
On the Use of Eye Tracking in Software Traceability
Bonita Sharif

Department of Electrical Engineering and Computer
Science

Ohio University
Athens, Ohio 45701

sharif@ohio.edu

Huzefa Kagdi
Department of Computer Science
Winston-Salem State University

Winston Salem, NC 27110

kagdihh@wssu.edu

ABSTRACT

The paper advocates for the induction of eye tracking
technology in software traceability and takes a position that the
use of eye tracking metrics can contribute to several software
traceability tasks. The authors posit that the role of eye tracking
is not simply restricted to an instrument for empirical studies,
but also could extend to providing a foundation of a new
software traceability methodology. Several scenarios where
eye-tracking metrics could be meaningful are presented. The
specific research directions include conducting empirical studies
with eye-tracking metrics and replicating previously reported
empirical studies, eye-tracking enabled traceability link recovery
and management methodology, and visualization support.

Categories and Subject Descriptors

D.2.7. Software Engineering: Distribution, Maintenance, and
Enhancement – documentation, restructuring, reverse
engineering and reengineering.

General Terms

Measurement, Documentation, Experimentation, Human
Factors.

Keywords

Eye-tracking metrics, traceability studies, link recovery and
evolution

1. INTRODUCTION
There have been a number of empirical studies in recent years
evaluating software artifacts using eye-tracking equipment. Eye
trackers have become accessible to researchers who are using
them to gain additional insights into software development
activities. Software traceability deals with several types of such
artifacts such as UML diagrams and source code. This paper
proposes that the use of eye tracking should extend to software
traceability tasks. This approach may augment existing work in
traceability such as link recovery. In addition, it provides a new
direction of research to be investigated. There is potential for
the use of eye tracking to provide some additional insight and
add to the already existing body of traceability knowledge.

Modern eye trackers implicitly collect a subject’s (e.g.,
developer) activity data in a non-obtrusive way while they are
performing a given task. The equipment collects pertinent data
including eye gazes on the visual display (stimulus) and an
audio/video recording of the subject’s session. This eye
movement data could provide much valuable insight as to how
and why subjects arrive at a certain solution. Therefore, we term
the eye gaze measures collected from eye tracking as white box
measures. We believe these measures can add a new additional
dimension in supporting software traceability tasks. These
measures could be grouped together to form an eye tracking
metric for measurement.

In this paper, we highlight a few tasks in which eye tracking
metrics may help in addressing some of the challenges put forth
in the grand challenges document [1] published in 2007. We
conjecture that these eye-tracking metrics can directly help with
certain traceability tasks.

The rest of the paper is organized as follows. In Section 2, we
describe some eye tracking terminology. The support for
traceability tasks using eye tracking is discussed in Section 3,
with concluding remarks in Section 4.

2. EYE TRACKING

We discuss basic eye tracking terminology and give examples of
eye tracking done on source code and UML class diagrams.

2.1 Terminology
The underlying basis of an eye tracker is to capture various types
of eye movements that occur while humans physically gaze at an
object of interest. Fixations and saccades are the two types of
eye movements. A fixation is the stabilization of eyes on an
object of interest for a certain period of time. Saccades are
quick movements that move the eyes from one location to the
next (i.e., refixates). A scan path is a directed path formed by
saccades between fixations.

The general consensus in the eye tracking research community is
that the processing of visualized information occurs during
fixations, whereas, no such processing occurs during saccades
[7]. The visual focus of the eyes on a particular location triggers
certain mental processes in order to solve a given task [10].

2.2 Source Code and UML Design Examples
A visual description of eye gaze is given in Figure 1 for a UML

class diagram used in [15]. Figure 2 shows eye gaze on source
code used in [16]. The fixations are shown as circles on the
diagram. The radius of the circle represents the duration of the
fixation. The bigger the radius, the more time is spent looking

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
TEFSE’11, May 21-28, 2011, Waikiki, Honolulu, Hawaii.
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
TEFSE’11, May 23, 2011, Waikiki, Honolulu, HI, USA
Copyright 2011 ACM 978-1-4503-0589-1/11/05 ...$10.00

67

at that particular point on the diagram. Each fixation has a
number displayed in the center of the circle, which indicates the
order when the fixation occurred. A scan path is formed by
connecting consecutive fixations.

In the UML class diagram, we clearly see that the developer
focuses their attention i.e., eyes on two major classes based on
the task he/she is trying to solve. This activity suggests that
there is some logical coupling (implicit link) between the two
classes with respect to the task at hand. However, this link is
within one model i.e., the class diagram. In this example, both
these classes were Singletons and the developer was looking for
Singletons in this particular module of Qt’s (an infrastructure for
common graphical interface development) design.

In Figure 2, we see some areas of the code having a much higher
density of fixations than others. One research question that is
perhaps worthy of investigation is the following: Given the

associated source code and design for a certain feature, can we

link the eye tracking metrics of the code with the eye tracking

metrics of the design to generate traceability links or enhance

existing methods of link retrieval? We believe that these types
of inter-artifact analysis tracking metrics provide opportunities
for building probabilistic models for link
establishment/recovery, and can be a worthwhile endeavor.

The current role of eye trackers in software engineering is
mostly limited to empirical assessment and the status quo would
be maintained for a while. This restriction is understandable
due to the fact that eye-tracking equipment is not affordable to
the level of common computer components (the cost difference
is in the order of several magnitudes). It is perhaps not
farfetched to say that in the future, eye-tracking technology
would become more and more affordable; after all history is our
guide in this aspect when it comes to any technology. When this
happens, eye trackers would be a regular fixture on personal
computers (similar to web cameras and other peripherals). It
would be possible to do things with “the blink of an eye”,
similar to what we do today “by word of mouth or click of a
button” in integrated development environments. Capturing
eye gazes would be as simple as capturing screen shots or voice
or videos or activity logs. Such an eye tracking enabled IDE
would offer unique opportunities to software engineering
research.

3. TRACEABILITY TASK SUPPORT

WITH EYE TRACKING
Here, we describe four representative software traceability tasks
that could benefit from the use of eye tracking metrics.

3.1 Empirical Studies
Traditionally, objective measures such as the accuracy/level of
response and time needed are collected from traditional
empirical studies. For example, human subjects are asked to
report their final answers on the completion of a given task (e.g.,
to assess the validity of a tool-recommended traceability links)
and their response time is recorded. We term such measures as
black box measures as they only record the final outcome after a
specific task conclusion. That is, no other data is collected, at
least not implicitly, while a human subject is performing a given
task. Explicit method such as “think aloud” are feasible, but
they bring a potential side effect of distracting the subjects from

the core task at hand. Additionally, black box measures raises a
potential threat to the validity of the study, namely the
match/disparity between the subjects’ responses on completion
of a task and the “reality” they observed while performing that
task. For example, a subject may forget to report (or misreport)
an observation after a lengthy task.

Figure 1. A gaze plot of a UML class diagram while the

developer is solving a particular software task.

Figure 2. A gaze plot of source code while the developer is

trying to comprehend what it does

The white box measures obtained from eye tracking provide an
opportunity to empirically assess software traceability tools.
The first immediate organic direction is to apply on tools that
are visual in nature. Marcus et al. [13] presented a visualization
environment for traceability links. White box measures can be
used not only to assess the efficacy of different types of links
and their representations employed by the developers for
different tasks, but also ratiocinate the associated success and
failure outcomes (e.g., from eye gaze patterns). We hope that
such studies on the underlying visual metaphor, mapping, and

68

information and visual spaces would help provide insights that
enable the sustained evolution of (needed) visualization tools.

Another direction is to use the added dimension of white box
measures to replicate previously reported traceability studies.
For example, work by Lucia, et al. [5] [6] on the tool ADAMS.
Fixation-based effort metrics, such as the one presented in our
previous work, could be used to note the amount of effort (in
conjunction with the traditional time measure) needed in the
traceability link assessment study. The eye gaze patterns could
help in studying differences in strategies adopted by developers
with varied expertise, domain knowledge, and skills [20].

Lastly, the eye tracking method could provide an avenue for
cross validation with traditional methods. As the use of eye
tracking gets more prevalent in empirical studies on various
artifacts, it is not unreasonable to speculate that a large volume
of eye gaze data to be generated. A relevant question here is
how can this data be used in traceability studies?

3.2 Visualization Environments
We discuss how eye movement measures could aid in improving
the visualization support for software traceability. Here, we
focus on the common tasks of exploration, examination, and
navigation support for traceability links.

An exploration activity deals with how subjects perform
searches to locate or create traceability links of interest. The
number and size of fixations could help identify areas of the
source and sink nodes that smoothly assist or create bottlenecks
in performing a task. Scan paths provide the order and
directionality information in which the links were traversed. For
example, were only the relevant links immediately visited and
only once? Such information should help in designing effective
visual layouts and organization of the visual space.

An examination activity deals with how subjects visualize, in
detail, whole or parts of a specific class and relationships. From
our experience, fixations can be recorded at the granularity of a
specific line (e.g., source code class, attribute, and method
names). Thus, fixations could be used to assess questions/tasks
that are related to a specific node (e.g., class). Also, the
durations of fixations give information about which parts of a
specific class receive the most attention.

A navigation activity deals with how subjects move from one
traceability link of interest to the next after their discovery.
Once again fixations and saccades could be used to justify a
traceability link layout strategy in supporting navigation (e.g., in
providing a guided path).

The eye tracking data (if regularly collected) could be used to
support other visualization tasks. For example, it can offer a
new context to browsing history. One example would be to
design a filter that uses the eye tracking metrics to show links
that were most viewed first.

3.3 Link Recovery
We believe eye tracking metrics can be used to augment existing
traceability link recovery techniques [18] as well as generate
new ways of link recovery between software artifacts. In
general, we observe two broad possibilities: linking eye tracking
measures across models, and using eye tracking measures to
augment existing link recovery techniques.

With respect to linking eye tracking measures across models, we
could use fixations and saccades to determine which source code
element for example, should be linked to a high level design
element in a UML class diagram. Some data on how developers
view UML class diagrams [9] [20] [17] exists. In order to
perform such a linking mechanism, studies on source code for
the corresponding systems would also be needed. One scenario
is to collect eye tracking data while developers are working with
different types of software artifacts in an IDE such as Eclipse. A
link retrieval algorithm then analyzes the eye tracking data:
fixations, their duration and saccades, to determine if a link
between the software artifacts exists (e.g., source code and UML
class diagrams). Another possibility is to compare eye tracking
data of different developers and build a confidence based link
recovery model. For example, if the same pattern is found in the
eye gaze data of several developers, it’s likely to be a link.
Information about the fixation, saccades, and scan paths can also
be used to figure out the order of the link i.e., link directionality,
while the developer is viewing several software artifacts.

The second possibility is using eye tracking measures as
metadata to enhance existing traceability link recovery
algorithms such as LSI and probabilistic approaches. As an
example, in Poirot Tracemaker [12], we could use eye gaze
information such as the number of fixations to determine the
most viewed class or method in a class diagram and plug that
into their traceability link finder (e.g., as meta data). The same
can be done for the ADAMS [5] [6] traceability link recovery
tool. This possibility uses existing eye gaze behavior of
individuals to feed the link recovery process. Each of these
venues calls for further investigation.

3.4 Link Maintenance and Evolution
Link maintenance deals with making sure the link model [14]
between artifacts remains consistent after a change is made, such
as adding a new feature. One possibility is to tag eye tracking
data while developers are using traceability links to work on
maintenance tasks. This data could then be used at some later
point during the maintenance and evolution phase. Having
access to the historical information of eye gazes can provide an
avenue to explore new possibilities. For example, inferring the
co-change relationships (or logical couplings) of links based on
previously recorded gaze patterns. Such couplings may help in
maintenance oriented tasks such as if a specific link changes,
what other links may also need to be changed? Also, it can help
in identification of links that are viewed most frequently and
therefore their importance in being kept consistent (i.e., ranking
links to be maintained according to their visual importance).

3.5 Related Work
We briefly discuss related work in the area of eye tracking used
in the context of software engineering artifacts. Yusuf et al. [20]
conducted a study to determine if different class diagram layouts
with stereotype information help in solving certain tasks. They
used the Tobii eye tracker that is unobtrusive with no
equipment/gear needed to be mounted on the human subject (a
big difference from previous generation eye trackers).
Guehénéuc [8] investigated the comprehension of UML class
diagrams. Jeanmart et al. [9] conducted a study on the effect of
the Visitor design pattern on comprehension using an eye
tracker. Sharif et al. [17] also conducted an eye tracking study

69

assessing the role layout has in the comprehension of design
pattern roles. A statement advocating the use of eye tracking in
assessing software visualizations is given in [11]. With respect
to source code, one of the first studies done was by Crosby and
Stelovksy [4]; they studied the eye gaze of novice and expert
programmers. Uwano et al. [19] also study eye gaze patterns
while they are detecting defects in source code. Bednarik et al.
[2] study the comprehension of Java programs using an eye
tracker. They also conduct an experiment in debugging
strategies within an IDE setting using an eye tracker [3]. Sharif
et al. [16] conduct an eye tracking study to analyze the impact of
identifier style on code comprehension.

4. CONCLUDING REMARKS
The position this paper takes is to include eye tracking metrics
in the field of software traceability. A number of different
scenarios with respect to four main traceability tasks namely,
empirical studies, link visualization, link recovery and link
maintenance are provided. Each of the areas should be
investigated in detail by developing hypotheses and testing
them. There are some threats to validity when using eye
trackers. One immediate threat is that what you see is not
always what you need/want. Also, sometimes capturing data
might not be very practical. Another issue is the noise in the eye
tracking data itself due to calibration errors. Not all people are
ideal candidates to use as eye tracking subjects. In this case,
capturing data might not always be possible. However,
acknowledging the threats and setting limits on what is
realistically possible, we envision the future of software
traceability to include eye-tracking measures, as eye trackers
become more and more common.

5. REFERENCES
[1] Antoniol, G., Berenbach, B., Egyed, A., Ferguson, S.,

Maletic, J. I., and Zisman, A., "Problem Statements and
Grand Challenges, Center of Excellence for Traceability",
Lexington, KY September 10th 2006.

[2] Bednarik, R. and Tukiainen, M., "An Eye-tracking
Methodology for Characterizing Program Comprehension
Processes", in Proc. of Symp. on Eye tracking research &
Applications (ETRA), San Diego, 2006, pp. 125-132.

[3] Bednarik, R. and Tukiainen, M., "Temporal Eye-tracking
Data: Evolution of Debugging Strategies with Multiple
Representations", in Proc. of Symposium on Eye Tracking
Research & Applications (ETRA), Georgia,2008,pp. 99-102.

[4] Crosby, M. E. and Stelovsky, J., "How do we read
algorithms? A case study", IEEE Computer, vol. 23, no. 1,
1990, pp. 24-35.

[5] De Lucia, A., Fasano, F., Oliveto, R., and Tortora, G.,
"ADAMS: ADvanced Artefact Management System", in
Proc. of 10th Eur. Conf on Soft. Maint. and Reengineering
(CSMR'06) Italy, Mar 22-24 2006,pp.349-350.

[6] De Lucia, A., Oliveto, R., and Tortora, G., "Assessing IR-
based traceability recovery tools through controlled
experiments", Empirical Software Engineering, vol. 14, no.
1, 2009, pp. 57-92.

[7] Duchowski, A. T., Eye Tracking Methodology: Theory and

Practice, London, Springer-Verlag, 2003.

[8] Guéhéneuc, Y.-G., "TAUPE: towards understanding
program comprehension", in Proc. of 16th IBM Centers for
Advanced Studies on Collaborative research (CASCON),
Canada, Oct 2006, pp. 1-13.

[9] Jeanmart, S., Guéhéneuc, Y.-G., Sahraoui, H., and Habra,
N., "Impact of the Visitor Pattern on Program
Comprehension and Maintenance", in Proc. of 3rd
International Symposium on Empirical Software
Engineering and Measurement, Lake Buena Vista, Florida,
Oct 15-16 2009, pp. 69-78.

[10] Just, M. and Carpenter, P., "A Theory of Reading: From
Eye Fixations to Comprehension", Psychological Review,
vol. 87, 1980, pp. 329-354.

[11] Kagdi, H., Yusuf, S., and Maletic, J. I., "On Using Eye
Tracking in Empirical Assessment of Software
Visualizations", in Proc. of ACM Workshop on Empirical
Assessment of Software Engineering Languages and
Technologies, Atlanta, GA, November 5, 2007, pp. 21-22.

[12] Lin, J., Lin, C. C., Cleland-Huang, J., Settimi, R., Amaya,
J., Bedford, G., Berenbach, B., Khadra, O. B., Duan, C., and
Zou, X., "Poirot: A Distributed Tool Supporting Enterprise-
Wide Traceability", in Proc. of IEEE International
Conference on Requirements Engineering (RE'06) - Tool
Demo, Sept 2006.

[13] Marcus, A., Xie, X., and Poshyvanyk, D., "When and How
to Visualize Traceability Links?" in Proc. of 3rd ACM
International Workshop on Traceability in Emerging Forms
Of Software Engineering, California, USA, 2005, pp. 56-61.

[14] Sharif, B. and Maletic, J. I., "Using Fine-Grained
Differencing to Evolve Traceability Links", in Proc. of ACM
International Symposium on Grand Challenges in
Traceability (GCT/TEFSE), Lexington, Kentucky, March
22-23 2007, pp. 76-81.

[15] Sharif, B. and Maletic, J. I., "The Effects of Layout on
Detecting the Role of Design Patterns", in Proc. of 23rd
IEEE-CS International Conference on Software Engineering
Education and Training (CSEE&T 2010), Carnegie Mellon
University, Pittsburgh, USA, March 9-12 2010, pp. 41-48.

[16] Sharif, B. and Maletic, J. I., "An Eye tracking Study on
CamelCase and Under_score Identifier Styles", in Proc. of
18th IEEE Intl. Conf. on Prog. Comp. (ICPC'10), Portugal,
Jun 30-Jul 2 2010, pp. 196-205.

[17] Sharif, B. and Maletic, J. I., "An Eye tracking Study on the
Effects of Layout in Understanding the Role of Design
Patterns", in Proc. of 26th IEEE International Conference on
Software Maintenance (ICSM'10), Timisoara, Romania,
Sept 12-18 2010, pp. 1-10.

[18] Spanoudakis, G. and Zisman, A., "Software Traceability: A
Roadmap", in Handbook of Software Engineering and

Knowledge Engineering, Chang, S. K., Ed. World Scientific
Publishing Co, 2005, pp. 395-428.

[19] Uwano, H., Nakamura, M., Monden, A., and Matsumoto,
K., "Analyzing individual performance of source code
review using reviewers' eye movement", in Proc. of 2006
symposium on Eye tracking research & applications
(ETRA), San Diego, California, 2006, pp. 133-140.

[20] Yusuf, S., Kagdi, H., and Maletic, J. I., "Assessing the
Comprehension of UML Class Diagrams via Eye Tracking",
in Proc. of IEEE Intl. Conf. on Prog. Comp. (ICPC’07),
Banff, Jun 26-29, 2007, pp. 113-122.

70

