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ABSTRACT 

Requirements-to-source-code traceability employs information 
retrieval (IR) methods to automatically link requirements to the 
source code that implements them. A crucial step in this process is 
indexing, where partial and important information from the 
software artifacts is converted into a representation that is 
compatible with the underlying IR model. Source code demands 
special attention in the indexing process. In this paper, we 
investigate source code indexing for supporting automatic 
traceability. We introduce a feature diagram that captures the key 
components and their relationships in the domain of source code 
indexing. We then present an experiment to examine the features 
of the diagram and their dependencies. Results show that utilizing 
comments has a significant effect on traceability link generation, 
and stemming is required when comments are considered. 

Categories and Subject Descriptors 
D.2 [Software Engineering]; H.3.1 [Information Systems]: 
Content Analysis and Indexing 

General Terms 
Experimentation 

Keywords 
Traceability, indexing, source code analysis, information retrieval  

  

1. INTRODUCTION 
Requirements-to-source-code traceability, automated through 
information retrieval (IR) methods, has been proven beneficial in 
several software engineering tasks such as verification and 
validation, software reuse, and change impact analysis [1-3]. The 
process consists of three steps: indexing, retrieval and 
presentation. In the indexing step, input artifacts, including source 
code and requirements documentation, are converted into more 
compact forms that are compatible with the underlying IR model. 
These forms are known as profiles [4]. In the retrieval step, IR 
algorithms are used to match a trace query profile with source 
code profiles and identify a set of candidate links in response to 
the query. In the presentation step, retrieved candidate links are 
presented to the human analyst for further validation. 

Recovering traceability links between source code and textual 
documents via IR methods has been tackled in the literature. For 
example, Antoniol et al. [1] used tf-idf (a vector space IR model) 
and unigram approximation (a probabilistic IR model) to establish 
traceability links between object-oriented code and functional 
requirements, and Marcus and Maletic [2] exploited latent 
semantic indexing (LSI) for automatic documentation-to-source-
code traceability links recovery. The research is primarily 
concerned with the generation of candidate traceability links with 
only little attention paid to indexing.  

In software engineering research, source code indexing is usually 
employed in two main areas: code retrieval (searching) and code 
comprehension (understanding). The indexing process itself 
depends on the task at hand. For example, in code comprehension 
tasks, such as code summarization [5] and code clustering [6], 
indexing is used to convert source code into more understandable 
forms that help developers maintain their code [7]. For IR-related 
tasks, indexing is used to convert source code into more compact 
forms, i.e., profiles. A profile is a short-form description of an 
artifact, is easier to manipulate than the entire artifact, and plays 
the role of a surrogate at the retrieval stage [4].  

In this paper, we investigate source code indexing for automated 
tracing. We identify the main aspects of the indexing process by 
reviewing the literature, and then present the results in a feature 
diagram [8]. The feature diagram captures the common and 
variable components and their dependencies in the source code 
indexing domain, and organizes the knowledge in a tree-like 
structure. We also conduct an experiment, using two different 
datasets: eTour [9] and iTrust [10], to examine the features of the 
diagram and their dependencies. We attempt to answer the 
question: Which aspects of the source code and which indexing 
practices have a significant effect on traceability? 

Section 2 of this paper provides background information. Section 
3 presents a feature diagram about source code indexing. Section 
4 describes the experiment conducted to examine the feature 
diagram. Section 5 presents and discusses the results. Section 6 
describes the threats to validity. And finally, Section 7 concludes 
the paper and suggests potential research directions. 

2. BACKGROUND  
Document indexing is defined as the task of assigning terms to 
documents for retrieval purposes [11]. The process consists of two 
generic steps: extracting the subject matter of a document, and 
expressing the subject matter in index terms to facilitate subject 
retrieval [12]. Search engines, which search large repositories of 
textual documents such as digital libraries or the Web, rely 
heavily on indexing to increase their retrieval efficiency and 
effectiveness. 

Several techniques from linguistics, natural language processing, 
informatics and mathematics are used to index free text 
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documents [13]. Although source code can be treated as plan text, 
the restricted nature of programming languages limits the ability 
of generalized natural language indexing techniques to perform 
well when applied to source code.  The characteristics of source 
code that make its indexing a challenging task include: 

• Formality: Source code is highly structured.  
Developers have to follow strict syntactic rules in order 
to produce a working code.  

• Naming style: There is no guarantee that developers will 
use genuine words in their code, or follow a well-
defined naming convention throughout the project life 
cycle. In most cases, developers use a combination of 
words and abbreviations to name their identifiers [14].  

• Reserved words: The majority of the words in source 
code are programming language reserved words that 
have no direct relation to the problem domain. 

• Comments: Comments have a different nature from 
source code and need to be processed separately [7].  

 

In the literature, source code indexing is often described as a 
process that takes several steps. The input of the process is a 
source code document, and the output is a compact content 
descriptor, or a profile, which is usually represented as keywords-
components matrix or a vector space model [15]. The process 
starts by extracting tokens from source code. Lexical analysis is 
then applied to extract genuine words from these tokens. Stop 
words are filtered out. Finally, stemming is used to remove 
morphological and inflexion endings [5, 16-18]. Next, we review 
each of these steps in more detail. 

2.1 Information Extraction 
Domain knowledge and code concepts are embedded in the 
linguistic aspects of source code including identifiers names and 
comments [14, 19, 20]. Code identifiers, such as names of classes, 
attributes, methods, and parameters, capture developers’ 
understanding of their tasks. The underlying assumption is that 
developers name their identifiers in a way that is related to the 
functionality of source code, and not completely at random [4]. 

For example, an identifier named user_id is expected to 
represent a user’s identification information.  

The other source of knowledge in the source code is the 
comments. Comments serve as the internal documentation of the 
code. In the literature, utilization of comments in code indexing 
has generated some debate. The argument that supports using 
comments is based on the fact that programmers tend to focus on 
the functionality of the code with only little attention paid to its 
style, and so, there is no guarantee that the naming style used by 
the developers will be good enough to capture the domain 
concepts [21]. However, comments are commonly written in a 
language similar to that of the external documentation. 
Developers add comments to explain and communicate their code. 
Therefore, comments are expected to carry valuable information 
that should not go to waste [4]. 

Argument against using comments is also supported by several 
observations, such as not all source code contains comments, 
quality of comments and their levels of abstraction vary widely 
among software systems, even sometimes within the same system. 
Comments might be outdated or even redundant to the source 

code [22]. As an example, in the following line of code, 
comments add no value to the code concept:   

Increment++; //incrementing by 1 

In the literature, the benefits of utilizing comments have been 
stated clearly in domains like code comprehension and software 
reuse. For example, in their program comprehension study, Vinz 
and Etzkron suggest that combining comments with source code 
allows for much deeper understanding of source code than is 
possible using either code or comments/identifiers alone [7]. Also, 
Takang et al. reported that commented programs are more 
understandable than non-commented programs [23]. In [24], 
Etzkorn and Davis introduced Patricia, a system that uses 
heuristic methods to identify reusable software components 
through understanding comments and identifiers. Similarly, 
CodeBroker utilizes knowledge from comments and code 
identifiers to find software components that can be reused [25]. 

In the traceability literature, however, there is no consensus on 
whether to use the comments or not. Antoniol et al., in their study 
of tracing object-oriented code to functional requirements, did not 
include comments as part of the analysis [1]. On the contrary, 
Marcus and Maletic utilized comments in addition to the source 
code to recover traceability links between documents and source 
code via LSI [2]. An interesting finding in their study is that with 
almost no comments in the source code, LSI performed at least as 
well as the other methods [2]. 

Finally, the non-linguistic aspects of source code, such as the 
inheritance relations, can also be utilized as potential sources of 
information. Utilizing the non-linguistic aspects is beyond the 
scope of this paper. 

2.2 Lexical Analysis 
Lexical analysis is used to extract meaningful words from code 
tokens.  A “token” is defined to be any alphabetical sequence of 
characters separated by non-alphabetical characters or by letter 
capitalization [26]. It is a common practice to define identifiers by 
concatenating two or more words [1]. Such identifiers can be 
broken down into units based on commonly used coding 
standards, such as the location of the capital letter in the identifier 

name (“firstName � first name”) or any other separators 

such as the underscore (“_”) or the dash (“-“) character.  

Abbreviations are also commonly used by programmers to name 
identifiers [14]. Domain specific dictionaries or lookup tables can 
be used to expand abbreviations to the constituent words. For 

example: hsptlRcrd � hsptl rcrd � hospital record. 

2.3 Filtering 
The goal of indexing in IR is to generate a set of index terms that 
achieve the best performance with IR methods. Stop words are 
any words that are irrelevant to the code concept. Such words 
carry a very low information value and can affect the retrieval 
process negatively [15]. We identify four types of stop words that 
are usually filtered out of the code profiles. 

• Generic stop words: stop words that are used in natural 
language, such as (and, but, the).  A list of the most 
common stop words in English can be found in [27]. 

• Programming language specific stop words: the set of 
keywords reserved by the programming language, such 

as (integer, string, class, static). These words 
have no direct relation to software features. 
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Figure 1. A feature diagram for source code indexing

• Non-textual tokens: set of language operators and 
special characters which are used to perform certain 

functions, such as (+,-, %, @).   

• Other stop words: Sometimes developers include some 
tokens in their comments that are used throughout the 
project as references, such as (Author, Param, Date, 

Copyright notice or license terms). These tokens have 
no information value and can be removed.  

2.4 Stemming 
Stemming is the process of reducing a word to its root. It is a 
commonly used IR technique to reduce required resources by only 
keeping one representation for each word. Stemming enhances the 
matching rate by reducing terms with the same meaning into a 
single term, therefore, improving the effectiveness and the 
efficiency of the retrieval system [28].  

Several stemming approaches have been applied in IR research. 
Among these, rule-based stemming is one of the most popular. 
Rule-based stemming uses a large number of language-specific 
rules to reduce words to their canonical morphological 
representations. Porter algorithm [29] is one of the most employed 
rule-based stemmers in IR research. 

Rule-based stemming is simple to implement and maintain, and 
has a modest computational cost. However, its quality depends 
highly on the set of rules applied. Also, its performance may 
downgrade when dealing with irregular cases such as “eat” and 
“ate”. To overcome this problem, a dictionary-based approach is 
sometimes used. This approach mainly involves maintaining 
known morphological word roots that exist as real words in a 
lookup table. Krovetz’s stemmer [30] is an example of a 
dictionary-based English stemmer where potential root forms are 
contained in the dictionary. 

The use of stemming in IR-related tasks does not come without 
risk. It has been observed that as words get stemmed they lose an 
important part of their meaning. This leads to information loss 
that can have a negative effect on retrieval precision [28]. This 
risk becomes more obvious in free text retrieval, where free 
vocabularies and grammars are used to form sentences and give 
them their logical meanings. But, is this the case in source code? 
It has actually been observed that code identifiers and comments 
are usually expressed in a simplified form of the natural language, 
with a smaller vocabulary set and simplified grammar [31]. 
Etzkorn and Davis [24] studied several software packages and 
found that around 83% of the comments written in sentence form 
are in the present tense, and around 78% of identifiers names are 
noun-related. These observations raise questions concerning the 
effect of using stemming when indexing source code for 
traceability recovery. 

3. FEATURE DIAGRAM  
Figure 1 shows a feature diagram that is a result of our analysis of 
the source code indexing domain. Our domain analysis is 
concerned with identifying the variabilities and commonalities of 
approaches in the code indexing domain, thereby developing and 
organizing an information infrastructure to support knowledge 
reuse. A feature diagram is a hierarchy of common and variable 
features characterizing the set of instances within a domain. It 
helps in determining the scope of the domain and provides an 
external view that the stakeholders can understand and 
communicate easily [8]. In our case, the feature diagram provides 
a taxonomy and representation of design choices for approaches 
dealing with code indexing for traceability. 

Figure 1 depicts a feature diagram we use as a basis for our 
discussion. It is important to note that we do not aim for this 
domain characterization to be immune from change. In fact, we 
expect this knowledge representation to evolve as our 

Source Code Indexing 

Lexical Analysis 

Splitting Abbreviation 

Optional 

Mandatory 
 

Feature 

Example 
Alternative 

Information Extraction 

Non-linguistic  

Code Identifiers Comments 

Linguistic 

OO Relations 

Filtering 

Linguistic Reserved Non-Textual Others 

Porter Krovetz 

Stemming 

Rule-Based Dictionary-Based 
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understanding of code indexing matures. The experiment we 
describe in the next section is an attempt to further our 
understanding empirically. Our main goal here is to show the vast 
range of available choices as represented by the current code 
indexing approaches from a reuse perspective. 

Figure 1 follows the notations defined in [8]. The features 
(denoted by the boxes) of the concept source code indexing are 
described, which is located at the top of the feature diagram. The 
boxes directly connected to source code indexing are the direct 
sub-features or sub-steps. The little circles at the edges connecting 
the features define the semantics of the edge. A filled circle means 
mandatory. Thus, every code indexing shall perform information 

extraction, lexical analysis, and filtering. Because whether to 
include comments and to perform stemming have generated some 
debate in the literature, they are identified as optional features 
currently (denoted by the outlined circle at the edge). Alternative 
features means an exclusive-or choice, so when stemming is 
performed in practice, a rule-based or dictionary-based stemmer is 
applied.  

4. EXPERIMENTAL DESIGN 
 

Experimentally validating all the features in a feature diagram and 
identifying all their possible dependencies can be tedious [32]. In 
our experiment, we chose comments and stemming as our 
independent variables as they were marked as optional features in 
Figure 1. We attempt to answer the questions:  Should comments 
be considered when tracing source code? Is stemming required? 

4.1 Datasets and Variables 
We used two datasets in our experiment:  eTour and iTrust. eTour 
is an electronic touristic guide developed by final year students at 
the University of Salerno (Italy) [9]. iTrust is a medical 
application, developed by software engineering students at North 
Carolina State University (USA), which provides patients with a 
means to keep up with their medical history and records and to 
communicate with their doctors [10]. Table 1 shows the 
characteristic of each dataset. The table shows the size of the 
system in terms of lines of source code (LOC), lines of comments 
(COM), the number of use cases (UCs), the number of source 
code classes (CCs) and number of correct links between use cases 
and code classes. Traceability links were provided in both 
datasets’ documentation [9, 10]. 

Table 1. Experiment datasets 

 LOC COM UCs CCs Links 

eTour 17.5K 7.5K 58 116 394 

iTrust 18.3K 6.3K 38 226 314 

 

As mentioned earlier, our independent variables are comments 
and stemming. We used Porter stemmer [29] for its computational 
efficiency. Our dependent variable focuses on the quality of the 
automatically generated candidate requirements-to-source-code 
traceability links. For that, we used well-known IR metrics: 
precision and recall [15]. Recall (R) is a coverage measure and 
refers to the proportion of relevant links that are retrieved. 
Precision (P) is an accuracy measure and refers to the proportion 
of retrieved links that are relevant. In the traceability literature, the 
automatic trace generation approaches have emphasized recall 
over precision, i.e., it is essential to automatically retrieve close to 

100% of the related artifacts. The assumption is that it would be 
easier for human analysts to discard the incorrect traceability links 
than to discover the missing links. To emphasize the recall, we 
use the F2 measure, which weights recall twice as much as 
precision. The general Fβ is described as:   

�� � �1 � �	
 · �� · 

��	 · � � 
  

The controlled variables in our experiment include the Porter 
stemmer, a list of stop words [27] and reserved programming 
language keywords, and the vector space IR model tf-idf. 
Formally, if Q and W are two artifacts’ profiles in the vector 
space, then their similarity is measured as:  

� �  ∑ �� · ������
�∑ ��	���� ·  ∑ ��	����

 

where wi = tfi(f) · idfi, qi = tfi(q) · idfi. tfi(f) and tfi(q) are term 
frequency of  termi  in Q and W respectively.  idfi is the inverse 
document frequency, and is computed as idfi = log2(t/dfi), where t 
is the total number of profiles in the corpus and dfi is the number 
of profiles in which termi occurs. tf-idf is one of the most 
commonly used IR methods in the automated tracing literature, 
e.g., [1, 3].  Its performance is comparable to other models, such 
as latent semantic analysis [2] and probabilistic networks [33]. 

4.2 Experimental Settings 
To answer our research questions, we identify four experimental 
settings with all the possible “comments” and “stemming” 
combinations. We control the rest of the features shown in Figure 
1 for their effect. These settings are summarized in Table 2: a tick 
(√) indicates the feature is selected; a cross (×) indicates otherwise. 

Table 2. Experiment settings 

Case 
Information Extraction  

Stemming 
Lexical 

Analysis 
Filtering 

Code Comments 

C √ × × √ √ 

CS √ × √ √ √ 

CC √ √ × √ √ 

CCS √ √ √ √ √ 

 

Base case analysis (C) 

The base case in our experiment includes indexing source code 
only. Code identifiers are extracted and lexically processed, stop 
words are filtered out, no comments are considered and no 
stemming is performed. This case represents a reference point for 
comparing other case’s performance.  

Stemming the source code (CS) 

To investigate the effect of stemming source code, all source code 
profiles generated in the base case are stemmed using Porter’s 
algorithm.  

Considering comments (CC) 

In this case, source code in our datasets is indexed with 
comments. The comments, in addition to the code identifiers, are 
extracted and lexically processed. All irrelevant stop words are 
removed and no stemming is performed.  

Stemming comments (CCS) 

In the last case, all CC profiles from the previous case are 
stemmed using Porter’s algorithm. 
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(a) Boxplots of recall (eTour)        (b) Boxplots of precision (eTour)               (c) Boxplots of F2 measure (eTour) 
 

                       

 

 

 

 

 

 

 
 

(d) Boxplots of recall (iTrust)       (e) Boxplots of precision (iTrust)               (f) Boxplots of F2 measure (iTrust) 

Figure 3. Descriptive statistics for the quality of automatically generated traceability links 

 

 

Figure 2. The experiment prototype 

4.3 Tool Support 
A prototype was implemented to carry out the experimental 
analysis in this paper. Figure 2 shows a screenshot of the tool. The 
prototype has two main functions: a code indexer and a 
requirements-to-source-code tracer. The code indexer uses regular 
expressions to match and capture identifiers and comments in a 
source code file. Porter algorithm is used to perform stemming, 
and generic and programming language specific stop words lists 
are provided to filter out irrelevant terms. The prototype also has a 
control panel to allow the user to control the settings of the 
indexing process, such as whether to include comments or to do 
stemming. After performing indexing, all the generated profiles 
are stored in the artifacts database to be used later in the tracing 
process. For each dataset, we traced all the requirements (use 

cases) to code classes. Tracing is performed by tf-idf. The gold 
standards from the project repositories [9, 10] are used to evaluate 
the quality of the automatically generated traceability links. 

Table 3. ANOVA results for traceability link quality 

(a) eTour 

Experiment 

Settings 

Recall Precision F2 

F Sig F Sig F Sig 

C x CS 56.267 .057 .663 .428 .004 .949 

C x CC 80.83 .000 5.71 .019 21.06 .000 

CC x CCS 19.267 .000 3.371 .151 3.17 .083 

 

(b) iTrust 

Experiment 

Settings 

Recall Precision F2 

F Sig F Sig F Sig 

C x CS 1.00 .325 2.076 .161 1.181 .301 

C x CC 9.212 .005 11.260 .002 22.828 .000 

CC x CCS 6.82 .014 3.36 .060 7.083 .047 

5. RESULTS AND DISCUSSION 
This section presents the data collected during the experiment and 
our quantitative data analysis. We reported descriptive statistics in 
boxplot and inferential statistics via ANOVA (analysis of 
variance) [34]. A boxplot reveals much about the data: its 
dispersion, its center, and how skewed the data is. Side-by-side 
boxplots quickly illustrate the relationships of these characteristics 
for multiple data distributions. Figure 3 shows the boxplots that 
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describe the quality of automatically generated traceability links 
under our experimental settings. ANOVA is a collection of 
statistical models and procedures in which the observed variance 
is partitioned into components due to different explanatory 

variables. We used the 0.05 alpha level (α=0.05) to test the 

significance of difference among our experimental settings. All 
results were observed at a 70% threshold, a widely used heuristic 
that achieves an acceptable compromise between precision and 
recall [35]. Under this threshold, only the top 70% of the ranked 
candidate links were considered in the analysis; the remaining 
30% were ignored. Table 3 shows the ANOVA results for 
traceability link quality.  

5.1 Should Comments Be Indexed? 
To assess the effect of indexing comments on the generated links 
quality, all use cases in both datasets were traced to the CC 
profiles. The performance, in terms of recall, precision, and F2, 
was compared to the base case performance (C), where no 
comments were considered.  

Analysis shows that considering comments in the indexing 
process has a significant effect on the retrieval effectiveness. In 
both datasets, the recall, precision, and the F2 measure were 
improved significantly. Take recall as an example: in Figure 3a, 
there is a significant shift of the median between the C and CC 
boxes.  

5.2 Should Stemming Be Performed? 
Two cases were considered to test the effect of stemming on 
traceability link quality. In the first case, all use cases in both 
systems were traced to the stemmed source code profiles (CS). 
The goal was to test the effect of stemming source code identifiers 
on the results. The performance was compared to the base case 
(C) performance. Using analysis of variance, no significant 
difference was detected in terms of recall, precision, and F2 (CS = 
C).  This leads to the conclusion that if only source code is 
considered in the indexing process, then no stemming is required. 

In the second case, comments profiles were stemmed (CCS). The 
results were compared to the CC (unstemmed comments) case. 
The analysis of variance shows that stemming comments has 
improved the recall significantly in both datasets (CCSRecall > 
CCRecall). However, the average precision was affected negatively 
for the eTour dataset, and showed no significant improvement for 
the iTrust dataset. The negative effect on the precision could be 
that stemming causes loss of information [28], which results in 
retrieving more irrelevant links. The effect on F2 was statistically 
significant in iTrust only. 

The analysis shows that, for both datasets, when stemming is 
applied to comments, it improves the recall significantly. 
However, if only the code is to be used (for example in cases 
where the code is not commented), then stemming is unnecessary.  
As mentioned earlier, developers do not use fancy language in 
naming their identifiers; they usually stick to the base form of the 
word, which limits the effect of stemming when dealing with 
source code identifiers. However, comments are usually written 
with more freedom and in complete sentences. Even though 
simplified grammars are usually used, stemming comments is still 
able to improve the recall.  To further confirm these findings, we 
observed the percentage of terms affected by stemming in both 
datasets. We found that the percentage of comments terms 
affected by stemming was 15% and 23% in eTour and iTrust 
respectively. However, the percentage of code terms affected by 

stemming was only 4.2% and 4.7% in eTour and iTrust 
respectively. 

5.3 Summary 
To summarize our findings, we refer to the feature diagram 
presented in Figure 1. We chose to examine the optional features 
“comments” and “stemming” since their application in source 
code indexing has generated some debate. In the traceability 
literature in particular, it is not uncommon to exclude comments 
when source code is indexed, e.g., [1]. Even if comments are 
included, its effect seems only marginal [2]. The results of our 
experiment show a strong tendency of including comments in the 
code indexing process. 

As for stemming, we would still keep it an optional feature. 
However, we would add a “requires” dependency link from 
“comments” to “stemming” in the feature diagram. This indicates 
that if comments are considered, then stemming is required. In 
fact, whether to perform stemming or not is a tradeoff between 
recall and precision. In cases where recall is favored over 
precision, the recommendation is to use stemming when the 
decline in precision is not statistically significant [28]. 

6. THREATS TO VALIDITY 
Several factors can affect the validity of our study.  As for 
construct validity [34], we feel that the independent variables 
(“comments” and “stemming”) and dependent variables 
(precision, recall, and F2) accurately measure the concepts they 
purport to measure: variabilities in the code indexing process for 
the independent variables, and quality of automatically generated 
traceability links for the dependent variables. To address internal 
validity [34], we use a 2x2 factorial design (cf. Table 2) to 
consider all the combinations of the two independent variables 
while keeping the configuration of the remaining factors 
unchanged across the settings. 

The subject systems and the controlled variables in our 
experiment can pose threats to external validity [34]. In particular, 
the results of this study might not generalize beyond the object-
oriented software systems, the requirements-to-source-code 
traceability, the tf-idf retrieval method, the Porter stemmer and the 
lists of stop words employed, etc. Several strategies are used in 
our experiment to help mitigate these threats. First, we choose a 
representative stemmer and stop word lists to experiment, so that 
the results are informative about the experiences of the typical 
situation. Second, extensive empirical studies have shown that the 
quality of automatically generated traceability links is almost 
equivalent, independent of the underlying IR method [36]. 
Therefore we expect that our results will hold even though 
different IR models are employed. Third, we experiment two 
midsize datasets, eTour and iTrust, from two different domains, 
and find converging results. This helps generalize our findings to 
other application domains.  However, both eTour and iTrust were 
developed by university students and may not be representative of 
a program written by industrial professionals. It is therefore 
unknown if the results will generalize to other software systems, 
other application domains, or larger systems. 

7. CONCLUSION 
In this paper, we have tackled the problem of indexing source 
code for supporting requirements-to-source-code traceability link 
generation. We introduced a feature diagram to describe the 
indexing process, and conducted an experiment using two 
datasets, eTour and iTrust, to examine some of the diagram 
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features and their dependencies. The results showed that 
considering comments in the indexing process helps improve the 
traceability link quality significantly. Stemming was also found 
useful when comments were considered. However, if comments 
were ignored then the overhead of stemming is unnecessary.  

The findings of our experiment emphasize the importance of 
adopting a good naming convention while writing code.  
Meaningless names or abbreviations cause low similarity between 
requirements and source code. The results also emphasize the 
importance of considering comments. Commented code is not 
only more understandable, but also easier to be traced. Future 
work for this study will focus on validating other aspects and 
levels of the feature diagram using large-scale industrial datasets.  
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