

Traceability between Function Point and Source Code
Paulo José Azevedo Vianna Ferreira

Universidade Federal do Estado do Rio de Janeiro
Av. Pasteur, 458 – Urca, Rio de Janeiro, RJ, Brasil

55 21 2530-8051 / 3873-4015

paulojose.ferreira@uniriotec.br

Márcio de Oliveira Barros
Universidade Federal do Estado do Rio de Janeiro
Av. Pasteur, 458 – Urca, Rio de Janeiro, RJ, Brasil

55 21 2530-8051 / 3873-4015

marcio.barros@uniriotec.br

ABSTRACT

Software development can achieve interesting benefits through
the use of requirements traceability, including improved program
comprehension, easier maintenance, component reuse, impact
analysis, and measure of project progress and completeness. On
the other hand, while the cost of a new IS can be estimated by
applying Function Point Analysis, this technique has limited
application on maintenance. By determining the impact of
changing a given set of features, IS development organizations
can build a clear understanding of the effort that these changes
will require. In this paper, we propose a technique which uses
traceability to build a bridge between function points and source
code. We believe that this technique can support negotiations
between IS development organizations and their clients regarding
changes to Information Systems.

Categories and Subject Descriptors

D.2.1 [Requirements/Specifications],

D.2.7 [Distribution, Maintenance, and Enhancement].

General Terms

Documentation, Design, Experimentation.

Keywords

Requirements Traceability, Function Point, Source Code.

1. INTRODUCTION
Requirements Traceability is the “ability to describe and follow
the life of a requirement, in both a forward and backward
direction” [1]. By using traceability links, the stakeholders
rationale can be followed from requirement documents to design
models, source code, test cases, and virtually any artifact built as
part of a software project.

Benefits which can be achieved through traceability include
better program comprehension, easier maintenance, identification
of reusable components, change impact analysis and an evaluation
of project progress and completeness [2, 3]. But despite these
benefits, current techniques and tools are not mature enough to
maintain sound and complete traceability links in a fully
automated manner [3], thus requiring manual intervention.

Moreover, due to deadline pressures, developers tend to set aside
activities not directly related to delivering the software, and
traceability is common among these supporting tasks. Therefore,
traceability is not as widely adopted in software industry as it
could, according to its potential benefits.

Information systems (IS) are not an exception to this scenario.
While some IS development companies complain of their inability
to manage a changing set of user requirements, they cannot
accurately state which artifacts are responsible for implementing
each requirement. Thus, they cannot provide the client with clear
arguments on the cost of developing a new feature, and the impact
it may have upon existing features.

Function Point Analysis (FPA) [4] has become widely used to
measure system complexity (size). In FPA, the functionality
provided by a system is modeled as data functions and
transactional functions. Data functions represent the complexity
of the data handled by the IS, while transactional functions
represent the complexity embedded in the processes by which
such data is gathered, handled, and transformed. The information
required to elicit data and transactional functions can be collected
from users early in the development life cycle, and this is
commonly used as a coarse description for system requirements,
in order to support development contracts and service pricing.

Since pricing and contract issues in IS development are
usually related to function point models (data and transactional
functions), traceability links between these models and software
artifacts that take part in their implementation can be useful for
supporting discussions on the impact of a functionality to be
introduced into the system, as well as supporting the maintenance
of a system from an early representation of its requirements.

This paper presents a technique to generate trace links
between function point models and source code elements in a
two-step approach: one to relate data functions to source code and
the other to create relationships between transactional functions
and the source code. The proposed approach requires relatively
low effort on gathering information in that it is semi-automatic,
avoiding a large increase on the total development effort. We have
conducted three case studies to address the feasibility of
generating trace links from FP data and transactional functions,
and produced a prototype to demonstrate how the development
team could access trace links in its own daily-work tool.

This paper is organized in eight sections: the first includes this
introduction; the second is a brief presentation of FPA; the third
details our approach; the fourth presents the case studies; the fifth
presents the prototype; the sixth presents threats to validity; the
seventh presents some related work; we finish in the eighth
section by presenting some conclusions, contributions, limitations
and future work.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
TEFSE’11, May 23, 2011, Waikiki, Honolulu, HI, USA.
Copyright 2011 ACM 978-1-4503-0589-1/11/05... $10.00.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TEFSE’11, May 23, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0589-1/11/05 ...$10.00

10

2. FUNCTION POINT ANALYSIS
One of the first papers about Function Point Analysis (FPA)
referred to its use in productivity measurement and effort
estimation [4]. Over time, it became a widely adopted method to
estimate effort, time, cost, and resources required to conduct an IS
development project, as well as supporting negotiations between
IS development companies and their clients.

FPA estimation is divided into two main phases: calculating
an unadjusted number of function points (UFPs) and applying 14
predefined adjustment factors to calculate the number of adjusted
function points (AFPs). The effort required to build the system
can be derived from the latter. However, to calculate the number
of UFPs, an analyst must address the system in two perspectives:
the data it maintains (data functions) and the transactions that
handle these data (transactional functions). Each data and
transactional function yields a number of UFPs, which are
summed to achieve the total number of UFPs.

Data functions are based on domain concepts, identified and
organized into logically related data groups maintained or queried
by the system. These data groups are further classified as Internal
Logical Files (ILFs), if they are maintained by the system (the
system feeds data into the group or changes the data it maintains),
or External Interface Files (EIFs), if they are maintained by
another system and queried by the current one. Each data group
comprises recognizable subsets of data (RETs) and atomic, non-
repetitive, user-recognizable attributes (DETs). The complexity of
each data group is calculated according to its RETs and DETs and
represented in a three-valued ordinal scale (low, medium, or
high). Finally, the number of UFPs contributed by each data
group is defined based on its complexity.

In the FPA context, transactions are elementary processes that
handle data as it moves across the boundaries of the system.
Processes receiving data from outside the system are classified as
External Inputs (EIs). Processes collecting data maintained by the
system and sending these data to some receiver outside the system
are classified as External Outputs (EOs) or External Inquiries
(EQs), depending on whether they apply complex processing
upon the information before it crosses the border of the system. If
such processing (algebraic formulas, data validation rules,
complex grouping or sorting) is required, the transaction is
classified as an EO; otherwise, it is classified as EQ.

A transaction is characterized by the number of distinct data
groups that it uses (FTRs) and the number of atomic, non-
repetitive attributes (DETs) that it collects from or shows to the
user. The complexity of each transaction is calculated based on its
FTRs and DETs, and represented in a three-valued ordinal scale
(low, medium, or high). As with data functions, transaction
complexity defines the number of UFPs with which it contributes.

A usual function point model describes system data groups by
listing their data subsets and attributes. It also presents the
transactions provided by the system, reporting on their referenced
data groups and field attributes. The effort required to conduct a
software development project is frequently derived from this
model and, as the user requires new functionalities, the model is
updated and a new total effort is calculated. The effort to execute
the required changes is calculated as the difference between the
original effort and the updated one. Thus, FPA is useful both as
the basis for system requirements and for negotiation between the
company and its clients.

3. AN FPA-BASED TRACE LINK

GENERATION TECHNIQUE
This section describes our proposed technique to generate trace
links between FP data and transaction models and source code
modules. Our approach requires the collection of the following
information about the IS under interest:

(a) An FP data model, described as the set of ILFs and EIFs used
by the system, along with their RETs and their DETs. The
current approach does not directly distinguish ILFs and EIFs;

(b) A set of database tables and their fields, is usually collected
from a relational database schema. Our approach is limited to
IS which store data in relational databases;

(c) A manually produced set of trace links between data functions
and database tables, which supports the identification of trace
links between data functions and the source code;

(d) An FP transaction model, described as a set of transactions
provided by the system (including EIs, EOs, and EQs);

(e) A set of test cases to evaluate every transactional function
supported by the system;

(f) A manually produced set of trace links between transactional
functions and test cases, which supports identifying trace links
between transactional functions and the source code;

(g) The system source code as a directory structure of the files
which convey its classes, routines, and scripts. The source
code must be configured so that it can be executed under a
code coverage tool. Thus, an operational environment must be
set to execute the system, including its database and other
resources referenced by the source code;

(h) A selected granularity [5] by which some modules of the
source code will be mapped to data and transactional
functions (e.g. packages, files, classes or lines of code).

Semi-automated traceability approaches usually require an
initial set of trace links in order to discover additional links with
less effort than manual approaches [5]. Our technique uses a
different approach, divided into two steps: a pattern-based
mapping of the data model to the source code which handles data
and an execution-based analysis of the code which supports each
transaction. Nevertheless, as other traceability approaches, the
results of our technique depend on the quality of the input. Figure
1 presents an overview of our proposed technique.

In the first step, the user must map the system’s ILFs to tables in
the database schema. EIFs are not taken into account, since they
represent data stored outside the system database. Afterwards, our
technique searches the code for queries to database tables and
creates trace links between database tables and source code
modules, according to the selected granularity.

Figure 1. Overview of the technique.

11

In the second step, the user must select a set of scenarios that
run each transactional function presented in the transaction model.
A code coverage tool monitors the source code modules are
executed while a test automation tool executes each usage
scenario. By combining this information with a timeline of
scenario execution, we can generate links between the
transactions and the code modules participating in their
implementation.

According to [5], each organization or project team must
define its need for traces at a certain level of detail which can
range from coarse-grained artifacts (e.g. packages, class diagrams)
to fine-grained ones (e.g. individual lines of code, classes,
attributes). Tracing fine-grained artifacts can offer better results,
but it is more expensive and the collective set of trace links are
harder to maintain than traces built for coarse-grained artifacts.
Thus, a cost-benefit relation influences this decision.

The case studies presented in section 4 evaluated whether our
technique could generate trace links from ILFs to source code
modules. However, a few changes in the automatic scripts could
enable processing finer-grained levels. For instance, DETs could
be traced by searching data fields in queries. An important aspect
is the ability of the selected code coverage tool to identify which
modules, methods or source code lines were enacted by each
scenario. Limitations on the code coverage tool influence the level
of detail by which source code can be traced to transactions.

3.1 Data Function Traces
Some differences exist between an FP data model and its
implementation as a relational database. Due to implementation
and performance restrictions, the system relational database may
not directly represent its FP data groups. For instance, FP data
models do not represent table relationships and primary keys,
required by the relational database. Moreover, the database
schema states how data is stored by the system, while the FP data
model states which data is required to allow the system to fulfill
its transactions.

Thus, the database schema is an implementation of an FP data
model. The source code usually references the database schema
through queries and data manipulation commands (INSERT,
DELETE etc.). Our technique uses the system database schema as
a bridge between the FP data model and the source code. An
analyst who knows both the domain area and these models can
manually trace ILFs to the tables composing the database schema.

References to tables are searched in the source code. Trace
links are generated between referenced tables and source code
modules where references were found. The more references exist,
the stronger the relation represented by the trace link is: the
number of references indicates the weight of trace links. This
weight represents how much a table is handled by a source code
module and inversely how much a source code module is
responsible for handling the information stored in that table.

Considering that we have trace links from the FP data model
to the database schema and from the database schema to source
code modules, we apply the property of transitivity in the context
of trace links, leading to what we named indirect trace links
between the FP data model and the source code. The weight of an
indirect trace link is derived by summing weights of all schema-
to-code links which belong to a specific indirect trace link.

3.2 Transactional Function Traces
Usage scenarios (i.e. test cases) can be used to generate trace links
between these scenarios and source code [6]. A code coverage
tool monitors source code modules which are activated while
these scenarios are being executed. According to the ability of the
code coverage tool to monitor the code in different levels of
detail, classes, methods, or even individual lines can be identified.

Our technique applies this testing and monitoring approach in
order to trace transactions to source code. A set of scenarios must
be defined to test every transaction presented as part of an FPA
transaction model. While these scenarios are being executed, a
code coverage tool monitors and records the exact moment when
those source code modules were activated.

Therefore, our technique uses test cases developed to ascertain
the implementation of the system under analysis as a bridge
between FP transactional model and the source code. An analyst
who knows both the domain area and the test cases can manually
trace EIs, EOs and EQs of transactional model to test cases.

We need to record the start and end execution time for each
test case. By analyzing code coverage records, we can identify
which source code modules were enacted during each test case
execution. Trace links are generated between test cases and source
code modules activated during the execution of the test cases. As
with data functions, the more activated lines of code exist, the
stronger the relation represented by the trace link is. The number
of different activated lines of code indicates the weight of trace
links, which represent how much a test case is covered by a source
code module and, inversely, how much a source code module is
responsible for processing that test case.

Considering that we have trace links from the FP transactional
model to test cases and from test cases to source code modules,
we apply the property of transitivity achieving indirect trace links
between the FP transactional model and the source code. The
weight of an indirect trace link is derived by summing weights of
all test cases-to-code links which belong to a specific indirect
trace link.

4. CASE STUDIES
We conducted three case studies to ascertain the feasibility of our
proposed technique. The first case study was limited to FP data
functions traceability while the two following case studies were
applied for both data and transactional functions.

The first case study, described in section 4.1, evaluated the
open-source ERP and CRM Compiere. The second, presented in
section 4.2, evaluated the open-source LMS Moodle. The third,
presented in section 4.3, evaluated PPGI/UNIRIO’s Online
Subscription System. We had access to the source code of each of
these systems.

The choice for open-source systems on the first and second
case studies was made because of the requirement to access their
source code and to allow easy replication of our case studies.
Nevertheless, we are convinced that the evaluation of non open-
source systems is needed to generalize the conclusions concerning
the feasibility of our proposed technique. A step in this way is the
third case study.

12

4.1 Compiere
The initial goal of the case study on Compiere was to observe how
its functionality had been implemented in the source code over
time, based on an FPA point of view. Later, this case study has
led to the development of our proposed technique.

The source code of Compiere was downloaded from its
website in November 7, 2008. We have made a checkout from its
SVN repository, retrieving 5,015 files of which 2,277 were source
code modules in Java. We defined the granularity of source code
traces as a module (single file) for this case study.

We did not find an FP data model describing Compiere. Thus,
the set of its ILFs was obtained by reverse engineering from its
Postgres database creation script. The reverse engineering process
involved identifying tables which seem to represent domain
concepts and aggregate them in logically related groups of data.
The complete database schema contained 465 tables. After
discarding tables which did not represent domain concepts (like
those representing a database error log and conversions units), the
database schema was reduced to a set of 211 relevant tables. By
analyzing table names, we have found 162 ILFs. Each ILF was
manually traced to a set of tables, making up a set of 211 trace
links between the 162 ILFs and the 211 relevant tables.

To relate data functions to source code modules, we selected
only the 1,667 source code modules from the core of the system.
Support modules (like Jakarta ECS and LDAP authentication) and
testing scripts, among others, were discarded. References to tables
which were formerly traced to ILFs in the preceding step were
sought in the selected source code modules. We found 33,523
references to database tables in 700 Java source files. Suppressing
duplicate references between the same table and file, we found
2,608 distinct trace links between 83 tables and the previous 700
files.

We understood that each source code module should have one
ILF that could be considered as the main data handled by the
module. As each ILF was traced to a set of tables, we counted the
number of references to ILFs in each source code module, based
on trace links between tables and modules. The most referenced
ILF of a module was considered as its main ILF. When we found
two or more ILFs as the most referenced ones (both with the same
number of references), one of them was chosen as the main
module based on name and content of the module.

By transitivity, a set of 700 indirect trace links between 76
ILFs and the 700 source code modules was achieved. The 86 ILFs
which were not traced made us rethink the trace links between
ILFs and source code, along with the source code modules which
could be discarded from the reference search process. The
proposed approach was fixed to account for this limitation and
reevaluated in the following case study.

4.2 Moodle
The main goals of the case study on Moodle were to evaluate
solutions to issues faced in the previous case study and to develop
a strategy for generating transactional function trace links.
Furthermore, we applied the technique to a different system – a
step toward its generalization.

The source code of Moodle was downloaded from
SourceForge (http://sourceforge.net) in June 10, 2009. We have
made a checkout from its CVS repository, retrieving 30,960 files

of which 10,170 were source code files in PHP. We defined the
granularity of source code traces as a module for this case study.

We could not find an FP data model describing Moodle. Thus,
the set of its ILFs was obtained by reverse engineering from its
MySQL database schema. The reverse engineering process
involved identifying tables which seemed to represent domain
concepts, aggregating them in logically related groups of data, and
conducting an ad hoc execution of the system to confirm if they
were effectively used by the available functionalities. Testing is
also used by [8] to extract the system’s conceptual model as a
class diagram. The initial set of 198 tables was analyzed, leading
to 28 ILFs. Each ILF was manually traced to a set of tables,
making up a set of 108 trace links between the 28 ILFs and 108
tables. Other 90 tables could not be traced to meaningful ILFs.

Moodle design isolates data handling in a single source code
module that provides a set of generic methods to access database
tables. All other source code modules are supposed to use these
methods to query and update data. Thus, we sought for references
to these methods instead of searching for direct references to data,
identifying the name of the accessed table (one of the parameters
for functions provided by the data access module).

This time we had not discarded modules, considering that
every file which handles a table needs to be traced to it. We found
77,981 references to tables in 1,403 PHP source code modules.
Discarding duplicate references between the same table and
module, we found 4,024 distinct trace links between 192 tables
and the previous 1,403 source code modules.

Next, we evaluated three policies to generate the weight for
the links between ILFs and source code modules: (a) the most
referenced ILF is traced to the module (the same of Compiere);
(b) all referenced tables are traced to the module without weights;
and (c) referenced tables are traced to the modules proportionally
to the number of references.

After evaluating the generated traces for the three policies, we
concluded that the first and the second policies were dominated
by the third. The first incurred in strong loss of links, while the
second was unable to represent how much the table is linked to
the each source code module. We selected the third policy
because it represented trace links for every table and allowed us to
understand that some links were stronger than the others. For this
policy, a set of 2,076 indirect trace links between the 28 ILFs and
1,316 source code modules was achieved. In the end, all ILFs
were traced to source code.

The creation of links to transactional functions began with the
download of another release of Moodle (version 1.9.7) in
February 11, 2010 (we were conducting an exploratory study for
eight months). We retrieved 5,169 files, of which 2,346 were
source code files in PHP.

The reverse engineering of Moodle transactional functions
involved testing the system, looking for transactions offered
though commands available in the end-user interface. Due to the
volume of distinct transactions provided by Moodle, we restricted
our analysis to the user admin subsystem. We found 35
transactional functions in this subsystem. We developed 43 test
cases using Selenium IDE (http://seleniumhq.org/projects/ide/), a
tool which allows the automation of test cases. In addition, each
EI, EO, and EQ was manually traced to a set of test cases, making
up a set of 42 trace links between the 35 transactional functions

13

and 42 test cases. A single non-traced test case, the “Logout”
operation, is lacking because it cannot be considered a
transactional function, since it does not read or change data in
domain tables.

To collect code coverage information while executing the test
cases, we used the XDebug tool (http://www.xdebug.org). This
tool is installed as a module on the web server and identifies every
single line interpreted by the execution of code using a
functionality called function trace. Test cases were executed one
by one while XDebug collected logs with activated files, and
source code lines, and time. At the end of each test case, log files
were moved to a distinct directory. We developed a script to
analyze these logs and extract the number of single (non-repeated)
lines of code executed during each test case. We found 2,698 trace
links between 43 test cases and 252 source code modules. A set of
2,666 indirect trace links between the 35 transactional functions
and 251 source code files was achieved.

4.3 PPGI/UNIRIO’s Online Subscription

System
The main goal of the case study on PPGI/UNIRIO’s Online
Subscription System (further, we will refer to the system as PPGI-
OSS) was to apply the final version of our technique, strictly as
described in Section 3. Furthermore, we applied the technique to a
different system – a step toward its generalization.

The access to PPGI-OSS’s source code was allowed by its
developer. We received it in April 15, 2010, retrieving 67 files, of
which 42 were source code files in PHP and one MySQL database
creation script. We defined the granularity of source code traces
as a module for this case study.

The developer did not produce an FP data model describing
PPGI-OSS. Thus, the ILF set was obtained by reverse engineering
its MySQL database creation script and interviewing the
developer. The reverse engineering process involved identifying
tables that seemed to represent domain concepts, aggregating
them in logically related groups of data, and conducting an ad hoc
execution of the system to confirm if they were effectively
accessed by provided functionalities. The initial set of 8 tables
was grouped into 6 ILFs. Each ILF was manually traced to a set of
tables, making up a set of 8 trace links. All tables were traced to
ILFs.

 References to tables were sought in the source code modules.
We found 51 references to database tables in 11 PHP source code
files. By suppressing duplicate references between the same table
and file, we found 22 distinct trace links between the 8 tables and
the previous 11 files. By transitivity, a set of 20 indirect trace
links between the 6 ILFs and the 11 source code modules was
achieved. In the end, all ILFs were traced to source code.

The creation of links to transactional functions began by
reverse engineering of PPGI-OSS transactional functions. This
process involved executing transactions offered by the system
through commands available in its end-user interface. We found
17 transactional functions and confirmed them by interviewing the
developer. Also, 22 test cases were developed and automated to
run these transactions using Selenium IDE. Each EI, EO, and EQ
was manually traced to a set of test cases, making up a set of 20
trace links between the 17 transactional functions and 20 test
cases. The non-traced test cases – related to “Show home page

(login form)” and “Logout” operations – are lacking because they
cannot be considered transactional functions, since they do not
read or change data in domain tables.

To collect code coverage information while executing the test
cases, we again used the XDebug tool. Test cases were executed
sequentially while XDebug collected logs registering the activated
files and source code lines. At the end of each test case, log files
were moved to a distinct directory. We developed a script to
analyze these logs and extract the number of single (non-repeated)
lines of code executed during each test case. We found 212 trace
links between 22 test cases and 37 files. A set of 175 indirect trace
links between the 17 transactional functions and 36 source code
files were achieved.

4.4 Discussion
Key indicators collected from the two last case studies (Moodle
and PPGI-OSS) are presented in Table 1. Compiere results are not
presented because the first case study used an embryonic version
of the proposed technique and was restricted to analyzing the
system data functions.

Table 1: Case studies summary

Key Indicators Moodle PPGI-OSS

Source codes traced to data functions 1,316 (13%) 11 (26%)

Data functions traced to source code 28 (100%) 6 (100%)

Source codes traced to trans. functions 251 (11%) 36 (86%)

Trans. functions traced to source codes 35 (100%) 17 (100%)

From the former table, we notice that all data and
transactional functions were traced to source code modules, but
just a few source code modules were traced to data functions (in
both case studies) and transactional functions (for Moodle).

Few modules were traced to data functions because both
systems provide a data abstraction layer, that is, a limited number
of source code modules are responsible for collecting data from
the storage system and making these data available for the whole
system. Therefore, only these modules could be traced to data
functions, though many others could be affected by changes in the
structure of the data.

A low percentage of source code modules were traced to
transactional functions on Moodle, in contrast to PPGI-OSS, as
only a few observed transactions provided by Moodle (the user
administration subsystem) were effectively covered by the
available test scenarios. Therefore, the proposed technique
depends heavily on the availability of test scenarios to deliver a
more complete set of trace links.

5. PROTOTYPE
This section presents the FPT Plug-in (Function Point Tracing
Plug-in), the prototype of a traceability tool that attempts to
demonstrate how trace links created by our technique could be
shown in daily-work tools used by the development team.

Potential traceability users include software architects and
developers. Both groups do most of their work through an
Integrated Development Environment (IDE). Our prototype
collects information about a project being developed in such
environment and presents its source code modules and their
relationships with FP data and transactional functions. It indicates
which functions are related to a given source code module and

14

which modules are related to a given function. Our intention was
to improve program comprehension and support maintenance by
providing a way to analyze the source code modules which might
be affected by a change.

The FPT plug-in was developed as an extension of the Eclipse
IDE, a software development environment widely used for Java
programming but also compatible with other languages, such as
C, C++, and PHP. The plug-in user interface comprises two
views: FPT Navigator and FPT File Details.

The FPT Navigator view presents two options – "Data
Functions" and "Transactional Functions” – under which the
functions composing the FP model and their related source code
files are listed. It also presents the "Traced Files” option, which
lists files traced for some data or transactional function, thus
providing a two-way navigation system.

The "Data Functions" option shows the list of all system data
functions. By selecting one of these functions, two options are
made available: (a) the option "All Files" lists all files related to
selected data function; and (b) the list of the transactional
functions related to the selected data function. By selecting one of
these transactional functions the navigator presents a list of source
code modules related to both the selected data and transactional
functions. Modules are presented in descending order, according
to the weight of their trace link to the function under interest.

The "Transactional Function" option shows the list of all
system transactional functions. By selecting one of these
functions, two options are made available: (a) the option "All
Files", which lists all files related to selected transactional
function; and (b) the list of all data functions related to the
selected transactional function. By selecting one of these data
functions, the navigator presents a list of source code modules
related to both the selected transactional and data function. As
with the data functions, modules related to transactional functions
are presented in descending order, according to the weight of their
trace link.

The FPT File Details view has traceability information about
the currently active file in the IDE. All data and transactional
functions related to this file are presented in descending order of
weight of their trace link.

We believe that the plug-in is useful in situations, such as: (a)
a developer trying to understand source code structure and
provided functionality uses the FPT Navigator to find out which
module implements a given functionality; (b) a developer adding
a field in some data function uses the FPT Navigator to identify
source code files which handle this data function; and (c) an
architect investigating performance issues of an entire system
finds a source code module with low performance. FPT File
Details allows realizing that this module is used by several
transactions. By fixing the module issue, the entire system seems
to have recovered normal performance. The conclusion is that
module performance issue was the root cause of the system issue.

The prototype received trace links from Moodle and
PPGI/UNIRIO's Online Subscription System case studies. The ad
hoc usage of FPT Navigator demonstrated that most related files
(considering the decreasing order by weight) usually had similar
names to their related data and transactional functions. In the
same way, FPT File Details demonstrated that most related data
and transactional functions had similar names to their related files.

It seems to demonstrate that the number of references to tables
(for data functions), enacted lines of code (for transactional
functions) and the idea of weighting trace links could help to
improve software development scenario.

6. THREATS TO VALIDITY
Although case studies have been conducted and a prototype was
developed to use information gathered from applying our
proposed technique, there are still threats to its validity, as we
shall discuss in this section.

The case studies have shown that a low percentage of source
code modules were traced to tables. In a multi-tier architecture,
table references cannot be found outside the data access layer.
Thus, our approach misses trace links for source code modules of
other layers, such as business rules and presentation. This
scenario poses difficulties to a more precise identification of
modules which might be affected by changes in data functions.

Although we focus on IS developed using FPA, the systems
used in the proposed case studies were open source and in-house
projects, which did not have FPA models. The lack of real FPA
models is a larger threat for the first and second case studies.
However, in the third case study, we had this issue controlled by
producing an FPA model according to observed transactions and
thereafter validating the model with the system’s sole developer.

Formal and automated test cases are needed to ensure quality
on high scale and complex systems. Our technique was produced
to enable these systems to achieve traceability benefits only if they
have high test coverage. Having a large set of requirement-based
test scenarios is a concern for the practical use of our proposal.
While common sense dictates that having such test scenarios is
healthy for a software development project, we acknowledge that
many IS project might be deployed without such artifacts.

Finally, the first stages of the proposed approach rely heavily
on human input. The subsequent process combines these data with
information collected through static and dynamically analysis.
Therefore, final results are sensible to mistakes in the early
provided input. This includes issues such as incorrect modeling,
outdated requirements, and low code coverage of test scenarios.

7. RELATED WORK
Information Retrieval (IR) is used by [2] to discover traceability
links between free-text documentation produced during
development and maintenance cycle and the source code.
Documentation is analyzed by the following steps: (a) letter
transformation, where all letters in a document are converted to
lower case; (b) stop-word removal, where articles, punctuation,
and other irrelevant characters are removed; and (c)
morphological analysis, where plurals are converted to singulars
and conjugated verbs to infinitives. Source code is analyzed by
the following steps: (a) identifier extraction, where identifiers are
extracted from the code; (b) identifier separation, where
identifiers composed of two or more words are split into separate
words; and (c) text normalization, where the three steps for
documentation are applied upon the former identifiers. Hereafter,
they are passed through indexers and are classified. The work
tested two IR models for classification: probabilistic and vector
space models. It forms a theoretical basis to our work as it
highlights traceability benefits. In addition, our work parses
source code to recover traceability links.

15

LeanArt tool [7] generates trace links between use case
diagrams elements (actors and use cases) and source code
elements (methods and variables). After some links are inserted
manually, a machine-learning algorithm compares the names of
use cases and source code elements. In addition, a second
machine-learning algorithm compares and follows the values of
variables during runtime. These algorithms discover new trace
links and detect false ones. The goal of generating links between
source code elements and use cases (somewhat related to
transactional functions in IS, as both represent data handling
processes) renders this approach related to the one presented in
this paper.

TraceAnalyzer tool [6] uses information generated from usage
scenarios (i.e. test cases) to generate traceability links between: (a)
scenarios and source code; (b) model (e.g. class diagrams)
elements and source code; (c) scenarios and model elements; and
(d) among model elements. The first activity is hypothesizing,
where some links must be manually identified from
documentation. The second activity is atomizing, where scenarios
are monitored by a code coverage tool and a set of links is built,
namely a footprint graph. The third activity is generalizing, where
the graph is traversed from its leaves to their parents. The fourth
activity is refining, where the graph is traversed from its root to its
leaves. These major activities yield the final set of trace links.
This technique, known as Scenario-Based approach, forms the
basis for our transactional function traceability, which also uses
information from code coverage tools.

8. CONCLUSIONS
This paper presented an approach to generate trace links between
function points and source code. These links connect low-level
implementation to requirements, supporting program
comprehension, maintenance, and impact analysis. The proposed
approach comprises two steps, aligned to the division of a
function-point model: data function traceability and transactional
function traceability. Its feasibility was tested through three case
studies and the potential for using the produced trace links was
addressed by developing a tool prototype supporting the
maintenance of a software project within a well-known
programming environment.

Contributions of this work include: (a) definition and
development of a technique to generate trace links between a
function point model and the source code; (b) definition,
planning, execution, and analysis of three case studies using three
software systems of distinct sizes and origins and written in two
different programming languages; and (c) development of a tool
prototype using results of the trace link generation technique.

Some limitations of the proposed approach include: (a) data-
access abstraction layers (such as web services, stored procedures,
views, or object-relational mappings) can cause deviations on data
functions traceability by obscuring table references in the code;
(b) data from external systems is not traced, since the current
definition of the proposed technique does not support EIFs; (c)
the quality of trace links directly depends on the quality of
manually provided input, such as the mapping between relational

tables and data groups; and (d) the need for manual input may be
prohibitive, specially on large scale systems.

Future research may address some of these limitations by (a)
performing case studies in a large set of systems, preferably with
real FP models; (b) evaluating precision and recall metrics in
comparison with other traceability techniques (c) assuring that
traceability benefits are actually achieved through technique trace
links; (d) evaluating the effectiveness of counting references to
tables for gathering references to data functions; and (e) reducing
the dependence on manually-provided input.

9. ACKNOWLEDGEMENTS
This work is funded by CNPq (Conselho Nacional de

Desenvolvimento Científico e Tecnológico) and FAPERJ
(Fundação Carlos Chagas Filho de Amparo à Pesquisa do

Estado do Rio de Janeiro). The authors would like to thank the
agencies for their support.

10. REFERENCES
[1] Gotel, O. C. Z., and Finkelstein, C. W. 1994. An analysis of

the requirements traceability problem. In Proc. of the IEEE

Int'l Conference on Requirements Engineering (ICRE'94).
IEEE Computer Society Press, 94-101.

[2] Antoniol, G., Canfora, A., Casazza, G., De Lucia, A., and
Merlo, E. 2002. Recovering Traceability Links between
Code and Documentation. IEEE Trans. Softw. Eng. 28, 10
(Oct. 2002), 970-983.

[3] Kannenberg, A., and Saiedian, H. 2009. Why Software
Requirements Traceability Remains a Challenge. The

Journal of Defense Softw. Eng. 22, 5 (Jul/Ago. 2009), 14-19.

[4] Albrecht, A. J. 1979. Measuring application development
productivity. In Proc. of Joint Share, Guide and IBM

Application Development Symposium (Monterey, CA, USA,
Oct. 1979). IBM Press. 83-92.

[5] Egyed, A., Biffl, S., Heindl, M., and Grünbacher, P. 2005. A
value-based approach for understanding cost-benefit trade-
offs during automated software traceability. In Proc. of the

3rd Int'l Workshop on Traceability in Emerging Forms of

Software Engineering (TEFSE '05). ACM, NY, USA, 2-7.

[6] Egyed, A. (2001). A scenario-driven approach to traceability.
In Proc. of the 23rd Int'l Conference on Software

Engineering (ICSE '01). IEEE Computer Society,
Washington, DC, USA, 123-132.

[7] Grechanik, M., McKinley, K. S., and Perry, D. E. 2007.
Recovering and using use-case-diagram-to-source-code
traceability links. In Proc. of the 6th Joint Meeting of the

European Software Engineering Conference and the ACM

SIGSOFT Symposium on the Foundations of Software

Engineering (ESEC-FSE '07). ACM, NY, USA, 95-104.

[8] Tan, H. B. K., Zhao, Y., and Zhang, H. 2009. Conceptual
Data Model-Based Software Size Estimation for Information
Systems. ACM Trans. Softw. Eng. Methodol. 19, 2, Article 4
(Oct. 2009), 37 pages.

16

