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ABSTRACT 

Software development can achieve interesting benefits through 
the use of requirements traceability, including improved program 
comprehension, easier maintenance, component reuse, impact 
analysis, and measure of project progress and completeness. On 
the other hand, while the cost of a new IS can be estimated by 
applying Function Point Analysis, this technique has limited 
application on maintenance. By determining the impact of 
changing a given set of features, IS development organizations 
can build a clear understanding of the effort that these changes 
will require. In this paper, we propose a technique which uses 
traceability to build a bridge between function points and source 
code. We believe that this technique can support negotiations 
between IS development organizations and their clients regarding 
changes to Information Systems. 

Categories and Subject Descriptors 

D.2.1 [Requirements/Specifications], 

D.2.7 [Distribution, Maintenance, and Enhancement]. 

General Terms 

Documentation, Design, Experimentation. 

Keywords 

Requirements Traceability, Function Point, Source Code. 

1. INTRODUCTION 
Requirements Traceability is the “ability to describe and follow 
the life of a requirement, in both a forward and backward 
direction” [1]. By using traceability links, the stakeholders 
rationale can be followed from requirement documents to design 
models, source code, test cases, and virtually any artifact built as 
part of a software project. 

Benefits which can be achieved through traceability include 
better program comprehension, easier maintenance, identification 
of reusable components, change impact analysis and an evaluation 
of project progress and completeness [2, 3]. But despite these 
benefits, current techniques and tools are not mature enough to 
maintain sound and complete traceability links in a fully 
automated manner [3], thus requiring manual intervention. 

Moreover, due to deadline pressures, developers tend to set aside 
activities not directly related to delivering the software, and 
traceability is common among these supporting tasks. Therefore, 
traceability is not as widely adopted in software industry as it 
could, according to its potential benefits. 

Information systems (IS) are not an exception to this scenario. 
While some IS development companies complain of their inability 
to manage a changing set of user requirements, they cannot 
accurately state which artifacts are responsible for implementing 
each requirement. Thus, they cannot provide the client with clear 
arguments on the cost of developing a new feature, and the impact 
it may have upon existing features. 

Function Point Analysis (FPA) [4] has become widely used to 
measure system complexity (size). In FPA, the functionality 
provided by a system is modeled as data functions and 
transactional functions. Data functions represent the complexity 
of the data handled by the IS, while transactional functions 
represent the complexity embedded in the processes by which 
such data is gathered, handled, and transformed. The information 
required to elicit data and transactional functions can be collected 
from users early in the development life cycle, and this is 
commonly used as a coarse description for system requirements, 
in order to support development contracts and service pricing. 

Since pricing and contract issues in IS development are 
usually related to function point models (data and transactional 
functions), traceability links between these models and software 
artifacts that take part in their implementation can be useful for 
supporting discussions on the impact of a functionality to be 
introduced into the system, as well as supporting the maintenance 
of a system from an early representation of its requirements. 

This paper presents a technique to generate trace links 
between function point models and source code elements in a 
two-step approach: one to relate data functions to source code and 
the other to create relationships between transactional functions 
and the source code. The proposed approach requires relatively 
low effort on gathering information in that it is semi-automatic, 
avoiding a large increase on the total development effort. We have 
conducted three case studies to address the feasibility of 
generating trace links from FP data and transactional functions, 
and produced a prototype to demonstrate how the development 
team could access trace links in its own daily-work tool. 

This paper is organized in eight sections: the first includes this 
introduction; the second is a brief presentation of FPA; the third 
details our approach; the fourth presents the case studies; the fifth 
presents the prototype; the sixth presents threats to validity; the 
seventh presents some related work; we finish in the eighth 
section by presenting some conclusions, contributions, limitations 
and future work. 
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2. FUNCTION POINT ANALYSIS 
One of the first papers about Function Point Analysis (FPA) 
referred to its use in productivity measurement and effort 
estimation [4]. Over time, it became a widely adopted method to 
estimate effort, time, cost, and resources required to conduct an IS 
development project, as well as supporting negotiations between 
IS development companies and their clients. 

FPA estimation is divided into two main phases: calculating 
an unadjusted number of function points (UFPs) and applying 14 
predefined adjustment factors to calculate the number of adjusted 
function points (AFPs). The effort required to build the system 
can be derived from the latter. However, to calculate the number 
of UFPs, an analyst must address the system in two perspectives: 
the data it maintains (data functions) and the transactions that 
handle these data (transactional functions). Each data and 
transactional function yields a number of UFPs, which are 
summed to achieve the total number of UFPs. 

Data functions are based on domain concepts, identified and 
organized into logically related data groups maintained or queried 
by the system. These data groups are further classified as Internal 
Logical Files (ILFs), if they are maintained by the system (the 
system feeds data into the group or changes the data it maintains), 
or External Interface Files (EIFs), if they are maintained by 
another system and queried by the current one. Each data group 
comprises recognizable subsets of data (RETs) and atomic, non-
repetitive, user-recognizable attributes (DETs). The complexity of 
each data group is calculated according to its RETs and DETs and 
represented in a three-valued ordinal scale (low, medium, or 
high). Finally, the number of UFPs contributed by each data 
group is defined based on its complexity. 

In the FPA context, transactions are elementary processes that 
handle data as it moves across the boundaries of the system. 
Processes receiving data from outside the system are classified as 
External Inputs (EIs). Processes collecting data maintained by the 
system and sending these data to some receiver outside the system 
are classified as External Outputs (EOs) or External Inquiries 
(EQs), depending on whether they apply complex processing 
upon the information before it crosses the border of the system. If 
such processing (algebraic formulas, data validation rules, 
complex grouping or sorting) is required, the transaction is 
classified as an EO; otherwise, it is classified as EQ. 

A transaction is characterized by the number of distinct data 
groups that it uses (FTRs) and the number of atomic, non-
repetitive attributes (DETs) that it collects from or shows to the 
user. The complexity of each transaction is calculated based on its 
FTRs and DETs, and represented in a three-valued ordinal scale 
(low, medium, or high). As with data functions, transaction 
complexity defines the number of UFPs with which it contributes. 

A usual function point model describes system data groups by 
listing their data subsets and attributes. It also presents the 
transactions provided by the system, reporting on their referenced 
data groups and field attributes. The effort required to conduct a 
software development project is frequently derived from this 
model and, as the user requires new functionalities, the model is 
updated and a new total effort is calculated. The effort to execute 
the required changes is calculated as the difference between the 
original effort and the updated one. Thus, FPA is useful both as 
the basis for system requirements and for negotiation between the 
company and its clients. 

3. AN FPA-BASED TRACE LINK 

GENERATION TECHNIQUE 
This section describes our proposed technique to generate trace 
links between FP data and transaction models and source code 
modules. Our approach requires the collection of the following 
information about the IS under interest: 

(a) An FP data model, described as the set of ILFs and EIFs used 
by the system, along with their RETs and their DETs. The 
current approach does not directly distinguish ILFs and EIFs; 

(b) A set of database tables and their fields, is usually collected 
from a relational database schema. Our approach is limited to 
IS which store data in relational databases; 

(c) A manually produced set of trace links between data functions 
and database tables, which supports the identification of trace 
links between data functions and the source code; 

(d) An FP transaction model, described as a set of transactions 
provided by the system (including EIs, EOs, and EQs); 

(e) A set of test cases to evaluate every transactional function 
supported by the system; 

(f) A manually produced set of trace links between transactional 
functions and test cases, which supports identifying trace links 
between transactional functions and the source code; 

(g) The system source code as a directory structure of the files 
which convey its classes, routines, and scripts. The source 
code must be configured so that it can be executed under a 
code coverage tool. Thus, an operational environment must be 
set to execute the system, including its database and other 
resources referenced by the source code; 

(h) A selected granularity [5] by which some modules of the 
source code will be mapped to data and transactional 
functions (e.g. packages, files, classes or lines of code). 

Semi-automated traceability approaches usually require an 
initial set of trace links in order to discover additional links with 
less effort than manual approaches [5]. Our technique uses a 
different approach, divided into two steps: a pattern-based 
mapping of the data model to the source code which handles data 
and an execution-based analysis of the code which supports each 
transaction. Nevertheless, as other traceability approaches, the 
results of our technique depend on the quality of the input. Figure 
1 presents an overview of our proposed technique. 

In the first step, the user must map the system’s ILFs to tables in 
the database schema. EIFs are not taken into account, since they 
represent data stored outside the system database. Afterwards, our 
technique searches the code for queries to database tables and 
creates trace links between database tables and source code 
modules, according to the selected granularity. 

Figure 1. Overview of the technique. 
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In the second step, the user must select a set of scenarios that 
run each transactional function presented in the transaction model. 
A code coverage tool monitors the source code modules are 
executed while a test automation tool executes each usage 
scenario. By combining this information with a timeline of 
scenario execution, we can generate links between the 
transactions and the code modules participating in their 
implementation. 

According to [5], each organization or project team must 
define its need for traces at a certain level of detail which can 
range from coarse-grained artifacts (e.g. packages, class diagrams) 
to fine-grained ones (e.g. individual lines of code, classes, 
attributes). Tracing fine-grained artifacts can offer better results, 
but it is more expensive and the collective set of trace links are 
harder to maintain than traces built for coarse-grained artifacts. 
Thus, a cost-benefit relation influences this decision. 

The case studies presented in section 4 evaluated whether our 
technique could generate trace links from ILFs to source code 
modules. However, a few changes in the automatic scripts could 
enable processing finer-grained levels. For instance, DETs could 
be traced by searching data fields in queries. An important aspect 
is the ability of the selected code coverage tool to identify which 
modules, methods or source code lines were enacted by each 
scenario. Limitations on the code coverage tool influence the level 
of detail by which source code can be traced to transactions. 

3.1 Data Function Traces 
Some differences exist between an FP data model and its 
implementation as a relational database. Due to implementation 
and performance restrictions, the system relational database may 
not directly represent its FP data groups. For instance, FP data 
models do not represent table relationships and primary keys, 
required by the relational database. Moreover, the database 
schema states how data is stored by the system, while the FP data 
model states which data is required to allow the system to fulfill 
its transactions. 

Thus, the database schema is an implementation of an FP data 
model. The source code usually references the database schema 
through queries and data manipulation commands (INSERT, 
DELETE etc.). Our technique uses the system database schema as 
a bridge between the FP data model and the source code. An 
analyst who knows both the domain area and these models can 
manually trace ILFs to the tables composing the database schema. 

References to tables are searched in the source code. Trace 
links are generated between referenced tables and source code 
modules where references were found. The more references exist, 
the stronger the relation represented by the trace link is: the 
number of references indicates the weight of trace links. This 
weight represents how much a table is handled by a source code 
module and inversely how much a source code module is 
responsible for handling the information stored in that table. 

Considering that we have trace links from the FP data model 
to the database schema and from the database schema to source 
code modules, we apply the property of transitivity in the context 
of trace links, leading to what we named indirect trace links 
between the FP data model and the source code. The weight of an 
indirect trace link is derived by summing weights of all schema-
to-code links which belong to a specific indirect trace link. 

3.2 Transactional Function Traces 
Usage scenarios (i.e. test cases) can be used to generate trace links 
between these scenarios and source code [6]. A code coverage 
tool monitors source code modules which are activated while 
these scenarios are being executed. According to the ability of the 
code coverage tool to monitor the code in different levels of 
detail, classes, methods, or even individual lines can be identified. 

Our technique applies this testing and monitoring approach in 
order to trace transactions to source code. A set of scenarios must 
be defined to test every transaction presented as part of an FPA 
transaction model. While these scenarios are being executed, a 
code coverage tool monitors and records the exact moment when 
those source code modules were activated. 

Therefore, our technique uses test cases developed to ascertain 
the implementation of the system under analysis as a bridge 
between FP transactional model and the source code. An analyst 
who knows both the domain area and the test cases can manually 
trace EIs, EOs and EQs of transactional model to test cases. 

We need to record the start and end execution time for each 
test case. By analyzing code coverage records, we can identify 
which source code modules were enacted during each test case 
execution. Trace links are generated between test cases and source 
code modules activated during the execution of the test cases. As 
with data functions, the more activated lines of code exist, the 
stronger the relation represented by the trace link is. The number 
of different activated lines of code indicates the weight of trace 
links, which represent how much a test case is covered by a source 
code module and, inversely, how much a source code module is 
responsible for processing that test case. 

Considering that we have trace links from the FP transactional 
model to test cases and from test cases to source code modules, 
we apply the property of transitivity achieving indirect trace links 
between the FP transactional model and the source code. The 
weight of an indirect trace link is derived by summing weights of 
all test cases-to-code links which belong to a specific indirect 
trace link. 

4. CASE STUDIES 
We conducted three case studies to ascertain the feasibility of our 
proposed technique. The first case study was limited to FP data 
functions traceability while the two following case studies were 
applied for both data and transactional functions. 

The first case study, described in section 4.1, evaluated the 
open-source ERP and CRM Compiere. The second, presented in 
section 4.2, evaluated the open-source LMS Moodle. The third, 
presented in section 4.3, evaluated PPGI/UNIRIO’s Online 
Subscription System. We had access to the source code of each of 
these systems. 

The choice for open-source systems on the first and second 
case studies was made because of the requirement to access their 
source code and to allow easy replication of our case studies. 
Nevertheless, we are convinced that the evaluation of non open-
source systems is needed to generalize the conclusions concerning 
the feasibility of our proposed technique. A step in this way is the 
third case study. 
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4.1 Compiere 
The initial goal of the case study on Compiere was to observe how 
its functionality had been implemented in the source code over 
time, based on an FPA point of view. Later, this case study has 
led to the development of our proposed technique.  

The source code of Compiere was downloaded from its 
website in November 7, 2008. We have made a checkout from its 
SVN repository, retrieving 5,015 files of which 2,277 were source 
code modules in Java. We defined the granularity of source code 
traces as a module (single file) for this case study. 

We did not find an FP data model describing Compiere. Thus, 
the set of its ILFs was obtained by reverse engineering from its 
Postgres database creation script. The reverse engineering process 
involved identifying tables which seem to represent domain 
concepts and aggregate them in logically related groups of data. 
The complete database schema contained 465 tables. After 
discarding tables which did not represent domain concepts (like 
those representing a database error log and conversions units), the 
database schema was reduced to a set of 211 relevant tables. By 
analyzing table names, we have found 162 ILFs. Each ILF was 
manually traced to a set of tables, making up a set of 211 trace 
links between the 162 ILFs and the 211 relevant tables. 

To relate data functions to source code modules, we selected 
only the 1,667 source code modules from the core of the system. 
Support modules (like Jakarta ECS and LDAP authentication) and 
testing scripts, among others, were discarded. References to tables 
which were formerly traced to ILFs in the preceding step were 
sought in the selected source code modules. We found 33,523 
references to database tables in 700 Java source files. Suppressing 
duplicate references between the same table and file, we found 
2,608 distinct trace links between 83 tables and the previous 700 
files.  

We understood that each source code module should have one 
ILF that could be considered as the main data handled by the 
module. As each ILF was traced to a set of tables, we counted the 
number of references to ILFs in each source code module, based 
on trace links between tables and modules. The most referenced 
ILF of a module was considered as its main ILF. When we found 
two or more ILFs as the most referenced ones (both with the same 
number of references), one of them was chosen as the main 
module based on name and content of the module. 

By transitivity, a set of 700 indirect trace links between 76 
ILFs and the 700 source code modules was achieved. The 86 ILFs 
which were not traced made us rethink the trace links between 
ILFs and source code, along with the source code modules which 
could be discarded from the reference search process. The 
proposed approach was fixed to account for this limitation and 
reevaluated in the following case study. 

4.2 Moodle 
The main goals of the case study on Moodle were to evaluate 
solutions to issues faced in the previous case study and to develop 
a strategy for generating transactional function trace links. 
Furthermore, we applied the technique to a different system – a 
step toward its generalization. 

The source code of Moodle was downloaded from 
SourceForge (http://sourceforge.net) in June 10, 2009. We have 
made a checkout from its CVS repository, retrieving 30,960 files 

of which 10,170 were source code files in PHP. We defined the 
granularity of source code traces as a module for this case study. 

We could not find an FP data model describing Moodle. Thus, 
the set of its ILFs was obtained by reverse engineering from its 
MySQL database schema. The reverse engineering process 
involved identifying tables which seemed to represent domain 
concepts, aggregating them in logically related groups of data, and 
conducting an ad hoc execution of the system to confirm if they 
were effectively used by the available functionalities. Testing is 
also used by [8] to extract the system’s conceptual model as a 
class diagram. The initial set of 198 tables was analyzed, leading 
to 28 ILFs. Each ILF was manually traced to a set of tables, 
making up a set of 108 trace links between the 28 ILFs and 108 
tables. Other 90 tables could not be traced to meaningful ILFs. 

Moodle design isolates data handling in a single source code 
module that provides a set of generic methods to access database 
tables. All other source code modules are supposed to use these 
methods to query and update data. Thus, we sought for references 
to these methods instead of searching for direct references to data, 
identifying the name of the accessed table (one of the parameters 
for functions provided by the data access module). 

This time we had not discarded modules, considering that 
every file which handles a table needs to be traced to it. We found 
77,981 references to tables in 1,403 PHP source code modules. 
Discarding duplicate references between the same table and 
module, we found 4,024 distinct trace links between 192 tables 
and the previous 1,403 source code modules. 

Next, we evaluated three policies to generate the weight for 
the links between ILFs and source code modules: (a) the most 
referenced ILF is traced to the module (the same of Compiere); 
(b) all referenced tables are traced to the module without weights; 
and (c) referenced tables are traced to the modules proportionally 
to the number of references. 

After evaluating the generated traces for the three policies, we 
concluded that the first and the second policies were dominated 
by the third. The first incurred in strong loss of links, while the 
second was unable to represent how much the table is linked to 
the each source code module. We selected the third policy 
because it represented trace links for every table and allowed us to 
understand that some links were stronger than the others. For this 
policy, a set of 2,076 indirect trace links between the 28 ILFs and 
1,316 source code modules was achieved. In the end, all ILFs 
were traced to source code. 

The creation of links to transactional functions began with the 
download of another release of Moodle (version 1.9.7) in 
February 11, 2010 (we were conducting an exploratory study for 
eight months). We retrieved 5,169 files, of which 2,346 were 
source code files in PHP. 

The reverse engineering of Moodle transactional functions 
involved testing the system, looking for transactions offered 
though commands available in the end-user interface. Due to the 
volume of distinct transactions provided by Moodle, we restricted 
our analysis to the user admin subsystem. We found 35 
transactional functions in this subsystem. We developed 43 test 
cases using Selenium IDE (http://seleniumhq.org/projects/ide/), a 
tool which allows the automation of test cases. In addition, each 
EI, EO, and EQ was manually traced to a set of test cases, making 
up a set of 42 trace links between the 35 transactional functions 
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and 42 test cases. A single non-traced test case, the “Logout” 
operation, is lacking because it cannot be considered a 
transactional function, since it does not read or change data in 
domain tables. 

To collect code coverage information while executing the test 
cases, we used the XDebug tool (http://www.xdebug.org). This 
tool is installed as a module on the web server and identifies every 
single line interpreted by the execution of code using a 
functionality called function trace. Test cases were executed one 
by one while XDebug collected logs with activated files, and 
source code lines, and time. At the end of each test case, log files 
were moved to a distinct directory. We developed a script to 
analyze these logs and extract the number of single (non-repeated) 
lines of code executed during each test case. We found 2,698 trace 
links between 43 test cases and 252 source code modules. A set of 
2,666 indirect trace links between the 35 transactional functions 
and 251 source code files was achieved. 

4.3 PPGI/UNIRIO’s Online Subscription 

System 
The main goal of the case study on PPGI/UNIRIO’s Online 
Subscription System (further, we will refer to the system as PPGI-
OSS) was to apply the final version of our technique, strictly as 
described in Section 3. Furthermore, we applied the technique to a 
different system – a step toward its generalization. 

The access to PPGI-OSS’s source code was allowed by its 
developer. We received it in April 15, 2010, retrieving 67 files, of 
which 42 were source code files in PHP and one MySQL database 
creation script. We defined the granularity of source code traces 
as a module for this case study. 

The developer did not produce an FP data model describing 
PPGI-OSS. Thus, the ILF set was obtained by reverse engineering 
its MySQL database creation script and interviewing the 
developer. The reverse engineering process involved identifying 
tables that seemed to represent domain concepts, aggregating 
them in logically related groups of data, and conducting an ad hoc 
execution of the system to confirm if they were effectively 
accessed by provided functionalities. The initial set of 8 tables 
was grouped into 6 ILFs. Each ILF was manually traced to a set of 
tables, making up a set of 8 trace links. All tables were traced to 
ILFs. 

 References to tables were sought in the source code modules. 
We found 51 references to database tables in 11 PHP source code 
files. By suppressing duplicate references between the same table 
and file, we found 22 distinct trace links between the 8 tables and 
the previous 11 files. By transitivity, a set of 20 indirect trace 
links between the 6 ILFs and the 11 source code modules was 
achieved. In the end, all ILFs were traced to source code. 

The creation of links to transactional functions began by 
reverse engineering of PPGI-OSS transactional functions. This 
process involved executing transactions offered by the system 
through commands available in its end-user interface. We found 
17 transactional functions and confirmed them by interviewing the 
developer. Also, 22 test cases were developed and automated to 
run these transactions using Selenium IDE. Each EI, EO, and EQ 
was manually traced to a set of test cases, making up a set of 20 
trace links between the 17 transactional functions and 20 test 
cases. The non-traced test cases – related to “Show home page 

(login form)” and “Logout” operations – are lacking because they 
cannot be considered transactional functions, since they do not 
read or change data in domain tables. 

To collect code coverage information while executing the test 
cases, we again used the XDebug tool. Test cases were executed 
sequentially while XDebug collected logs registering the activated 
files and source code lines. At the end of each test case, log files 
were moved to a distinct directory. We developed a script to 
analyze these logs and extract the number of single (non-repeated) 
lines of code executed during each test case. We found 212 trace 
links between 22 test cases and 37 files. A set of 175 indirect trace 
links between the 17 transactional functions and 36 source code 
files were achieved. 

4.4 Discussion 
Key indicators collected from the two last case studies (Moodle 
and PPGI-OSS) are presented in Table 1. Compiere results are not 
presented because the first case study used an embryonic version 
of the proposed technique and was restricted to analyzing the 
system data functions. 

Table 1: Case studies summary 

Key Indicators Moodle PPGI-OSS 

Source codes traced to data functions 1,316 (13%) 11 (26%) 

Data functions traced to source code 28 (100%) 6 (100%) 

Source codes traced to trans. functions 251 (11%) 36 (86%) 

Trans. functions traced to source codes 35 (100%) 17 (100%) 

From the former table, we notice that all data and 
transactional functions were traced to source code modules, but 
just a few source code modules were traced to data functions (in 
both case studies) and transactional functions (for Moodle). 

Few modules were traced to data functions because both 
systems provide a data abstraction layer, that is, a limited number 
of source code modules are responsible for collecting data from 
the storage system and making these data available for the whole 
system. Therefore, only these modules could be traced to data 
functions, though many others could be affected by changes in the 
structure of the data. 

A low percentage of source code modules were traced to 
transactional functions on Moodle, in contrast to PPGI-OSS, as 
only a few observed transactions provided by Moodle (the user 
administration subsystem) were effectively covered by the 
available test scenarios. Therefore, the proposed technique 
depends heavily on the availability of test scenarios to deliver a 
more complete set of trace links. 

5. PROTOTYPE 
This section presents the FPT Plug-in (Function Point Tracing 
Plug-in), the prototype of a traceability tool that attempts to 
demonstrate how trace links created by our technique could be 
shown in daily-work tools used by the development team. 

Potential traceability users include software architects and 
developers. Both groups do most of their work through an 
Integrated Development Environment (IDE). Our prototype 
collects information about a project being developed in such 
environment and presents its source code modules and their 
relationships with FP data and transactional functions. It indicates 
which functions are related to a given source code module and 
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which modules are related to a given function. Our intention was 
to improve program comprehension and support maintenance by 
providing a way to analyze the source code modules which might 
be affected by a change. 

The FPT plug-in was developed as an extension of the Eclipse 
IDE, a software development environment widely used for Java 
programming but also compatible with other languages, such as 
C, C++, and PHP. The plug-in user interface comprises two 
views: FPT Navigator and FPT File Details.  

The FPT Navigator view presents two options – "Data 
Functions" and "Transactional Functions” – under which the 
functions composing the FP model and their related source code 
files are listed. It also presents the "Traced Files” option, which 
lists files traced for some data or transactional function, thus 
providing a two-way navigation system. 

The "Data Functions" option shows the list of all system data 
functions. By selecting one of these functions, two options are 
made available: (a) the option "All Files" lists all files related to 
selected data function; and (b) the list of the transactional 
functions related to the selected data function. By selecting one of 
these transactional functions the navigator presents a list of source 
code modules related to both the selected data and transactional 
functions. Modules are presented in descending order, according 
to the weight of their trace link to the function under interest. 

The "Transactional Function" option shows the list of all 
system transactional functions. By selecting one of these 
functions, two options are made available: (a) the option "All 
Files", which lists all files related to selected transactional 
function; and (b) the list of all data functions related to the 
selected transactional function. By selecting one of these data 
functions, the navigator presents a list of source code modules 
related to both the selected transactional and data function. As 
with the data functions, modules related to transactional functions 
are presented in descending order, according to the weight of their 
trace link. 

The FPT File Details view has traceability information about 
the currently active file in the IDE. All data and transactional 
functions related to this file are presented in descending order of 
weight of their trace link.  

We believe that the plug-in is useful in situations, such as: (a) 
a developer trying to understand source code structure and 
provided functionality uses the FPT Navigator to find out which 
module implements a given functionality; (b) a developer adding 
a field in some data function uses the FPT Navigator to identify 
source code files which handle this data function; and (c) an 
architect investigating performance issues of an entire system 
finds a source code module with low performance. FPT File 
Details allows realizing that this module is used by several 
transactions. By fixing the module issue, the entire system seems 
to have recovered normal performance. The conclusion is that 
module performance issue was the root cause of the system issue. 

The prototype received trace links from Moodle and 
PPGI/UNIRIO's Online Subscription System case studies. The ad 
hoc usage of FPT Navigator demonstrated that most related files 
(considering the decreasing order by weight) usually had similar 
names to their related data and transactional functions. In the 
same way, FPT File Details demonstrated that most related data 
and transactional functions had similar names to their related files. 

It seems to demonstrate that the number of references to tables 
(for data functions), enacted lines of code (for transactional 
functions) and the idea of weighting trace links could help to 
improve software development scenario. 

6. THREATS TO VALIDITY 
Although case studies have been conducted and a prototype was 
developed to use information gathered from applying our 
proposed technique, there are still threats to its validity, as we 
shall discuss in this section. 

The case studies have shown that a low percentage of source 
code modules were traced to tables. In a multi-tier architecture, 
table references cannot be found outside the data access layer. 
Thus, our approach misses trace links for source code modules of 
other layers, such as business rules and presentation. This 
scenario poses difficulties to a more precise identification of 
modules which might be affected by changes in data functions. 

Although we focus on IS developed using FPA, the systems 
used in the proposed case studies were open source and in-house 
projects, which did not have FPA models. The lack of real FPA 
models is a larger threat for the first and second case studies. 
However, in the third case study, we had this issue controlled by 
producing an FPA model according to observed transactions and 
thereafter validating the model with the system’s sole developer. 

Formal and automated test cases are needed to ensure quality 
on high scale and complex systems. Our technique was produced 
to enable these systems to achieve traceability benefits only if they 
have high test coverage. Having a large set of requirement-based 
test scenarios is a concern for the practical use of our proposal. 
While common sense dictates that having such test scenarios is 
healthy for a software development project, we acknowledge that 
many IS project might be deployed without such artifacts. 

Finally, the first stages of the proposed approach rely heavily 
on human input. The subsequent process combines these data with 
information collected through static and dynamically analysis. 
Therefore, final results are sensible to mistakes in the early 
provided input. This includes issues such as incorrect modeling, 
outdated requirements, and low code coverage of test scenarios. 

7. RELATED WORK 
Information Retrieval (IR) is used by [2] to discover traceability 
links between free-text documentation produced during 
development and maintenance cycle and the source code. 
Documentation is analyzed by the following steps: (a) letter 
transformation, where all letters in a document are converted to 
lower case; (b) stop-word removal, where articles, punctuation, 
and other irrelevant characters are removed; and (c) 
morphological analysis, where plurals are converted to singulars 
and conjugated verbs to infinitives. Source code is analyzed by 
the following steps: (a) identifier extraction, where identifiers are 
extracted from the code; (b) identifier separation, where 
identifiers composed of two or more words are split into separate 
words; and (c) text normalization, where the three steps for 
documentation are applied upon the former identifiers. Hereafter, 
they are passed through indexers and are classified. The work 
tested two IR models for classification: probabilistic and vector 
space models. It forms a theoretical basis to our work as it 
highlights traceability benefits. In addition, our work parses 
source code to recover traceability links. 
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LeanArt tool [7] generates trace links between use case 
diagrams elements (actors and use cases) and source code 
elements (methods and variables). After some links are inserted 
manually, a machine-learning algorithm compares the names of 
use cases and source code elements. In addition, a second 
machine-learning algorithm compares and follows the values of 
variables during runtime. These algorithms discover new trace 
links and detect false ones. The goal of generating links between 
source code elements and use cases (somewhat related to 
transactional functions in IS, as both represent data handling 
processes) renders this approach related to the one presented in 
this paper. 

TraceAnalyzer tool [6] uses information generated from usage 
scenarios (i.e. test cases) to generate traceability links between: (a) 
scenarios and source code; (b) model (e.g. class diagrams) 
elements and source code; (c) scenarios and model elements; and 
(d) among model elements. The first activity is hypothesizing, 
where some links must be manually identified from 
documentation. The second activity is atomizing, where scenarios 
are monitored by a code coverage tool and a set of links is built, 
namely a footprint graph. The third activity is generalizing, where 
the graph is traversed from its leaves to their parents. The fourth 
activity is refining, where the graph is traversed from its root to its 
leaves. These major activities yield the final set of trace links. 
This technique, known as Scenario-Based approach, forms the 
basis for our transactional function traceability, which also uses 
information from code coverage tools. 

8. CONCLUSIONS 
This paper presented an approach to generate trace links between 
function points and source code. These links connect low-level 
implementation to requirements, supporting program 
comprehension, maintenance, and impact analysis. The proposed 
approach comprises two steps, aligned to the division of a 
function-point model: data function traceability and transactional 
function traceability. Its feasibility was tested through three case 
studies and the potential for using the produced trace links was 
addressed by developing a tool prototype supporting the 
maintenance of a software project within a well-known 
programming environment. 

Contributions of this work include: (a) definition and 
development of a technique to generate trace links between a 
function point model and the source code; (b) definition, 
planning, execution, and analysis of three case studies using three 
software systems of distinct sizes and origins and written in two 
different programming languages; and (c) development of a tool 
prototype using results of the trace link generation technique. 

Some limitations of the proposed approach include: (a) data-
access abstraction layers (such as web services, stored procedures, 
views, or object-relational mappings) can cause deviations on data 
functions traceability by obscuring table references in the code; 
(b) data from external systems is not traced, since the current 
definition of the proposed technique does not support EIFs; (c) 
the quality of trace links directly depends on the quality of 
manually provided input, such as the mapping between relational 

tables and data groups; and (d) the need for manual input may be 
prohibitive, specially on large scale systems. 

Future research may address some of these limitations by (a) 
performing case studies in a large set of systems, preferably with 
real FP models; (b) evaluating precision and recall metrics in 
comparison with other traceability techniques (c) assuring that 
traceability benefits are actually achieved through technique trace 
links; (d) evaluating the effectiveness of counting references to 
tables for gathering references to data functions; and (e) reducing 
the dependence on manually-provided input. 
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