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Abstract 

The proposed research defines data fusion 

approaches to support software maintenance tasks at 

the feature level.  Static, dynamic, and textual sources 

of information are combined to locate the 

implementation of features in source code. Structural 

and textual source code information is used to define 

feature coupling metrics to aid feature-level impact 

analysis.  This paper provides details on the proposed 

approaches and evaluation strategies as well as some 

preliminary results. 

1. Problem description 

Software maintenance and evolution involves 

making changes to existing source code.  Often, these 

changes involve making modifications to features in 

order to address maintenance tasks such as fixing bugs 

or enhancing features. There are many difficulties 

associated with software maintenance, but two main 

challenges are the focus of our proposed research.  

First, before a modification can be made, the code that 

implements a feature must be located.  Second, after a 

change has been implemented, impact analysis should 

be performed to determine if other features could be 

affected by the change. 

Identifying the source code that implements a 

feature, a process known as concept [3] or feature 

location [1], is necessary for program comprehension 

and maintenance.  Existing feature location techniques 

are good at finding a starting point for a feature, that is, 

a single relevant method [16-18].  However, it is rarely 

the case that only one method corresponds to a feature, 

and the task of locating the rest of the feature’s methods 

is left to the developer.  Feature location approaches 

would be more useful if they could find as many 

methods associated with a feature as possible. 

Features do not exist in isolation [15].  Modifying 

one feature does not guarantee only that feature is 

affected by the change.  In fact, changes made to one 

feature may have an impact on seemingly unrelated 

features. To be aware of the consequences a 

maintenance task might have on other features, impact 

analysis can be performed by determining the coupling 

between features.  However, the majority of existing 

coupling metrics are defined for classes, not features.  

Generally, features are not implemented by a single 

class and are scattered throughout the methods of a 

system [10].  Therefore, metrics that focus specifically 

on capturing the coupling between features are needed 

to perform feature-level impact analysis. 

2. Research goals 

Feature location and software coupling are well 

established research ideas, but both have room for 

improvement.  In our feature location research, we are 

interested in answering two questions.  First, what 

sources of information should we combine to most 

effectively perform feature location?  Second, what is 

the best way to combine those sources of information?  

Our goal is to develop a data fusion approach to feature 

location that incorporates multiple sources of 

information (such as structural, textual, or dynamic) 

and produces the most useful results.  In our feature 

coupling work, our goal is to fill a gap in the research 

area of coupling measurement.  There are many options 

for class-level coupling metrics, but few for feature-

level coupling measures.  Our goal is to develop 

metrics that specifically capture feature coupling.    

3. Related work 

There are many existing feature location techniques 

that can be broadly classified by the types of 

information they use: static, dynamic, or a combination 

of the two.  Abstract System Dependence Graphs 

(ASDG) [6] are a means of searching a graph of a 

system.  Robillard [21] improved on this process by 

guiding the search based on an analysis of the system’s 

topology.  Instead of relying on structural information, 

other approaches make use of textual information found 



 

  

in source code.  The simplest approach is to search the 

code using a tool like grep to find relevant code using 

pattern matching, while more sophisticated techniques 

utilize Information Retrieval (IR) [17] and Natural 

Language Processing (NLP) [23].  Some approaches, 

such as  SNIAFL [27]  and DORA [14], incorporate 

both structural and textual analysis.  There are also 

approaches that locate features dynamically.  Software 

reconnaissance [24] discovers code related to a feature 

by analyzing two execution traces. Dynamic Feature 

Traces [12] improve upon this approach by including 

new selection criteria for trace scenarios and 

performing a more in-depth analysis.   

Hybrid feature location leverages the benefits of 

both static and dynamic analyses.  Eisenbarth et al. [11] 

apply Formal Concept Analysis to dynamic traces to 

produce a mapping of features to methods. Then, static 

dependencies are explored to locate additional code.  In 

the PROMESIR approach [18], IR combines with a 

dynamic technique known as SPR [1] to rank methods 

likely relevant to a feature. In SITIR [16], a single 

execution trace is filtered using IR to extract code 

relevant to a feature. Static, textual, or dynamic 

analyses are all used to locate features in Cerberus [9].   

Most existing coupling metrics capture coupling at 

the class level.  Chidamber and Kemerer [7] introduced 

the measures Coupling Between Objects (CBO) and 

Response for a Class (RFC).  Li and Henry also 

introduced a number of class coupling metrics such as 

Message Passing Coupling (MPC) and Data 

Abstraction Coupling (DAC).  Briand et al. [5] built a 

framework for coupling measurement in object-oriented 

systems. Other static but non-structural coupling 

measures exist along semantic and evolutionary 

dimensions.  The conceptual coupling metric, CoCC 

[19], captures a new dimension of coupling based on 

semantic data in source code.  Interaction coupling [29] 

logical [13], and evolutionary [28] coupling utilize 

information from repositories to mine data from 

software artifacts that are frequently co-changed.   

Instead of relying on static information to compute 

coupling, there are also dynamic class coupling metrics 

[2].  Dynamic analysis has been used to create the only 

existing feature coupling measure.  Wong and Gokhale 

[25] defined the distance (DIST) between two features 

using an execution slice-based technique.   

4. Proposed work 

This research proposes to develop data fusion 

approaches for feature location and feature coupling.  

Data fusion involves incorporating multiple sources of 

data and considering each source to be an expert.  The 

proposed feature location approach combines the expert 

opinions to better identify a feature’s source code.  The 

sources of information currently used are structural 

dependencies, textual information embedded in source 

code, and dynamic execution traces.     

 We have devised initial combinations of these three 

sources of information.  Features can be found textually 

using Latent Semantic Indexing (LSI) [8].  Users 

formulate either a natural language query describing the 

feature or a query from the identifiers and comments of 

a known relevant method. LSI returns a list of all the 

methods in the system ranked by their similarity to the 

query. To combine textual and dynamic analyses, traces 

are collected for a feature, and then any methods not 

executed in the feature’s traces are pruned from LSI’s 

ranked list, thus reducing the number of irrelevant 

results. Two types of traces are used: full traces of an 

entire execution and marked traces in which the user 

can start and stop tracing at will to capture only the part 

of the execution when the feature is invoked. Finally, to 

combine textual, dynamic, and static information, a 

program dependency graph (PDG) is explored.  Starting 

at a method known to be related to a feature, traverse 

dependencies based on textual and dynamic criteria. 

For example, if a method’s neighbor in a PDG was not 

executed and does not meet a textual similarity 

threshold, then the dependency is not followed. Future 

work will include alternative configurations and the 

inclusion of other data mining techniques. 

We use structural and textual information to capture 

feature coupling.  Unlike DIST, the existing feature 

coupling metric, we avoid using dynamically-collected 

data because executing traces requires creating 

scenarios that invoke a feature in isolation.  Creating 

such scenarios can be difficult.  Therefore, our metrics 

rely on information available in a system’s source code.  

We have developed five feature coupling metrics.  

Structural feature coupling (SFC), is defined as the 

percentage of methods shared by two features.  A 

variant of this measure, SFC ′ , also takes in to account the 

first order structural neighbors of a feature’s methods.  

Textual feature coupling (TFC), is defined as the 

average of the textual similarities between all pairs of 

methods in both features.  Its variant, TFCmax, only 

considers the strongest textual similarity between a 

feature’s methods.  SFC and TFC are combined by an 

affine transformation to define a Hybrid Feature 

Coupling measure (HFC).   

5. Evaluation strategies 

Performing a quantitative evaluation of different 

feature location techniques poses a difficult challenge 

because of the inherent uncertainty and subjectivity 

involved in finding all of the code that pertains to a 

feature.  One programmer may think a method is 

relevant to a feature while another may not.   



 

  

We intend to use at least three different methods to 

evaluate the various feature location techniques.  First, 

we will use an artifact-based evaluation in which the 

methods that implement a feature are those methods 

that were modified in a change request related to that 

feature.  This mapping provides a gold standard by 

which various measures such as precision and recall 

can be computed.  For this type of evaluation, we will 

use large, open source systems like Eclipse. 

A change request, such as a bug report, may pertain 

to only a small portion of a feature.  As a result, the 

methods touched by a change request may not fully 

represent a feature.  Therefore, we will also use a 

benchmark-based form of evaluation.  Eaddy et al. [10] 

as well as Robillard et al. [22] have publicly available 

data sets that map features to code for several open 

source systems.  We can use these data sets as 

benchmarks for our evaluation.   

Notably, Eaddy et al.’s data sets were created by a 

single programmer, allowing room for subjectivity [10].  

While Robillard et al.’s data sets come from several 

programmers, there is little agreement about which 

methods actually implement the features [22].  

Therefore, as a third type of evaluation, we will use a 

top N strategy.  Instead of asking programmers to 

search source code to find relevant methods, we will 

present them with the top N results of a feature location 

technique and ask them to determine the methods’ 

relevance to a feature.  This type of assessment should 

yield much higher agreement among programmers 

about which methods pertain to a feature.   

By using three evaluation strategies that assess the 

problem from different perspectives, we hope to focus 

in on the best feature location approach.  The idea is 

essentially data triangulation [26]: to synthesize data 

from multiple sources to come to a stronger conclusion. 

To evaluate our feature coupling metrics, we need to 

know the methods that implement a system’s features 

as well as the methods modified to fix bugs.  For that 

reason, we will use Eaddy et al.’s [10] data sets again 

because they provide all the needed information.  We 

will compute the Spearman rank order correlation 

coefficient between pairwise feature coupling and fault-

proneness.  This statistical test assesses the relationship 

between two variables, which in our case are the 

coupling between two features and defects. 

Additionally, we can assess the potential of using 

feature coupling metrics for impact analysis.  Using the 

measures of precision and recall, we can evaluate if the 

feature coupling metrics indeed indicate that coupled 

features tend to share defects.  Precision is a measure of 

the exactness of the results; how many other features 

deemed coupled to a feature actually share a bug with 

it? Recall is the percentage of other features that share a 

bug with a feature that are coupled to a feature.  To 

determine which features are coupled, a threshold is set, 

and we will vary this threshold to further explore the 

relationship between feature coupling and defects. 

6. Preliminary results 

In our previously published work [20], we evaluated 

ten different feature location techniques using the top N 

strategy.  The two textual techniques used natural 

language queries and queries comprised of the 

identifiers and comments of a relevant method.  The 

four approaches that combined textual and dynamic 

information utilized one of the two types of queries 

with either full or marked traces.  Finally, textual, 

dynamic, and static information were used in tandem.  

Starting at a seed method, a program dependency graph 

is traversed based on textual and dynamic criteria to 

identify additional relevant methods. 

Using four features each from the open source 

systems jEdit and Eclipse, the top ten results from each 

of these approaches were classified as either relevant, 

somewhat relevant, or not relevant to the feature of 

interest according to a set of guidelines adapted from 

[22].  The results were such that on average, only 

between one and three methods in the top ten pertained 

to the feature, somewhat falling short of the goal of 

finding near-complete implementations of features.  

However, we did observe that marked traces 

outperformed full traces.  Another important finding 

was that method queries performed just as well as 

natural language queries provided by a user.  This is a 

significant finding because method queries can be 

formulated automatically, removing the human input 

required to use natural language queries. 

We also empirically evaluated our feature coupling 

metrics on two open source systems from Eaddy et al.’s 

publically available data sets: dbViz and Rhino.  dbViz 

is a database visualization tool, and Rhino is a 

Javascript compiler.  Both systems are written in Java.  

Using the mappings of features to code and bugs to 

features in Eaddy et al.’s data sets, we computed the 

Spearman rank order correlation coefficients between 

the coupling among pairs of features and bugs shared 

by those features.  Using SFC, SFC ′ , TFC, TFCmax, 

and HFC (with a structural weight of 0.5 and a textual 

weight of 0.5), we found a moderate to strong 

statistically significant correlation between all our 

feature coupling metrics and defects.  These findings 

suggest that feature coupling is a good predictor of 

fault-proneness.  By comparison, the existing dynamic 

feature coupling measure, DIST, is not correlated with 

defects, and the results are not statistically significant. 

Since class coupling has been used for impact 

analysis [4], we also investigated whether feature 

coupling metrics can support impact analysis by 



 

  

computing precision and recall of the metrics at various 

thresholds.    We found that SFC had the best precision 

but worst recall, and TFC had the best recall but worst 

precision.  HFC falls in between these two.   

7. Expected contributions     

  The proposed research will aid programmers as 

they perform feature-level software maintenance tasks. 

Our data fusion approach to feature location will help 

identify a feature’s relevant code so a change task can 

be successfully initiated.  Once the change is 

implemented, our feature coupling metrics can be used 

to determine if other features have been impacted by 

the modification.  We expect this research to not only 

reduce the amount of time and effort that programmers 

spend working on maintenance tasks, but also to 

facilitate the development of higher quality software. 
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