

Supporting Feature-Level Software Maintenance

Meghan Revelle

Advisor: Denys Poshyvanyk

Computer Science Department

The College of William and Mary

Williamsburg, VA 23185

meghan@cs.wm.edu

Abstract

The proposed research defines data fusion

approaches to support software maintenance tasks at

the feature level. Static, dynamic, and textual sources

of information are combined to locate the

implementation of features in source code. Structural

and textual source code information is used to define

feature coupling metrics to aid feature-level impact

analysis. This paper provides details on the proposed

approaches and evaluation strategies as well as some

preliminary results.

1. Problem description

Software maintenance and evolution involves

making changes to existing source code. Often, these

changes involve making modifications to features in

order to address maintenance tasks such as fixing bugs

or enhancing features. There are many difficulties

associated with software maintenance, but two main

challenges are the focus of our proposed research.

First, before a modification can be made, the code that

implements a feature must be located. Second, after a

change has been implemented, impact analysis should

be performed to determine if other features could be

affected by the change.

Identifying the source code that implements a

feature, a process known as concept [3] or feature

location [1], is necessary for program comprehension

and maintenance. Existing feature location techniques

are good at finding a starting point for a feature, that is,

a single relevant method [16-18]. However, it is rarely

the case that only one method corresponds to a feature,

and the task of locating the rest of the feature’s methods

is left to the developer. Feature location approaches

would be more useful if they could find as many

methods associated with a feature as possible.

Features do not exist in isolation [15]. Modifying

one feature does not guarantee only that feature is

affected by the change. In fact, changes made to one

feature may have an impact on seemingly unrelated

features. To be aware of the consequences a

maintenance task might have on other features, impact

analysis can be performed by determining the coupling

between features. However, the majority of existing

coupling metrics are defined for classes, not features.

Generally, features are not implemented by a single

class and are scattered throughout the methods of a

system [10]. Therefore, metrics that focus specifically

on capturing the coupling between features are needed

to perform feature-level impact analysis.

2. Research goals

Feature location and software coupling are well

established research ideas, but both have room for

improvement. In our feature location research, we are

interested in answering two questions. First, what

sources of information should we combine to most

effectively perform feature location? Second, what is

the best way to combine those sources of information?

Our goal is to develop a data fusion approach to feature

location that incorporates multiple sources of

information (such as structural, textual, or dynamic)

and produces the most useful results. In our feature

coupling work, our goal is to fill a gap in the research

area of coupling measurement. There are many options

for class-level coupling metrics, but few for feature-

level coupling measures. Our goal is to develop

metrics that specifically capture feature coupling.

3. Related work

There are many existing feature location techniques

that can be broadly classified by the types of

information they use: static, dynamic, or a combination

of the two. Abstract System Dependence Graphs

(ASDG) [6] are a means of searching a graph of a

system. Robillard [21] improved on this process by

guiding the search based on an analysis of the system’s

topology. Instead of relying on structural information,

other approaches make use of textual information found

in source code. The simplest approach is to search the

code using a tool like grep to find relevant code using

pattern matching, while more sophisticated techniques

utilize Information Retrieval (IR) [17] and Natural

Language Processing (NLP) [23]. Some approaches,

such as SNIAFL [27] and DORA [14], incorporate

both structural and textual analysis. There are also

approaches that locate features dynamically. Software

reconnaissance [24] discovers code related to a feature

by analyzing two execution traces. Dynamic Feature

Traces [12] improve upon this approach by including

new selection criteria for trace scenarios and

performing a more in-depth analysis.

Hybrid feature location leverages the benefits of

both static and dynamic analyses. Eisenbarth et al. [11]

apply Formal Concept Analysis to dynamic traces to

produce a mapping of features to methods. Then, static

dependencies are explored to locate additional code. In

the PROMESIR approach [18], IR combines with a

dynamic technique known as SPR [1] to rank methods

likely relevant to a feature. In SITIR [16], a single

execution trace is filtered using IR to extract code

relevant to a feature. Static, textual, or dynamic

analyses are all used to locate features in Cerberus [9].

Most existing coupling metrics capture coupling at

the class level. Chidamber and Kemerer [7] introduced

the measures Coupling Between Objects (CBO) and

Response for a Class (RFC). Li and Henry also

introduced a number of class coupling metrics such as

Message Passing Coupling (MPC) and Data

Abstraction Coupling (DAC). Briand et al. [5] built a

framework for coupling measurement in object-oriented

systems. Other static but non-structural coupling

measures exist along semantic and evolutionary

dimensions. The conceptual coupling metric, CoCC

[19], captures a new dimension of coupling based on

semantic data in source code. Interaction coupling [29]

logical [13], and evolutionary [28] coupling utilize

information from repositories to mine data from

software artifacts that are frequently co-changed.

Instead of relying on static information to compute

coupling, there are also dynamic class coupling metrics

[2]. Dynamic analysis has been used to create the only

existing feature coupling measure. Wong and Gokhale

[25] defined the distance (DIST) between two features

using an execution slice-based technique.

4. Proposed work

This research proposes to develop data fusion

approaches for feature location and feature coupling.

Data fusion involves incorporating multiple sources of

data and considering each source to be an expert. The

proposed feature location approach combines the expert

opinions to better identify a feature’s source code. The

sources of information currently used are structural

dependencies, textual information embedded in source

code, and dynamic execution traces.

 We have devised initial combinations of these three

sources of information. Features can be found textually

using Latent Semantic Indexing (LSI) [8]. Users

formulate either a natural language query describing the

feature or a query from the identifiers and comments of

a known relevant method. LSI returns a list of all the

methods in the system ranked by their similarity to the

query. To combine textual and dynamic analyses, traces

are collected for a feature, and then any methods not

executed in the feature’s traces are pruned from LSI’s

ranked list, thus reducing the number of irrelevant

results. Two types of traces are used: full traces of an

entire execution and marked traces in which the user

can start and stop tracing at will to capture only the part

of the execution when the feature is invoked. Finally, to

combine textual, dynamic, and static information, a

program dependency graph (PDG) is explored. Starting

at a method known to be related to a feature, traverse

dependencies based on textual and dynamic criteria.

For example, if a method’s neighbor in a PDG was not

executed and does not meet a textual similarity

threshold, then the dependency is not followed. Future

work will include alternative configurations and the

inclusion of other data mining techniques.

We use structural and textual information to capture

feature coupling. Unlike DIST, the existing feature

coupling metric, we avoid using dynamically-collected

data because executing traces requires creating

scenarios that invoke a feature in isolation. Creating

such scenarios can be difficult. Therefore, our metrics

rely on information available in a system’s source code.

We have developed five feature coupling metrics.

Structural feature coupling (SFC), is defined as the

percentage of methods shared by two features. A

variant of this measure, SFC ′ , also takes in to account the

first order structural neighbors of a feature’s methods.

Textual feature coupling (TFC), is defined as the

average of the textual similarities between all pairs of

methods in both features. Its variant, TFCmax, only

considers the strongest textual similarity between a

feature’s methods. SFC and TFC are combined by an

affine transformation to define a Hybrid Feature

Coupling measure (HFC).

5. Evaluation strategies

Performing a quantitative evaluation of different

feature location techniques poses a difficult challenge

because of the inherent uncertainty and subjectivity

involved in finding all of the code that pertains to a

feature. One programmer may think a method is

relevant to a feature while another may not.

We intend to use at least three different methods to

evaluate the various feature location techniques. First,

we will use an artifact-based evaluation in which the

methods that implement a feature are those methods

that were modified in a change request related to that

feature. This mapping provides a gold standard by

which various measures such as precision and recall

can be computed. For this type of evaluation, we will

use large, open source systems like Eclipse.

A change request, such as a bug report, may pertain

to only a small portion of a feature. As a result, the

methods touched by a change request may not fully

represent a feature. Therefore, we will also use a

benchmark-based form of evaluation. Eaddy et al. [10]

as well as Robillard et al. [22] have publicly available

data sets that map features to code for several open

source systems. We can use these data sets as

benchmarks for our evaluation.

Notably, Eaddy et al.’s data sets were created by a

single programmer, allowing room for subjectivity [10].

While Robillard et al.’s data sets come from several

programmers, there is little agreement about which

methods actually implement the features [22].

Therefore, as a third type of evaluation, we will use a

top N strategy. Instead of asking programmers to

search source code to find relevant methods, we will

present them with the top N results of a feature location

technique and ask them to determine the methods’

relevance to a feature. This type of assessment should

yield much higher agreement among programmers

about which methods pertain to a feature.

By using three evaluation strategies that assess the

problem from different perspectives, we hope to focus

in on the best feature location approach. The idea is

essentially data triangulation [26]: to synthesize data

from multiple sources to come to a stronger conclusion.

To evaluate our feature coupling metrics, we need to

know the methods that implement a system’s features

as well as the methods modified to fix bugs. For that

reason, we will use Eaddy et al.’s [10] data sets again

because they provide all the needed information. We

will compute the Spearman rank order correlation

coefficient between pairwise feature coupling and fault-

proneness. This statistical test assesses the relationship

between two variables, which in our case are the

coupling between two features and defects.

Additionally, we can assess the potential of using

feature coupling metrics for impact analysis. Using the

measures of precision and recall, we can evaluate if the

feature coupling metrics indeed indicate that coupled

features tend to share defects. Precision is a measure of

the exactness of the results; how many other features

deemed coupled to a feature actually share a bug with

it? Recall is the percentage of other features that share a

bug with a feature that are coupled to a feature. To

determine which features are coupled, a threshold is set,

and we will vary this threshold to further explore the

relationship between feature coupling and defects.

6. Preliminary results

In our previously published work [20], we evaluated

ten different feature location techniques using the top N

strategy. The two textual techniques used natural

language queries and queries comprised of the

identifiers and comments of a relevant method. The

four approaches that combined textual and dynamic

information utilized one of the two types of queries

with either full or marked traces. Finally, textual,

dynamic, and static information were used in tandem.

Starting at a seed method, a program dependency graph

is traversed based on textual and dynamic criteria to

identify additional relevant methods.

Using four features each from the open source

systems jEdit and Eclipse, the top ten results from each

of these approaches were classified as either relevant,

somewhat relevant, or not relevant to the feature of

interest according to a set of guidelines adapted from

[22]. The results were such that on average, only

between one and three methods in the top ten pertained

to the feature, somewhat falling short of the goal of

finding near-complete implementations of features.

However, we did observe that marked traces

outperformed full traces. Another important finding

was that method queries performed just as well as

natural language queries provided by a user. This is a

significant finding because method queries can be

formulated automatically, removing the human input

required to use natural language queries.

We also empirically evaluated our feature coupling

metrics on two open source systems from Eaddy et al.’s

publically available data sets: dbViz and Rhino. dbViz

is a database visualization tool, and Rhino is a

Javascript compiler. Both systems are written in Java.

Using the mappings of features to code and bugs to

features in Eaddy et al.’s data sets, we computed the

Spearman rank order correlation coefficients between

the coupling among pairs of features and bugs shared

by those features. Using SFC, SFC ′ , TFC, TFCmax,

and HFC (with a structural weight of 0.5 and a textual

weight of 0.5), we found a moderate to strong

statistically significant correlation between all our

feature coupling metrics and defects. These findings

suggest that feature coupling is a good predictor of

fault-proneness. By comparison, the existing dynamic

feature coupling measure, DIST, is not correlated with

defects, and the results are not statistically significant.

Since class coupling has been used for impact

analysis [4], we also investigated whether feature

coupling metrics can support impact analysis by

computing precision and recall of the metrics at various

thresholds. We found that SFC had the best precision

but worst recall, and TFC had the best recall but worst

precision. HFC falls in between these two.

7. Expected contributions

 The proposed research will aid programmers as

they perform feature-level software maintenance tasks.

Our data fusion approach to feature location will help

identify a feature’s relevant code so a change task can

be successfully initiated. Once the change is

implemented, our feature coupling metrics can be used

to determine if other features have been impacted by

the modification. We expect this research to not only

reduce the amount of time and effort that programmers

spend working on maintenance tasks, but also to

facilitate the development of higher quality software.

8. Acknowledgements

This research was supported in part by the United States

Air Force Office of Scientific Research under grant number

FA9550-07-1-0030.

9. References

[1] Antoniol, G. and Guéhéneuc, Y. G., "Feature Identification: An

Epidemiological Metaphor", Transactions on Software Engineering,

vol. 32, no. 9, 2006, pp. 627-641.

[2] Arisholm, E., Briand, L. C., and Foyen, A., "Dynamic coupling

measurement for object-oriented software", Transactions on Software

Engineering, vol. 30, no. 8, August 2004, pp. 491-506.

[3] Biggerstaff, T. J., Mitbander, B. G., and Webster, D. E., "The

Concept Assignment Problem in Program Understanding", in Proc. of

International Conference on Software Engineering ,1994.

[4] Briand, L., Wust, J., and Louinis, H., "Using Coupling

Measurement for Impact Analysis in Object-Oriented Systems", in

Proc. of International Conference on Software Maintenance, 1999.

[5] Briand, L. C., Daly, J., and Wüst, J., "A Unified Framework for

Coupling Measurement in Object Oriented Systems", Transactions on

Software Engineering, vol. 25, no. 1, January 1999, pp. 91-121.

[6] Chen, K. and Rajlich, V., "Case Study of Feature Location Using

Dependence Graph", in Proc. of International Workshop on Program

Comprehension, 2000.

[7] Chidamber, S. R. and Kemerer, C. F., "A Metrics Suite for Object

Oriented Design", Transactions on Software Engineering, vol. 20, no.

6, 1994, pp. 476-493.

[8] Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., and

Harshman, R., "Indexing by Latent Semantic Analysis", Journal of the

American Society for Information Science, vol. 41, 1990, pp. 391-407.

[9] Eaddy, M., Aho, A. V., Antoniol, G., and Guéhéneuc, Y. G.,

"CERBERUS: Tracing Requirements to Source Code Using

Information Retrieval, Dynamic Analysis, and Program Analysis", in

Proc. of International Conference on Program Comprehension, 2008.

[10] Eaddy, M., Zimmermann, T., Sherwood, K., Garg, V., Murphy,

G., Nagappan, N., and Aho, A. V., "Do Crosscutting Concerns Cause

Defects?" Transaction on Software Engineering, vol. 34, no. 4, July-

August 2008, pp. 497-515.

[11] Eisenbarth, T., Koschke, R., and Simon, D., "Locating Features in

Source Code", Transactions on Software Engineering, vol. 29, no. 3,

March 2003, pp. 210 - 224.

[12] Eisenberg, A. D. and De Volder, K., "Dynamic Feature Traces:

Finding Features in Unfamiliar Code", in Proc. of International

Conference on Software Maintenance, 2005.

[13] Gall, H., Jazayeri, M., Krajewski, J., "CVS Release History Data

for Detecting Logical Couplings", in Proc. of International Workshop

on Principles of Software Evolution, 2003.

[14] Hill, E., Pollock, L., and Vijay-Shanker, K., "Exploring the

Neighborhood with Dora to Expedite Software Maintenance", in Proc. of

International Conference on Automated Software Engineering, 2007.

[15] Kothari, J., Denton, T., Mancoridis, S., and Shokoufandeh, A., "On

Computing the Canonical Features of Software Systems", in Proc. of

Working Conference on Reverse Engineering, 2006.

[16] Liu, D., Marcus, A., Poshyvanyk, D., and Rajlich, V., "Feature

Location via Information Retrieval based Filtering of a Single Scenario

Execution Trace", in Proc. of International Conference on Automated

Software Engineering, 2007.

[17] Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J., "An

Information Retrieval Approach to Concept Location in Source Code",

in Proc. of Working Conference on Reverse Engineering, 2004.

[18] Poshyvanyk, D., Guéhéneuc, Y. G., Marcus, A., Antoniol, G., and

Rajlich, V., "Feature Location using Probabilistic Ranking of Methods

based on Execution Scenarios and Information Retrieval", Transactions

on Software Engineering, vol. 33, no. 6, June 2007, pp. 420-432.

[19] Poshyvanyk, D. and Marcus, A., "The Conceptual Coupling

Metrics for Object-Oriented Systems", in Proc. of International

Conference on Software Maintenance, 2006.

[20] Revelle, M. and Poshyvanyk, D., "An Exploratory Study on

Assessing Feature Location Techniques", in Proc. of International

Conference on Program Comprehension, 2009.

[21] Robillard, M., "Automatic Generation of Suggestions for Program

Investigation", in Proc. of Joint European Software Engineering

Conference and Symposium on the Foundations of Software

Engineering, 2005.

[22] Robillard, M. P., Shepherd, D., Hill, E., Vijay-Shanker, K., and

Pollock, L., "An Empirical Study of the Concept Assignment

Problem", McGill University June 2007.

[23] Shepherd, D., Fry, Z., Gibson, E., Pollock, L., and Vijay-Shanker,

K., "Using Natural Language Program Analysis to Locate and

Understand Action-Oriented Concerns", in Proc. of International

Conference on Aspect Oriented Software Development 2007.

[24] Wilde, N. and Scully, M., "Software Reconnaissance: Mapping

Program Features to Code", Software Maintenance: Research and

Practice, vol. 7, 1995, pp. 49-62.

[25] Wong, W. E. and Gokhale, S., "Static and dynamic distance

metrics for feature-based code analysis", Journal of Systems and

Software, vol. 74, no. 3, February 2005, pp. 283-295.

[26] Yin, R. K., Applications of Case Study Research, 2 ed ed., CA,

USA, Sage Publications, Inc, 2003.

[27] Zhao, W., Zhang, L., Liu, Y., Sun, J., and Yang, F., "SNIAFL:

Towards a Static Non-interactive Approach to Feature Location",

Transactions on Software Engineering and Methodologies, vol. 15, no.

2, 2006, pp. 195-226.

[28] Zimmermann, T., Zeller, A., Weissgerber, P., and Diehl, S.,

"Mining Version Histories to Guide Software Changes", Transactions

on Software Engineering, vol. 31, no. 6, 2005, pp. 429-445.

[29] Zou, L., Godfrey, M. W., and Hassan, A. E., "Detecting Interaction

Coupling from Task Interaction Histories", in Proc. of International

Conference on Program Comprehension, 2007.

