

Using Relational Topic Models to Capture Coupling among Classes in
Object-Oriented Software Systems

Malcom Gethers and Denys Poshyvanyk
Department of Computer Science
The College of William and Mary

Williamsburg, Virginia, USA
{mgethers, denys}@cs.wm.edu

Abstract — Coupling metrics capture the degree of
interaction and relationships among source code elements in
software systems. A vast majority of existing coupling metrics
rely on structural information, which captures interactions
such as usage relations between classes and methods or execute
after associations. However, these metrics lack the ability to
identify conceptual dependencies, which, for instance, specify
underlying relationships encoded by developers in identifiers
and comments of source code classes. We propose a new
coupling metric for object-oriented software systems, namely
Relational Topic based Coupling (RTC) of classes, which uses
Relational Topic Models (RTM), generative probabilistic
model, to capture latent topics in source code classes and
relationships among them. A case study on thirteen open
source software systems is performed to compare the new
measure with existing structural and conceptual coupling
metrics. The case study demonstrates that proposed metric not
only captures new dimensions of coupling, which are not
covered by the existing coupling metrics, but also can be used
to effectively support impact analysis.

I. INTRODUCTION

Coupling measures capture the degree of interaction and
relationships among source code elements, such as classes, in
software systems. Coupling is one of the fundamental
properties of software with most influence on software
maintenance and evolution. A large host of coupling
measures are used in tasks such as impact analysis [8, 37],
assessment of the fault-proneness of classes [16, 21, 38] and
identification of design patterns [1].

A large majority of coupling metrics presented in the
literature relies on structural information, which captures
relations, such as method calls or attributes usages. However,
these metrics lack the ability to identify conceptual
associations, which, for example, specify implicit
relationships encoded by developers in identifiers and
comments of source code.

In this paper we propose a novel coupling measure,
namely Relational Topic based Coupling among classes,
which is based on Relational Topic Model [14], an
unsupervised probabilistic topic modeling technique. RTM
identifies latent topics associated with documents (e.g.,
source code elements) as well as links between documents in
a large corpus of text. RTM extends on Latent Dirichlet
Allocation (LDA) [7], which has been recently applied for
extracting, representing and analyzing latent topics from the
source code [4, 27, 28, 30, 31, 36]. Our measure of coupling

can be interpreted through deducing mixtures and
relationships of latent topics implemented in software classes
within the context of an entire system. The proposed metric
is different from existing conceptual coupling metrics [33],
as it captures not only how strongly the classes relate to each
other conceptually, but also analyzes the relationships among
latent topic distributions in underlying identifiers and
comments in source code classes.

In order to evaluate our proposed metric, we compare
RTC against a large host of existing structural and
conceptual coupling metrics on the source code of thirteen
open-source software systems to examine if the proposed
measure captures new dimensions in coupling measurement.
We also compare the performance of RTC metric against a
host of existing structural and conceptual coupling metrics
for impact analysis, an important software maintenance task.
Impact analysis entails detecting source code elements
impacted by a change to a given source code element. While
structural coupling metrics have been successfully used for
impact analysis in the literature we conjecture that the
proposed RTC metric not only provides good accuracy, but
also identifies relevant source code elements not captured by
structural and/or conceptual coupling metrics.

This paper makes the following research contributions:

 We define a novel coupling metric based on
Relational Topic Models for discovering latent
topics and their relationships in source code for
class coupling measurement.

 We empirically evaluate the newly proposed metric
against a host of existing structural and conceptual
metrics; we also use and compare RTC against other
metrics and their combinations for impact analysis
on large open-source systems.

 We publicly release the metrics data from the case
studies and ensure their reproducibility.

The remainder of this paper is structured as follows.
Section II outlines the related work for object-oriented
coupling metrics. Section III describes our approach and the
proposed measure. This section also describes
implementation details of the tool that we developed to
compute our metrics as well as mathematical properties of
the measures. In section IV we provide empirical study to
assess the newly proposed metrics. Section V concludes the
paper and discusses the future work.

II. RELATED WORK

Measuring coupling among classes is an active research
area, which has resulted in many different approaches to
capture coupling among classes based on structural static
information [10, 15, 25], dynamic information [2],
evolutionary data [20, 40], and textual information [33, 35].
Other coupling metrics have been defined to capture
coupling metrics for specific types of software applications,
such as knowledge-based [23] and aspect-oriented software
systems [39].

Structural coupling metrics compose the most developed
family of coupling metrics, which has received noteworthy
attention in the research literature. These coupling metrics
have been summarized and classified within the unified
framework for coupling measurement [12]. Some of the
metrics, widely used and applied within software
maintenance tasks, are coupling between objects (CBO) [15],
response for class (RFC) [15], message passing coupling
(MPC) [26], data abstraction coupling (DAC), information-
flow-based coupling (ICP) [25], the suite of coupling
measures formulated by Briand et al. [10] (that is, IFCAIC,
ACAIC, OCAIC, FCAEC) and efferent coupling (CE),
afferent coupling (CA) and coupling factor (COF) [12]. All
these and some other coupling metrics have been
implemented by tools, such as Columbus [19], which is
publicly available to the academic community.

The vast majority of existing static structural coupling
measures listed above are based on method invocations,
attributes references and static or dynamic execute after
relationships [6]. For instance, RFC, MPC, and ICP metrics
are based on method invocations, whereas CBO and COF
measures are based on counting method invocations and
references to both methods and attributes. The suite of
measures defined by Briand et al. [10] captures several types
of relationships among classes, such as class-attribute, class-
method, and method-method relations. The measures from
the suite also discriminate between import and export
coupling and other types of interactions such as friends,
ancestors, descendants, etc.

In contrast to static coupling measures, dynamic coupling
measures [2] were defined as the refinement to existing
coupling measures to address some of the shortcomings of
existing structural metrics while dealing with polymorphism,
dynamic binding, and the presence of unused code.

Another rapidly evolving family of coupling measures
stem from the evolution of a software system in contrast to
static coupling, which is determined by a single-version
static program analysis, or dynamic coupling, obtained via
program execution. These multi-version metrics are coined
as evolutionary [40] or logical [20] couplings among parts of
the systems and are determined via analysis of co-changes
among source code artifacts using advanced data mining
techniques.

Existing work on software clustering [24] uses a notion
of conceptual similarity between elements of source code
[29], which stands at the foundation of the conceptual
coupling [33]. However, the coupling metric, which is
proposed in this paper, is different from existing structural

and conceptual coupling metrics. First of all, the novel
metric, that is RTC, uses an advanced topic modeling
method, RTM, which extends LDA, to extract semantically
meaningful topics or concepts implemented in classes. Once
topics are gleaned from source code classes, coupling among
classes is computed via analysis of relationships among
topics using relational topic analysis model. The following
section presents details behind adapting RTM and LDA for
measuring coupling among classes in OO systems.

III. USING RELATIONAL TOPIC MODELS FOR COUPLING

MEASUREMENT IN SOFTWARE

In this work we utilize RTM to capture conceptual
relationships between classes in order to determine the
degree of coupling among them. RTM is a probabilistic
topic model, which models both documents (i.e., classes) and
links amid documents (i.e., couplings) within a software
corpus. Applications of RTM include assisting social
network users in identifying potential friends, locating
relevant citations in networks of scientific papers, and
pinpointing related web pages of a particular web page [14].

The model extends Latent Dirichlet Allocation to allow
for the prediction of links between documents based on
underlying topics and known relationships amongst
documents. In this section we provide details behind LDA
followed by how RTM extends this model to capture links
among documents. While LDA has been previously applied
in the context of software engineering for measuring
conceptual cohesion of classes [27], recovering traceability
links [3, 31], mining software repositories [4, 30, 36] and
bug location [28], RTM has not been utilized for software
measurement tasks before.

A. Latent Dirichlet Allocation

LDA [7], a probabilistic topic model, identifies
underlying topics within a corpus and models documents as
probabilistic mixtures over those latent topics. More
specifically, the topics extracted by LDA correspond to
likelihood distributions, which indicate how likely a word is
to be assigned to a specific topic. Additionally, each
document is modeled as a probability distribution indicating
how likely it is that the document expresses each topic. That
is, given a corpus of documents, that is classes from the
software system, LDA attempts to identify a set of topics
based on word co-occurrences, and define a specific mixture
of these topics for each document (i.e., class) in the corpus
(i.e., software system).

In order to apply LDA on the source code, we represent a
software system as a collection of documents (i.e., classes)
where each document is associated with a set of concepts
(i.e., topics). More specifically, the LDA model consists of
the following building blocks:

 A word is the basic unit of discrete data, defined to be

an item from a software vocabulary V={w1, w2,..., wv},
such as an identifier or a word from a comment.

 A document 1 , which corresponds to a class, is a
sequence of n words denoted by d = (w1, w2,..., wn),
where wn is the nth word in the sequence.

 A corpus is a collection of m documents (that is,
classes) denoted by D = (d1, d2, . . . ,dm).

Given m documents containing k topics expressed over v
unique words, the distribution of ith topic ti over v words can
be represented by φi and the distribution of jth document dj
over k topics can be represented by θj. The LDA-based
model assumes a prior Dirichlet distribution on θ, thus
allowing the estimation of φ without requiring the estimation
of θ. More specifically, LDA assumes the following
generative process for each document di in a corpus D:

1. Select N ~ Poisson distribution (ξ)
2. Select θ ~ Dirichlet distribution (α)
3. For each of the N words wi:
 (a) Select a topic tk ~ Multinomial ().
 (b) Select a word wi from p(wi|zn,β), a multinomial

probability conditioned on topic tk.
By using LDA it is possible to formulate the problem of

discovering a set of topics describing a set of source code
classes by viewing these classes as mixtures of probabilistic
topics. For further details on LDA, the interested reader is
referred to the original work of Blei et al. [7].

B. Relational Topic Model

RTM is a model capable of predicting links between
documents based on the context (i.e., underling latent topics)
and relationships of documents in a corpus [14]. In RTM,
prediction of links, which are modeled as binary random
variables, is dependent on the information modeled by LDA
(e.g., probabilistic topic assignments to the documents in a
corpus).

Generating a model consists of two main steps: modeling
the documents in a corpus and modeling the links between
all the pairs of documents. The first step is identical to the
generative process described in the previous section. The
second step is outlined as the following:

For each pair of documents di, dj:
(a) Draw a binary link indicator:

| , (| ,)
i jd d i j i jy t t n t t

where ti={ti,1, ti,2,..., ti,n }
The link probability function ψε is defined as:

(1) exp((t t))i j

T
d dy v

 where the links between documents are modeled by the
means of logistic regression. The ○ notation corresponds to
the Hadamard product,

,

1
td d n

nd

z
N

 and exp() is an

exponential mean function. It is parameterized by
coefficients η and intercept v. While the complete
mathematical details are rather complex and lengthy to be

1 The main difference between applying LDA to class cohesion and

coupling measurement is document granularity – method level

granularity is used for cohesion, while class is used for coupling.

explained in the context of this paper, the reader is referred
to the original work on RTM [14] for comprehensive details.

C. Measuring Coupling using Relational Topic Model

Our use of Relational Topic Model to measure coupling
among source code classes is motivated by the fact that RTM
provides a comprehensive model for describing documents
(i.e., classes are represented as words from identifiers and
comments) and the existence of links between documents
based on underlying textual information and other
knowledge of the document network. In the context of our
application, the binary link indicator, which indicates
whether a link exists between two documents (i.e., classes),
is used as an indicator of coupling amid any pair of classes.
That is, if the model identifies a link between two classes in
the corpus with a high probability, we consider these classes
to be coupled. One main benefit of the relational topic
model is that it does not require knowledge of any existing
links to make these predictions. So, RTM is capable of
identifying coupling between classes without any
preliminary input related to a priori known class couplings.

 Establishing a model of a software system using RTM
first requires a term-by-document co-occurrence matrix
representation of a software system. These input documents,
which represent source code classes, are modeled as
distributions of topics within the corpus as described in the
previous section. This model provides necessary underlying
information to identify relationships among the classes in a
software system. Links are modeled using the properties of
the underlying textual information, captured by LDA and
RTM.

Given two classes C1 and C2 the degree of coupling (i.e.,
pair-wise RTCC) between these is defined as follows:

RTCC = RTM(C1, C2)

where the function RTM() returns the probability that a link
exists between the classes C1 and C2. The coupling of a class
within the context of an entire software system, or a degree
to which a class is coupled to the other classes in the system
(i.e., system-level RTCS) is defined as:

(,)

()

n

i j
j C

S i

RTM C C

RTC C
n

where n is the number of classes in the system.
The definition of the RTC builds on our previous work

on measuring cohesion of classes using LDA [27].
However, in this work we use an extension of LDA, namely
Relational Topic Models and we do not utilize information
theory approach, as in our prior work. Computing relational
topic coupling among classes in source code indicates
whether the classes are conceptually related. Considering
the relational topic link probabilities of a class with all the
other classes in the software system, one can measure the
degree to which this class relates to the rest of the classes
within the context of the entire software system, based on
which latent topics they implement and how they are related.
These relationships, based on probabilistic topics and their
likelihood interactions, delineate a new form of coupling,
coined as Relational Topic based Coupling.

D. An Example computing RTC using RTM

To provide more insight on how relational topic model is
used to capture coupling among software classes in the
context of a specific software maintenance task, such as an
impact analysis, let us consider a commit from the software
system Rhino, which addresses the bug #2045762. Previous
applications of coupling measures indicated that a change in
a class may trigger ripple changes in other classes, which are
highly coupled to the changed class [8]. In this example we
illustrate how RTCC measure can capture coupling among
related classes in the context of an impact analysis task
guided by the RTCC metric.

Assume that while addressing this bug, the developer has
located a starting point of a change in one of the classes.
Following modification of that class the developer can use
RTC for impact analysis to identify remaining classes which
also need to be modified, since they are highly coupled to the
changed class.

To fix bug #204576, which states "1.5R4 regression:
java.lang.String can not be used when argument type is
java.lang.CharSequence" the following classes were
modified {NativeJavaClass, NativeJavaMethod,
NativeJavaObject}. Relational topic model represents
NativeJavaMethod as a probability distribution over latent
topics with the topic #47 (top ranked words consist of
"method", "member", "type", etc.) having a relatively high
probability. This underlying information leads the model to
identify the classes NativeJavaObject, NativeJavaClass,
NativeJavaConstructor, and JavaMembers as related to
NativeJavaMethod, since the topic distributions which model
the classes also show topic #47 with a relatively high
probability. In other words, all these classes have a high
probability of being associated with topic #47. Thus, using
RTC we are able to identify the remaining classes (that is,
NativeJavaClass and NativeJavaObject), which also require
modification to address the bug #204576. Note that
relational topic model considered all topics of a document as
well as other underlying information and not just a single
topic. We focused on a single topic to simplify the example
and its explanation.

E. Mathematical properties of RTC measure

We analyze our metric according to the five
mathematical properties non-negativity, null value,
monotonicity, merging of classes, and merging of
unconnected classes [9].

RTC complies with non-negativity property, as RTM(C1,
C2) always returns a value in the range of [0, 1], since RTM
relies on a link probability function [14]. Additionally, the
null value property is also met, since the value of the metric
will always be in the specified range preventing our metric
from yielding null values.

While we are not listing formal proofs for the latter three
properties, we are providing some explanations that
demonstrate why these properties hold. In summary, these
properties hold, given that both the mathematical average

2 https://bugzilla.mozilla.org/show_bug.cgi?id=204576

and the maximum functions have these properties. For the
monotonicity property, if one adds a new method that has
strong conceptual relationship with methods of other classes,
then the RTC will also increase. The similar situation occurs
if we just change the method implementation, which leads to
higher conceptual relationship with other methods (e.g.,
methods will share similar topics based on the underlying
alike vocabulary). When merging connected and
unconnected classes, the conceptual relationships remain the
same, meaning that relocation of the methods inside other
classes will not change actual conceptual relationships of
these methods with methods of other classes.

IV. CASE STUDY

In this section we present the design of an empirical case
study aimed at comparing RTC with other structural and
conceptual coupling metrics and analyzing whether the
combination of RTC with existing conceptual coupling
metrics improves the accuracy of ranking source code
classes during impact analysis. The description of the study
follows the Goal-Question-Metrics paradigm outlined by
Basili et al. [5]. All the data used and generated in this
section has been posted online to ensure reproducibility of
our results3.

A. Definition and Context

Our primary goals include comparing RTC against
existing coupling metrics and determining whether
combining RTC with other metrics can improve the
performance of coupling metrics when applied to the task of
impact analysis. In this study the quality focus was on
establishing orthogonality among RTC and existing coupling
metrics and improving on accuracy during an impact
analysis task, while the perspective was of a software
developer performing a modification task on a software
system and conducting impact analysis, given a starting point
of the change, which requires retrieving the other relevant
source code entities that need to be inspected or modified.

The context of this case study consists of 11 C/C++ and
two Java software systems. It should also be noted that one
of the software systems, that is Mozilla, is implemented in a
mix of programming languages including C/C++, Java, IDL,
XML, HTML and JavaScript. In case of Mozilla, we
analyzed only C++ source code and computed RTC measure
among object-oriented classes implemented in C++ only.

1) Coupling metrics
In order to determine whether the proposed metrics

capture new dimensions in coupling measurement, we
selected nine existing structural metrics for comparison:
CBO, RFC, MPC, DAC, ICP, ACAIC, OCAIC, ACMIC,
and OCMIC (for more details on these metrics, refer to
Section II). We considered a subset of these structural
coupling metrics relying on the results of previous empirical
studies [33], which identified great amount of redundancy
among a larger set of existing coupling metrics [13]. In
addition to structural coupling metrics, we also considered

3 http://www.cs.wm.edu/semeru/icsm10‐relational‐topic‐coupling

two system-level conceptual coupling metrics, that is CoCC
and CoCCm (and their pair-wise versions, CCBC and
CCBCm) [33]. Other guiding criteria that we used to choose
the metrics is availability of the results reported for these
metrics elsewhere in the literature [13, 33, 35] to facilitate
systematic comparison and evaluation of the results.

2) Subject software systems
For our case study we have chosen 13 various sized

open-source software systems from different domains. The
summary of the selected software systems’ sizes are outlined
in Table I. The table also includes specifics on the RTM
based corpora, generated for the systems under analysis with
terms standing for the unique number of terms and docs for
the total number of classes in that software system. The
source code for these systems, except Mozilla, Eclipse and
Rhino, is available at http://sourceforge.net. It should be
noted that the software systems 1-10 (see Table I) have been
used in the previous studies on evaluating CoCC and CoCCm

measures [35].
ANote (/projects/a‐note) is the system that lets the user

organize sticky notes on the desktop. TortoiseCVS
(/projects/tortoisecvs) is an extension for Microsoft Windows
Explorer that makes using CVS convenient and easy.
WinMerge (/projects/winmerge) is a tool for visual
differencing and merging for both files and directories.
Doxygen (/projects/doxygen) is a javaDoc like
documentation system for C++, C, Java, and IDL. Kalpa
(/projects/kalpa) is a multi-user client-server accounting,
management, CRM, EPR, and MRP system. K-Meleon
(/projects/kmeleon) is a customizable Win32 web browser,
which uses the same rendering engine as Firefox Mozilla.
VoodooUML (/projects/voodoo) is a UML class diagram
editor. EMule (/projects/emule) is a file-sharing client; one
of the most popular downloads on sourceforge.net. KeePass
(/projects/keepass) is a light-weight Win32 password
manager, which allows storing the passwords in a highly-
encrypted database. Umbrello (/projects/uml) is a system for
creating and maintaining UML diagrams. Mozilla is a
popular open-source web browser ported on almost all
known software and hardware platforms (www.mozilla.org).
Eclipse is a popular open-source integrated development
environment (www.eclipse.org). Finally, Rhino is an open-
source implementation of JavaScript written entirely in Java
(www.mozilla.org/rhino).

3) Building and indexing software corpora
In order to capture relational topic based coupling among

classes in a software system we need first to generate a
corresponding corpus for the system. To build a corpus we
extracted the textual information, i.e., identifiers and
comments, from the source code using class level granularity
level, where each document in the corpus represents a class
in the software system (that is, a sequence of identifiers and
comments implementing corresponding class).

Once a corpus is built, we model it using Relational
Topic Model with the term-by-document co-occurrence
matrix corresponding to the corpus. This relational topic
model captures important conceptual relationships (i.e.,
couplings) among classes within the corpus. After modeling
the corpus using RTM, coupling between classes can be
computed (for the details on how RTM is used to compute
RTC refer to the section III). The next section describes
specific settings for researchers who wish to reproduce the
results of our case study.

4) Setting of the case study
All the structural coupling measures were computed

using Columbus [19]. The CoCC and CoCCm measures were
computed with the IRC2M tool [33], whereas RTC measure
was computed using the lda4 package of the open-source R-
project5.

We used a class level granularity, to construct corpora for
software systems in the case study. We extracted all types of
methods from classes in the source code, including
constructors, destructors, and accessors. Comments and
identifiers were extracted from each class as well. The
resulting text from the source code is pre-processed using the
following settings: some of the tokens are eliminated (e.g.,
operators, special symbols, some numbers, keywords of the
C++ programming language, standard library function names
including standard template library); the identifier names in
the source code are split into parts based on observed coding
standards and naming conventions. For instance, all the
following identifiers are broken into separate words
‘relational’ and ‘topics’: ‘relational_topics’,
‘RelationalTopics’, etc. Since n-grams were not considered,
the order of words in source code is of no particular
significance. We evaluate the performance of various

4 http://cran.r‐project.org/web/packages/lda/
5 http://www.r‐project.org/

Table I. Characteristics of the software systems used in the case study to address RQs.

Num System Lang Ver LOC Files Classes Methods Terms Docs
1 ANote C++ 4.2.1 16,387 97 61 877 2,530 753
2 TortoiseCVS C++ 1.8.21 64,863 255 142 930 1,915 637
3 WinMerge C++ 2.0.2 51,475 169 71 624 1,738 522
4 Doxygen C++ 1.3.7 179,920 260 682 6,837 4,424 3,608
5 Kalpa C++ 0.0.4.2 16,581 185 135 353 451 254
6 K-Meleon C++ 0.9 34,253 120 57 213 653 192
7 VoodooUML C++ 1.99.12 12,787 97 168 1,001 947 841
8 EMule C++ 0.47 162,101 556 532 6,764 9,628 3,888
9 KeyPass C++ 1.04 39,798 123 104 1,476 3,676 1,325
10 Umbrello C++ 1.5.1 75,665 479 210 524 631 405
11 Mozilla C++ 1.6 738,180 10K 4.5K 86K 50K 5,961
12 Eclipse Java 3.0 1.9M 6,614 10K 120K 40K 8,363
13 Rhino Java 1.5R6 32,134 106 138 1,800 1,119 106

numbers of topics and identify values which best suite our
application as done in the related work performed by Baldi et
al. [4]. After that, we choose 75 topics for systems 1 through
10, 225 topics for systems 11 and 12, and 125 topics for
system 13. Automatic identification of application specific
topic parameters is beyond the scope of this work as we
focus primary on demonstrating that, once the appropriate
parameters are selected, applying the model as a means of
measuring coupling provides useful results.

5) Impact Analysis using Coupling Metrics
The structural [8] and conceptual [35] coupling measures
have been shown to facilitate ordering (i.e., ranking) classes
in software systems, based on different types of
dependencies among classes, that is, structural or
conceptual. Such coupling measures and derived ranks of
classes, as demonstrated in the previous work can be
derived automatically. Here we provide some details on
how we compare RTC with other structural and conceptual
coupling metrics for the impact analysis task.

For a given class C (considered to be a starting point of a
change task, which may be identified by a programmer via a
feature location technique, e.g., PROMESIR [34]), the
remaining classes in the system are ranked according to their
strength of coupling to the class C, based on a coupling
measure or a combination of such measures (see some
previous work on the details [8, 35]). The list of ranked
classes is presented to the developer for further inspection
(for instance, a ranked list of classes as shown in an existing
tool for impact analysis, namely JRipples [32]). Since
software systems may contain thousands of classes, e.g.,
Mozilla or Eclipse, focusing impact analysis on classes,
which are strongly coupled to a starting point, may provide
valuable automated support to the developer.

In the research literature, structural and conceptual
coupling measures are defined and used at the system level
(classic definitions of coupling measures), meaning that they
count, for a given class C, all dependencies from C to the
other classes in the system. In order to use the coupling
measures for impact analysis, they need to be modified to
account for coupling between pairs of classes only (see
previous work on defining and using pair-wise conceptual
[35] and structural [8] coupling measures).

Our evaluation strategy is based on the history of
changes, observed in Mozilla, Eclipse and Rhino to compare
RTC to existing structural and conceptual coupling measures
to identify classes with common changes (i.e., changes in
classes related to the same bug report and having the same
bug identification number in the configuration management
system). The history of changes in this case can be used to
evaluate rankings of classes produced with different coupling
measures against actual changes in the software system. We
conjecture that the RTC measure will be at least as effective
as the nine existing coupling measures and two conceptual
coupling metrics in ranking classes during impact analysis.

The evaluation methodology can be summarized in the
following steps (note that we use the same evaluation
methodology as used in related case studies on impact
analysis [8, 35]):

 For a given software system, a set of bug reports Bugs =
{bug1, bug 2… bug n} is mined from the bug tracking
system, such as Bugzilla. The set of classes, which had
been changed to fix each bug (e.g., c(bug 1) = {c1,
c2…cn}) are mined from the configuration management
system. Specific details on how the bug reports and
changed classes are identified were previously described
in [35].

 For each class in c(bug i), pair-wise RTC, structural and
conceptual coupling metrics are computed. The values
of each metric are used to compute ranks of the
remaining classes in the software system.

 Using a specific cut point criteria (which ranges
anywhere from 5 to 500 classes), defined as µ, select top
n classes in each ranked list of results generated by
every metric. For every class in c(bug i), which is used
in the evaluation, we assess the accuracy of identifying
relevant classes (i.e., the other classes in c(bug i)) via
rankings of specific coupling metrics.

 In order to evaluate each coupling measure and compare
all the coupling measures, the suggested ranked lists of
classes are compared against classes that were actually
modified. Average precision and recall measures for
each class in c(bug i) for each bug report are computed
for every metric. For each measure, a higher value is
more beneficial.

B. Research Questions

We address the following research questions (RQ) within
the context of our case study.
 RQ1: Is RTCS

6 metric orthogonal as compared to
existing structural and conceptual coupling metrics?

 RQ2: Does RTCC outperform existing structural
metrics for the task of impact analysis?

 RQ3: Does RTCC or its combinations with conceptual
coupling metrics outperform existing conceptual
coupling metrics for the task of impact anlaysis?

To respond to our research questions we compare RTC
with other coupling metrics as well as explore the impact of
combining coupling metrics.

C. Metrics and statistical analyses

1) Precision and Recall
Precision and recall are two widely used information

retrieval metrics, are employed to measure performance of
coupling measures for impact analysis. In this context,
precision is the percentage of classes correctly identified
using our metric out of the total number of classes returned
by our metric. Whereas recall indicates the percentage of
classes in the set that are correctly identified using a coupling
metric. Formal definitions of these metrics are as follows:

%
S R

precision
R

 %

S R
recall

S

6 It should be noted that we use system‐level RTCS measure for PCA

and a pair‐wise version of an RTCC measure for impact analysis.

where S represents a set of actually changed classes and R is
a set of highest ranked μ entities returned by a coupling
metric.

2) Testing Statistical Significance - Wilcoxon Test
To demonstrate that our results are unlikely to be

obtained by chance we performed statistical testing. To test
for statistical significance we utilized Wilcoxon's signed-
rank test, a non-parametric paired samples test. The goal of
this test within the context of our study was to confirm the
improvement in accuracy obtained is statistically significant
when compared to a baseline technique.

3) Principal component analysis
In order to understand the underlying, orthogonal

dimensions captured by the coupling measures (both
conceptual and structural) we performed Principal
Component Analysis (PCA) on the measured coupling
metrics. Applying PCA to metrics data consist of the
following steps: collecting the metrics data, identifying
outliers, and performing PCA. We applied PCA in the
similar manner as in our previous work [29, 31, 36],
including procedures on identifying outliers and rotating
principal components. Overall, by performing PCA we can
identify groups of variables (i.e., coupling metrics), which
are likely to measure the same underlying dimension (i.e.,
specific mechanism that defines coupling) of the object to be
measured (i.e., coupling of classes).

D. Case study results

1) RQ1 – Results of principal component analysis of the
mtrics data

An initial step towards justifying its usefulness consists
of determining if it captures a unique dimension unexplained
by existing metrics. We performed PCA on 978 classes from
10 different open source software systems (that is systems 1
through 10 from the Table I) to answer RQ1. All twelve
measures were subjected to an orthogonal rotation. We
identified six orthogonal dimensions spanned by 12 coupling
measures. The six principal components (PCs) capture
90.97% of the variance in the data set, which is significant
enough to support our conclusions for the RQ1.

The loadings of each measure in each rotated component
are presented in Table II. Values higher than 0.5 are
highlighted as the corresponding measures are the ones we
look into while interpreting the PCs. For every PC, we
provide the variance of the data set explained by the PC and
the cumulative variance in the Table II.

Our results suggest that RTCS captures a unique
dimension in the data. In this case RTCS is the only coupling
metric highly correlated with PC6 which explains 8.11% of
the variance in the data. The results indicate that structural
metrics and conceptual metrics do not capture the same
dimensions in the data. For instance, in the case of PC3 and
PC6, the principal components are both explained primarily
by the conceptual coupling metrics. These results clearly
indicate that our coupling measure, that is RTC, captures
different types of coupling between classes, than those
captured by the structural or even existing conceptual
metrics. We believe that this unique result derives from the
fact that RTC is a coupling measure that is based on a
different underlying mechanism to extract and analyze
conceptual information (i.e., RTM is used to compute RTC,
whereas, LSI is used to compute CoCC).

In addition, the results of the PCA in this work can be
compared with those reported in the literature [11, 13, 33].
Although the PCs and component loadings obtained in this
case study and those reported in the research literature do not
entirely overlap, they are similar. This can be explained by
the fact that we used a slightly different set of coupling
metrics in our analysis as well as a new metric, that is, RTC.

2) RQ2 – Comparing results of RTC with structural and

conceptual coupling metrics for impact analysis
While answering the previous RQ1 we demonstrated that

RTC captures a unique dimension in the data. Our findings
demonstrate that the new conceptual coupling metric is
capable of explaining a dimension in the data that is
overlooked by existing structural and conceptual coupling
metrics. Our second research question focuses on justifying
its usefulness in practice, as well as a detailed comparison
with a large body of existing structural coupling metrics, that
have been previously applied for a task of impact analysis in
source code [8]. Our goal is to provide insight on whether
RTCC outperforms structural metrics for the task of impact
analysis. We performed impact analysis on Mozilla using
some historical information extracted from its version
control system to determine which classes had been modified
together (for the details on how we apply the metrics for
impact analysis and evaluate the results refer to section A.5).
We apply both structural and conceptual coupling metrics
and obtain the results, which are summarized in the Table III.

Only three metrics are normalized, that is RTCC, CCBC
and CCBCm. The other coupling metrics are not normalized
as they count the total number of coupling connections of a
class with the other classes in the system (i.e., the larger the
metric value, the stronger the coupling between two classes).
The only outlier in our set of metrics is CBO, which
corresponds to a binary value indicating if two classes have a
coupling connection or not. In case of CBO, we based our

Table II. Results of PCA: rotated components
 PC1 PC2 PC3 PC4 PC5 PC6

Proportion 29.83% 16.65% 11.76% 16.44% 8.17% 8.11%

Cumulative 29.83% 46.49% 58.25% 74.69% 82.85% 90.97%

RTCS 0.02 0.23 0.25 0.01 0.00 0.93

CoCC -0.03 0.29 0.85 -0.05 0.23 0.15

CoCCm 0.33 -0.23 0.75 0.07 -0.24 0.19

CBO 0.83 0.21 0.19 0.27 0.09 0.01

RFC 0.88 0.02 0.01 0.19 0.15 0.10

MPC 0.95 0.03 0.03 0.15 0.07 -0.02

DAC 0.31 0.22 0.00 0.91 0.12 0.02

ICP 0.89 0.13 0.11 0.20 0.13 -0.03

ACAIC 0.11 0.91 -0.03 0.17 0.09 0.16

OCAIC 0.29 0.09 0.01 0.93 0.13 0.00

ACMIC 0.12 0.91 0.12 0.11 0.08 0.09

OCMIC 0.32 0.15 0.04 0.23 0.88 0.00

evaluation on choosing n coupled classes to a given class
instead of using actual metric values as in prior work [35].

In case of each coupling measure we varied a cut point
from 10 to 500 classes respectively. For example, in case of
using RTC metric (see Table III), with a cut point of 30
classes, obtained precision was 14.7%, recall was 27.3%.
Increasing a cut point to 50 classes provides more candidate
classes, thus decreasing precision to 13.1%, but increasing
recall values to 36.1%. It should be noted that for this
particular cut point RTCC outperforms all other coupling
metrics (including conceptual and all structural ones) in
terms of recall. Overall, based on the results, it is clear that
RTCC and CCBCm are the top coupling metrics, which
significantly outperform all the other structural metrics.
While RTCC has somewhat lower precision as compared to
CCBCm at lower cut points, it has comparable or better recall
at cut point 50 or higher (see highlighted RTCC values in
Table III). Since we demonstrated in the RQ1 that RTC
captures a unique dimension, and performance of RTC is
better than a majority of coupling metrics, we conclude that
RTC is a useful increment in the field of coupling
measurement. Furthermore, we explore if combining RTCC
with other best performing conceptual metric CCBCm brings
any additional improvements in accuracy of coupling-based
techniques for the task of impact analysis.

3) RQ3 – Results of combining RTC with another

conceptual coupling metric for impact anlaysis
To answer RQ3 we performed impact analysis on two

open-source systems, Eclipse and Rhino, using combinations
of RTCC and CCBCm. In this case the combination is done
using a straightforward affine transformation combination
using equal weights, which was previously applied in the
context of feature location [34]. We compare combinations
of RTCC and CCBCm, against CCBCm, the existing state of
the art conceptual coupling metric, used as a baseline in this
case. Our results, which appear in Table III, indicate that
coupling metrics, RTCC and CCBCm, provide equivalent
performances, which are also confirmed in the RQ2.
However, our new results on Eclipse and Rhino corroborate
that the combination of RTCC and CCBCm provide superior
accuracy than either standalone technique. For example,
Table V shows, when performing impact analysis on both
Eclipse and Rhino we are able to attain an average of

approximately 5% absolute improvement in recall. In many
cases, the relative gain in recall is even higher. In particular,
while using a combination of RTCC and CCBCm metrics
with a cut point of 50 classes, obtained absolute gain in recall
was 5%, while the relative gain was 11% as compared to
CCBCm standalone technique. Overall, the results indicate
that, for Eclipse, the acquired gain in precision and recall
increases in concert with increasing cut points, whereas the
results for Rhino pinpoint that the gain decreases as the cut
point increases. This, in part, can be accredited to the
differences in sizes of the two systems.

We also performed the Wilcoxon's signed-rank test to
examine if these results are statistically significant. We
formulate the following null hypotheses:

HNULL-Precision: The combination of RTCC and CCBCm does
not significantly improve precision results of
impact analysis compared to either standalone
coupling metric.

HNULL-Recall: The combination of RTCC and CCBCm does not
significantly improve recall results of impact
analysis comared to either standalone technique.

We generate alternative hypotheses for the cases where
the null hypotheses can be rejected with relatively high
confidence:

HALT-Precision: The combination of RTCC and CCBCm
significantly improves precision results of impact
analysis compared to conceptual coupling.

HALT-Recall: The combination of RTCC and CCBCm
significantly improves recall results of impact
analysis compared to conceptual coupling.

Table IV presents the results of our test. The test is
performed for each of the null hypotheses presented. Our
findings signify that the results obtained are statistically
significant for alpha 0.05 for both Eclipse and Rhino.

Overall, the results of the case study indicate that RTCC
is a new useful coupling metric, which can serve as an

Table III. The results for precision (P) and recall (R) of applying RTCC
and existing coupling metrics for impact analysis in Mozilla

 10 20 30 40 50 100 200 500
 P R P R P R P R P R P R P R P R

RTCC 17.3 14.0 15.8 22.0 14.7 27.3 13.8 31.6 13.1 36.1 9.5 47.4 6.8 59.1 4.1 75.9

CCBCm 27.8 14.6 24.7 22.1 18.4 34.5 18.4 34.5 18.4 34.5 12.6 43.1 8.4 52.4 4.6 65.1

ICP 11.9 6.9 10.1 9.7 8.6 16.5 8.6 16.5 8.6 16.5 6.5 22.8 4.13 27.3 2.63 39.0

PIM 11.3 6.60 9.84 9.56 8.52 16.3 8.52 16.3 8.52 16.3 6.52 22.6 4.12 27.1 2.62 38.9

CCBC 10.8 5.6 9.5 8.9 6.7 14.1 6.7 14.1 6.7 14.1 5.2 19.8 3.99 27.0 2.98 44.8

CBO 7.2 6.2 5.4 9.4 2.8 11.3 2.8 11.3 2.8 11.3 1.6 12.0 1.05 13.2 0.99 26.5

MPC 6.6 5.7 3.9 6.7 1.7 7.0 1.7 7.0 1.7 7.0 0.9 7.2 0.72 8.56 1.22 22.7

OCMIC 2.0 2.1 1.1 2.2 0.5 2.3 0.5 2.3 0.5 2.3 0.3 2.5 0.47 4.25 1.19 20.2

OCAIC 1.7 2.0 1.0 2.1 0.4 2.1 0.4 2.1 0.4 2.1 0.2 2.3 0.45 4.15 1.18 19.9

DAC 1.8 2.0 1.0 2.1 0.4 2.1 0.4 2.1 0.4 2.1 0.2 2.3 0.19 2.4 0.17 2.42

ACMIC 0.9 0.4 0.5 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.1 0.6 0.40 2.41 1.17 18.5

ACAIC 0.8 0.3 0.4 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.1 0.5 0.40 2.38 1.17 18.5

Table IV. Results of Wilcoxon signed-rank test
System H0 P H0 R Null Hypothesis
Eclipse < 0.0001 < 0.0001 Reject/Reject
Rhino 0.012 0.009 Reject/Reject

effective indicator of an external property of classes in OO
systems, that is, the change proneness of classes. Based on
the results of the impact analysis in Mozilla, Eclipse and
Rhino, we can conclude that RTCC is a valuable mechanism
for ranking the classes during impact analysis and can be
effectively combined to gain superior results with other
conceptual metrics, such as CCBCm. More importantly, the
statistical tests support our hypothesis that the combination
of RTCC with other conceptual coupling metric allows us to
build useful impact analysis techniques for detecting class
change ripple effects based on coupling metrics.

E. Threats to validity

We identify several issues that affected the results of our
case study and limit our interpretations. We have
demonstrated that our metrics capture new dimensions in
coupling measurement; however, we obtained these results
by analyzing classes from ten C++ open-source systems. In
order to permit generalization of the results, large-scale
evaluation is necessary, which needs to take into account
software from different domains, developed using different
programming languages.

In the case study we consider structural (that is, static)
metrics that are based on the static information obtained
from the source code. The results may be rather different if
we considered dynamic coupling metrics [2].

The conceptual coupling measures (that is, CoCC,
CCBCm, RTCS and RTCC) depend on coherent naming
conventions for identifiers and comments. When these are
missing, the emphasis for capturing coupling should be
placed on static or dynamic coupling metrics.

RTC measure, as currently defined, does not take into
account polymorphism and inheritance. The measure only
considers methods of a class that are implemented or
overloaded in the class. One of the existing solutions in the
research literature, which accounts for inheritance, consists
of extending the conceptual measures to include the source
code of inherited methods into the documents of derived
classes [24]. We are planning to incorporate this solution in
our future work7.

In our case study on impact analysis we used two large
(i.e., Eclipse and Mozilla) and one medium-sized (i.e.,
Rhino) software systems. However, to allow for
generalization of these results, again, large-scale evaluation
is necessary, which should take into account several releases
of software systems from different domains, implemented in

7Note that some results for higher cut points are not available (n/a)
for Rhino, since the system has only 106 classes.

different programming languages (that is, not only C++ and
Java as covered in our case study).

Also, our evaluation on Mozilla, Eclipse and Rhino is
based on the changed classes extracted from patches in
corresponding bug reports. This could have somewhat
impacted evaluation procedure as these patches may contain
incomplete information about actually changed classes or
these changes could have introduced other bugs. We
alleviate this issue by considering only patches which are
officially approved by module owners in Mozilla, Eclipse
and Rhino. Moreover, this threat to validity is minimized by
the fact that the bug data that we utilize in this case study has
been used and verified by other researchers [17, 35].

V. CONCLUSIONS AND FUTURE WORK

The paper defines a novel operational measure for the
relational topic based coupling of classes, which is
theoretically and empirically validated. An extensive case
study indicates that RTC captures new dimensions in
coupling measurement as compared to existing structural and
conceptual metrics. Likewise, RTC has been shown useful
during impact analysis on large software systems and even
more so when combined with an existing coupling metric.

The paper lays the basis for the future work that makes
use of the relational topic models for conceptual coupling
measurement. The proposed metric could be further
extended and refined, for example by taking into account
inheritance. Currently, the definition of RTC uses class level
granularity, however, the use of method level granularity is
also feasible. Another direction is to improve the quality of
underlying textual information by applying advanced source
code pre-processing techniques for splitting [18] and
expanding [22] identifiers and comments in source code.
Since RTC relies on textual information, we are considering
including external documentation in the corpus. This should
allow extending the context in which words are used in the
software and identifying inconsistencies in latent topics
generated from source code and external documentation.

VI. ACKNOWLEDGEMENTS

We would like to thank anonymous reviewers for their
exceptionally insightful comments and suggestions, which
helped improving this paper. This work was supported in part
by NSF CCF-1016868 grant. Any opinions, findings, and
conclusions expressed herein are the authors’ and do not
necessarily reflect those of the sponsors.

Table V. Precision (P) and recall (R) results for impact analysis in Eclipse and Rhino7 using various cut points
 10 20 30 40 50 100 200 500
 P R P R P R P R P R P R P R P R

RTCC+CCBCm 21 25 17 35 15 40 13 45 12 49 9 61 5 70 3 76
CCBCm 19 23 15 31 13 36 12 41 11 44 8 56 5 67 3 72

Absolute gain 2 2 2 4 2 4 1 4 1 5 1 5 0 4 0 4 E
cl

ip
se

Relative gain 11 9 13 13 15 11 8 10 9 11 13 9 0 4 0 6
RTCC+CCBCm 14 38 11 57 9 68 8 75 7 79 98 2 n/a n/a n/a n/a

CCBCm 13 32 11 52 9 64 8 73 6 77 98 2 n/a n/a n/a n/a
Absolute gain 1 6 0 5 0 4 0 2 1 2 0 0 n/a n/a n/a n/a R

h
in

o

Relative gain 8 19 0 10 0 6 0 3 17 3 0 0 n/a n/a n/a n/a

REFERENCES
[1] G. Antoniol, R. Fiutem, and L. Cristoforetti, "Using Metrics to
Identify Design Patterns in Object-Oriented Software," in 5th IEEE
International Symposium on Software Metrics (METRICS'98), Bethesda,
MD, 1998, pp. 23 - 34.
[2] E. Arisholm, L. C. Briand, and A. Foyen, "Dynamic coupling
measurement for object-oriented software," IEEE Transactions on Software
Engineering, vol. 30, pp. 491-506, August 2004.
[3] H. Asuncion, A. Asuncion, and R. Taylor, "Software Traceability
with Topic Modeling," in 32nd International Conference on Software
Engineering (ICSE'10), 2010, pp. 95-104.
[4] P. Baldi, E. Linstead, C. Lopes, and S. Bajracharya, "A Theory of
Aspects as Latent Topics," in ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages and Applications (OOPSLA'08),
Nashville, Tennessee, 2008, pp. 543-562.
[5] V. R. Basili, G. Caldiera, and D. H. Rombach., The Goal Question
Metric Paradigm: John W & S, 1994.
[6] A. Beszedes, T. Gergely, J. Jasz, G. Toth, T. Gyimothy, and V.
Rajlich, "Computation of Static Execute After Relation with Applications
to Software Maintenance," in 23rd IEEE International Conference on Software
Maintenance (ICSM '07), Paris, France, 2007, pp. 295-304.
[7] D. M. Blei, A. Y. Ng, and M. I. Jordan, "Latent Dirichlet Allocation,"
Journal of Machine Learning Research, vol. 3, pp. 993-1022, 2003.
[8] L. Briand, J. Wust, and H. Louinis, "Using Coupling Measurement
for Impact Analysis in Object-Oriented Systems," in IEEE International
Conference on Software Maintenance (ICSM'99), 1999, pp. 475-482.
[9] L. C. Briand, S. Morasca, and V. R. Basili, "Property-Based Software
Engineering Measurements," IEEE Transactions on Software Engineering,
vol. 22, pp. 68-85, January 1996.
[10] L. C. Briand, P. Devanbu, and W. L. Melo, "An investigation into
coupling measures for C++," in International Conference on Software
engineering (ICSE'97), Boston, MA, 1997, pp. 412 - 421.
[11] L. C. Briand, J. W. Daly, V. Porter, and J. Wüst, "A Comprehensive
Empirical Validation of Design Measures for Object-Oriented Systems,"
in 5th International Software Metrics Symposium (METRICS'98), Bethesda,
MD, 1998, pp. 43-53.
[12] L. C. Briand, J. Daly, and J. Wüst, "A Unified Framework for
Coupling Measurement in Object Oriented Systems," IEEE Transactions
on Software Engineering, vol. 25, pp. 91-121, January 1999.
[13] L. C. Briand, J. Wüst, J. W. Daly, and V. D. Porter, "Exploring the
relationship between design measures and software quality in object-
oriented systems," Journal of System and Software, vol. 51, pp. 245-273,
May 2000.
[14] J. Chang and D. M. Blei, "Hierarchical relational models for
document networks," Annals of Applied Statistics, to appear 2010.
[15] S. R. Chidamber and C. F. Kemerer, "A Metrics Suite for Object
Oriented Design," IEEE Transactions on Software Engineering, vol. 20, pp.
476-493, 1994.
[16] M. D'Ambros, M. Lanza, and R. Robbes, "On the Relationship
Between Change Coupling and Software Defects," in 16th Working
Conference on Reverse Engineering (WCRE'09), Lille, France, 2009, pp. 135-
144.
[17] M. Eaddy, T. Zimmermann, K. Sherwood, V. Garg, G. Murphy, N.
Nagappan, and A. V. Aho, "Do Crosscutting Concerns Cause Defects?,"
IEEE Transaction on Software Engineering, vol. 34, pp. 497-515, July-
August 2008.
[18] E. Enslen, E. Hill, L. Pollock, and K. Vijay-Shanker, "Mining Source
Code to Automatically Split Identifiers for Software Analysis," in 6th
IEEE Working Conference on Mining Software Repositories, Vancouver, BC,
Canada 2009, pp. 71-80.
[19] R. Ferenc, Á. Beszédes, M. Tarkiainen, and T. Gyimóthy,
"Columbus - Reverse Engineering Tool and Schema for C++," in 18th
IEEE International Conference on Software Maintenance (ICSM'02),
Montréal, Canada, 2002, pp. 172-181.
[20] H. Gall, Hajek, K., Jazayeri, M., "Detection of Logical Coupling
Based on Product Release History," in Proceedings of the International
Conference on Software Maintenance 1998 (ICSM'98), 1998, pp. 190 - 198.

[21] T. Gyimóthy, R. Ferenc, and I. Siket, "Empirical validation of object-
oriented metrics on open source software for fault prediction," IEEE
Transactions on Software Engineering, vol. 31, pp. 897-910, October 2005.
[22] E. Hill, Z. P. Fry, H. Boyd, G. Sridhara, Y. Novikova, L. Pollock, and
K. Vijay-Shanker, "AMAP: Automatically Mining Abbreviation
Expansions in Programs to Enhance Software Maintenance Tools," in 5th
Working Conference on Mining Software Repositories, Leipzig, Germany,
2008.
[23] S. Kramer and H. Kaindl, "Coupling and cohesion metrics for
knowledge-based systems using frames and rules," ACM Transactions on
Software Engineering and Methodology, vol. 13, pp. 332-358, July 2004.
[24] A. Kuhn, S. Ducasse, and T. Gîrba, "Semantic Clustering:
Identifying Topics in Source Code," Information and Software Technology,
vol. 49, pp. 230-243, March 2007.
[25] Y. S. Lee, B. S. Liang, S. F. Wu, and F. J. Wang, "Measuring the
Coupling and Cohesion of an Object-Oriented Program Based on
Information Flow," in International Conference on Software Quality,
Maribor, Slovenia, 1995.
[26] W. Li and S. Henry, "Object-oriented metrics that predict
maintainability," Journal of Systems and Software, vol. 23, pp. 111-122,
1993.
[27] Y. Liu, D. Poshyvanyk, R. Ferenc, T. Gyimóthy, and N.
Chrisochoides, "Modeling Class Cohesion as Mixtures of Latent Topics,"
in 25th IEEE International Conference on Software Maintenance (ICSM'09)
Edmonton, Alberta, Canada, 2009, pp. 233-242.
[28] S. Lukins, N. Kraft, and L. Etzkorn, "Source Code Retrieval for Bug
Location Using Latent Dirichlet Allocation," in 15th Working Conference on
Reverse Engineering (WCRE'08), Antwerp, Belgium, 2008, pp. 155-164.
[29] A. Marcus, D. Poshyvanyk, and R. Ferenc, "Using the Conceptual
Cohesion of Classes for Fault Prediction in Object Oriented Systems,"
IEEE Transactions on Software Engineering, vol. 34, pp. 287-300, 2008.
[30] G. Maskeri, S. Sarkar, and K. Heafield, "Mining Business Topics in
Source Code using Latent Dirichlet Allocation," in 1st Conference on India
Software Engineering Conference, Hyderabad, India, 2008, pp. 113-120.
[31] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia, "On the
Equivalence of Information Retrieval Methods for Automated
Traceability Link Recovery," in 18th IEEE International Conference on
Program Comprehension (ICPC'10), Braga, Portugal, 2010, pp. 68‐71.
[32] M. Petrenko and V. Rajlich, "Variable Granularity for Improving
Precision of Impact Analysis," in 17th IEEE International Conference on
Program Comprehension (ICPC'09), Vancouver, BC, Canada, 2009, pp. 10-
19
[33] D. Poshyvanyk and A. Marcus, "The Conceptual Coupling Metrics
for Object-Oriented Systems," in 22nd IEEE International Conference on
Software Maintenance (ICSM'06), Philadelphia, PA, 2006, pp. 469 - 478.
[34] D. Poshyvanyk, Y. G. Guéhéneuc, A. Marcus, G. Antoniol, and V.
Rajlich, "Feature Location using Probabilistic Ranking of Methods based
on Execution Scenarios and Information Retrieval," IEEE Transactions on
Software Engineering, vol. 33, pp. 420-432, June 2007.
[35] D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimóthy, "Using
Information Retrieval based Coupling Measures for Impact Analysis,"
Empirical Software Engineering, vol. 14, pp. 5-32, 2009.
[36] K. Tian, M. Revelle, and D. Poshyvanyk, "Using Latent Dirichlet
Allocation for Automatic Categorization of Software," in 6th IEEE
Working Conference on Mining Software Repositories (MSR'09), Vancouver,
British Columbia, Canada, 2009, pp. 163-166.
[37] F. G. Wilkie and B. A. Kitchenham, "Coupling measures and
change ripples in C++ application software," The Journal of Systems and
Software, vol. 52, pp. 157-164, 2000.
[38] P. Yu, T. Systa, and H. Muller, "Predicting fault-proneness using
OO metrics. An industrial case study," in 6th European Conference on
Software Maintenance and Reengineering (CSMR'02), 2002, pp. 99-107.
[39] J. Zhao, "Measuring Coupling in Aspect-Oriented Systems," in 10th
IEEE International Software Metrics Symposium (METRICS'04), Chicago,
USA, 2004.
[40] T. Zimmermann, A. Zeller, P. Weißgerber, and S. Diehl, "Mining
Version Histories to Guide Software Changes," IEEE Transactions on
Software Engineering, vol. 31, pp. 429-445, 2005.

