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ABSTRACT
Getting insight into different aspects of source code artifacts is in-
creasingly important – yet there is little empirical research using
large bodies of source code, and subsequently there are not much
statistically significant evidence of common patterns and facts of
how programmers write source code. We pose 32 research ques-
tions, explain rationale behind them, and obtain facts from 2,080
randomly chosen Java applications from Sourceforge. Among these
facts we find that most methods have one or zero arguments or they
do not return any values, few methods are overridden, most inher-
itance hierarchies have the depth of one, close to 50% of classes
are not explicitly inherited from any classes, and the number of
methods is strongly correlated with the number of fields in a class.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics—Product metrics; D.2.8
[Software Engineering]: Metrics—complexity measures, perfor-
mance measures

General Terms
Mining software repositories, open source, empirical study, large-
scale software, patterns, practice

Keywords
software repository, empirical study

1. INTRODUCTION
A goal of empirical research in software engineering is to es-

tablish facts about software from large bodies of experimental data
using statistical methods based on probabilistic reasoning [14][20].
Getting insight into different aspects of source code artifacts is in-
creasingly important – it is estimated that around one trillion lines
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of code have already been written with an additional 35 billion
lines of source code being written every year [3]. Yet there is little
empirical research using large bodies of source code artifacts, and
subsequently there are not much statistically significant evidence of
common patterns and facts of how programmers write source code.

One of major requirements for empirical studies is their useful-
ness [1]. Obtaining statistically significant evidence about com-
monly used techniques and patterns from the source code may yield
important guidance for different areas of computer science. For ex-
ample, assigning null to static fields in Java methods gives an im-
portant clue to garbage collectors to remove objects from memory
that were bound to these fields. Knowing how commonly program-
mers assign null to static fields may help researchers who work in
the area of program analysis to invent heuristic to improve garbage
collection [8].

Few major challenges make it difficult to obtain this evidence
from source code. First, source code files in large code reposi-
tories are treated as unstructured text by search engines and utili-
ties. Since these engines and utilities do not use grammars to parse
source code, they do not distinguish between keywords, types, vari-
ables, and methods – all program entities are words. Answering
even simple questions about programs is very difficult.

Second, source code files are contained in compressed project
files which are located in software repositories. Some repositories
are well-structures (e.g., FreeBSD) while others are poorly struc-
tured (e.g., Sourceforge). Programmers usually submit source code
as packaged files of different formats (e.g., archives in bz2 and tar
formats). This situation is aggravated by the fact that many applica-
tion repositories are polluted with poorly functioning projects [10].
Extracting source code files from these projects requires sophisti-
cated fault tolerance mechanisms to handle errors in compressed
files and simply not parseable Java code. Finally, users should be
able to form declarative queries about different aspects of source
code without writing low-level programs that traverse parse trees
to collect information in response to these queries. Ideally, queries
should be described using SQL, which is a standard declarative lan-
guage. In our case, it means that source code should be stored in a
relational database, and it addresses the first challenge of structur-
ing code.

In this paper we address these major challenges by creating an
infrastructure for doing empirical research in source code artifacts.
We use this infrastructure to obtain insight into randomly chosen
2,080 Java applications from Sourceforge. We pose 28 research
questions, explain rationale behind them when possible, and obtain



SELECT COUNT(∗ ) AS t o t N u l l A s s FROM e x p r e s s i o n
AS e1 , e x p r e s s i o n AS e2 , i d e n t i f i e r AS i WHERE
e1 . o p e r a t o r =’ a s s i g n ’ AND e1 . op2 =’ n u l l ’ AND
e1 . op1 =e2 . id AND e2 . i d e n t i f i e r = i . id AND EXISTS
( SELECT ∗ FROM d e c l a r a t i o n AS d , d e c l _ m o d i f i e r s
AS dm WHERE d . id = i . dec l AND dm. d e c l a r a t i o n =d . id
AND dm. m o d i f i e r =’ s t a t i c ’ )

Figure 1: An example of SQL statement that obtains informa-
tion on the number of null assignments to static fields.

different facts from subject applications. Among these facts we
find that most methods have one or zero arguments or they do not
return any values, few methods are overridden, most inheritance
hierarchies have the depth of one, close to 50% of classes are not
explicitly inherited from any classes, and the number of methods is
strongly correlated with the number of fields in a class.

2. IMPLEMENTATION
In this section we briefly describe how we implemented the in-

frastructure that we use to obtain answers to research questions.

2.1 Crawlers
The infrastructure consists of two crawlers: Archiver that popu-

lated the infrastructure’s repository by retrieving from Sourceforge
more than 30,000 Java projects (some of these projects turned out
to be empty) that contain close to 50,000 submitted archive files,
which comprise the total of 414,357 files. From these projects we
randomly chose 2.080 to study in this paper. Walker traverses in-
frastructure’s repository, opens each project by extracting its source
code from zipped archive, and applies a parser to the extracted
source code. Both crawlers are multithreaded, the Archiver is writ-
ten in Scala and the Walker is written in Java.

To extract program entities from Java programs we used Sun’s
class JavaCompiler to parse these programs and build parse trees1.
Once a parse tree is produced, it is traversed and the content of its
nodes is stored in the database. The database contains 71 tables and
278 attributes, and its schema is designed to match (non)terminals
of the Java grammar. The database is publicly available2 for re-
searchers to obtain results for queries that they will state and code
using SQL. With this database, our results can be replicated by oth-
ers researchers.

2.2 Using SQL to State Research Questions
Using SQL enables users to state research questions about Java

programs without writing specialized programs that translate these
questions into parse tree navigation procedures. Users should know
the database schema, understand its relations to the Java gram-
mar, and of course, translate questions from plain English into
SQL. For example, the question of how commonly programmers
assign null to static fields is translated in the SQL statement that
is shown in Figure 1.

3. EMPIRICAL EVIDENCE
In this section we state research questions (RQs) and describe the

results that we obtain to answer these questions. Table 1 lists RQs
that address how programmers use Java language features in their
programs. The numbers next to paragraphs below corresponds to
the numbers of rows in the Table 1.

1http://java.sun.com/javase/6/docs/api/javax/tools/JavaCompiler.html
2http://www.cs.wm.edu/semeru/treasure

3.1 Classes and Packages
1. We collected information about 270,973 Java classes that are

contained in 2,080 Java applications. Out of these classes, 5,827
or a little over 2% are declared as abstract. On average, a Java
application contains close to 97 classes (median 33) with the range
from 1 to 2017 classes. The histogram of the distribution of classes
per applications is shown in Figure 2(a). The horizontal axis shows
the range of classes for each bar, whose height shows the number
of applications that contain this range of classes.

2. There are 7,368 static classes, less than 3% of the total num-
ber of classes. In a population of Java applications that contain
static classes, an application contains close to 7 static classes on
average (median is equal to zero) with the range from 0 to 1,035
static classes. The histogram of the distribution of static classes per
applications is shown in Figure 2(b).

3. There are 29,237 anonymous classes, less than 11% of the to-
tal number of classes. The histogram of the distribution of anony-
mous classes per container class is shown in Figure 2(c) using the
log scale.

4. There are 14,270 nested classes, less than 6% of the total num-
ber of classes. The histogram of the distribution of nested classes
per container class is shown in Figure 2(d). The horizontal axis
shows the range of nested classes for each bar, whose height (using
the log scale) shows the number of classes that contain this range
of classes.

5. Inheritance is a key mechanism of object-oriented program-
ming to achieve reuse [5]. To determine how programmers use in-
heritance, we computed all inheritance hierarchies of the depth one
or more. Implicitly inheriting from the class java.lang.Object
was not counted. Out of a total of 11,298 hierarchies, 8,008 or al-
most 71% have the depth one. The maximum inheritance depth that
we found is five. The histogram of the distribution of inheritance
trees per inheritance depth is shown in Figure 2(e). The horizon-
tal axis shows the depth of inheritance for each bar, whose height
shows the number of independent inheritance trees.

For example, one application that contains the maximum level
of inheritance hierarchy is LOCKSS3, it is developed by Stanford
University Libraries. It contains 963 Java classes with the total of
228,076 lines of code. One inheritance hierarchy from this appli-
cation is AdminIpAccess→IpAccessControl→Lockss-
Servlet→HttpServlet→GenericServelet→Object.
The package org.lockss.uiapi.commands contains these
classes. The semantics of this inheritance hierarchy has something
to do with implementing a command protocol.

There are 115,453 classes that do not inherit explicitly from any
class versus 116,194 classes that participate in some inheritance hi-
erarchies. That is, almost 50% of classes are written without using
inheritance. There are 9,467 classes or 4% that are the roots on
inheritance trees. The histogram of the distribution of classes per
inheritance depth is shown in Figure 2(f) using the log scale. The
horizontal axis shows the depth of inheritance for each bar, whose
height shows the number of classes that belong to the inheritance
trees of the given depth.

6. How classes are distributed among inheritance trees is shown
in Figure 2(g) using the log scale. Majority of inheritance trees (i.e.,
more than 80%) contain from two to five classes. Less than 9% of
trees contain more than ten classes. The median is three classes per
inheritance hierarchy.

7. Interface implementation is a key mechanism for subtyping in
object-oriented programming [5]. To determine how programmers
use interface implementations, we computed all hierarchies of the

3http://www.lockss.org



depth one or more. Out of a total of 2,026 interface extend hier-
archies, 1,664 or more than 82% have the depth one or more. The
maximum depth that we found is five. The histogram of the distri-
bution of interface extend trees per depth is shown in Figure 2(h).
The horizontal axis shows the depth of interface implementation
hierarchy for each bar, whose height shows the number of indepen-
dent interface trees.

8. There are 17,254 methods that are overridden in derived
classes, or less than 2% of the total of 938,779 found methods.
We found that in parent/child class relationships there is 1.6 meth-
ods overridden on average with the median equal to one. Method
overriding facilitates polymorphism and this result shows that this
overriding feature is used by programmers but not actively. The his-
togram of the distribution of method overriding cases by the num-
ber of overridden methods is shown in Figure 2(i) using the log
scale. The horizontal axis shows the ranges of numbers of over-
ridden methods for each bar, whose height shows the number of
inheritance trees where the number of the overridden methods is
present.

9. There are 2,047 assert statements into Java applications. On
average, there is one assert statement per 400 methods (median
zero). The histogram of the distribution of imports by the number
of applications is shown in Figure 2(j) using the log scale.

3.2 Constructors and Methods
10. We found 938,779 methods that are defined in 270,973 Java

classes. On average, there are 3.5 methods per class (median equal
to four) with the range from 1 to 1175 methods per class. The
histogram of the distribution of methods per classes is shown in
Figure 3(a).

There are 145,124 classes that do not define constructors, which
is over 53% of the total number of classes. Almost 40% of classes
have overloaded constructors. The histogram of the distribution of
the classes by the number of overloaded constructors is shown in
Figure 3(b) using the log scale.

11. In Java, programmers can call methods recursively, and we
found 35,846 occurrences of recursive method calls in the defini-
tions of 938,779 methods (less than 4%). On average, there is one
recursive call per 23 methods, median is zero. We count each func-
tional call that may result in cycles in the call graph as one recur-
sive call. The histogram of the distribution of the recursive method
calls by the number of methods is shown in Figure 3(c) using the
log scale.

12. Close to 25% of methods are static (excluding the method
main). On average, there are 0.85 static methods per class (median
equal to zero) with the range from 1 to 289 static methods per class.
The histogram of the distribution of methods per classes is shown
in Figure 3(d).

13. We found 84,130 methods that are declared in 24,875 Java
interfaces. On average, there are 3.4 methods per interface (median
equal to three) with the range from 1 to 558 methods per inter-
face. The histogram of the distribution of methods per interfaces is
shown in Figure 3(e).

14. The arity of a method is the number of arguments that this
method takes. We found that over 42% of methods do not take
any arguments, that is their arity is zero. The remaining 544,324
methods take from one to the maximum of 30 arguments, with the
average of 1.5 arguments per method (median is equal to one). The
histogram of the distribution of arities per methods is shown in Fig-
ure 3(f).

15 and 16. Methods that do not return values (i.e., return type
void) constitute over 44% of all methods. On average, classes that
contain methods that do not return values have 5.1 methods versus

5.8 methods that return values of some type. A total of 91,423
methods take no arguments and do not return any values. Based
on 14, 15, and 16 we observe that programmers prefer to define
methods that take one or zero arguments or do not return any
values.

17. A total of 24,744 methods or less than 3% return arrays.
Counting only classes that contain these methods, we found that
there are two methods per class on average (median is one) with
maximum of 137 methods per class.

18. The keyword this is used in 840,937 methods and con-
structors to invoke different methods and constructors 3,979,285
times (i.e., this.methodname(..)). That is, the keyword
this is used in almost 90% of methods. Counting only meth-
ods that contain this, we found that there are 2.2 uses of this
per method on average with the maximum of 785 uses per method.
Third edition of Java says that using this “... is simpler than
having to invent different names for the parameters and is not too
confusing in this stylized context4. In general, however, it is con-
sidered poor style to have local variables with the same names as
fields.”

3.3 Fields
In this section we provide evidence of how programmers use

constructors and methods when they write programs.
Methods and Fields. The graph for correlations the numbers

of methods with the numbers of fields in classes is shown in Fig-
ure 4(d). Correlation coefficient is equal to 0.99 that enables us to
conclude that the number of fields in a class is strongly corre-
lated with the number of methods in the same class. This result
may have different implications for the tasks of maintenance and
evolution of applications, for example, to predict different metrics
by knowing how many fields a class holds.

19. We collected information about 448,898 fields that are de-
clared in 270,973 Java classes. On average, a Java class contains
close to two fields (median zero) with the range from zero to 1,457
fields. The histogram of the distribution of classes per applications
is shown in Figure 3(g).

20. In Java, threads can access shared variables and keep private
working copies of the variables to achieve a more efficient imple-
mentation of multiple threads. Java offers a mechanism to pro-
grammers, called volatile fields to ensure that working copies of
variables should be reconciled with the master copies in the shared
main memory when objects are locked or unlocked. We found a to-
tal of 492 volatile fields out of a total of 448,898 fields. On average,
one in 500 Java classes contains volatile fields (median zero) with
the range from zero to nine volatile fields. The histogram of the
distribution of volatile fields per classes is shown in Figure 3(h).

Transient fields are not saved as part of the persistent states of
Java objects. We detected a total of 2,305 transient fields; the his-
togram of the distribution of transient fields per classes is shown in
Figure 3(i).

21. Out of 448,898 fields, 154,067 or 34% are declared static.
On average, a Java class contains close to 0.7 static fields (median
zero) with the range from zero to 1,457 fields. The histogram of the
distribution of static classes per applications is shown in Figure 3(j).

Assignments of null to static fields signal garbage collector
that objects that are used to be assigned to these fields, can be
collected from memory [8]. Knowing how often programmers as-
sign null to static fields can serve as a rule-of-thumb for researchers
to develop tools and techniques that use this heuristics to improve
memory management.

4http://java.sun.com/docs/books/jls/third_edition/html/statements.html
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Figure 2: Histograms of classes, inheritance, method overriding, and assert statements.
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(g) Fields per classes.

���������������
� � � � � � � � 	
 �� ���� � �� ��� ��� � �� ���

(h) Volatile fields per classes.

������������������������������������ �� �		
	
� �� �� � �� ���

(i) Transient fields per classes.

�������������������������	��
�
� �
�� ��
�� ��
�� ��
��� � ����� � ��������� ������

(j) Static fields per classes.

Figure 3: Histograms for methods, constructors, and fields.



We found a total of 831 assignments of null to static fields, out
of a total of 29,907 assignments to static fields. In less than 2.8%
of these assignments programmers used the value null.

22. Out of 448,898 fields, 231,647 or almost 52% have the type
String. Approximately one in three classes has between one to
432 fields of the type String, making it one of the most popular
types.

3.4 Statements
23. We found 620,419 conditional statements (i.e., if-else,

switch, for, while, do-while) that are used in 938,779 meth-
ods, out of which 397,605 methods or approximately 64% do not
have any conditional statements. Approximately 42% of the switch
statements do not contain the default path. On average, there are
approximately 0.8 statements per method (median equal to zero)
with the range from 0 to 750 statements per method. The histogram
of the distribution of these statements per methods is shown in Fig-
ure 4(a).

24. Out of 620,419 conditional statements only 4,956 (less than
1%) use simple boolean variables as their conditions. That it, most
statements use expressions, and thus analyzing code to determine
execution paths requires sophisticated reasoning. The histogram of
the distribution of these statements per methods is shown in Fig-
ure 4(b).

Return versus Break. The graph for usages of the keywords
return versus break within conditional statements is shown in Fig-
ure 4(c). The keyword return is most popular with the for
statements – we counted 2,333,777 occurrences and the least pop-
ular with the switch statements – only 46,044 occurrences. Con-
versely, the keyword break is most popular with the for state-
ments – we counted 245,502 (the statement switch comes next
with 102,454 occurrences) occurrences and the least popular with
the do-while statements – only 16,975 occurrences. In general,
the keyword return is used much more often than break for all
types of conditional statements except for switch, where break is
used more than twice as often.

3.5 Exceptions
25. We found 93,714 try/catch statements, on average one

statement per ten methods (median equal to zero) with the range
from 0 to 90 statements per method. The block finally is used
in 6.8% after try/catch statements. The histogram of the distri-
bution of these statements per methods is shown in Figure 4(e).

26. We found 19,181 exceptions that are thrown using the key-
word throw. Considering only methods that throw exceptions, on
average, close to one method throws an exception (median equal to
zero) with the range from 0 to 40 exceptions thrown per method.
The histogram of the distribution of these statements per methods
is shown in Figure 4(f).

27. Exception propagation is a standard technique for throwing
exceptions from catch blocks to propagate these exceptions to
desired points at execution where they will be handled. We found
110,740 propagated exceptions. Approximated 14% of exceptions
are propagated with 0.26 propagated exceptions per catch block
on average (median equal to zero) with the range from 0 to 5 excep-
tions thrown per catch block. The histogram of the distribution
of propagations per catch block is shown in Figure 4(g).

3.6 Variables and Basic Types
28. We collected information about 5,775,367 local variables

that are declared in method scopes. On average, a method contains
close to three local variables (median zero) with the range from
zero to 1,055 variables. Out of these variable, approximately 10%

are declared final. The histogram of the distribution of variables
per methods is shown in Figure 4(h) using the log scale.

Using basic types versus classes that represent these types.
It may come as no surprise that we found that programmers pre-
fer to use basic types (e.g., int, boolean) to their corresponding
class-based types (e.g., Integer, Boolean). However, we find it sur-
prising that the difference is close to two orders of magnitude in
favor of basic types. The most used basic type is int followed
by boolean followed by long followed by double, float,
byte, and short in this order. The order for class-based types
is a bit different – Long and Boolean switch their respective posi-
tions. The histograms of the distribution of class and basic types
are shown in Figure 4(i) and Figure 4(j) respectively.

Using increment ++ and decrement - - operators. We found
25,523 uses of the increment operator versus only 2,005 uses of
decrements. That is, the number of increments is greater by more
than the order of magnitude than the number of decrements.

3.7 Evolution and Maintenance
Evolution and maintenance of software account for over 70% of

the total cost of software projects [7, page 23]. Knowing how pro-
grammers modify code is important to justify and develop new ap-
proaches and techniques that help these programmers to deal with
evolution and maintenance effectively. For example, step-wise re-
finement is a widely accepted approach for developing a complex
program from a simple program by incrementally adding details
[6]. Yet the question is if programmers follow this approach at
large. We provide partial answers to this question in this section.

29. We downloaded multiple versions of applications from Source-
forge, a total of 2,427 or on average 1.5 versions per application
with the median of one, that is two releases of the same applica-
tion. Zero versions means only one release, and we located a max-
imum of 24 releases of a single application. The histogram of the
distribution of the numbers of applications per versions is shown in
Figure 5(a).

30. We computed the numbers of added and removed fields be-
tween different versions of the same applications. All fields whose
names or types were changed were counted as added/removed.
There are on average 2.57 fields added between versions of the
same application with the median of 2. A maximum of 286 fields
are added with a maximum of 190 fields removed. The histogram
of the distribution of the numbers of added/removed fields per ver-
sions is shown in Figure 5(b).

31. We computed the numbers of added and removed methods
between different versions of the same applications. All methods
whose signatures were changed were counted as added/removed.
There are on average 3.6 methods added between versions of the
same application with the median of 3. A maximum of 262 meth-
ods are added with a maximum of 436 fields removed. The his-
togram of the distribution of the numbers of added/removed meth-
ods per versions is shown in Figure 5(c).

32. We computed the numbers of added and removed classes
between different versions of the same applications. All classes
whose names were changed were counted as added/removed. There
are on average 96.3 classes removed between versions of the same
application with the median of four classes removed. A maxi-
mum of 1,090 classes are added with a maximum of 1,845 classes
removed. The histogram of the distribution of the numbers of
added/removed classes per versions is shown in Figure 5(d).

4. RELATED WORK
The work presented in this paper falls into the following two

major categories: (1) Infrastructure, tools and techniques that fa-
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(c) Using return/break in methods. (d) Using methods and fields per classes.
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(e) Try/catch statements per method.
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(f) Exceptions per methods.
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(g) Propagated exceptions.
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(h) Local variables per method.
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(i) Classes that represent basic types.
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(j) Basic types per classes.

Figure 4: Histograms for conditional statements, exceptions, variables, and types.



# Research Question Total Mean Med Max Min σ2 Var Kur Ske CI
1 Classes, per application 270,973 96.8 33 2071 1 193.2 37,320 30.5 4.8 11.4
2 Static classes 7,368 6.7 0 1,035 0 38.5 1484 488 19.7 2.3
3 Anonymous classes 29,237 0.036 0 136 0 0.4 0.16 38595 146 0.001
4 Nested classes 14,270 0.06 0 61 0 0.56 0.3 1819 30.1 0.002
5 Inheritance hierarchies (no zero depth) 11,298 1.2 1 7 1 0.5 0.26 12.9 3.2 0.01
6 Classes per inheritance tree 116,194 12.3 3 6,918 2 155 24,116 909 28.4 0.99
7 Interface implementation trees 2026 1.2 1 5 1 0.54 0.3 8.7 2.8 0.03
8 Methods of parent classes that are

overridden by derived classes 17,254 1.6 1 55 1 3.38 11.4 77.3 8.2 0.06
9 Assert statements per methods 2,047 0.0025 0 9 0 0.07 0.005 3426 47 0.002
10 Methods per classes 938,779 3.5 4 1175 1 28.6 818 415 16.8 13.8
11 Recursive method calls 35,846 0.04 0 121 0 0.31 0.1 33830 108 0.001
12 Static methods per class (except main) 231,647 0.36 0 289 0 2.7 7.5 1586 28.4 0.35
13 Methods per interfaces 84,130 3.4 3 558 1 15.1 229 345 14.8 0.26
14 Arities of methods 544,324 1.5 1 30 1 1.06 1.1 39.5 4.2 1.5
15 Methods that return void 414,953 5.1 3 1172 1 13.4 178 655 45 5.1
16 Methods that return non-void 523,826 5.8 3 888 1 14.1 199 655 20 5.7
17 Methods that return arrays 24,744 2 1 137 1 2.7 7.3 761 18.8 2
18 Using this, per method 840,937 2.2 1 785 0 5.6 31.6 3983 48 2.2
19 Class fields 448,898 1.9 0 1,457 0 8.4 71 5923 51 0.03
20 Volatile fields 492 0.002 0 9 0 0.075 0.006 3892 54.4 0.0003
21 Static fields 154,067 0.7 0 1457 0 6.3 39.3 15807 93 0.03
22 Fields of type String, per class 231,647 0.3 0 432 0 2.5 6.2 7738 65.3 0.3
23 Conditional statements, per method 620,419 0.76 0 750 0 3.3 11 10417 65.7 0.007
24 Conditional statements that use simple

boolean variables as their conditions 4,956 0.006 0 39 0 0.14 0.02 25482 114 0.0003
25 Try/catch statements, per method 93,714 0.11 0 90 0 0.51 0.26 4571 34.7 0.001
26 Exceptions, per method 818,358 0.9 0 40 0 0.26 0.07 2059 29.2 0.02
27 Exceptions thrown from catch blocks 110,740 0.26 0 5 0 0.45 0.2 3.9 1.6 0.26
28 Local variable per method 818,358 0.87 0 1055 0 4.6 20.8 6023 43 1.35
29 Versions per applications 2,427 1.5 1 24 0 1.86 3.45 58.3 6.8 1.38
30 Removed/added fields between versions 6,249 2.57 2 286 -190 14 194.7 54.8 0.2 2.2
31 Removed/added methods between versions 7,861 3.6 3 262 -438 21.5 464.3 111.4 -5.5 3.2
32 Removed/added classes between versions 5,713 -96.3 -4 1,090 -1,845 379.5 144084 11.2 -2.54 -181

Table 1: Research question and answers.

cilitate learning source code artifacts, and (2) empirical studies and
analyses that review and explain the correlations of these artifacts.

Infrastructure. Howison et al. [9] created a collaborative data
and analysis repository, called FLOSSMole in order to gather, share,
and store comparable data and analyses of open-source projects.
Our paper is different from this work, since we collect and analyze
the data at the source code level of OSS projects in large reposi-
tories, whereas FLOSSMole gathers metadata (e.g., project topics,
activity, statistics, licenses, developer skills etc).

Kiefer et al. [12] proposed an EvoOnt, a software repository
data exchange format based on a Web ontology language to facil-
itate mining software repositories for software analysis. Contrary
to EvoOnt, we ask research questions at source-code level and an-
swering those RQs with EvoOnt is not currently possible since it
will require a significant extension of EvoOnt.

Mockus describes some tools and techniques for gathering, in-
dexing, and updating of a large universal repository for publicly ac-
cessible version control systems [16]. While the work of Mockus
concentrates on creating a Universal Version History of publicly
available software projects, we answer specific research questions
using statistical methods.

In a different paper, Mockus et al. examined data from two major

open source projects, Apache and Mozilla, to investigate whether
open source style of software development can compete with tra-
ditional commercial development method successfully in terms of
developer participation, core team size, code ownership, produc-
tivity, defect density, and problem resolution intervals [17]. This
study is more focused on the artifact of change and maintenance of
the software than statistics about source code.

Ossher et al. built SourcererDB, an aggregated repository of
2,852 statically analyzed and cross-linked open-source Java projects
from sourceforge, Apache and Java.net [18]. All the extracted data
in SourcererDB is stored in a relational database, similarly to our
approach. Our work is different from SourcererDB, since we ad-
dress and statistically analyze this data to provide important in-
sights into open-source software development practices.

Studies and analyses.Baxter et al. presented the first-in-depth
study on the structure of Java programs [2]. In their study, they
analyzed 56 Java applications and measured several key structural
attributes (e.g., number of methods, number of fields etc.) to see if
these structural characteristics obey power laws. While our study
investigates similar structural characteristics to those studied in
Baxter et al., we explore more different research questions, we
perform our study on a significantly larger dataset (that is several
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(a) Versions per applications.
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(b) Removed/added fields across versions of applications.
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(c) Removed/added methods across versions of applications.
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(d) Removed/added classes across versions of applications.

Figure 5: Histograms for evolution of applications.

thousand programs) and we focus on practical applications of our
findings, which can be addressed while gleaning this information
from large repositories.

Kim and Whitehead analyzed signature change properties of seven
software project histories and revealed multiple properties of sig-
nature changes [13]. While in our current work we do not address
questions, which are relevant to the evolution of signature change
patterns, we are planning to tackle these research questions on our
dataset for the future work.

Jiau and Kao [11] examined correlation between user and devel-
oper activities and the state of development of open-source projects.
This study is structurally similar to our paper, however, their re-
search questions are not concerned with source code level details
like ours.

Koch [15] explores possible benefits of communication and co-
ordination tools in Sourceforge open-source projects. Our approach,
on the other hand, obtains information from the source code arti-
facts.

The work by Succi et al. [21] is relevant to our work as it sta-
tistically explores various properties of source code elements (that
is, computing metrics from Chidamber and Kemerer suite [4]) on
a large data set of publicly available projects. While the work by
Succi et al. focuses on analyzing correlations among software met-
rics extracted from a number of open-source projects, our work is
concerned with gaining insights into a large number of research
questions.

Finally, the work by Shang [19] can be used to speed up and scale
up analysis and mining software repositories using distributed com-
puting platforms. We plan to rely on MapReduce in our future work
to reduce computation time for updating and analyzing projects in

our infrastructure.

5. CONCLUSION
In this paper we describe an infrastructure for doing empirical

research in source code artifacts. Using this infrastructure we ob-
tain insight into over 2,080 Java applications. We pose 32 research
questions, explain rationale behind them, and obtain results that
shed light into the practice-at-large of writing Java code.
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