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Abstract 
An approach to recommend a ranked list of 

developers to assist in performing software changes 
given a textual change request is presented.  The 
approach employs a two-fold strategy.  First, a technique 
based on information retrieval is put at work to locate 
the relevant units of source code, e.g., files, classes, and 
methods, to a given change request.  These units of 
source code are then fed to a technique that recommends 
developers based on their source code change expertise, 
experience, and contributions, as derived from the 
analysis of the previous commits.  The commits are 
obtained from a software system’s version control 
repositories (e.g., Subversion).  The approach is 
demonstrated on a bug report from KOffice, an open 
source application suite. 

1. Introduction 
It is a common, but by no means trivial, task in 

software maintenance for managers and technical leads 
alike to delegate the responsibility of implementing 
change requests (e.g., bug fixes and new feature request) 
to the developer(s) with the right expertise.  Change 
requests are typically specified via free-form textual 
description in natural language (e.g., a new feature 
request/wish or a bug reported to the Bugzilla1 repository 
of an open source project).   

This triaging like task typically involves a project 
and/or organization wide knowledge and balancing many 
factors; all of which if handled manually can be quite 
tedious [2].  For example, one solution is to email the 
project team or developers and seek for suggestions or 
advice on who is the most knowledgeable about a certain 
part of source code or bug or feature.  Therefore, 
managers in such a situation would be well served by an 
approach that automatically recommends the appropriate 
developers by using only the minimum, largely non-
technical input, i.e., textual change requests. 

Here, we present a novel approach that combines two 
existing techniques to recommend developers that are 

                                                           
1 Bugzilla is a bug-tacking system available at http://www.bugzilla.org/ 
(verified on 12/05/08) 

best suited to help with an incoming change request.  The 
combined techniques are an Information Retrieval (IR) 
based technique that uses Latent Semantic Indexing (LSI) 
[9] for concept location [16] and an approach that is 
based on Mining Software Repositories (MSR) [14]  to 
recommend a ranked list of candidate developers for 
source code change [15].   

We use the umbrella term concept to generally refer to 
the textual description of the change request irrespective 
of its specific intent (e.g., description of a new feature 
that needs to be added or a bug that needs to be fixed).  In 
a nutshell, our approach is a two-step procedure: 
1. Given a concept description, we use LSI technique 

to locate a ranked list of relevant units of source 
code (e.g., files, classes, and methods) that 
implement that concept in a version (typically the 
version in which an issue is reported) of the software 
system. 

2. The version histories of units of source code from 
the above step are then analyzed to recommend a 
ranked list of developers that are the most 
experienced and/or have substantial contributions in 
dealing with those units (e.g., classes). 

This combined approach is different from previous 
approaches, including those using IR, for expert 
developer recommendations that rely solely on the 
historical account of past change requests and/or source 
code changes [2, 5, 6, 15].  Our approach does not need 
mining of past change requests (e.g., history of similar 
bug reports to resolve the bug request in question), and 
requires source code change history of only selective 
entities. 

2. Locating Concepts with Information 
Retrieval 

Using advanced IR techniques, such as those based on 
LSI [16, 21], allow users to capture relations between 
terms (words) and documents in large bodies of text.  In 
software engineering, LSI has been used for a variety of 
tasks including concept location.  Marcus et al. [16] 
introduced previously a methodology to index and search 
the source code using IR methods.  Subsequently, 
Poshyvanyk et al. [21] refined the methodology and 



 

combined it with dynamic information to improve its 
effectiveness. 

In our approach, the comments and identifiers from 
the source code are extracted and a corpus is created.  In 
this corpus, each document corresponds to a user chosen 
unit of source code (e.g., class) in the system.  LSI 
indexes this corpus and creates a signature for each 
document.  These indices are used to define similarity 
measures between documents.  Users can originate 
queries in natural language (as opposed to regular 
expressions or some other structured format) and the 
system returns a list of all the documents in the system, 
ranked by their semantic similarity to the query.  This use 
is similar to many existing web search engines.   

The first two steps are usually performed once, while 
the other ones are performed repeatedly until the user 
finds the desired parts of the source code. 
1. Creating a corpus of a software system.  The 

source code is parsed using a developer-defined 
granularity level (i.e., methods or classes) and 
documents are extracted from the source code.  A 
corpus is created, so that each method (and/or class) 
will have a corresponding document in the resulting 
corpus.  Only identifiers and comments are extracted 
from the source code.  In addition, we also created 
corpus builder for large C++ projects, using srcML  
[8] and Columbus [11]. 

2. Indexing.  The corpus is indexed using LSI and a 
representation of the corpus as a real-valued vector 
subspace is created.  Dimensionality reduction is 
performed in this step, capturing important semantic 
information about identifiers and comments in the 
source code, and their relationships.  In the resulting 
subspace, each document (method or class) has a 
corresponding vector. 

3. Formulating a query.  A developer selects a set of 
terms that describe the concept of interest (for 
example, ‘open file’).  This set of words constitutes 
the initial query.  The tool spell-checks all the terms 
from the query using the vocabulary of the source 
code (generated by LSI).  If any word from the query 
is not present in the vocabulary, then the tool 
suggests similar words based on editing distance and 
removes the term from the search query.  

4. Ranking documents.  Similarities between the user 
query and documents from the source code (for 
example, methods or classes) are computed.  The 
similarity between a query reflecting a concept and a 
set of data about the source code indexed via LSI 
allows generating a ranking of documents relevant to 
the concept.  All the documents are ranked by the 
similarity measure in descending order (i.e., most 
relevant at the top, whereas, least relevant at the 
bottom). 

LSI offers many unique benefits compared to other 
natural language processing techniques.  Among which 
include the robustness of LSI with respect to outlandish 
identifier names and stop words (which are eliminated) 
and no need of a predefined vocabulary or morphological 
rules.  The finer details of the inner workings of LSI used 
in this work is similar to its previous uses; we refer the 
interested readers to [16, 21]. 

Here, we demonstrate the working of the approach 
using an example from KOffice2.  The change request or 
concept of interest is the bug# 1738813 that was reported 
to the bug tracking system (in this case maintained by 
Bugzilla) on 2008-10-30.  The reporter described the bug 
as follows: 

 “splitting views duplicates the tool options docker”. 

Table 1. Top five classes extracted and ranked by the 
concept location tool that are relevant to the 

description of bug# 173881 reported in KOffice. 
Rank Class Names Similarity 

1 KoDockerManager 0.66 
2 ViewCategoryDelegate 0.54 
3 ViewListDocker 0.51 
4 KisRulerAssistantToolFactory 0.49 
5 KWStatisticsDocker 0.46 

 
We consider the above textual description as a 

concept of interest.  We collected the source code of 
KOffice 2.0-Beta 2 from the development trunk on 2008-
10-31 (the bug was not fixed as of this date).  We parsed 
the source code of KOffice using class level granularity 
(i.e., each document is a class).  After indexing with LSI 
we obtained a corpus consisting of 4,756 documents and 
containing 19,990 unique terms.  We formulated the 
search query “split docker view tool option”, which was 
used as an input to LSI-based concept location tool.  The 
partial results of the search (i.e., a ranked list of relevant 
classes) are summarized in Table 1.  

3. Recommending Developers using Version 
History 

We use the approach of xFinder to recommend expert 
developers by mining version archives of a system [15].  
The basic premise of this approach is that the developers 
who contributed substantial changes to a specific part of 
source code in the past are likely to best assist in its 
current or future change.  More specifically, past 
contributions are analyzed to derive a mapping of the 
developers’ expertise, knowledge, or ownership to 
particular entities of the source code - a developer-code 
map.  Once a developer-code map is obtained, a list of 

                                                           
2 KOffice is an integrated office suite for K Development Environment 
and is available at http://www.koffice.org/ (verified on 12/05/08) 
3 http://bugs.kde.org/show_bug.cgi?id=173881 (verified on 12/05/08) 



 

developers who can assist in a given part of the source 
code can be obtained in a straightforward manner. 

Our approach uses the commits in repositories that 
record source code changes submitted by developers to 
the version-control systems (i.e., Subversion).  
Subversion preserves the grouping of several changes in 
multiple files to a single change-set as performed by the 
committer.  Subversion’s commit log entries include the 
dimensions author, date, and paths (e.g., files) involved 
in a change-set.  Additionally, a text message describing 
the change entered by the developer is also recorded.  
Figure 1 shows a log entry from the Subversion 
repository of KOffice.  A log entry corresponds to a 
single commit operation.  In this case, the changes in the 
file koffice/kword/part/frames/KWAnchorStrategy.cpp 
are committed by the developer zander on the date/time 
2008-11-14T17:22:26.488329Z.  The revision number 
884334 is assigned to the entire change-set (and not to 
each file that is changed as is in the case with some 
version-control systems such as CVS).  
 
<?xml version="1.0" encoding="utf-8"?> 
<log> 
  <log entry revision="884334"> 
    <author>zander</author> 
    <date>2008-11-14T17:22:26.488329Z</date> 
    <paths> 
      <path action="M"> koffice/libs/guiutils/  
KWAnchorStrategy.cpp  
      </path> 
    </paths> 
    <msg> 
       Don't assert but try to put the anchored         
shape in a parent shape. 
    </msg> 
  </log entry>  
</log> 

Figure 1.  Part of KOffice subversion log message. 
 
We presented a few ways of gauging developer 

contributions from commits in [15].  We used the 
measures to determine developers that were likely to be 
experts in a specific source code file, i.e., developer–code 
map.  The developer-code map is represented via the 
developer-code vector DV for the developer d and file f, 
as shown below, 

DV(d, f) = <Cf, Af, Rf>, where: 
 Cf is the number of commits, i.e., commit 

contributions that include the file f and are 
committed by the developer d. 

 Af is the number of workdays in the activity of the 
developer d with commits that include the file f.  

 Rf is the most recent workday in the activity of the 
developer d with a commit that includes the file f. 

Similarly, the change contributions to the file F can be 
represented via the file-change vector FV (given below).  

FV(f) = <C’f, A’f, R’f>, where 

 C’ f is the total number of commits, i.e., commit 
contributions, that include the file f. 

 A’f is the total number of workdays in the activity 
of all developers with commits that include the 
file f.  

 R’f is the most recent workday with a commit that 
includes the file f. 

The contribution or expertise factor, termed Xfactor, 
for the developer d and the file f is computed using a 
similarity measure of the developer-code vector and the 
file-change vector.  For example, we use the Euclidean 
distance to find the distance between the two vectors.  
Distance is an opposite of similarity, thus lesser the value 
of the Euclidean distance, greater the similarity between 
the vectors.  Xfactor is the inverse of distance. 

We use Xfactor as a basis of the recommendation 
method used to suggest a ranked list of developers to 
assist with a change in a given file.  The developers are 
ranked based on their Xfactor values.  The developer 
with the highest value is ranked first.  Now, there maybe 
some files that have not been changed in a very long 
time, or this is the first change where a file is added.  As 
a result, there will not be any recommendation.  To 
overcome this problem, we look for developers who are 
experts in a package that contains the file, and 
recommend them instead.  As a final option, if no 
package expert can be identified, we turn to the idea of 
the system experts).  By doing so, we strive for 
guaranteed recommendation from our tool.   

Now we demonstrate the working of the second step 
of our approach, i.e., xFinder, using the KOffice bug 
example from Section 2.  The classes from Table 1, given 
by the concept location, are fed to the xFinder tool.  The 
files in which these classes are implemented are first 
identified.  In our example, it turned out that each class 
was located in a different file.  xFinder is used to 
recommend developers for one file at a time.  Here, we 
show the working on one file.  The file 
guiutils/KoDockerManager.cpp contains the top ranked 
class KoDockerManager.  xFinder started with the 
KOffice 2.0-Beta 2 from the development trunk version 
on 2008-10-31 and worked its way backward in the 
version history to look for recommendations for the file 
guiutils/KoDockerManager.cpp.  We setup xFinder to 
recommend a maximum of three developers at every 
level.  The ranked list of developers (actually their user 
IDs) that xFinder recommended at file and package 
levels are given below.   
 

File Experts:                           Package Experts: 
  1. jaham                                     3. mpfeiffer 
  2. boemann                                4. jaham 
                                                     5. zander 



 

4. Evaluation Method 
One of the main focuses of our current work is 

assessing the effectiveness of our approach, i.e., to 
investigate how accurate the developer recommendations 
are.  The bug/issue tracking and source code change 
information in software repositories is used for this 
purpose.  Our evaluation method consists of the 
following steps: 
1. Select an issue (e.g., bug or feature/wish) from the 

bug tracking system that is resolved as fixed (or 
implemented). 

2. Select a development version on the day at which the 
selected issue was reported (but not resolved) and 
apply concept location to get a ranked list of relevant 
source code classes given its description. 

3. Use xFinder to collect a ranked list of developers for 
the classes from 2. 

4. Use the changed source code files (or classes) in the 
patch (or commit) that fixed the issue and the 
developer who contributed to it as the ground truth. 

5. Compare the results of steps 2 and 3 with the ground 
truth in step 4.  

6. Repeat the above steps for N issues (i.e., change 
requests). 

We illustrate the application of our evaluation method 
on the KOffice bug example from the previous two 
sections.  The bug# 173881 was fixed on 2008-11-02 
(two days after it was reported) by a developer with the 
user id jaham and the patch included the file 
KoDockerManager.cpp.   As can be clearly seen, both 
these file and developer were ranked first in the 
respective steps of our approach.  We have observed 
similar type of accuracy on a number of other reported 
bugs, which we find very encouraging and promising.  
Therefore, we plan to systematically evaluate the 
accuracy of our approach in terms of widely used metrics 
such as precision and recall.  Our evaluation plan 
includes validating the approach across these metrics on 
a number of open source projects such as Apache httpd, 
KOffice, and GNU gcc across a wide variety of issues. 

5. Related Work 
Our work falls under two broad areas of concept 

location and recommendation systems.  Here, we briefly 
discuss the related work in both these areas. 

5.1. Concept Location 
Concept location is a widely studied problem in 

software engineering and includes many flavors such as 
feature identification and concern location.  Wilde et al. 
[26] were the first to address the problem of feature 
location using the Software Reconnaissance method, 
which utilizes dynamic information.  This approach has 
been recently improved in [1]. 

Among other static-based techniques for concept 
location is the one proposed by Chen et al. [7], which is 
based on the search of abstract system dependence graph.  
This technique was subsequently extended by Robillard 
[22].  Zhao et al. [27] proposed a technique that 
combines information retrieval with branch-reserving 
call-graph information to automatically assign features to 
respective elements in the source code.  Eisenbarth et al. 
[10] combined both static (i.e., dependencies) and 
dynamic (i.e., execution traces) information to identify 
features in programs.  Hill et al. [13] combined static and 
textual information to expedite traversal of program 
dependence graphs for impact analysis.  Poshyvanyk et 
al. [20] combined an IR based technique with scenario-
based probabilistic ranking of the execution traces to 
improve the precision of feature location.  

5.2. Developer Recommendation 
McDonald and Ackerman [17] developed a heuristic 

based recommendation system called the Expertise 
Recommender (ER) to identify experts at the module 
level.  Mino and Murphy [18] produced a tool called 
Emergent Expertise Locator (EEL).  EEL helps in finding 
the developers who can assist in solving a particular 
problem.  Expertise Browser (ExB) [19] is another tool to 
locate people with a desired expertise.  Anvik and 
Murphy [3] did an empirical evaluation of two 
approaches to locate expertise.  They found that both 
approaches have relative strengths in different ways.  A 
machine learning technique has been used in [2] to 
automatically assign a bug report to the right developer 
who can resolve it.  Another text-based approach is used 
in [23] to build a graph model called ExpertiseNet for 
expertise modeling.   

Tsunoda et al. [24] analyzed the developers’ working 
time of open source software.  Bird et al. [4] mined email 
archives to analyze the communication and co-ordination 
activities of the participants.  Weissgerber et al. [25] 
analyze and visualize the check-in information for open 
source projects.  The visualization shows the relationship 
between the lifetime of the project and the number of 
files and the number of files updated by each author.  
German [12] studied the modification records (MRs) of 
CVS logs to visualize who are the people who tend to 
modify certain files.  These works along with some other 
related approaches are further elaborated in [15]. 

6. Conclusions 
The main contribution of our work is the synergistic 

use of a concept location technique with a technique 
based on MSR for the expert developer recommendation 
task.  While both these techniques have been investigated 
and used independently with a reasonable level of 
success in the past, their combined use for tasks such as 
recommending expert developers for incoming change 



 

requests has not been systematically and fully 
investigated.  We envision that our approach would 
provide a valuable aid to team leads or developers in 
maintenance tasks such as impact analysis right on the 
onset of a change request, which is typically specified in 
free-form text.  Our primary, litmus test results suggest 
that the proposed technique can identify relevant 
developers with fairly high precision, which we plan to 
further validate with systematic studies.   
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