this
case, the result is comparable with the manually fitted MAP
determined in [6] and also plotted in the figure.

6 Conclusion

In this paper, we have presented the KPC-Toolbox, a set
of MATLAB scripts for fitting workload traces into MAPs.
One of the greatest challenges in MAP fitting is to (a) de-
cide the order of the MAP that is necessary to fit the trace
data and (b) determine the relative importance of the vari-
ous stochastic descriptors to be of the trace that should be
matched by the MAP. The KPC-Toolbox meets the above
challenges with a novel approach that uses theBIC cri-
terion to determine the best order-accuracy trade-off for a
MAP and by using optimization to explore a vast parameter
space of alternatives such that the most important stochastic
properties of the trace are captured by the resulting MAP.
Detailed queueing analysis that confirms the importance
of matching higher-order correlations (i.e., joint moments)
rather than higher order moments is used to guide the opti-
mization.

The tool implements the theoretical results of [6], and
guided byBIC and the various derived criteria for fitting,
it produces good MAP fittings of challenging traces in an
automaticway. Experimental results on real traces from
both the systems and networking domains show the effec-
tiveness of deriving a MAP that captures well the workload
characteristics. Although the robustness of the toolbox has
been extensively examined and has been shown successful
with a large set of traces that are not presented here due
to lack of space, we intend to extend the theory and the
tool implementation so that it can also apply to traces with
arbitrary autocorrelation functions (e.g., periodicity,com-
plex eigenvalues). Ongoing work also includes the trace
preprocessing for noise reduction to improve the stability
of fitting. The KPC-Toolbox is available for download at
http://www.cs.wm.edu/MAPQN/kpctoolbox.html.
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Figure 6. Queueing results for comparison between the Seagate Web trace and the fitted MAP
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