

Who Can Help Me with this Change Request?

Huzefa Kagdi1, Denys Poshyvanyk2

1Department of Computer Science
Missouri University of Science and Technology

Rolla, MO 65409
kagdih@mst.edu

2Computer Science Department
 The College of William and Mary

Williamsburg, VA 23185
denys@cs.wm.edu

Abstract
An approach to recommend a ranked list of

developers to assist in performing software changes
given a textual change request is presented. The
approach employs a two-fold strategy. First, a technique
based on information retrieval is put at work to locate
the relevant units of source code, e.g., files, classes, and
methods, to a given change request. These units of
source code are then fed to a technique that recommends
developers based on their source code change expertise,
experience, and contributions, as derived from the
analysis of the previous commits. The commits are
obtained from a software system’s version control
repositories (e.g., Subversion). The approach is
demonstrated on a bug report from KOffice, an open
source application suite.

1. Introduction
It is a common, but by no means trivial, task in

software maintenance for managers and technical leads
alike to delegate the responsibility of implementing
change requests (e.g., bug fixes and new feature request)
to the developer(s) with the right expertise. Change
requests are typically specified via free-form textual
description in natural language (e.g., a new feature
request/wish or a bug reported to the Bugzilla1 repository
of an open source project).

This triaging like task typically involves a project
and/or organization wide knowledge and balancing many
factors; all of which if handled manually can be quite
tedious [2]. For example, one solution is to email the
project team or developers and seek for suggestions or
advice on who is the most knowledgeable about a certain
part of source code or bug or feature. Therefore,
managers in such a situation would be well served by an
approach that automatically recommends the appropriate
developers by using only the minimum, largely non-
technical input, i.e., textual change requests.

Here, we present a novel approach that combines two
existing techniques to recommend developers that are

1 Bugzilla is a bug-tacking system available at http://www.bugzilla.org/
(verified on 12/05/08)

best suited to help with an incoming change request. The
combined techniques are an Information Retrieval (IR)
based technique that uses Latent Semantic Indexing (LSI)
[9] for concept location [16] and an approach that is
based on Mining Software Repositories (MSR) [14] to
recommend a ranked list of candidate developers for
source code change [15].

We use the umbrella term concept to generally refer to
the textual description of the change request irrespective
of its specific intent (e.g., description of a new feature
that needs to be added or a bug that needs to be fixed). In
a nutshell, our approach is a two-step procedure:
1. Given a concept description, we use LSI technique

to locate a ranked list of relevant units of source
code (e.g., files, classes, and methods) that
implement that concept in a version (typically the
version in which an issue is reported) of the software
system.

2. The version histories of units of source code from
the above step are then analyzed to recommend a
ranked list of developers that are the most
experienced and/or have substantial contributions in
dealing with those units (e.g., classes).

This combined approach is different from previous
approaches, including those using IR, for expert
developer recommendations that rely solely on the
historical account of past change requests and/or source
code changes [2, 5, 6, 15]. Our approach does not need
mining of past change requests (e.g., history of similar
bug reports to resolve the bug request in question), and
requires source code change history of only selective
entities.

2. Locating Concepts with Information
Retrieval

Using advanced IR techniques, such as those based on
LSI [16, 21], allow users to capture relations between
terms (words) and documents in large bodies of text. In
software engineering, LSI has been used for a variety of
tasks including concept location. Marcus et al. [16]
introduced previously a methodology to index and search
the source code using IR methods. Subsequently,
Poshyvanyk et al. [21] refined the methodology and

combined it with dynamic information to improve its
effectiveness.

In our approach, the comments and identifiers from
the source code are extracted and a corpus is created. In
this corpus, each document corresponds to a user chosen
unit of source code (e.g., class) in the system. LSI
indexes this corpus and creates a signature for each
document. These indices are used to define similarity
measures between documents. Users can originate
queries in natural language (as opposed to regular
expressions or some other structured format) and the
system returns a list of all the documents in the system,
ranked by their semantic similarity to the query. This use
is similar to many existing web search engines.

The first two steps are usually performed once, while
the other ones are performed repeatedly until the user
finds the desired parts of the source code.
1. Creating a corpus of a software system. The

source code is parsed using a developer-defined
granularity level (i.e., methods or classes) and
documents are extracted from the source code. A
corpus is created, so that each method (and/or class)
will have a corresponding document in the resulting
corpus. Only identifiers and comments are extracted
from the source code. In addition, we also created
corpus builder for large C++ projects, using srcML
[8] and Columbus [11].

2. Indexing. The corpus is indexed using LSI and a
representation of the corpus as a real-valued vector
subspace is created. Dimensionality reduction is
performed in this step, capturing important semantic
information about identifiers and comments in the
source code, and their relationships. In the resulting
subspace, each document (method or class) has a
corresponding vector.

3. Formulating a query. A developer selects a set of
terms that describe the concept of interest (for
example, ‘open file’). This set of words constitutes
the initial query. The tool spell-checks all the terms
from the query using the vocabulary of the source
code (generated by LSI). If any word from the query
is not present in the vocabulary, then the tool
suggests similar words based on editing distance and
removes the term from the search query.

4. Ranking documents. Similarities between the user
query and documents from the source code (for
example, methods or classes) are computed. The
similarity between a query reflecting a concept and a
set of data about the source code indexed via LSI
allows generating a ranking of documents relevant to
the concept. All the documents are ranked by the
similarity measure in descending order (i.e., most
relevant at the top, whereas, least relevant at the
bottom).

LSI offers many unique benefits compared to other
natural language processing techniques. Among which
include the robustness of LSI with respect to outlandish
identifier names and stop words (which are eliminated)
and no need of a predefined vocabulary or morphological
rules. The finer details of the inner workings of LSI used
in this work is similar to its previous uses; we refer the
interested readers to [16, 21].

Here, we demonstrate the working of the approach
using an example from KOffice2. The change request or
concept of interest is the bug# 1738813 that was reported
to the bug tracking system (in this case maintained by
Bugzilla) on 2008-10-30. The reporter described the bug
as follows:

 “splitting views duplicates the tool options docker”.

Table 1. Top five classes extracted and ranked by the
concept location tool that are relevant to the

description of bug# 173881 reported in KOffice.
Rank Class Names Similarity

1 KoDockerManager 0.66
2 ViewCategoryDelegate 0.54
3 ViewListDocker 0.51
4 KisRulerAssistantToolFactory 0.49
5 KWStatisticsDocker 0.46

We consider the above textual description as a

concept of interest. We collected the source code of
KOffice 2.0-Beta 2 from the development trunk on 2008-
10-31 (the bug was not fixed as of this date). We parsed
the source code of KOffice using class level granularity
(i.e., each document is a class). After indexing with LSI
we obtained a corpus consisting of 4,756 documents and
containing 19,990 unique terms. We formulated the
search query “split docker view tool option”, which was
used as an input to LSI-based concept location tool. The
partial results of the search (i.e., a ranked list of relevant
classes) are summarized in Table 1.

3. Recommending Developers using Version
History

We use the approach of xFinder to recommend expert
developers by mining version archives of a system [15].
The basic premise of this approach is that the developers
who contributed substantial changes to a specific part of
source code in the past are likely to best assist in its
current or future change. More specifically, past
contributions are analyzed to derive a mapping of the
developers’ expertise, knowledge, or ownership to
particular entities of the source code - a developer-code
map. Once a developer-code map is obtained, a list of

2 KOffice is an integrated office suite for K Development Environment
and is available at http://www.koffice.org/ (verified on 12/05/08)
3 http://bugs.kde.org/show_bug.cgi?id=173881 (verified on 12/05/08)

developers who can assist in a given part of the source
code can be obtained in a straightforward manner.

Our approach uses the commits in repositories that
record source code changes submitted by developers to
the version-control systems (i.e., Subversion).
Subversion preserves the grouping of several changes in
multiple files to a single change-set as performed by the
committer. Subversion’s commit log entries include the
dimensions author, date, and paths (e.g., files) involved
in a change-set. Additionally, a text message describing
the change entered by the developer is also recorded.
Figure 1 shows a log entry from the Subversion
repository of KOffice. A log entry corresponds to a
single commit operation. In this case, the changes in the
file koffice/kword/part/frames/KWAnchorStrategy.cpp
are committed by the developer zander on the date/time
2008-11-14T17:22:26.488329Z. The revision number
884334 is assigned to the entire change-set (and not to
each file that is changed as is in the case with some
version-control systems such as CVS).

<?xml version="1.0" encoding="utf-8"?>
<log>
 <log entry revision="884334">
 <author>zander</author>
 <date>2008-11-14T17:22:26.488329Z</date>
 <paths>
 <path action="M"> koffice/libs/guiutils/
KWAnchorStrategy.cpp
 </path>
 </paths>
 <msg>
 Don't assert but try to put the anchored
shape in a parent shape.
 </msg>
 </log entry>
</log>

Figure 1. Part of KOffice subversion log message.

We presented a few ways of gauging developer

contributions from commits in [15]. We used the
measures to determine developers that were likely to be
experts in a specific source code file, i.e., developer–code
map. The developer-code map is represented via the
developer-code vector DV for the developer d and file f,
as shown below,

DV(d, f) = <Cf, Af, Rf>, where:
 Cf is the number of commits, i.e., commit

contributions that include the file f and are
committed by the developer d.

 Af is the number of workdays in the activity of the
developer d with commits that include the file f.

 Rf is the most recent workday in the activity of the
developer d with a commit that includes the file f.

Similarly, the change contributions to the file F can be
represented via the file-change vector FV (given below).

FV(f) = <C’f, A’f, R’f>, where

 C’ f is the total number of commits, i.e., commit
contributions, that include the file f.

 A’f is the total number of workdays in the activity
of all developers with commits that include the
file f.

 R’f is the most recent workday with a commit that
includes the file f.

The contribution or expertise factor, termed Xfactor,
for the developer d and the file f is computed using a
similarity measure of the developer-code vector and the
file-change vector. For example, we use the Euclidean
distance to find the distance between the two vectors.
Distance is an opposite of similarity, thus lesser the value
of the Euclidean distance, greater the similarity between
the vectors. Xfactor is the inverse of distance.

We use Xfactor as a basis of the recommendation
method used to suggest a ranked list of developers to
assist with a change in a given file. The developers are
ranked based on their Xfactor values. The developer
with the highest value is ranked first. Now, there maybe
some files that have not been changed in a very long
time, or this is the first change where a file is added. As
a result, there will not be any recommendation. To
overcome this problem, we look for developers who are
experts in a package that contains the file, and
recommend them instead. As a final option, if no
package expert can be identified, we turn to the idea of
the system experts). By doing so, we strive for
guaranteed recommendation from our tool.

Now we demonstrate the working of the second step
of our approach, i.e., xFinder, using the KOffice bug
example from Section 2. The classes from Table 1, given
by the concept location, are fed to the xFinder tool. The
files in which these classes are implemented are first
identified. In our example, it turned out that each class
was located in a different file. xFinder is used to
recommend developers for one file at a time. Here, we
show the working on one file. The file
guiutils/KoDockerManager.cpp contains the top ranked
class KoDockerManager. xFinder started with the
KOffice 2.0-Beta 2 from the development trunk version
on 2008-10-31 and worked its way backward in the
version history to look for recommendations for the file
guiutils/KoDockerManager.cpp. We setup xFinder to
recommend a maximum of three developers at every
level. The ranked list of developers (actually their user
IDs) that xFinder recommended at file and package
levels are given below.

File Experts: Package Experts:
 1. jaham 3. mpfeiffer
 2. boemann 4. jaham
 5. zander

4. Evaluation Method
One of the main focuses of our current work is

assessing the effectiveness of our approach, i.e., to
investigate how accurate the developer recommendations
are. The bug/issue tracking and source code change
information in software repositories is used for this
purpose. Our evaluation method consists of the
following steps:
1. Select an issue (e.g., bug or feature/wish) from the

bug tracking system that is resolved as fixed (or
implemented).

2. Select a development version on the day at which the
selected issue was reported (but not resolved) and
apply concept location to get a ranked list of relevant
source code classes given its description.

3. Use xFinder to collect a ranked list of developers for
the classes from 2.

4. Use the changed source code files (or classes) in the
patch (or commit) that fixed the issue and the
developer who contributed to it as the ground truth.

5. Compare the results of steps 2 and 3 with the ground
truth in step 4.

6. Repeat the above steps for N issues (i.e., change
requests).

We illustrate the application of our evaluation method
on the KOffice bug example from the previous two
sections. The bug# 173881 was fixed on 2008-11-02
(two days after it was reported) by a developer with the
user id jaham and the patch included the file
KoDockerManager.cpp. As can be clearly seen, both
these file and developer were ranked first in the
respective steps of our approach. We have observed
similar type of accuracy on a number of other reported
bugs, which we find very encouraging and promising.
Therefore, we plan to systematically evaluate the
accuracy of our approach in terms of widely used metrics
such as precision and recall. Our evaluation plan
includes validating the approach across these metrics on
a number of open source projects such as Apache httpd,
KOffice, and GNU gcc across a wide variety of issues.

5. Related Work
Our work falls under two broad areas of concept

location and recommendation systems. Here, we briefly
discuss the related work in both these areas.

5.1. Concept Location
Concept location is a widely studied problem in

software engineering and includes many flavors such as
feature identification and concern location. Wilde et al.
[26] were the first to address the problem of feature
location using the Software Reconnaissance method,
which utilizes dynamic information. This approach has
been recently improved in [1].

Among other static-based techniques for concept
location is the one proposed by Chen et al. [7], which is
based on the search of abstract system dependence graph.
This technique was subsequently extended by Robillard
[22]. Zhao et al. [27] proposed a technique that
combines information retrieval with branch-reserving
call-graph information to automatically assign features to
respective elements in the source code. Eisenbarth et al.
[10] combined both static (i.e., dependencies) and
dynamic (i.e., execution traces) information to identify
features in programs. Hill et al. [13] combined static and
textual information to expedite traversal of program
dependence graphs for impact analysis. Poshyvanyk et
al. [20] combined an IR based technique with scenario-
based probabilistic ranking of the execution traces to
improve the precision of feature location.

5.2. Developer Recommendation
McDonald and Ackerman [17] developed a heuristic

based recommendation system called the Expertise
Recommender (ER) to identify experts at the module
level. Mino and Murphy [18] produced a tool called
Emergent Expertise Locator (EEL). EEL helps in finding
the developers who can assist in solving a particular
problem. Expertise Browser (ExB) [19] is another tool to
locate people with a desired expertise. Anvik and
Murphy [3] did an empirical evaluation of two
approaches to locate expertise. They found that both
approaches have relative strengths in different ways. A
machine learning technique has been used in [2] to
automatically assign a bug report to the right developer
who can resolve it. Another text-based approach is used
in [23] to build a graph model called ExpertiseNet for
expertise modeling.

Tsunoda et al. [24] analyzed the developers’ working
time of open source software. Bird et al. [4] mined email
archives to analyze the communication and co-ordination
activities of the participants. Weissgerber et al. [25]
analyze and visualize the check-in information for open
source projects. The visualization shows the relationship
between the lifetime of the project and the number of
files and the number of files updated by each author.
German [12] studied the modification records (MRs) of
CVS logs to visualize who are the people who tend to
modify certain files. These works along with some other
related approaches are further elaborated in [15].

6. Conclusions
The main contribution of our work is the synergistic

use of a concept location technique with a technique
based on MSR for the expert developer recommendation
task. While both these techniques have been investigated
and used independently with a reasonable level of
success in the past, their combined use for tasks such as
recommending expert developers for incoming change

requests has not been systematically and fully
investigated. We envision that our approach would
provide a valuable aid to team leads or developers in
maintenance tasks such as impact analysis right on the
onset of a change request, which is typically specified in
free-form text. Our primary, litmus test results suggest
that the proposed technique can identify relevant
developers with fairly high precision, which we plan to
further validate with systematic studies.

7. Acknowledgements
This research was supported in part by the United

States Air Force Office of Scientific Research under
grant number FA9550-07-1-0030.

8. References

[1] Antoniol, G. and Guéhéneuc, Y. G., "Feature Identification:
An Epidemiological Metaphor", IEEE Transactions on
Software Engineering, vol. 32, no. 9, 2006, pp. 627-641.
[2] Anvik, J., Hiew, L., and Murphy, G. C., "Who Should Fix
This Bug?" in Proc. of 28th international conference on
Software engineering, Shanghai, China, 2006, pp. 361 - 370.
[3] Anvik, J. and Murphy, G., "Determining Implementation
Expertise from Bug Reports", in Proc. of 4th International
Workshop on Mining Software Repositories, 2007.
[4] Bird, C., Gourley, A., Devanbu, P., Gertz, M., and
Swaminathan, A., "Mining Email Social Networks", in Proc. of
2006 International Workshop on Mining Software Repositories,
Shanghai, China, May 22-23 2006, pp. 137-43.
[5] Canfora, G. and Cerulo, L., "Impact Analysis by Mining
Software and Change Request Repositories", in Proc. of 11th
IEEE International Symposium on Software Metrics,
September 19-22 2005, pp. 20-29.
[6] Canfora, G. and Cerulo, L., "Fine Grained Indexing of
Software Repositories to Support Impact Analysis", in Proc. of
International Workshop on Mining Software Repositories,
2006, pp. 105 - 111.
[7] Chen, K. and Rajlich, V., "Case Study of Feature Location
Using Dependence Graph", in Proc. of 8th IEEE International
Workshop on Program Comprehension, Limerick, Ireland, June
2000, pp. 241-249.
[8] Collard, M. L., Kagdi, H. H., and Maletic, J. I., "An XML-
Based Lightweight C++ Fact Extractor", in Proc. of 11th IEEE
International Workshop on Program Comprehension, Portland,
OR, May 10-11 2003, pp. 134-143.
[9] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T.
K., and Harshman, R., "Indexing by Latent Semantic Analysis",
Journal of the American Society for Information Science, vol.
41, 1990, pp. 391-407.
[10] Eisenbarth, T., Koschke, R., and Simon, D., "Locating
Features in Source Code", IEEE Transactions on Software
Engineering, vol. 29, no. 3, March 2003, pp. 210 - 224.
[11] Ferenc, R., Beszedes, A., and Gyimóthy, T., "Extracting
Facts with Columbus from C++ Code", in Proc. of 8th
European Conference on Software Maintenance and
Reengineering, March 24-26 2004, pp. 4-8.

[12] German, D. M., "An Empirical Study of Fine-grained
Software Modifications", Empirical Software Engineering, vol.
11, no. 3, September 2006, pp. 369-393.
[13] Hill, E., Pollock, L., and Vijay-Shanker, K., "Exploring the
Neighborhood with Dora to Expedite Software Maintenance",
in Proc. of 22nd International Conference on Automated
Software Engineering, Nov. 2007, pp. 14-23.
[14] Kagdi, H., Collard, M. L., and Maletic, J. I., "A Survey and
Taxonomy of Approaches for Mining Software Repositories in
the Context of Software Evolution", Journal of Software
Maintenance and Evolution: Research and Practice, vol. 19,
no. 2, March/April 2007, pp. 77-131.
[15] Kagdi, H., Hammad, M., and Maletic, J. I., "Who Can
Help Me with this Source Code Change?" in Proc. of IEEE
International Conference on Software Maintenance, Beijing,
China, September 28-October 3 2008.
[16] Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J., "An
Information Retrieval Approach to Concept Location in Source
Code", in Proc. of 11th IEEE Working Conference on Reverse
Engineering, Nov. 9-12 2004, pp. 214-223.
[17] McDonald, D. and Ackerman, M., "Expertise
Recommender: A Flexible Recommendation System and
Architecture", in Proc. of ACM Conference on Computer
Supported Cooperative Work, Dec. 2-6 2000, pp. 231-240.
[18] Minto, S. and Murphy, G., "Recommending Emergent
Teams", in Proc. of 4th International Workshop on Mining
Software Repositories, May 20-26 2007.
[19] Mockus, A. and Herbsleb, J., "Expertise Browser: a
Quantitative Approach to Identifying Expertise", in Proc. of
24th International Conference on Software Engineering,
Orlando, FL, May 19-25 2002, pp. 503-512.
[20] Poshyvanyk, D., Guéhéneuc, Y. G., Marcus, A., Antoniol,
G., and Rajlich, V., "Feature Location using Probabilistic
Ranking of Methods based on Execution Scenarios and
Information Retrieval", IEEE Transactions on Software
Engineering, vol. 33, no. 6, June 2007, pp. 420-432.
[21] Poshyvanyk, D. and Marcus, D., "Combining Formal
Concept Analysis with Information Retrieval for Concept
Location in Source Code", in Proc. of 15th IEEE International
Conf. on Program Comprehension, June 2007, pp. 37-48.
[22] Robillard, M. P., "Topology Analysis of Software
Dependencies", ACM Transactions on Software Engineering
and Methodology, vol. 17, no. 4, August 2008.
[23] Song, X., Tseng, B., Lin, C., and Sun, M., "ExpertiseNet:
Relational and Evolutionary Expert Modeling", in Proc. of 10th
International Conference on User Modeling, Jul. 24-29 2005.
[24] Tsunoda, M., Monden, A., Kakimoto, T., Kamei, Y., and
Matsumoto, K.-i., "Analyzing OSS Developers' Working Time
Using Mailing Lists Archives", in Proc. of Intern. Workshop on
Mining Software Repositories, 2006, pp.181- 182.
[25] Weissgerber, P., Pohl, M., and Burch, M., "Visual Data
Mining in Software Archives to Detect How Developers Work
Together", in Proc. of Fourth International Workshop on
Mining Software Repositories, May 20-26 2007.
[26] Wilde, N., Gomez, J. A., Gust, T., and Strasburg, D.,
"Locating User Functionality in Old Code", in Proc. of Intern.
Conf. on Software Maintenance, 1992, pp. 200-205.
[27] Zhao, W., Zhang, L., Liu, Y., Sun, J., and Yang, F.,
"SNIAFL: Towards a Static Non-interactive Approach to
Feature Location", ACM Transactions on Software Engineering
and Methodologies, vol. 15, no. 2, 2006, pp. 195-226.

