
Source Code Indexing for Automated Tracing
Anas Mahmoud

Computer Science and Engineering
Mississippi State University
Mississippi State, MS 39762

amm560@msstate.edu

Nan Niu
 Computer Science and Engineering

Mississippi State University
Mississippi State, MS 39762

niu@cse.msstate.edu

ABSTRACT

Requirements-to-source-code traceability employs information
retrieval (IR) methods to automatically link requirements to the
source code that implements them. A crucial step in this process is
indexing, where partial and important information from the
software artifacts is converted into a representation that is
compatible with the underlying IR model. Source code demands
special attention in the indexing process. In this paper, we
investigate source code indexing for supporting automatic
traceability. We introduce a feature diagram that captures the key
components and their relationships in the domain of source code
indexing. We then present an experiment to examine the features
of the diagram and their dependencies. Results show that utilizing
comments has a significant effect on traceability link generation,
and stemming is required when comments are considered.

Categories and Subject Descriptors
D.2 [Software Engineering]; H.3.1 [Information Systems]:
Content Analysis and Indexing

General Terms
Experimentation

Keywords
Traceability, indexing, source code analysis, information retrieval

1. INTRODUCTION
Requirements-to-source-code traceability, automated through
information retrieval (IR) methods, has been proven beneficial in
several software engineering tasks such as verification and
validation, software reuse, and change impact analysis [1-3]. The
process consists of three steps: indexing, retrieval and
presentation. In the indexing step, input artifacts, including source
code and requirements documentation, are converted into more
compact forms that are compatible with the underlying IR model.
These forms are known as profiles [4]. In the retrieval step, IR
algorithms are used to match a trace query profile with source
code profiles and identify a set of candidate links in response to
the query. In the presentation step, retrieved candidate links are
presented to the human analyst for further validation.

Recovering traceability links between source code and textual
documents via IR methods has been tackled in the literature. For
example, Antoniol et al. [1] used tf-idf (a vector space IR model)
and unigram approximation (a probabilistic IR model) to establish
traceability links between object-oriented code and functional
requirements, and Marcus and Maletic [2] exploited latent
semantic indexing (LSI) for automatic documentation-to-source-
code traceability links recovery. The research is primarily
concerned with the generation of candidate traceability links with
only little attention paid to indexing.

In software engineering research, source code indexing is usually
employed in two main areas: code retrieval (searching) and code
comprehension (understanding). The indexing process itself
depends on the task at hand. For example, in code comprehension
tasks, such as code summarization [5] and code clustering [6],
indexing is used to convert source code into more understandable
forms that help developers maintain their code [7]. For IR-related
tasks, indexing is used to convert source code into more compact
forms, i.e., profiles. A profile is a short-form description of an
artifact, is easier to manipulate than the entire artifact, and plays
the role of a surrogate at the retrieval stage [4].

In this paper, we investigate source code indexing for automated
tracing. We identify the main aspects of the indexing process by
reviewing the literature, and then present the results in a feature
diagram [8]. The feature diagram captures the common and
variable components and their dependencies in the source code
indexing domain, and organizes the knowledge in a tree-like
structure. We also conduct an experiment, using two different
datasets: eTour [9] and iTrust [10], to examine the features of the
diagram and their dependencies. We attempt to answer the
question: Which aspects of the source code and which indexing
practices have a significant effect on traceability?

Section 2 of this paper provides background information. Section
3 presents a feature diagram about source code indexing. Section
4 describes the experiment conducted to examine the feature
diagram. Section 5 presents and discusses the results. Section 6
describes the threats to validity. And finally, Section 7 concludes
the paper and suggests potential research directions.

2. BACKGROUND
Document indexing is defined as the task of assigning terms to
documents for retrieval purposes [11]. The process consists of two
generic steps: extracting the subject matter of a document, and
expressing the subject matter in index terms to facilitate subject
retrieval [12]. Search engines, which search large repositories of
textual documents such as digital libraries or the Web, rely
heavily on indexing to increase their retrieval efficiency and
effectiveness.

Several techniques from linguistics, natural language processing,
informatics and mathematics are used to index free text

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICSE'11, May 21-28, 2011, Waikiki, Honolulu, HI, USA.
Copyright 2011 ACM 978-1-4503-0589-1/11/05... $10.00.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TEFSE’11, May 23, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0589-1/11/05 ...$10.00

3

documents [13]. Although source code can be treated as plan text,
the restricted nature of programming languages limits the ability
of generalized natural language indexing techniques to perform
well when applied to source code. The characteristics of source
code that make its indexing a challenging task include:

• Formality: Source code is highly structured.
Developers have to follow strict syntactic rules in order
to produce a working code.

• Naming style: There is no guarantee that developers will
use genuine words in their code, or follow a well-
defined naming convention throughout the project life
cycle. In most cases, developers use a combination of
words and abbreviations to name their identifiers [14].

• Reserved words: The majority of the words in source
code are programming language reserved words that
have no direct relation to the problem domain.

• Comments: Comments have a different nature from
source code and need to be processed separately [7].

In the literature, source code indexing is often described as a
process that takes several steps. The input of the process is a
source code document, and the output is a compact content
descriptor, or a profile, which is usually represented as keywords-
components matrix or a vector space model [15]. The process
starts by extracting tokens from source code. Lexical analysis is
then applied to extract genuine words from these tokens. Stop
words are filtered out. Finally, stemming is used to remove
morphological and inflexion endings [5, 16-18]. Next, we review
each of these steps in more detail.

2.1 Information Extraction
Domain knowledge and code concepts are embedded in the
linguistic aspects of source code including identifiers names and
comments [14, 19, 20]. Code identifiers, such as names of classes,
attributes, methods, and parameters, capture developers’
understanding of their tasks. The underlying assumption is that
developers name their identifiers in a way that is related to the
functionality of source code, and not completely at random [4].

For example, an identifier named user_id is expected to
represent a user’s identification information.

The other source of knowledge in the source code is the
comments. Comments serve as the internal documentation of the
code. In the literature, utilization of comments in code indexing
has generated some debate. The argument that supports using
comments is based on the fact that programmers tend to focus on
the functionality of the code with only little attention paid to its
style, and so, there is no guarantee that the naming style used by
the developers will be good enough to capture the domain
concepts [21]. However, comments are commonly written in a
language similar to that of the external documentation.
Developers add comments to explain and communicate their code.
Therefore, comments are expected to carry valuable information
that should not go to waste [4].

Argument against using comments is also supported by several
observations, such as not all source code contains comments,
quality of comments and their levels of abstraction vary widely
among software systems, even sometimes within the same system.
Comments might be outdated or even redundant to the source

code [22]. As an example, in the following line of code,
comments add no value to the code concept:

Increment++; //incrementing by 1

In the literature, the benefits of utilizing comments have been
stated clearly in domains like code comprehension and software
reuse. For example, in their program comprehension study, Vinz
and Etzkron suggest that combining comments with source code
allows for much deeper understanding of source code than is
possible using either code or comments/identifiers alone [7]. Also,
Takang et al. reported that commented programs are more
understandable than non-commented programs [23]. In [24],
Etzkorn and Davis introduced Patricia, a system that uses
heuristic methods to identify reusable software components
through understanding comments and identifiers. Similarly,
CodeBroker utilizes knowledge from comments and code
identifiers to find software components that can be reused [25].

In the traceability literature, however, there is no consensus on
whether to use the comments or not. Antoniol et al., in their study
of tracing object-oriented code to functional requirements, did not
include comments as part of the analysis [1]. On the contrary,
Marcus and Maletic utilized comments in addition to the source
code to recover traceability links between documents and source
code via LSI [2]. An interesting finding in their study is that with
almost no comments in the source code, LSI performed at least as
well as the other methods [2].

Finally, the non-linguistic aspects of source code, such as the
inheritance relations, can also be utilized as potential sources of
information. Utilizing the non-linguistic aspects is beyond the
scope of this paper.

2.2 Lexical Analysis
Lexical analysis is used to extract meaningful words from code
tokens. A “token” is defined to be any alphabetical sequence of
characters separated by non-alphabetical characters or by letter
capitalization [26]. It is a common practice to define identifiers by
concatenating two or more words [1]. Such identifiers can be
broken down into units based on commonly used coding
standards, such as the location of the capital letter in the identifier

name (“firstName � first name”) or any other separators

such as the underscore (“_”) or the dash (“-“) character.

Abbreviations are also commonly used by programmers to name
identifiers [14]. Domain specific dictionaries or lookup tables can
be used to expand abbreviations to the constituent words. For

example: hsptlRcrd � hsptl rcrd � hospital record.

2.3 Filtering
The goal of indexing in IR is to generate a set of index terms that
achieve the best performance with IR methods. Stop words are
any words that are irrelevant to the code concept. Such words
carry a very low information value and can affect the retrieval
process negatively [15]. We identify four types of stop words that
are usually filtered out of the code profiles.

• Generic stop words: stop words that are used in natural
language, such as (and, but, the). A list of the most
common stop words in English can be found in [27].

• Programming language specific stop words: the set of
keywords reserved by the programming language, such

as (integer, string, class, static). These words
have no direct relation to software features.

4

Figure 1. A feature diagram for source code indexing

• Non-textual tokens: set of language operators and
special characters which are used to perform certain

functions, such as (+,-, %, @).

• Other stop words: Sometimes developers include some
tokens in their comments that are used throughout the
project as references, such as (Author, Param, Date,

Copyright notice or license terms). These tokens have
no information value and can be removed.

2.4 Stemming
Stemming is the process of reducing a word to its root. It is a
commonly used IR technique to reduce required resources by only
keeping one representation for each word. Stemming enhances the
matching rate by reducing terms with the same meaning into a
single term, therefore, improving the effectiveness and the
efficiency of the retrieval system [28].

Several stemming approaches have been applied in IR research.
Among these, rule-based stemming is one of the most popular.
Rule-based stemming uses a large number of language-specific
rules to reduce words to their canonical morphological
representations. Porter algorithm [29] is one of the most employed
rule-based stemmers in IR research.

Rule-based stemming is simple to implement and maintain, and
has a modest computational cost. However, its quality depends
highly on the set of rules applied. Also, its performance may
downgrade when dealing with irregular cases such as “eat” and
“ate”. To overcome this problem, a dictionary-based approach is
sometimes used. This approach mainly involves maintaining
known morphological word roots that exist as real words in a
lookup table. Krovetz’s stemmer [30] is an example of a
dictionary-based English stemmer where potential root forms are
contained in the dictionary.

The use of stemming in IR-related tasks does not come without
risk. It has been observed that as words get stemmed they lose an
important part of their meaning. This leads to information loss
that can have a negative effect on retrieval precision [28]. This
risk becomes more obvious in free text retrieval, where free
vocabularies and grammars are used to form sentences and give
them their logical meanings. But, is this the case in source code?
It has actually been observed that code identifiers and comments
are usually expressed in a simplified form of the natural language,
with a smaller vocabulary set and simplified grammar [31].
Etzkorn and Davis [24] studied several software packages and
found that around 83% of the comments written in sentence form
are in the present tense, and around 78% of identifiers names are
noun-related. These observations raise questions concerning the
effect of using stemming when indexing source code for
traceability recovery.

3. FEATURE DIAGRAM
Figure 1 shows a feature diagram that is a result of our analysis of
the source code indexing domain. Our domain analysis is
concerned with identifying the variabilities and commonalities of
approaches in the code indexing domain, thereby developing and
organizing an information infrastructure to support knowledge
reuse. A feature diagram is a hierarchy of common and variable
features characterizing the set of instances within a domain. It
helps in determining the scope of the domain and provides an
external view that the stakeholders can understand and
communicate easily [8]. In our case, the feature diagram provides
a taxonomy and representation of design choices for approaches
dealing with code indexing for traceability.

Figure 1 depicts a feature diagram we use as a basis for our
discussion. It is important to note that we do not aim for this
domain characterization to be immune from change. In fact, we
expect this knowledge representation to evolve as our

Source Code Indexing

Lexical Analysis

Splitting Abbreviation

Optional

Mandatory

Feature

Example
Alternative

Information Extraction

Non-linguistic

Code Identifiers Comments

Linguistic

OO Relations

Filtering

Linguistic Reserved Non-Textual Others

Porter Krovetz

Stemming

Rule-Based Dictionary-Based

5

understanding of code indexing matures. The experiment we
describe in the next section is an attempt to further our
understanding empirically. Our main goal here is to show the vast
range of available choices as represented by the current code
indexing approaches from a reuse perspective.

Figure 1 follows the notations defined in [8]. The features
(denoted by the boxes) of the concept source code indexing are
described, which is located at the top of the feature diagram. The
boxes directly connected to source code indexing are the direct
sub-features or sub-steps. The little circles at the edges connecting
the features define the semantics of the edge. A filled circle means
mandatory. Thus, every code indexing shall perform information

extraction, lexical analysis, and filtering. Because whether to
include comments and to perform stemming have generated some
debate in the literature, they are identified as optional features
currently (denoted by the outlined circle at the edge). Alternative
features means an exclusive-or choice, so when stemming is
performed in practice, a rule-based or dictionary-based stemmer is
applied.

4. EXPERIMENTAL DESIGN

Experimentally validating all the features in a feature diagram and
identifying all their possible dependencies can be tedious [32]. In
our experiment, we chose comments and stemming as our
independent variables as they were marked as optional features in
Figure 1. We attempt to answer the questions: Should comments
be considered when tracing source code? Is stemming required?

4.1 Datasets and Variables
We used two datasets in our experiment: eTour and iTrust. eTour
is an electronic touristic guide developed by final year students at
the University of Salerno (Italy) [9]. iTrust is a medical
application, developed by software engineering students at North
Carolina State University (USA), which provides patients with a
means to keep up with their medical history and records and to
communicate with their doctors [10]. Table 1 shows the
characteristic of each dataset. The table shows the size of the
system in terms of lines of source code (LOC), lines of comments
(COM), the number of use cases (UCs), the number of source
code classes (CCs) and number of correct links between use cases
and code classes. Traceability links were provided in both
datasets’ documentation [9, 10].

Table 1. Experiment datasets

 LOC COM UCs CCs Links

eTour 17.5K 7.5K 58 116 394

iTrust 18.3K 6.3K 38 226 314

As mentioned earlier, our independent variables are comments
and stemming. We used Porter stemmer [29] for its computational
efficiency. Our dependent variable focuses on the quality of the
automatically generated candidate requirements-to-source-code
traceability links. For that, we used well-known IR metrics:
precision and recall [15]. Recall (R) is a coverage measure and
refers to the proportion of relevant links that are retrieved.
Precision (P) is an accuracy measure and refers to the proportion
of retrieved links that are relevant. In the traceability literature, the
automatic trace generation approaches have emphasized recall
over precision, i.e., it is essential to automatically retrieve close to

100% of the related artifacts. The assumption is that it would be
easier for human analysts to discard the incorrect traceability links
than to discover the missing links. To emphasize the recall, we
use the F2 measure, which weights recall twice as much as
precision. The general Fβ is described as:

�� � �1 � �	
 · �� ·

��	 · � �

The controlled variables in our experiment include the Porter
stemmer, a list of stop words [27] and reserved programming
language keywords, and the vector space IR model tf-idf.
Formally, if Q and W are two artifacts’ profiles in the vector
space, then their similarity is measured as:

� � ∑ �� · ������
�∑ ��	���� · ∑ ��	����

where wi = tfi(f) · idfi, qi = tfi(q) · idfi. tfi(f) and tfi(q) are term
frequency of termi in Q and W respectively. idfi is the inverse
document frequency, and is computed as idfi = log2(t/dfi), where t
is the total number of profiles in the corpus and dfi is the number
of profiles in which termi occurs. tf-idf is one of the most
commonly used IR methods in the automated tracing literature,
e.g., [1, 3]. Its performance is comparable to other models, such
as latent semantic analysis [2] and probabilistic networks [33].

4.2 Experimental Settings
To answer our research questions, we identify four experimental
settings with all the possible “comments” and “stemming”
combinations. We control the rest of the features shown in Figure
1 for their effect. These settings are summarized in Table 2: a tick
(√) indicates the feature is selected; a cross (×) indicates otherwise.

Table 2. Experiment settings

Case
Information Extraction

Stemming
Lexical

Analysis
Filtering

Code Comments

C √ × × √ √

CS √ × √ √ √

CC √ √ × √ √

CCS √ √ √ √ √

Base case analysis (C)

The base case in our experiment includes indexing source code
only. Code identifiers are extracted and lexically processed, stop
words are filtered out, no comments are considered and no
stemming is performed. This case represents a reference point for
comparing other case’s performance.

Stemming the source code (CS)

To investigate the effect of stemming source code, all source code
profiles generated in the base case are stemmed using Porter’s
algorithm.

Considering comments (CC)

In this case, source code in our datasets is indexed with
comments. The comments, in addition to the code identifiers, are
extracted and lexically processed. All irrelevant stop words are
removed and no stemming is performed.

Stemming comments (CCS)

In the last case, all CC profiles from the previous case are
stemmed using Porter’s algorithm.

6

(a) Boxplots of recall (eTour) (b) Boxplots of precision (eTour) (c) Boxplots of F2 measure (eTour)

(d) Boxplots of recall (iTrust) (e) Boxplots of precision (iTrust) (f) Boxplots of F2 measure (iTrust)

Figure 3. Descriptive statistics for the quality of automatically generated traceability links

Figure 2. The experiment prototype

4.3 Tool Support
A prototype was implemented to carry out the experimental
analysis in this paper. Figure 2 shows a screenshot of the tool. The
prototype has two main functions: a code indexer and a
requirements-to-source-code tracer. The code indexer uses regular
expressions to match and capture identifiers and comments in a
source code file. Porter algorithm is used to perform stemming,
and generic and programming language specific stop words lists
are provided to filter out irrelevant terms. The prototype also has a
control panel to allow the user to control the settings of the
indexing process, such as whether to include comments or to do
stemming. After performing indexing, all the generated profiles
are stored in the artifacts database to be used later in the tracing
process. For each dataset, we traced all the requirements (use

cases) to code classes. Tracing is performed by tf-idf. The gold
standards from the project repositories [9, 10] are used to evaluate
the quality of the automatically generated traceability links.

Table 3. ANOVA results for traceability link quality

(a) eTour

Experiment

Settings

Recall Precision F2

F Sig F Sig F Sig

C x CS 56.267 .057 .663 .428 .004 .949

C x CC 80.83 .000 5.71 .019 21.06 .000

CC x CCS 19.267 .000 3.371 .151 3.17 .083

(b) iTrust

Experiment

Settings

Recall Precision F2

F Sig F Sig F Sig

C x CS 1.00 .325 2.076 .161 1.181 .301

C x CC 9.212 .005 11.260 .002 22.828 .000

CC x CCS 6.82 .014 3.36 .060 7.083 .047

5. RESULTS AND DISCUSSION
This section presents the data collected during the experiment and
our quantitative data analysis. We reported descriptive statistics in
boxplot and inferential statistics via ANOVA (analysis of
variance) [34]. A boxplot reveals much about the data: its
dispersion, its center, and how skewed the data is. Side-by-side
boxplots quickly illustrate the relationships of these characteristics
for multiple data distributions. Figure 3 shows the boxplots that

C CS CC CCS

.00

0

.20

.40

.60

.80

1.0

C CS CC CCS

.00

0

.20

.40

.60

.80

1.0

C CS CC CCS

.00

0

.10

.20

.30

.40

C CS CC CCS

.00

0

.20

.40

.60

.80

1.0

.00

0

.20

.40

.60

.80

1.0

C CS CC CCS C CS CC CCS

.00

0

.20

.40

.60

.80

1.0

7

describe the quality of automatically generated traceability links
under our experimental settings. ANOVA is a collection of
statistical models and procedures in which the observed variance
is partitioned into components due to different explanatory

variables. We used the 0.05 alpha level (α=0.05) to test the

significance of difference among our experimental settings. All
results were observed at a 70% threshold, a widely used heuristic
that achieves an acceptable compromise between precision and
recall [35]. Under this threshold, only the top 70% of the ranked
candidate links were considered in the analysis; the remaining
30% were ignored. Table 3 shows the ANOVA results for
traceability link quality.

5.1 Should Comments Be Indexed?
To assess the effect of indexing comments on the generated links
quality, all use cases in both datasets were traced to the CC
profiles. The performance, in terms of recall, precision, and F2,
was compared to the base case performance (C), where no
comments were considered.

Analysis shows that considering comments in the indexing
process has a significant effect on the retrieval effectiveness. In
both datasets, the recall, precision, and the F2 measure were
improved significantly. Take recall as an example: in Figure 3a,
there is a significant shift of the median between the C and CC
boxes.

5.2 Should Stemming Be Performed?
Two cases were considered to test the effect of stemming on
traceability link quality. In the first case, all use cases in both
systems were traced to the stemmed source code profiles (CS).
The goal was to test the effect of stemming source code identifiers
on the results. The performance was compared to the base case
(C) performance. Using analysis of variance, no significant
difference was detected in terms of recall, precision, and F2 (CS =
C). This leads to the conclusion that if only source code is
considered in the indexing process, then no stemming is required.

In the second case, comments profiles were stemmed (CCS). The
results were compared to the CC (unstemmed comments) case.
The analysis of variance shows that stemming comments has
improved the recall significantly in both datasets (CCSRecall >
CCRecall). However, the average precision was affected negatively
for the eTour dataset, and showed no significant improvement for
the iTrust dataset. The negative effect on the precision could be
that stemming causes loss of information [28], which results in
retrieving more irrelevant links. The effect on F2 was statistically
significant in iTrust only.

The analysis shows that, for both datasets, when stemming is
applied to comments, it improves the recall significantly.
However, if only the code is to be used (for example in cases
where the code is not commented), then stemming is unnecessary.
As mentioned earlier, developers do not use fancy language in
naming their identifiers; they usually stick to the base form of the
word, which limits the effect of stemming when dealing with
source code identifiers. However, comments are usually written
with more freedom and in complete sentences. Even though
simplified grammars are usually used, stemming comments is still
able to improve the recall. To further confirm these findings, we
observed the percentage of terms affected by stemming in both
datasets. We found that the percentage of comments terms
affected by stemming was 15% and 23% in eTour and iTrust
respectively. However, the percentage of code terms affected by

stemming was only 4.2% and 4.7% in eTour and iTrust
respectively.

5.3 Summary
To summarize our findings, we refer to the feature diagram
presented in Figure 1. We chose to examine the optional features
“comments” and “stemming” since their application in source
code indexing has generated some debate. In the traceability
literature in particular, it is not uncommon to exclude comments
when source code is indexed, e.g., [1]. Even if comments are
included, its effect seems only marginal [2]. The results of our
experiment show a strong tendency of including comments in the
code indexing process.

As for stemming, we would still keep it an optional feature.
However, we would add a “requires” dependency link from
“comments” to “stemming” in the feature diagram. This indicates
that if comments are considered, then stemming is required. In
fact, whether to perform stemming or not is a tradeoff between
recall and precision. In cases where recall is favored over
precision, the recommendation is to use stemming when the
decline in precision is not statistically significant [28].

6. THREATS TO VALIDITY
Several factors can affect the validity of our study. As for
construct validity [34], we feel that the independent variables
(“comments” and “stemming”) and dependent variables
(precision, recall, and F2) accurately measure the concepts they
purport to measure: variabilities in the code indexing process for
the independent variables, and quality of automatically generated
traceability links for the dependent variables. To address internal
validity [34], we use a 2x2 factorial design (cf. Table 2) to
consider all the combinations of the two independent variables
while keeping the configuration of the remaining factors
unchanged across the settings.

The subject systems and the controlled variables in our
experiment can pose threats to external validity [34]. In particular,
the results of this study might not generalize beyond the object-
oriented software systems, the requirements-to-source-code
traceability, the tf-idf retrieval method, the Porter stemmer and the
lists of stop words employed, etc. Several strategies are used in
our experiment to help mitigate these threats. First, we choose a
representative stemmer and stop word lists to experiment, so that
the results are informative about the experiences of the typical
situation. Second, extensive empirical studies have shown that the
quality of automatically generated traceability links is almost
equivalent, independent of the underlying IR method [36].
Therefore we expect that our results will hold even though
different IR models are employed. Third, we experiment two
midsize datasets, eTour and iTrust, from two different domains,
and find converging results. This helps generalize our findings to
other application domains. However, both eTour and iTrust were
developed by university students and may not be representative of
a program written by industrial professionals. It is therefore
unknown if the results will generalize to other software systems,
other application domains, or larger systems.

7. CONCLUSION
In this paper, we have tackled the problem of indexing source
code for supporting requirements-to-source-code traceability link
generation. We introduced a feature diagram to describe the
indexing process, and conducted an experiment using two
datasets, eTour and iTrust, to examine some of the diagram

8

features and their dependencies. The results showed that
considering comments in the indexing process helps improve the
traceability link quality significantly. Stemming was also found
useful when comments were considered. However, if comments
were ignored then the overhead of stemming is unnecessary.

The findings of our experiment emphasize the importance of
adopting a good naming convention while writing code.
Meaningless names or abbreviations cause low similarity between
requirements and source code. The results also emphasize the
importance of considering comments. Commented code is not
only more understandable, but also easier to be traced. Future
work for this study will focus on validating other aspects and
levels of the feature diagram using large-scale industrial datasets.

8. REFERENCES
[1] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E.

Merlo, “Recovering Traceability Links between Code and
Documentation”, TSE, 28(10): 970-983, 2002.

[2] A. Marcus and J. I. Maletic, “Recovering documentation-to-
source-code traceability links using latent semantic
indexing”, ICSE, pp. 125-135, 2003.

[3] J. H. Hayes, A. Dekhtyar, and S. K.Sundaram, “Advancing
Candidate Link Generation for Requirements Tracing: The
Study of Methods”, TSE, 32(1): 4-19, 2006.

[4] Y. S. Maarek, D. M. Berry, and G. E. Kaiser, “An
information retrieval approach for automatically constructing
software libraries”, TSE, 17(8): 800-813, 1991.

[5] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus,
"Supporting Program Comprehension with Source Code
Summarization", ICSE - NIER Track, pp. 223-226, 2010.

[6] A. Kuhn, S. Ducasse, and T. Gírba, “Semantic clustering:
identifying topics in source code”, IST, 49(3): 230-243, 2007.

[7] B. L. Vinz and L. H. Etzkorn, “Improving program
comprehension by combining code understanding with
comment understanding”, KBS, 21(8): 813-825, 2008.

[8] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S.
Peterson, “Feature-oriented domain analysis (FODA)
feasibility study”, Technical Report CMU/SEI-90-TR-21,
Carnegie Mellon University, 1990.

[9] eTour, http://www.cs.wm.edu/semeru/tefse2011/.

[10] iTrust, http://agile.csc.ncsu.edu/iTrust/wiki/doku.php.

[11] N. Fuhr and C. Buckley, “A probabilistic learning approach
for document indexing”, TOIS, 9(3): 223-248, 1991.

[12] J. E. Mai, “Analysis in indexing: document and domain
centered approaches”, IJPM, 41(3): 599-611, 2005.

[13] G. Salton and M. E. Lesk, “Computer evaluation of indexing
and text processing”, Journal of the ACM, 15(1): 8-36, 1968.

[14] D. Lawrie, H. Feild, and D. Binkley, “Extracting Meaning
from Abbreviated Identifiers”, SCAM, pp. 213-222, 2007.

[15] C. D. Manning, P. Raghavan, and H. Schutze, An

Introduction to Information Retrieval, Cambridge University
Press, Cambridge, England, 2008.

[16] A. Michail and D. Notkin, “Assessing software libraries by
browsing similar classes, functions and relationships”, ICSE,
pp. 463-472, 1999.

[17] L. Cerulo, “On the Use of Process Trails to Understand
Software Development”, Ph.D. Thesis, Università Degli
Studi Del Sannio, Italy, 2006.

[18] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic, “An
Information Retrieval Approach to Concept Location in
Source Code”, WCRE, pp. 214-223, 2004.

[19] N. Anquetil and T. Lethbridge, “Assessing the relevance of
identifier names in a legacy software system”, CASCON, pp.
4-14, 1998.

[20] A. Marcus and D. Poshyvanyk, “The Conceptual Cohesion
of Classes”, ICSM, pp.133-142, 2005.

[21] H. M. Sneed, “Object-Oriented COBOL Re-cycling”,
WCRE, pp. 169-178, 1996.

[22] S. Kawaguchi, P. K. Garg, M. Matsushita, and K. Inoue,
“MUDABlue: an automatic categorization system for open
source repositories”, JSS, 79(7): 939-953, 2006.

[23] A. Takang, P. Grubb, R. Macredie, “The effects of comments
and identifier names on program comprehensibility: an
experimental investigation”, JPL, 4(3): 143–167, 1996.

[24] L. H. Etzkorn and C. G. Davis, “Automatically Identifying
Reusable OO Legacy Code”, Computer, 30(10): 66-71, 1997.

[25] Y. Ye and G. Fischer, “Reuse-Conducive Development
Environments”, ASE, 12(2): 199-235, 2005.

[26] S. Ugurel, R. Krovetz, and C. L. Giles, “What’s the code?:
automatic classification of source code archives”, SIGKDD,

pp. 632-638, 2002

[27] C. Fox, “A stop list for general text”, ACM SIGIR Forum,
24(1-2):19-21, 1990.

[28] G. Kowalski, Information Retrieval Architecture and

Algorithms, Springer, 2011.

[29] M. F. Porter, “An algorithm for suffix stripping”, In
Readings in Information Retrieval, Morgan Kaufmann, 1997.

[30] R. Krovetz, “Viewing morphology as an inference process”,
SIGIR, pp. 191-202, 1993.

[31] L. H. Etzkorn and C. G. Davis, “A documentation-related
approach to object oriented program understanding”, IWPC,
pp. 39-45, 2002.

[32] J. Guo and Y. Wang, “Towards Consistent Evolution of
Feature Models”, SPLC, pp. 451-455, 2010.

[33] J. Cleland-Huang, B. Berenbach, S. Clark, R. Settimi, and E.
Romanova, “Best Practices of Automated Traceability”,
IEEE Computer, 40(6): 27-35, 2007.

[34] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell,
and A. Wesslén, Experimentation in Software Engineering:

An Introduction, Kluwer Academic Publishers, 2000.

[35] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora,
“Enhancing an artefact management system with traceability
recovery features”, ICSM, pp. 306 – 315, 2004.

[36] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia,
“On the Equivalence of Information Retrieval Methods for
Automated Traceability Link Recovery”, ICPC, pp. 68-71,
2010.

9

