
Formalizing Traceability Relations for Product Lines
Luis C. Lamb Waraporn Jirapanthong Andrea Zisman

Institute of Informatics Faculty of Inf. Technology School of Informatics
Federal University of Rio Grande do Sul Dhurakij Pundit University City University London

Porto Alegre, 91501-970, Brazil Bangkok 10210, Thailand London EC1V 0HB, UK
+55 (51) 3308 9464 +44 2070408346

luislamb@acm.org waraporn@it.dpu.ac.th a.zisman@soi.city.ac.uk

ABSTRACT

Traceability is considered an important activity during the

development of software systems. Despite the various

classifications that have been proposed for different types of

traceability relations, there is still a lack of standard semantic

definitions for traceability relations. In this paper, we present an

ontology-based formalism for semantic representation of various

types of traceability relations for product line systems and

associations between these various types of traceability relations.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, and

Enhancement – corrections, documentation, enhancement,

reengineering.

General Terms

Documentation, Design, Languages, Theory.

Keywords

Traceability, relations, product line systems, semantic formalism.

1. INTRODUCTION
Several approaches and techniques have been proposed to support

software traceability. These approaches can be classified in four

main groups as suggested in [15]: (a) study and definition of

different types of traceability relations [5][9][14]; (b) support for

generation of traceability relations [2][3][4][6][10][12][16]; (c)

development of architectures, tools, and environments for

representing and maintaining traceability relations [12][13]; and

(d) study of how to use traceability relations in various

development activities [3][14]. However, despite its development,

there are still many problems and challenges related to different

aspects of traceability.

One of these problems is concerned with the need for a formalism

to represent the semantics of traceability relations. This problem

has been advocated by researchers and practitioners that

participated in a series of two workshops [7][8] with the goal of

identifying challenges in traceability, and led to the creation of the

Grand Challenge document [1]. For semantics of traceability

relations, the views of the participants are summarised in [1] as:

“C1: In order to effectively utilize links and understand the

underlying traceability relationships, it is necessary to define the

semantics of a link, however defining a formalism to represent the

semantics is a non-trivial task and may be domain specific.”

The need to capture the semantic of traceability relations is

fundamental to provide their effective use. Many existing tools

support the representation of different types of relations, but the

interpretation of these relations depends on the stakeholders. This

causes confusion when interpreting relations and difficulties to

develop tools for the automatic generation of relations. Our

previous experience with automatic generation of traceability

relations [4][10][16] demonstrated that a large number of

relations are generated, which may cause difficulties to manage,

visualise, and make use of the relations in an effective way.

Therefore, it is necessary to provide ways of generating the main

traceability relations and inferring other relations based on

associations that may exist between these relations.

In previous work [10], we proposed a rule-based framework to

allow automatic generation of traceability relations in the scope of

product line systems. In [10] we identified nine types of

traceability relations for different elements in documents

generated when using a feature-based object-oriented engineering

approach such as an extension of the FORM (Feature-Oriented

Reuse Method) [11] methodology. In this paper, we extend the

work in [10], and address the lack of semantic formalism for

traceability relations. We propose an ontology-based formalism

for different types of traceability relations in the scope of product

line systems, and associations among the various types of

traceability relations, as discussed in the following sections.

2. FORMALISM AND REASONING
Our work is concerned with a feature-based object-oriented

engineering approach to support development of product line

systems; i.e., an extension of the FORM methodology [11]. The

rationale for using an extension of the FORM methodology is due

to its simplicity, maturity, practicality, and extension. A feature-

based approach supports domain analysis and design, enhances

communication between customers and developers in terms of

product features, and assists with the development of product line

architectures. An object-oriented approach assists with the

development of members in a product line system.

Table 1 summarises the various types of documents used in our

work. These documents are classified in two groups, namely (a)

documents describing different artefacts at the product line level

used by the FORM methodology [11] and (b) documents

describing different artefacts at the product member level used by

the UML object-oriented notation.

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. To copy

otherwise, or republish, to post on servers or to redistribute to lists,

requires prior specific permission and/or a fee.

TEFSE’11, May 23, 2011, Waikiki, Honolulu, HI, USA

Copyright 2010 ACM 978-1-4503-0589-1/11/05…$10.00.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TEFSE’11, May 23, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0589-1/11/05 ...$10.00

42

For the documents presented in Table 1, we identified nine types

of traceability relations. We classify these traceability relations as

direct and indirect traceability relations. The direct traceability

relations are those that do not depend on the existence of other

relations and are the satisfiability, dependency, overlaps,

evolution, implements, and refinement relations. The indirect

traceability relations are those that depend on the existence of

other relations and are the similarity and variability relations.

The domain ontology presented in this paper describes

relationships (associations) between documents and reasoning

rules one can apply in order to infer traceability relationships. Our

inference procedure is based on an initial traceability relational

calculus. This procedure identifies association rules between

traceability relations

Table 1: Feature-based object-oriented documents

 Domain Analysis Domain Design

Product Line Level Feature model Subsystem model

Process model

Module model

Product Member

Level

Use cases Class diagram

Statechart diagram

Sequence diagram

We present below a formal definition of the traceability relation

types. In these definitions an element (ei) can be either an artefact

in a document or a whole document. Due to space restriction we

do not describe the specific artefacts that can be associated by

each traceability relation type.

SATISFIABILITY: We say that an element e1 satisfies an element

e2 (denoted by e1 ╞ e2) if, and only if e1 meets the expectations

and needs of e2.

IMPLEMENTS: We say that an element e1 implements an element

e2 (denoted by e1 ├ e2) if e1 allows for the achievement of e2.

CONTAINMENT: We say that an element e1 contains an element

e2 (denoted by e1  e2) if e1 is a document model that uses an

artefact of a design document.

DEPENDENCY: We say that an element e1 depends on an

element e2 (denoted by e1  e2) if the existence of e1 relies on the

existence of e2.

OVERLAPS: We say that an element e1 overlaps an element e2

(denoted by e1  e2) if e1 and e2 refer to common aspects of a

system or its domain.

EVOLUTION: We say that an element e1 evolves to an element e2

(denoted by e1  e2) if e1 has been replaced by e2 during the

development, maintenance or evolution of the system. An evolves

to relation exists between two documents of the same type for the

same product member.

REFINEMENT: We say that an element e1 refines an element e2

(denoted by e1  e2) if e1 can be broken down into components and

subsystems of e2; or if e2 can be specified in more details by e1.

SIMILARITY: We say that an element e1 is similar to an element

e2 (denoted by e1  e2) if e1 has a relationship R with an element

e3 and e2 also has the same relationship R with element e3,

where R  { ╞,├, , , ,  }. The similarity relation occurs

between elements of the same types of documents for different

product members.

VARIABILITY: We say that an element e1 is variable from an

element e2 (denoted by e1 != e2) if e1 has a relationship R with an

element e3, e2 also has the same relationship R with element e4,

and elements e3 and e4 are variants of the same variability point,

where R  { ╞,├, , , ,  }. The variability relation occurs

between elements of the same types of documents for different

product members.

Based on our definitions of the semantics of the different types of

traceability relations, we identified several associations between

these relation types, namely (a) implication, (b) weak implication,

and (c) derivation associations. These associations correspond to

the reasoning method of our ontology. We define an implication

association as the logical implication relation in which A -> B (A

“implies” B) meaning that every value of A is also a value of B.

We define a weak implication association A ---> B (A “weakly

implies” B) when a sub-set of the values of A are also values of B.

We define a derivation association A ==> B (A “derives” B) for

the indirect traceability relations (i.e., similarities and variability

relations) that are derived from direct relations.

Figure 1 shows a graph of the implication associations for the

types of traceability relations. An implication association exists

between (i) implements and satisfiability relations, (ii) implements

and dependency relations, (iii) implements and overlaps relations,

(iv) containment and dependency relations, (v) containment and

overlaps relations, and (vi) similarity and overlaps relations.

Figure 1: Implication associations

Figure 2 shows a graph of the weak implication associations

between the traceability relations. A weak implication association

exists between (i) refinement and overlaps relations, (ii)

refinement and dependency relations, (iii) refinement and

containment relations, (iv) refinement and satisfiability relations,

(v) overlaps and dependency relations, (vi) overlaps and

satisfiability relations, (vii) evolution and refinement relations,

and (viii) implements and refinements relations. We describe

below the cases in which these weak associations hold.

Refinement and Overlaps: A refinement relation between two

elements e1 and e2 (e1  e2) is also an overlaps relation between e1

and e2 (e1  e2), when

 e1 is a sequence diagram and e2 is a class diagram;

 e1 is a statechart diagram and e2 is a sequence diagram;

 e1 is a statechart diagram and e2 is a class diagram;

 e1 is a class diagram and e2 is a subsystem model;

 e1 is a sequence diagram and e2 is a process or module model;

 e1 is a statechart diagram and e2 is process or module model.

Refinement and Dependency: A refinement relation between two

elements e1 and e2 (e1  e2) is also a dependency relation between

e1 and e2 (e1  e2), when

 e1 is a statechart diagram and e2 is a class diagram;

 e1 is a sequence diagram and e2 is a class diagram.

Refinement and Containment: A refinement relation between

two elements e1 and e2 (e1  e2) is also a containment relation

between e1 and e2 (e1  e2), when

IMPLEMENTS

OVERLAPS

CONTAINMENT DEPENDENCY

SIMILARITY

SATISFIABILITY

43

 e1 is a sequence diagram and e2 is a class diagram;

 e1 is a statechart diagram and e2 is a class diagram;

 e1 is a class diagram and e2 is a subsystem model.

Refinement and Satisfiability: A refinement relation between

two elements e1 and e2 (e1  e2) is also a satisfiability relation

between e1 and e2 (e1 ╞ e2), when e1 is a subsystem, process, or

module model and e2 is a feature in a feature model.

Overlaps and Dependency: An overlaps relation between two

elements e1 and e2 (e1  e2) is also a dependency relation between

e1 and e2 (e1  e2), when e1 is a sequence of events in a sequence

diagram or a transition in a statechart diagram, and e2 is a message

in a process model or module model.

Overlaps and Satisfiability: An overlaps relation between two

elements e1 and e2 (e1  e2) is also a satisfiability relation between

e1 and e2 (e1╞ e2), when

 e1 is a class or operation in a class diagram and e2 is a feature

in a feature model;

 e1 is a transition in a statechart diagram and e2 is a feature in a

feature model;

 e1 is a sequence of messages in a sequence diagram and e2 is a

feature in a feature model;

 e1 is a class or operation in a class diagram and e2 is a use

case;

 e1 is a transition in a statechart diagram and e2 is a use case;

 e1 is a sequence of messages in a sequence diagram and e2 is a

use case;

 e1 is a subsystem, process, or module model and e2 is a feature

in a feature model.

Evolution and Refinement: An evolution relation between two

elements e1 and e2 (e1  e2) is also a refinement between e1 and e2

(e1  e2), when e1 is considered a specialization of e2.

Implements and Refinement: An implements relation between

two elements e1 and e2 (e1 ├ e2) is also a refinement relation

between e1 and e2 (e1  e2), when e1 provides more details on how

e2 can be executed.

Figure 2: Weak implication associations

Figure 3 shows a graph of the derivation associations of the

similarity relations. The similarity relations can be derived from

other relations by inference rules or conjunctions of relationships.

The inference rules that provide the derivation are:

 Satisfiability derives Similarity. If element e1 satisfies element

e2, and element e3 satisfies element e2, then e1 is similar to e3.

 Implements derives Similarity. If element e1 implements

element e2 and element e3 implements element e2, then e1 is

similar to e3.

 Containment derives Similarity. If element e1 contains element

e2 and element e3 contains element e2, then e1 is similar to e3.

 Overlaps derives Similarity. If element e1 overlaps element e2

and element e3 overlaps element e2, then e1 is similar to e3.

The conjunction of the evolution relation with another relation

can lead to the derivation of similarity relations, as follows.

 Evolution with Overlaps. If e1 evolves to e2, e3 evolves to e4,

e2 overlaps with e5, and e4 overlaps with e5, then e2 is similar to e4.

 Evolution with Containment. If e1 evolves to e2, e3 evolves to

e4, e2 contains e5, and e4 contains e5, then e2 is similar to e4.

 Evolution with Implements. If e1 evolves to e2, e3 evolves to

e4, e2 implements e5, and e4 implements e5, then e2 is similar to e4.

 Evolution with Satisfiability. If e1 evolves to e2, e3 evolves to

e4, e2 satisfies e5, and e4 satisfies e5, then e2 satisfies e4.

Figure 3: Derivation associations for similarity relations

Figure 4: Derivation associations for variability relations

As in the case of the similarity, the variability relations can also be

derived from other relations by conjunctions of relationships. The

conjunction relations that can lead to the derivation of variability

relations are described below and shown in Figure 4.

 Evolution with Overlaps. If e1 evolves to e2, e3 evolves to e4,

e2 overlaps e5, e4 overlaps e6 and e5 is a sub-type element of e6,

then e2 is a variation of e4.

 Refines with Overlaps. If e1 refines e2, e3 refines e4, e2

overlaps e5, e4 overlaps e6, and e5 is a sub-type element of e6, then

e2 is a variation of e4.

3. IMPLEMENTATION & RESULTS
We implemented a prototype tool to allow automatic generation

of traceability relations for product line systems. The tool uses

traceability rules specified in an extension of XQuery to generate

traceability relations. The rules take into consideration the (i)

semantics of the documents, (ii) various types of traceability

relations, (ii) grammatical roles of the words in the textual parts of

the documents, and (iv) synonyms and distances of words being

compared in a text. The tool has been implemented in Java and

uses SAXON to evaluate XQuery rules.

We used the tool to automatically generate traceability relations

between the documents in three different scenarios for product

line engineering, namely (a) S1: creation of a new product

member for an existing product line, (b) S2: creation of a product

line from existing product members, and (c) S3: changes to a

product member in a product line. We used a case study of mobile

[EVOLUTION +]

OVERLAPS

[REFINEMENT +]

OVERLAPS

VARIABILITY

[EVOLUTION +]

IMPLEMENTS

[EVOLUTION +] OVERLAPS

[EVOLUTION +]

CONTAINMENT

[EVOLUTION +] SATISFIABILITY

SIMILARITY

REFINEMENT

CONTAINMENT

OVERLAPS

DEPENDENCY

SATISFIABILITY

EVOLUTION

IMPLEMENTS

44

phone product line system with three product members (P1, P2,

P3) with common and variable characteristics. Table 2 describes a

summary of the types and number of documents and their main

elements used in the case study. Table 3 presents, for each

different scenario, the total number of traceability relations

generated by the tool. An empty cell signifies that the respective

traceability relation type was not generated.

Table 2: Number of documents and elements in the case study

Level Documents Numbers Elements Numbers

Product
Line
Models

Feature 1 Features 130

Subsystem 1 Subsystems 5

Process 6 Processes 48

Module 15 Modules 167

Product
Member

 P1 P2 P3 P1 P2 P3

Use Cases 4 4 5 Events 37 36 44

Class
Diagram

1 1 1 Classes 23 25 27

Attributes 26 26 33

Methods 78 82 87

Sequence
Diagram

4 4 5 Messages 114 82 112

Objects 22 21 27

Statechart
Diagram

1 1 1 States 4 4 8

Transitions 8 8 8

Table 3: Number of traceability relations for S1, S2, and S3

Relations Scenario S1 Scenario S2 Scenario S3

Implements 172 410 -

Satisfiability 154 322 -

Containment 19 16 20

Refinement 180 342 60

Dependency - - 28

Overlaps - - 28

Total Direct 525 1090 136

Similarity 333 1402 130

Variability 341 16 -

Total

Indirect

674 1418 130

TOTAL 1199 2508 166

The manual analysis of the relations generated by the tool,

demonstrated that (a) for scenarios S1 and S2 implements

relations imply the satisfiability relations; and (b) for scenario S3

containment relations imply overlaps relations, and similar

relations imply overlaps relations. The analysis confirmed

implication associations between containment and dependency

relations and containment and overlaps relations for scenario S3.

Moreover, the analysis demonstrated validity of the weak

implications between refinement and containment, refinement and

satisfiability, and implication and refinement relations in scenarios

S1 and S2; and refinement and overlaps, refinement and

containment, and refinement and dependency relations for

scenario S3. The derivation of similarity relations due to inference

rules, were confirmed for scenarios S1 and S2 for the cases of

implements, containment, and satisfiability relations. The

derivation of similarity relations was demonstrated for

containment and overlaps relations in scenario S3.

4. CONCLUSIONS AND FUTURE WORK
We presented a formalism for traceability relations in the domain

of product line systems. We identified and defined nine types of

traceability relations and presented three different types of

associations that may exist between these traceability relations.

Currently, we are extending the work to provide traceability

relation types for the domain implementation phase of product

line systems and for agent-oriented and knowledge-based systems.

We are also expanding our tool to support the types of

associations between relations presented in the paper.

5. REFERENCES
[1] Antoniol, G., Berenbach, B., Cleland-Huang, J., Dekhtyar,

A., Egyed, A., Fergunson, S., Huffman, J., Maletic, J., and.

Zisman, A. 2007. www.traceabilitycenter.org/downloads/

documents/GrandChallenges.

[2] Antoniol, G., Canfora, G., Casazza, G., De Lucia, A., and

Merlo, E. 2002. Recovering Traceability Links between

Code and Documentation. IEEE Transactions on Software

Engineering, 28(10), 970-983, October.

[3] Cleland-Huang, J., Chang, C., Sethi, G., Javvaji, K., Hu, H.,

Xia, J. 2002. Automating Speculative Queries through

Event-based Requirements Traceability. IEEE Joint Intl.

Requirements Engineering Conference,Germany, September.

[4] Cysneiros, G. and Zisman, A. 2007. Tracing Agent-Oriented

Systems. Grand Challenge Traceability Symposium, March.

[5] Dick, J. 2002. Rich Traceability. Workshop on Traceability

for Emerging forms of Software Engineering, UK.

[6] Egyed A. 2003. A Scenario-Driven Approach to Trace

Dependency Analysis, IEEE Transactions on Software

Engineering, Vol.9, No.2, February.

[7] GCT’06. First Workshop on Grand Challenges for

Traceability, NASA, Fairmont, West Virginia, USA, 2006.

[8] GCT’07. International Symposium on Grand Challenges for

Traceability, Kentucky, USA, 2007.

[9] Gotel, O. and Finkelstein, A. 1994. An Analysis of the

Requirements Traceability Problem, International

Conference on Requirements Engineering, USA.

[10] Jirapanthong, W. and Zisman, A. 2009. XTraQue:

Traceability for Product Line Systems. Software and System

Modeling Journal, 8 (1), pp. 1619-1366, February.

[11] Kang, K., Kim, S., et al. FORM: A Feature-Oriented Reuse

Method with Domain-Specific Architectures, Annals of

Software Engineering 5(1): 143-168.

[12] Pinheiro F. and Goguen J. 1996. An Object-Oriented Tool

for Tracing Requirements, IEEE Software, 52-64, March.

[13] Pohl, K. 1996. Process-Centered Requirements

Engineering," Wiley/Research Studies Press, New York.

[14] Ramesh B. and Jarke M. 2001. Towards Reference Models

for Requirements Traceability, IEEE Transactions on

Software Engineering, vol. 37.

[15] Spanoudakis, G. and Zisman, A. 2005. Software

Traceability: A Roadmap, in S. K. Chang, ed., Handbook of

Software Engineering and Knowledge Engineering.

[16] Spanoudakis, G., Zisman, A., Pérez-Miñana, E., and Krause,

P. 2004. Rule-based Generation of Requirements

Traceability Relations, Journal of Systems and Software, 72.

45

