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Abstract — Coupling metrics capture the degree of 
interaction and relationships among source code elements in 
software systems. A vast majority of existing coupling metrics 
rely on structural information, which captures interactions 
such as usage relations between classes and methods or execute 
after associations. However, these metrics lack the ability to 
identify conceptual dependencies, which, for instance, specify 
underlying relationships encoded by developers in identifiers 
and comments of source code classes. We propose a new 
coupling metric for object-oriented software systems, namely 
Relational Topic based Coupling (RTC) of classes, which uses 
Relational Topic Models (RTM), generative probabilistic 
model, to capture latent topics in source code classes and 
relationships among them.  A case study on thirteen open 
source software systems is performed to compare the new 
measure with existing structural and conceptual coupling 
metrics.  The case study demonstrates that proposed metric not 
only captures new dimensions of coupling, which are not 
covered by the existing coupling metrics, but also can be used 
to effectively support impact analysis.  

I. INTRODUCTION 

Coupling measures capture the degree of interaction and 
relationships among source code elements, such as classes, in 
software systems.  Coupling is one of the fundamental 
properties of software with most influence on software 
maintenance and evolution.  A large host of coupling 
measures are used in tasks such as impact analysis [8, 37], 
assessment of the fault-proneness of classes [16, 21, 38] and 
identification of design patterns [1]. 

A large majority of coupling metrics presented in the 
literature relies on structural information, which captures 
relations, such as method calls or attributes usages. However, 
these metrics lack the ability to identify conceptual 
associations, which, for example, specify implicit 
relationships encoded by developers in identifiers and 
comments of source code.  

In this paper we propose a novel coupling measure, 
namely Relational Topic based Coupling among classes, 
which is based on Relational Topic Model [14], an 
unsupervised probabilistic topic modeling technique. RTM 
identifies latent topics associated with documents (e.g., 
source code elements) as well as links between documents in 
a large corpus of text.  RTM extends on Latent Dirichlet 
Allocation (LDA) [7], which has been recently applied for 
extracting, representing and analyzing latent topics from the 
source code [4, 27, 28, 30, 31, 36].  Our measure of coupling 

can be interpreted through deducing mixtures and 
relationships of latent topics implemented in software classes 
within the context of an entire system.  The proposed metric 
is different from existing conceptual coupling metrics [33], 
as it captures not only how strongly the classes relate to each 
other conceptually, but also analyzes the relationships among 
latent topic distributions in underlying identifiers and 
comments in source code classes.   

In order to evaluate our proposed metric, we compare 
RTC against a large host of existing structural and 
conceptual coupling metrics on the source code of thirteen 
open-source software systems to examine if the proposed 
measure captures new dimensions in coupling measurement.  
We also compare the performance of RTC metric against a 
host of existing structural and conceptual coupling metrics 
for impact analysis, an important software maintenance task.  
Impact analysis entails detecting source code elements 
impacted by a change to a given source code element. While 
structural coupling metrics have been successfully used for 
impact analysis in the literature we conjecture that the 
proposed RTC metric not only provides good accuracy, but 
also identifies relevant source code elements not captured by 
structural and/or conceptual coupling metrics. 

This paper makes the following research contributions: 

 We define a novel coupling metric based on 
Relational Topic Models for discovering latent 
topics and their relationships in source code for 
class coupling measurement. 

 We empirically evaluate the newly proposed metric 
against a host of existing structural and conceptual 
metrics; we also use and compare RTC against other 
metrics and their combinations for impact analysis 
on large open-source systems. 

 We publicly release the metrics data from the case 
studies and ensure their reproducibility. 

The remainder of this paper is structured as follows. 
Section II outlines the related work for object-oriented 
coupling metrics.  Section III describes our approach and the 
proposed measure.  This section also describes 
implementation details of the tool that we developed to 
compute our metrics as well as mathematical properties of 
the measures.  In section IV we provide empirical study to 
assess the newly proposed metrics.  Section V concludes the 
paper and discusses the future work. 



 

II. RELATED WORK 

Measuring coupling among classes is an active research 
area, which has resulted in many different approaches to 
capture coupling among classes based on structural static 
information [10, 15, 25], dynamic information [2], 
evolutionary data [20, 40], and textual information [33, 35].  
Other coupling metrics have been defined to capture 
coupling metrics for specific types of software applications, 
such as knowledge-based [23] and aspect-oriented software 
systems [39]. 

Structural coupling metrics compose the most developed 
family of coupling metrics, which has received noteworthy 
attention in the research literature.  These coupling metrics 
have been summarized and classified within the unified 
framework for coupling measurement [12].  Some of the 
metrics, widely used and applied within software 
maintenance tasks, are coupling between objects (CBO) [15], 
response for class (RFC) [15], message passing coupling 
(MPC) [26], data abstraction coupling (DAC), information-
flow-based coupling (ICP) [25], the suite of coupling 
measures formulated by Briand et al. [10] (that is, IFCAIC, 
ACAIC, OCAIC, FCAEC) and efferent coupling (CE), 
afferent coupling (CA) and coupling factor (COF) [12].  All 
these and some other coupling metrics have been 
implemented by tools, such as Columbus [19], which is 
publicly available to the academic community. 

The vast majority of existing static structural coupling 
measures listed above are based on method invocations, 
attributes references and static or dynamic execute after 
relationships [6].  For instance, RFC, MPC, and ICP metrics 
are based on method invocations, whereas CBO and COF 
measures are based on counting method invocations and 
references to both methods and attributes.  The suite of 
measures defined by Briand et al. [10] captures several types 
of relationships among classes, such as class-attribute, class-
method, and method-method relations.  The measures from 
the suite also discriminate between import and export 
coupling and other types of interactions such as friends, 
ancestors, descendants, etc. 

In contrast to static coupling measures, dynamic coupling 
measures [2] were defined as the refinement to existing 
coupling measures to address some of the shortcomings of 
existing structural metrics while dealing with polymorphism, 
dynamic binding, and the presence of unused code. 

Another rapidly evolving family of coupling measures 
stem from the evolution of a software system in contrast to 
static coupling, which is determined by a single-version 
static program analysis, or dynamic coupling, obtained via 
program execution.  These multi-version metrics are coined 
as evolutionary [40] or logical [20] couplings among parts of 
the systems and are determined via analysis of co-changes 
among source code artifacts using advanced data mining 
techniques. 

Existing work on software clustering [24] uses a notion 
of conceptual similarity between elements of source code 
[29], which stands at the foundation of the conceptual 
coupling [33].  However, the coupling metric, which is 
proposed in this paper, is different from existing structural 

and conceptual coupling metrics.  First of all, the novel 
metric, that is RTC, uses an advanced topic modeling 
method, RTM, which extends LDA, to extract semantically 
meaningful topics or concepts implemented in classes. Once 
topics are gleaned from source code classes, coupling among 
classes is computed via analysis of relationships among 
topics using relational topic analysis model.  The following 
section presents details behind adapting RTM and LDA for 
measuring coupling among classes in OO systems. 

III. USING RELATIONAL TOPIC MODELS FOR COUPLING 

MEASUREMENT IN SOFTWARE 

In this work we utilize RTM to capture conceptual 
relationships between classes in order to determine the 
degree of coupling among them.  RTM is a probabilistic 
topic model, which models both documents (i.e., classes) and 
links amid documents (i.e., couplings) within a software 
corpus.  Applications of RTM include assisting social 
network users in identifying potential friends, locating 
relevant citations in networks of scientific papers, and 
pinpointing related web pages of a particular web page [14]. 

The model extends Latent Dirichlet Allocation to allow 
for the prediction of links between documents based on 
underlying topics and known relationships amongst 
documents.  In this section we provide details behind LDA 
followed by how RTM extends this model to capture links 
among documents.  While LDA has been previously applied 
in the context of software engineering for measuring 
conceptual cohesion of classes [27], recovering traceability 
links [3, 31], mining software repositories [4, 30, 36] and 
bug location [28], RTM has not been utilized for software 
measurement tasks before. 

A. Latent Dirichlet Allocation  

LDA [7], a probabilistic topic model, identifies 
underlying topics within a corpus and models documents as 
probabilistic mixtures over those latent topics.  More 
specifically, the topics extracted by LDA correspond to 
likelihood distributions, which indicate how likely a word is 
to be assigned to a specific topic.  Additionally, each 
document is modeled as a probability distribution indicating 
how likely it is that the document expresses each topic.  That 
is, given a corpus of documents, that is classes from the 
software system, LDA attempts to identify a set of topics 
based on word co-occurrences, and define a specific mixture 
of these topics for each document (i.e., class) in the corpus 
(i.e., software system). 

In order to apply LDA on the source code, we represent a 
software system as a collection of documents (i.e., classes) 
where each document is associated with a set of concepts 
(i.e., topics).  More specifically, the LDA model consists of 
the following building blocks: 

 
 A word is the basic unit of discrete data, defined to be 

an item from a software vocabulary V={w1, w2,..., wv}, 
such as an identifier or a word from a comment. 



 

 A document 1 , which corresponds to a class, is a 
sequence of n words denoted by d = (w1, w2,..., wn), 
where wn is the nth word in the sequence. 

 A corpus is a collection of m documents (that is, 
classes) denoted by D = (d1, d2, . . . ,dm). 

Given m documents containing k topics expressed over v 
unique words, the distribution of ith topic ti over v words can 
be represented by φi and the distribution of jth document dj 
over k topics can be represented by θj.  The LDA-based 
model assumes a prior Dirichlet distribution on θ, thus 
allowing the estimation of φ without requiring the estimation 
of θ.  More specifically, LDA assumes the following 
generative process for each document di in a corpus D: 

1. Select N ~ Poisson distribution (ξ) 
2. Select θ ~ Dirichlet distribution (α) 
3. For each of the N words wi: 
      (a) Select a topic tk ~ Multinomial ( ). 
      (b) Select a word wi from p(wi|zn,β), a multinomial 

probability conditioned on topic tk. 
By using LDA it is possible to formulate the problem of 

discovering a set of topics describing a set of source code 
classes by viewing these classes as mixtures of probabilistic 
topics.  For further details on LDA, the interested reader is 
referred to the original work of Blei et al. [7]. 

B. Relational Topic Model 

RTM is a model capable of predicting links between 
documents based on the context (i.e., underling latent topics) 
and relationships of documents in a corpus [14].  In RTM, 
prediction of links, which are modeled as binary random 
variables, is dependent on the information modeled by LDA 
(e.g., probabilistic topic assignments to the documents in a 
corpus). 

Generating a model consists of two main steps: modeling 
the documents in a corpus and modeling the links between 
all the pairs of documents.  The first step is identical to the 
generative process described in the previous section.  The 
second step is outlined as the following: 

For each pair of documents di, dj: 
(a) Draw a binary link indicator: 

| , ( | , )
i jd d i j i jy t t n t t   

where ti={ti,1, ti,2,..., ti,n }  
The link probability function ψε  is defined as: 

( 1) exp( (t t ) )i j

T
d dy v     

      where the links between documents are modeled by the 
means of logistic regression.  The ○ notation corresponds to 
the Hadamard product, 

,

1
td d n

nd

z
N

   and exp() is an 

exponential mean function.  It is parameterized by 
coefficients η and intercept v.  While the complete 
mathematical details are rather complex and lengthy to be 

                                                           
1 The main difference between applying LDA to class cohesion and 

coupling  measurement  is  document  granularity  –  method  level 

granularity is used for cohesion, while class is used for coupling.  

explained in the context of this paper, the reader is referred 
to the original work on RTM [14] for comprehensive details. 

C. Measuring Coupling using Relational Topic Model 

Our use of Relational Topic Model to measure coupling 
among source code classes is motivated by the fact that RTM 
provides a comprehensive model for describing documents 
(i.e., classes are represented as words from identifiers and 
comments) and the existence of links between documents 
based on underlying textual information and other 
knowledge of the document network.   In the context of our 
application, the binary link indicator, which indicates 
whether a link exists between two documents (i.e., classes), 
is used as an indicator of coupling amid any pair of classes.  
That is, if the model identifies a link between two classes in 
the corpus with a high probability, we consider these classes 
to be coupled.  One main benefit of the relational topic 
model is that it does not require knowledge of any existing 
links to make these predictions.  So, RTM is capable of 
identifying coupling between classes without any 
preliminary input related to a priori known class couplings. 

 Establishing a model of a software system using RTM 
first requires a term-by-document co-occurrence matrix 
representation of a software system.  These input documents, 
which represent source code classes, are modeled as 
distributions of topics within the corpus as described in the 
previous section.  This model provides necessary underlying 
information to identify relationships among the classes in a 
software system.  Links are modeled using the properties of 
the underlying textual information, captured by LDA and 
RTM.     

Given two classes C1 and C2 the degree of coupling (i.e., 
pair-wise RTCC) between these is defined as follows: 

RTCC = RTM(C1, C2) 

where the function RTM() returns the probability that a link 
exists between the classes C1 and C2.  The coupling of a class 
within the context of an entire software system, or a degree 
to which a class is coupled to the other classes in the system 
(i.e., system-level RTCS) is defined as: 

( , )

( )

n

i j
j C

S i

RTM C C

RTC C
n




 

where n is the number of classes in the system. 
The definition of the RTC builds on our previous work 

on measuring cohesion of classes using LDA [27].  
However, in this work we use an extension of LDA, namely 
Relational Topic Models and we do not utilize information 
theory approach, as in our prior work.  Computing relational 
topic coupling among classes in source code indicates 
whether the classes are conceptually related.  Considering 
the relational topic link probabilities of a class with all the 
other classes in the software system, one can measure the 
degree to which this class relates to the rest of the classes 
within the context of the entire software system, based on 
which latent topics they implement and how they are related.  
These relationships, based on probabilistic topics and their 
likelihood interactions, delineate a new form of coupling, 
coined as Relational Topic based Coupling.   



 

D. An Example computing RTC using RTM 

To provide more insight on how relational topic model is 
used to capture coupling among software classes in the 
context of a specific software maintenance task, such as an 
impact analysis, let us consider a commit from the software 
system Rhino, which addresses the bug #2045762.  Previous 
applications of coupling measures indicated that a change in 
a class may trigger ripple changes in other classes, which are 
highly coupled to the changed class [8]. In this example we 
illustrate how RTCC measure can capture coupling among 
related classes in the context of an impact analysis task 
guided by the RTCC metric.  

Assume that while addressing this bug, the developer has 
located a starting point of a change in one of the classes.  
Following modification of that class the developer can use 
RTC for impact analysis to identify remaining classes which 
also need to be modified, since they are highly coupled to the 
changed class. 

To fix bug #204576, which states "1.5R4 regression: 
java.lang.String can not be used when argument type is 
java.lang.CharSequence" the following classes were 
modified {NativeJavaClass, NativeJavaMethod, 
NativeJavaObject}.  Relational topic model represents 
NativeJavaMethod as a probability distribution over latent 
topics with the topic #47 (top ranked words consist of 
"method", "member", "type", etc.) having a relatively high 
probability.  This underlying information leads the model to 
identify the classes NativeJavaObject, NativeJavaClass, 
NativeJavaConstructor, and JavaMembers as related to 
NativeJavaMethod,  since the topic distributions which model 
the classes also show topic #47 with a relatively high 
probability.  In other words, all these classes have a high 
probability of being associated with topic #47.  Thus, using 
RTC we are able to identify the remaining classes (that is, 
NativeJavaClass  and  NativeJavaObject), which also require 
modification to address the bug #204576.  Note that 
relational topic model considered all topics of a document as 
well as other underlying information and not just a single 
topic.  We focused on a single topic to simplify the example 
and its explanation. 

E. Mathematical properties of RTC measure 

We analyze our metric according to the five 
mathematical properties non-negativity, null value, 
monotonicity, merging of classes, and merging of 
unconnected classes [9]. 

RTC complies with non-negativity property, as RTM(C1, 
C2) always returns a value in the range of [0, 1], since RTM 
relies on a link probability function [14].  Additionally, the 
null value property is also met, since the value of the metric 
will always be in the specified range preventing our metric 
from yielding null values. 

While we are not listing formal proofs for the latter three 
properties, we are providing some explanations that 
demonstrate why these properties hold.  In summary, these 
properties hold, given that both the mathematical average 
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and the maximum functions have these properties.  For the 
monotonicity property, if one adds a new method that has 
strong conceptual relationship with methods of other classes, 
then the RTC will also increase.  The similar situation occurs 
if we just change the method implementation, which leads to 
higher conceptual relationship with other methods (e.g., 
methods will share similar topics based on the underlying 
alike vocabulary).  When merging connected and 
unconnected classes, the conceptual relationships remain the 
same, meaning that relocation of the methods inside other 
classes will not change actual conceptual relationships of 
these methods with methods of other classes. 

IV. CASE STUDY 

In this section we present the design of an empirical case 
study aimed at comparing RTC with other structural and 
conceptual coupling metrics and analyzing whether the 
combination of RTC with existing conceptual coupling 
metrics improves the accuracy of ranking source code 
classes during impact analysis.  The description of the study 
follows the Goal-Question-Metrics paradigm outlined by 
Basili et al. [5].  All the data used and generated in this 
section has been posted online to ensure reproducibility of 
our results3.  

A. Definition and Context 

Our primary goals include comparing RTC against 
existing coupling metrics and determining whether 
combining RTC with other metrics can improve the 
performance of coupling metrics when applied to the task of 
impact analysis.  In this study the quality focus was on 
establishing orthogonality among RTC and existing coupling 
metrics and improving on accuracy during an impact 
analysis task, while the perspective was of a software 
developer performing a modification task on a software 
system and conducting impact analysis, given a starting point 
of the change, which requires retrieving the other relevant 
source code entities that need to be inspected or modified. 

The context of this case study consists of 11 C/C++ and 
two Java software systems.  It should also be noted that one 
of the software systems, that is Mozilla, is implemented in a 
mix of programming languages including C/C++, Java, IDL, 
XML, HTML and JavaScript.  In case of Mozilla, we 
analyzed only C++ source code and computed RTC measure 
among object-oriented classes implemented in C++ only. 

1) Coupling metrics  
In order to determine whether the proposed metrics 

capture new dimensions in coupling measurement, we 
selected nine existing structural metrics for comparison: 
CBO, RFC, MPC, DAC, ICP, ACAIC, OCAIC, ACMIC, 
and OCMIC (for more details on these metrics, refer to 
Section II).  We considered a subset of these structural 
coupling metrics relying on the results of previous empirical 
studies [33], which identified great amount of redundancy 
among a larger set of existing coupling metrics [13].  In 
addition to structural coupling metrics, we also considered 
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two system-level conceptual coupling metrics, that is CoCC 
and CoCCm (and their pair-wise versions, CCBC and 
CCBCm)  [33].  Other guiding criteria that we used to choose 
the metrics is availability of the results reported for these 
metrics elsewhere in the literature [13, 33, 35] to facilitate 
systematic comparison and evaluation of the results.   

2) Subject software systems  
For our case study we have chosen 13 various sized 

open-source software systems from different domains.  The 
summary of the selected software systems’ sizes are outlined 
in Table I.  The table also includes specifics on the RTM 
based corpora, generated for the systems under analysis with 
terms standing for the unique number of terms and docs for 
the total number of classes in that software system.  The 
source code for these systems, except Mozilla, Eclipse and 
Rhino, is available at http://sourceforge.net.  It should be 
noted that the software systems 1-10 (see Table I) have been 
used in the previous studies on evaluating CoCC and CoCCm 

measures [35]. 
ANote (/projects/a‐note) is the system that lets the user 

organize sticky notes on the desktop.  TortoiseCVS 
(/projects/tortoisecvs) is an extension for Microsoft Windows 
Explorer that makes using CVS convenient and easy.  
WinMerge (/projects/winmerge) is a tool for visual 
differencing and merging for both files and directories.  
Doxygen (/projects/doxygen) is a javaDoc like 
documentation system for C++, C, Java, and IDL.  Kalpa 
(/projects/kalpa) is a multi-user client-server accounting, 
management, CRM, EPR, and MRP system.  K-Meleon 
(/projects/kmeleon) is a customizable Win32 web browser, 
which uses the same rendering engine as Firefox Mozilla.  
VoodooUML (/projects/voodoo) is a UML class diagram 
editor.  EMule (/projects/emule) is a file-sharing client; one 
of the most popular downloads on sourceforge.net.  KeePass 
(/projects/keepass) is a light-weight Win32 password 
manager, which allows storing the passwords in a highly-
encrypted database.  Umbrello (/projects/uml) is a system for 
creating and maintaining UML diagrams.  Mozilla is a 
popular open-source web browser ported on almost all 
known software and hardware platforms (www.mozilla.org).  
Eclipse is a popular open-source integrated development 
environment (www.eclipse.org).  Finally, Rhino is an open-
source implementation of JavaScript written entirely in Java 
(www.mozilla.org/rhino). 

 

3) Building and indexing software corpora 
In order to capture relational topic based coupling among 

classes in a software system we need first to generate a 
corresponding corpus for the system.  To build a corpus we 
extracted the textual information, i.e., identifiers and 
comments, from the source code using class level granularity 
level, where each document in the corpus represents a class 
in the software system (that is, a sequence of identifiers and 
comments implementing corresponding class).   

Once a corpus is built, we model it using Relational 
Topic Model with the term-by-document co-occurrence 
matrix corresponding to the corpus.  This relational topic 
model captures important conceptual relationships (i.e., 
couplings) among classes within the corpus.  After modeling 
the corpus using RTM, coupling between classes can be 
computed (for the details on how RTM is used to compute 
RTC refer to the section III).  The next section describes 
specific settings for researchers who wish to reproduce the 
results of our case study. 

4) Setting of the case study 
All the structural coupling measures were computed 

using Columbus [19].  The CoCC and CoCCm measures were 
computed with the IRC2M tool [33], whereas RTC measure 
was computed using the lda4 package of the open-source R-
project5.  

We used a class level granularity, to construct corpora for 
software systems in the case study.  We extracted all types of 
methods from classes in the source code, including 
constructors, destructors, and accessors.  Comments and 
identifiers were extracted from each class as well.  The 
resulting text from the source code is pre-processed using the 
following settings: some of the tokens are eliminated (e.g., 
operators, special symbols, some numbers, keywords of the 
C++ programming language, standard library function names 
including standard template library); the identifier names in 
the source code are split into parts based on observed coding 
standards and naming conventions.  For instance, all the 
following identifiers are broken into separate words 
‘relational’ and ‘topics’: ‘relational_topics’, 
‘RelationalTopics’, etc.  Since n-grams were not considered, 
the order of words in source code is of no particular 
significance.  We evaluate the performance of various 
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Table I.  Characteristics of the software systems used in the case study to address RQs.   

Num System Lang Ver LOC Files  Classes Methods Terms Docs 
1 ANote C++ 4.2.1 16,387 97 61 877 2,530 753 
2 TortoiseCVS C++ 1.8.21 64,863 255 142 930 1,915 637 
3 WinMerge C++ 2.0.2 51,475 169 71 624 1,738 522 
4 Doxygen C++ 1.3.7 179,920 260 682 6,837 4,424 3,608 
5 Kalpa C++ 0.0.4.2 16,581 185 135 353 451 254 
6 K-Meleon C++ 0.9 34,253 120 57 213 653 192 
7 VoodooUML C++ 1.99.12 12,787 97 168 1,001 947 841 
8 EMule C++ 0.47 162,101 556 532 6,764 9,628 3,888 
9 KeyPass C++ 1.04 39,798 123 104 1,476 3,676 1,325 
10 Umbrello C++ 1.5.1 75,665 479 210 524 631 405 
11 Mozilla C++ 1.6 738,180 10K 4.5K 86K 50K 5,961 
12 Eclipse Java 3.0 1.9M 6,614 10K 120K 40K 8,363 
13 Rhino Java 1.5R6 32,134 106 138 1,800 1,119 106 



 

numbers of topics and identify values which best suite our 
application as done in the related work performed by Baldi et 
al. [4].  After that, we choose 75 topics for systems 1 through 
10, 225 topics for systems 11 and 12, and 125 topics for 
system 13.  Automatic identification of application specific 
topic parameters is beyond the scope of this work as we 
focus primary on demonstrating that, once the appropriate 
parameters are selected, applying the model as a means of 
measuring coupling provides useful results. 

5) Impact Analysis using Coupling Metrics 
The structural [8] and conceptual [35] coupling measures 
have been shown to facilitate ordering (i.e., ranking) classes 
in software systems, based on different types of 
dependencies among classes, that is, structural or 
conceptual.  Such coupling measures and derived ranks of 
classes, as demonstrated in the previous work can be 
derived automatically.  Here we provide some details on 
how we compare RTC with other structural and conceptual 
coupling metrics for the impact analysis task. 

For a given class C (considered to be a starting point of a 
change task, which may be identified by a programmer via a 
feature location technique, e.g., PROMESIR [34]), the 
remaining classes in the system are ranked according to their 
strength of coupling to the class C, based on a coupling 
measure or a combination of such measures (see some 
previous work on the details [8, 35]).  The list of ranked 
classes is presented to the developer for further inspection 
(for instance, a ranked list of classes as shown in an existing 
tool for impact analysis, namely JRipples [32]).  Since 
software systems may contain thousands of classes, e.g., 
Mozilla or Eclipse, focusing impact analysis on classes, 
which are strongly coupled to a starting point, may provide 
valuable automated support to the developer. 

In the research literature, structural and conceptual 
coupling measures are defined and used at the system level 
(classic definitions of coupling measures), meaning that they 
count, for a given class C, all dependencies from C to the 
other classes in the system.  In order to use the coupling 
measures for impact analysis, they need to be modified to 
account for coupling between pairs of classes only (see 
previous work on defining and using pair-wise conceptual 
[35] and structural [8] coupling measures).   

Our evaluation strategy is based on the history of 
changes, observed in Mozilla, Eclipse and Rhino to compare 
RTC to existing structural and conceptual coupling measures 
to identify classes with common changes (i.e., changes in 
classes related to the same bug report and having the same 
bug identification number in the configuration management 
system).  The history of changes in this case can be used to 
evaluate rankings of classes produced with different coupling 
measures against actual changes in the software system.  We 
conjecture that the RTC measure will be at least as effective 
as the nine existing coupling measures and two conceptual 
coupling metrics in ranking classes during impact analysis. 

The evaluation methodology can be summarized in the 
following steps (note that we use the same evaluation 
methodology as used in related case studies on impact 
analysis [8, 35]): 

 For a given software system, a set of bug reports Bugs = 
{bug1, bug 2… bug n} is mined from the bug tracking 
system, such as Bugzilla.  The set of classes, which had 
been changed to fix each bug (e.g., c(bug 1) = {c1, 
c2…cn}) are mined from the configuration management 
system.  Specific details on how the bug reports and 
changed classes are identified were previously described 
in [35]. 

 For each class in c(bug i), pair-wise RTC, structural and 
conceptual coupling metrics are computed.  The values 
of each metric are used to compute ranks of the 
remaining classes in the software system. 

 Using a specific cut point criteria (which ranges 
anywhere from 5 to 500 classes), defined as µ, select top 
n classes in each ranked list of results generated by 
every metric.  For every class in c(bug i), which is used 
in the evaluation, we assess the accuracy of identifying 
relevant classes (i.e., the other classes in c(bug i)) via 
rankings of specific coupling metrics. 

 In order to evaluate each coupling measure and compare 
all the coupling measures, the suggested ranked lists of 
classes are compared against classes that were actually 
modified.  Average precision and recall measures for 
each class in c(bug i) for each bug report are computed 
for every metric.  For each measure, a higher value is 
more beneficial.   

B. Research Questions 

We address the following research questions (RQ) within 
the context of our case study. 
 RQ1:  Is RTCS

6 metric orthogonal as compared to 
existing structural and conceptual coupling metrics? 

 RQ2: Does RTCC outperform existing structural 
metrics for the task of impact analysis? 

 RQ3: Does RTCC or its combinations with conceptual 
coupling metrics outperform existing conceptual 
coupling metrics for the task of impact anlaysis? 

To respond to our research questions we compare RTC 
with other coupling metrics as well as explore the impact of 
combining coupling metrics.  

C. Metrics and statistical analyses 

1) Precision and Recall 
Precision and recall are two widely used information 

retrieval metrics, are employed to measure performance of 
coupling measures for impact analysis.  In this context, 
precision is the percentage of classes correctly identified 
using our metric out of the total number of classes returned 
by our metric.  Whereas recall indicates the percentage of 
classes in the set that are correctly identified using a coupling 
metric.  Formal definitions of these metrics are as follows: 

%
S R

precision
R






  %

S R
recall

S


  

                                                           
6 It should be noted that we use system‐level RTCS measure for PCA 

and a pair‐wise version of an RTCC measure for impact analysis. 



 

where S represents a set of actually changed classes and R is 
a set of highest ranked μ entities returned by a coupling 
metric. 

2) Testing Statistical Significance - Wilcoxon Test 
To demonstrate that our results are unlikely to be 

obtained by chance we performed statistical testing.  To test 
for statistical significance we utilized Wilcoxon's signed-
rank test, a non-parametric paired samples test.  The goal of 
this test within the context of our study was to confirm the 
improvement in accuracy obtained is statistically significant 
when compared to a baseline technique. 

3) Principal component analysis 
In order to understand the underlying, orthogonal 

dimensions captured by the coupling measures (both 
conceptual and structural) we performed Principal 
Component Analysis (PCA) on the measured coupling 
metrics.  Applying PCA to metrics data consist of the 
following steps: collecting the metrics data, identifying 
outliers, and performing PCA.  We applied PCA in the 
similar manner as in our previous work [29, 31, 36], 
including procedures on identifying outliers and rotating 
principal components.  Overall, by performing PCA we can 
identify groups of variables (i.e., coupling metrics), which 
are likely to measure the same underlying dimension (i.e., 
specific mechanism that defines coupling) of the object to be 
measured (i.e., coupling of classes).   

D. Case study results 

1) RQ1 – Results of principal component analysis of the 
mtrics data 

An initial step towards justifying its usefulness consists 
of determining if it captures a unique dimension unexplained 
by existing metrics.  We performed PCA on 978 classes from 
10 different open source software systems (that is systems 1 
through 10 from the Table I) to answer RQ1.  All twelve 
measures were subjected to an orthogonal rotation.  We 
identified six orthogonal dimensions spanned by 12 coupling 
measures.  The six principal components (PCs) capture 
90.97% of the variance in the data set, which is significant 
enough to support our conclusions for the RQ1. 

The loadings of each measure in each rotated component 
are presented in Table II.  Values higher than 0.5 are 
highlighted as the corresponding measures are the ones we 
look into while interpreting the PCs.  For every PC, we 
provide the variance of the data set explained by the PC and 
the cumulative variance in the Table II. 

Our results suggest that RTCS captures a unique 
dimension in the data.  In this case RTCS is the only coupling 
metric highly correlated with PC6 which explains 8.11% of 
the variance in the data.  The results indicate that structural 
metrics and conceptual metrics do not capture the same 
dimensions in the data.  For instance, in the case of PC3 and 
PC6, the principal components are both explained primarily 
by the conceptual coupling metrics.  These results clearly 
indicate that our coupling measure, that is RTC, captures 
different types of coupling between classes, than those 
captured by the structural or even existing conceptual 
metrics.  We believe that this unique result derives from the 
fact that RTC is a coupling measure that is based on a 
different underlying mechanism to extract and analyze 
conceptual information (i.e., RTM is used to compute RTC, 
whereas, LSI is used to compute CoCC). 

In addition, the results of the PCA in this work can be 
compared with those reported in the literature [11, 13, 33].  
Although the PCs and component loadings obtained in this 
case study and those reported in the research literature do not 
entirely overlap, they are similar.  This can be explained by 
the fact that we used a slightly different set of coupling 
metrics in our analysis as well as a new metric, that is, RTC. 

 
2) RQ2 – Comparing results of RTC with structural and 

conceptual coupling metrics for impact analysis 
While answering the previous RQ1 we demonstrated that 

RTC captures a unique dimension in the data.  Our findings 
demonstrate that the new conceptual coupling metric is 
capable of explaining a dimension in the data that is 
overlooked by existing structural and conceptual coupling 
metrics.  Our second research question focuses on justifying 
its usefulness in practice, as well as a detailed comparison 
with a large body of existing structural coupling metrics, that 
have been previously applied for a task of impact analysis in 
source code [8].  Our goal is to provide insight on whether 
RTCC outperforms structural metrics for the task of impact 
analysis.  We performed impact analysis on Mozilla using 
some historical information extracted from its version 
control system to determine which classes had been modified 
together (for the details on how we apply the metrics for 
impact analysis and evaluate the results refer to section A.5).  
We apply both structural and conceptual coupling metrics 
and obtain the results, which are summarized in the Table III. 

Only three metrics are normalized, that is RTCC, CCBC 
and CCBCm.  The other coupling metrics are not normalized 
as they count the total number of coupling connections of a 
class with the other classes in the system (i.e., the larger the 
metric value, the stronger the coupling between two classes).  
The only outlier in our set of metrics is CBO, which 
corresponds to a binary value indicating if two classes have a 
coupling connection or not.  In case of CBO, we based our 

Table II. Results of PCA: rotated components 
 PC1 PC2 PC3 PC4 PC5 PC6 

Proportion 29.83% 16.65% 11.76% 16.44% 8.17% 8.11%

Cumulative 29.83% 46.49% 58.25% 74.69% 82.85% 90.97%

RTCS 0.02 0.23 0.25 0.01 0.00 0.93 

CoCC -0.03 0.29 0.85 -0.05 0.23 0.15 

CoCCm 0.33 -0.23 0.75 0.07 -0.24 0.19 

CBO 0.83 0.21 0.19 0.27 0.09 0.01 

RFC 0.88 0.02 0.01 0.19 0.15 0.10 

MPC 0.95 0.03 0.03 0.15 0.07 -0.02 

DAC 0.31 0.22 0.00 0.91 0.12 0.02 

ICP 0.89 0.13 0.11 0.20 0.13 -0.03 

ACAIC 0.11 0.91 -0.03 0.17 0.09 0.16 

OCAIC 0.29 0.09 0.01 0.93 0.13 0.00 

ACMIC 0.12 0.91 0.12 0.11 0.08 0.09 

OCMIC 0.32 0.15 0.04 0.23 0.88 0.00 



 

evaluation on choosing n coupled classes to a given class 
instead of using actual metric values as in prior work [35].   

In case of each coupling measure we varied a cut point 
from 10 to 500 classes respectively.  For example, in case of 
using RTC metric (see Table III), with a cut point of 30 
classes, obtained precision was 14.7%, recall was 27.3%.  
Increasing a cut point to 50 classes provides more candidate 
classes, thus decreasing precision to 13.1%, but increasing 
recall values to 36.1%.  It should be noted that for this 
particular cut point RTCC outperforms all other coupling 
metrics (including conceptual and all structural ones) in 
terms of recall.  Overall, based on the results, it is clear that 
RTCC and CCBCm are the top coupling metrics, which 
significantly outperform all the other structural metrics.  
While RTCC has somewhat lower precision as compared to 
CCBCm at lower cut points, it has comparable or better recall 
at cut point 50 or higher (see highlighted RTCC values in 
Table III).  Since we demonstrated in the RQ1 that RTC 
captures a unique dimension, and performance of RTC is 
better than a majority of coupling metrics, we conclude that 
RTC is a useful increment in the field of coupling 
measurement.  Furthermore, we explore if combining RTCC 
with other best performing conceptual metric CCBCm brings 
any additional improvements in accuracy of coupling-based 
techniques for the task of impact analysis. 

 
3) RQ3 – Results of combining RTC with another 

conceptual coupling metric for impact anlaysis 
To answer RQ3 we performed impact analysis on two 

open-source systems, Eclipse and Rhino, using combinations 
of RTCC and CCBCm.  In this case the combination is done 
using a straightforward affine transformation combination 
using equal weights, which was previously applied in the 
context of feature location [34].  We compare combinations 
of RTCC and CCBCm, against CCBCm, the existing state of 
the art conceptual coupling metric, used as a baseline in this 
case.  Our results, which appear in Table III, indicate that 
coupling metrics, RTCC and CCBCm, provide equivalent 
performances, which are also confirmed in the RQ2.  
However, our new results on Eclipse and Rhino corroborate 
that the combination of RTCC and CCBCm provide superior 
accuracy than either standalone technique.  For example, 
Table V shows, when performing impact analysis on both 
Eclipse and Rhino we are able to attain an average of 

approximately 5% absolute improvement in recall.  In many 
cases, the relative gain in recall is even higher.  In particular, 
while using a combination of RTCC and CCBCm metrics 
with a cut point of 50 classes, obtained absolute gain in recall 
was 5%, while the relative gain was 11% as compared to 
CCBCm standalone technique. Overall, the results indicate 
that, for Eclipse, the acquired gain in precision and recall 
increases in concert with increasing cut points, whereas the 
results for Rhino pinpoint that the gain decreases as the cut 
point increases.  This, in part, can be accredited to the 
differences in sizes of the two systems.  

We also performed the Wilcoxon's signed-rank test to 
examine if these results are statistically significant.  We 
formulate the following null hypotheses: 

HNULL-Precision: The combination of RTCC and CCBCm does 
not significantly improve precision results of 
impact analysis compared to either standalone 
coupling metric. 

HNULL-Recall: The combination of RTCC and CCBCm does not 
significantly improve recall results of impact 
analysis comared to either standalone technique. 

We generate alternative hypotheses for the cases where 
the null hypotheses can be rejected with relatively high 
confidence: 

HALT-Precision: The combination of RTCC and CCBCm 
significantly improves precision results of impact 
analysis compared to conceptual coupling. 

HALT-Recall: The combination of RTCC and CCBCm 
significantly improves recall results of impact 
analysis compared to conceptual coupling. 

Table IV presents the results of our test.  The test is 
performed for each of the null hypotheses presented.  Our 
findings signify that the results obtained are statistically 
significant for alpha 0.05 for both Eclipse and Rhino.   

Overall, the results of the case study indicate that RTCC 
is a new useful coupling metric, which can serve as an 

Table III. The results for precision (P) and recall (R) of applying RTCC 
and existing coupling metrics for impact analysis in Mozilla 

 10 20 30 40 50 100 200 500 
 P R P R P R P R P R P R P R P R 

RTCC 17.3 14.0 15.8 22.0 14.7 27.3 13.8 31.6 13.1 36.1 9.5 47.4 6.8 59.1 4.1 75.9 

CCBCm 27.8 14.6 24.7 22.1 18.4 34.5 18.4 34.5 18.4 34.5 12.6 43.1 8.4 52.4 4.6 65.1 

ICP 11.9 6.9 10.1 9.7 8.6 16.5 8.6 16.5 8.6 16.5 6.5 22.8 4.13 27.3 2.63 39.0 

PIM 11.3 6.60 9.84 9.56 8.52 16.3 8.52 16.3 8.52 16.3 6.52 22.6 4.12 27.1 2.62 38.9 

CCBC 10.8 5.6 9.5 8.9 6.7 14.1 6.7 14.1 6.7 14.1 5.2 19.8 3.99 27.0 2.98 44.8 

CBO 7.2 6.2 5.4 9.4 2.8 11.3 2.8 11.3 2.8 11.3 1.6 12.0 1.05 13.2 0.99 26.5 

MPC 6.6 5.7 3.9 6.7 1.7 7.0 1.7 7.0 1.7 7.0 0.9 7.2 0.72 8.56 1.22 22.7 

OCMIC 2.0 2.1 1.1 2.2 0.5 2.3 0.5 2.3 0.5 2.3 0.3 2.5 0.47 4.25 1.19 20.2 

OCAIC 1.7 2.0 1.0 2.1 0.4 2.1 0.4 2.1 0.4 2.1 0.2 2.3 0.45 4.15 1.18 19.9 

DAC 1.8 2.0 1.0 2.1 0.4 2.1 0.4 2.1 0.4 2.1 0.2 2.3 0.19 2.4 0.17 2.42 

ACMIC 0.9 0.4 0.5 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.1 0.6 0.40 2.41 1.17 18.5 

ACAIC 0.8 0.3 0.4 0.3 0.2 0.3 0.2 0.3 0.2 0.3 0.1 0.5 0.40 2.38 1.17 18.5 

Table IV. Results of Wilcoxon signed-rank test 
System H0 P H0 R Null Hypothesis 
Eclipse < 0.0001 < 0.0001 Reject/Reject 
Rhino 0.012 0.009 Reject/Reject 



 

effective indicator of an external property of classes in OO 
systems, that is, the change proneness of classes. Based on 
the results of the impact analysis in Mozilla, Eclipse and 
Rhino, we can conclude that RTCC is a valuable mechanism 
for ranking the classes during impact analysis and can be 
effectively combined to gain superior results with other 
conceptual metrics, such as CCBCm.  More importantly, the 
statistical tests support our hypothesis that the combination 
of RTCC with other conceptual coupling metric allows us to 
build useful impact analysis techniques for detecting class 
change ripple effects based on coupling metrics. 

E. Threats to validity 

We identify several issues that affected the results of our 
case study and limit our interpretations.  We have 
demonstrated that our metrics capture new dimensions in 
coupling measurement; however, we obtained these results 
by analyzing classes from ten C++ open-source systems.  In 
order to permit generalization of the results, large-scale 
evaluation is necessary, which needs to take into account 
software from different domains, developed using different 
programming languages. 

In the case study we consider structural (that is, static) 
metrics that are based on the static information obtained 
from the source code.  The results may be rather different if 
we considered dynamic coupling metrics [2]. 

The conceptual coupling measures (that is, CoCC, 
CCBCm, RTCS and RTCC) depend on coherent naming 
conventions for identifiers and comments.  When these are 
missing, the emphasis for capturing coupling should be 
placed on static or dynamic coupling metrics. 

RTC measure, as currently defined, does not take into 
account polymorphism and inheritance.  The measure only 
considers methods of a class that are implemented or 
overloaded in the class.  One of the existing solutions in the 
research literature, which accounts for inheritance, consists 
of extending the conceptual measures to include the source 
code of inherited methods into the documents of derived 
classes [24].  We are planning to incorporate this solution in 
our future work7. 

In our case study on impact analysis we used two large 
(i.e., Eclipse and Mozilla) and one medium-sized (i.e., 
Rhino) software systems. However, to allow for 
generalization of these results, again, large-scale evaluation 
is necessary, which should take into account several releases 
of software systems from different domains, implemented in 

                                                           
7Note that some results for higher cut points are not available (n/a) 
for Rhino, since the system has only 106 classes. 

different programming languages (that is, not only C++ and 
Java as covered in our case study). 

Also, our evaluation on Mozilla, Eclipse and Rhino is 
based on the changed classes extracted from patches in 
corresponding bug reports.  This could have somewhat 
impacted evaluation procedure as these patches may contain 
incomplete information about actually changed classes or 
these changes could have introduced other bugs.  We 
alleviate this issue by considering only patches which are 
officially approved by module owners in Mozilla, Eclipse 
and Rhino.  Moreover, this threat to validity is minimized by 
the fact that the bug data that we utilize in this case study has 
been used and verified by other researchers [17, 35]. 

V. CONCLUSIONS AND FUTURE WORK 

The paper defines a novel operational measure for the 
relational topic based coupling of classes, which is 
theoretically and empirically validated.  An extensive case 
study indicates that RTC captures new dimensions in 
coupling measurement as compared to existing structural and 
conceptual metrics.  Likewise, RTC has been shown useful 
during impact analysis on large software systems and even 
more so when combined with an existing coupling metric.  

The paper lays the basis for the future work that makes 
use of the relational topic models for conceptual coupling 
measurement.  The proposed metric could be further 
extended and refined, for example by taking into account 
inheritance.  Currently, the definition of RTC uses class level 
granularity, however, the use of method level granularity is 
also feasible.  Another direction is to improve the quality of 
underlying textual information by applying advanced source 
code pre-processing techniques for splitting [18] and 
expanding [22] identifiers and comments in source code.    
Since RTC relies on textual information, we are considering 
including external documentation in the corpus.  This should 
allow extending the context in which words are used in the 
software and identifying inconsistencies in latent topics 
generated from source code and external documentation. 
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Table V. Precision (P) and recall (R) results for impact analysis in Eclipse and Rhino7 using various cut points 
  10 20 30 40 50 100 200 500 
  P R P R P R P R P R P R P R P R 

RTCC+CCBCm 21 25 17 35 15 40 13 45 12 49 9 61 5 70 3 76 
CCBCm 19 23 15 31 13 36 12 41 11 44 8 56 5 67 3 72 

Absolute gain 2 2 2 4 2 4 1 4 1 5 1 5 0 4 0 4 E
cl

ip
se

 

Relative gain 11 9 13 13 15 11 8 10 9 11 13 9 0 4 0 6 
RTCC+CCBCm 14 38 11 57 9 68 8 75 7 79 98 2 n/a n/a n/a n/a 

CCBCm 13 32 11 52 9 64 8 73 6 77 98 2 n/a n/a n/a n/a 
Absolute gain 1 6 0 5 0 4 0 2 1 2 0 0 n/a n/a n/a n/a R

h
in

o 

Relative gain 8 19 0 10 0 6 0 3 17 3 0 0 n/a n/a n/a n/a 
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