Traceability Challenge 2011: Using TraceLab to Evaluate
the Impact of Local versus Global IDF on Trace Retrieval

Adam Czauderna, Marek Gibiec, Greg Leach, Yubin Li
Yonghee Shin, Ed Keenan, Jane Cleland-Huang
Systems and Requirements Engineering Center, DePaul University
jhuang@cs.depaul.edu

ABSTRACT

Numerous trace retrieval algorithms incorporate the stan-
dard tf-idf (term frequency, inverse document frequency)
technique to weight various terms. In this paper we address
Grand Challenge C-GC1 by comparing the effectiveness of
computing idf based only on the local terms in the query,
versus computing it based on general term usage as docu-
mented in the American National Corpus. We also address
Grand Challenges L-GC1 and L-GC2 by setting ourselves
the additional task of designing and conducting the experi-
ments using the alpha-release of TraceLab. TraceLab is an
experimental workbench which allows researchers to graphi-
cally model and execute a traceability experiment as a work-
flow of components. Results of the experiment show that the
local idf approach exceeds or matches the global approach
in all of the cases studied.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement; D.2.1 [Requirements/Specifications]:
Tools

General Terms

Experimentation, Measurement, Documentation

Keywords
Traceability, TraceLab, Challenge

1. INTRODUCTION

Requirements traceability is recognized as a critical soft-
ware engineering activity which establishes relationships be-
tween requirements and other artifacts such as software de-
signs, code, and test cases. Due to the time and effort re-
quired to manually create and maintain traceability links,
researchers have explored the use of information retrieval
methods for automating generating candidate links. Such

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

TEFSE’11, May 23, 2011, Waikiki, Honolulu, HI, USA

Copyright 2011 ACM 978-1-4503-0589-1/11/05 ...$10.00

75

approaches have included the vector space model (VSM)
[5], probabilistic approaches [2], or Latent Semantic Index-
ing (LSI) [1, 7, 8]. Many approaches incorporate a tech-
nique known as tf-idf (term frequency, inverse document fre-
quency) which generates similarity scores between a require-
ment and an artifact by considering the number of shared
terms and the weight of those terms. In this paper we ex-
plore the impact of using term weights computed locally
versus those computed according to their frequency in the
American National Corpus [6]. Results are evaluated against
four different datasets.

Our experiment directly addresses three challenges from
the Grand Challenges of Traceability (GCT). The first chal-
lenge, C-GC1 [4] is related to trace recovery. We asked
the question “Can the quality of generated traceability links
be improved through computing idf (inverse document fre-
quency) values based upon the general occurrence of words
in written language versus their occurrence in project spe-
cific artifacts?” The second set of challenges, L-GC1 and
L-GC2 [4], are related to defining standard processes, proce-
dures, and benchmarks for performing traceability research.
To this end, we conducted our experiments using Tracel.ab
[3], a workbench currently in the early stages of develop-
ment, which is designed for modeling and executing trace-
ability experiments. This traceability challenge represents
the first time TraceLab has been used to formally conduct
a traceability experiment. We therefore asked the question
“Can TraceLab be used to effectively support the idf trace-
ability experiment?”

2. DOCUMENT FREQUENCY

All of the experiments reported in this paper utilize the
vector space model (VSM). In the VSM, each query ¢q and
each document d is represented as a vector of terms T =
t1,to,....,t, defined as the set of all terms in the set of
queries. A document d is therefore represented as a vec-
tor d = (w1,4, wa,d, ..., Wn,a), Where w; 4 represents the term
weight of term ¢ for document d. A query is similarly repre-
sented as ¢ = (w1,q, W2,q, ----; Wn,q)- The standard weighting
scheme known as tf — idf is used to assign weights to in-
dividual terms [9], where tf represents the term frequency,
and idf the inverse document frequency. Term frequency is
computed for document d as tf(t;,d) = (freq(ti,d))/(|d|),
where freq(t;,d) is the frequency of the term in the docu-
ment, and |d| is the length of the document. Inverse docu-
ment frequency idf, is typically computed as:

idf; = loga(n/n;) 1)

Dataset Description Source Target # of Traces
Name Count | Name Count
CM1 Space Telescope High Level regs. | 22 Low level regs. 53 45
Easy Clinic Electronic health care system | Use Cases 30 Classes 47 93
E-Tour Tour cultural sites online Use Cases 58 Java Code 116 327
WYV-CCHIT || Health Information system Requirements 116 Regulatory Requirements | 1064 587
Table 1: Datasets used in idf experiment
2 EasyClinic e prar Data\challenge1 HIPPA\screenshotgmi R T — E=EE))
hed, ¢« @0
EasyClinic Experiment = X |Borg View ~ax
Original Name Type Value
sourceArtifacts | TraceLabSDK Type| TraceLabSDK.Tyy *
‘targethrtifacts | TraceLabSDK.Typs| TraceLabSDK.Ty
traceMatrix TraceLabSDK Type| TraceLsbSDK.Tyy
ANC TraceLabSDKType| " 1 =
—al
' e

'—becaus 1
‘--downfall. 1

(Suur[EC\EanupPreprocesmr) (smpwwslmpmg,) [TargelCIEanumepm[essur]

—reqularli 1
'--someth 1

Source Stopwords Remover
Seurce English Porter Stemmer

TFIDF Dictionary Index Builder
ANC Tracer Component

<]]
Target Stopwords Remover
Components Library
Target English Porter Stemmer

"—strang 1 -

ANC Importer
TFIDF Dictionary Index Builder
Easy Cliniclmporter

Exce! Similarity Matrix Exporter
CSV Similarity Matrix Exporter
AnswerMatridmporter
Importer

PoirotXMLImporter
Stopwordsimporter

Test Empty Component

Test reader

Test writer

i

(ANC Recall and Precision Computation] (ANC IDF Average Precision Computation] (Standard TFIDIF Average Precision Computation] [Rera” and Precision Computation]

Incrementer
Platter

(ANC Results Charts) [Invwke Matlab Graphs)

Results Charts

Cleanup Preprocessor

English Porter Stemmer

Stopwords Remaver

Promise Importer

Results Metric Computation

Average average precision Metric Computation
Results Charts

Java sample swing windov

Status: Processing

Splitter L
Java Porter Stemmer

Tracer Component

ANC Tracer Comnonent

Output Library

Figure 1: TraceLab workflow for comparing two IDF techniques

where n is the total number of documents in the traceable
collection, and n; is the number of documents in which term
t; occurs. The individual term weight for term ¢ in document
d is then computed as w;q = tf(t:,d) X idft;. A similarity
score sim/(d, q) between document d and query ¢ is computed
as the cosine of the angle between the two vectors as

(i wi,awi,g)
(\/217';1 Wid /2 wi,q)

The typical practice of computing idf relative to its occur-
rence in project-specific requirements, enables terms which
are rare in a given project to be weighted more highly than
more common ones. However this weighting scheme can re-
sult in false positives (i.e. retrieving incorrect links) when
terms which are actually quite common in general language
usage occur disproportionately few times in the traced dataset.
In this case, the terms may be assigned high weights by a
local idf algorithm even though they are relatively unim-
portant in general use. We hypothesized that this problem
might be mitigated through computing the idf of a term
using the ANC as follows:

idf _ANCy; = 1/min(r fri,1000)

sim(d,q) = (2)

®3)

where 7 fy; is the relative frequency assigned to term ¢i in the

ANC collection. Furthermore, if term ti was not found in the
ANC, it was considered to be rare, and idf _ANC}; was set
to 1. We hypothesized that this approach would produce idf
weightings better aligned with their normal use. However,
computing idf based on a general corpus might also result
in false negatives if generally commonplace terms take on
specific meanings in a local project.

3. EXPERIMENTAL DESIGN

In the remainder of this paper we comparatively evalu-
ate the use of local vs. global idf values, computed using
equations (1) and (3) respectively. Experiments were con-
ducted using the CM1, EasyClinic, E-Tour, and WV-CCHIT
datasets depicted in Table 1. For each dataset, traces were
generated using the VSM approach, first utilizing the stan-
dard idf method and secondly utilizing the global method.
To execute the experiment, we modeled a workflow using
TraceLab. The workflow, depicted in Figure 1, included two
distinct experimental treatments, and was constructed us-
ing the following types of components. Importer compo-
nents such as the ANC importer and Artifacts and Traces
importer were used to import the data from the four case
studies, and transform it into standard TraceLab data types.
Preprocessors were used to prepare raw artifacts for trac-

1@ Elnamespace Preprocessor

1 [if

¥
TR

Name = "English Porter Stemmer”,
4 DefaultLabel = "English Porter Stemmer",

o wn

Author = "DePaul RE Lab Team",
Version = "1.8",
ConfigurationType=null)]

[x

1 B public clasé =B

T T N T T O O S O S =
N ® W00~ o L

Description = "This Pre-Processor stemms the words to their roots.

.Input, "listOfArtifacts”, typeof(TraceLabSDK.Types.TL
.Output, "listOfArtif
nt B one!

ent

[Component(GuidIDString = “420775E4-1AFC-4142-9145-F32A7D1ED8C4A",

It uses the Porter stemming algorithm.",

acts”, typeof(TraceLabSDK.Types.T

3 . public PreprocessorStemmerComponent(IBorg borg) : base(borg) { }
24
25 © public override void Compute()
; ; System.Diagnostics.Trace.WriteLine("Start component PreprocessorStemmerComponent™);
28
29 TLArtifactlist listOfArtifacts = (TLArtifactlist)Borg.Load("listOfArtifacts”, typeof(TLArtifactlList));
5 foreach (TLArtifact artifact in listOfArtifacts)
artifact.ProcessedText = PreprocessorStemmer.Process(artifact.ProcessedText);
}
Borg.Store("listOfArtifacts”, listOfArtifacts);
System.Diagnostics.Trace.WriteLine("Completed component PreprocessorStemmerComponent™);
¥

Figure 2: The stemmer component integrated into the TraceLab environment

ing. For example the stop words remover, and stemmer rep-
resent standard information retrieval functions which were
used to remove common words and stem terms to their root
forms respectively. The dictionary index builder was
used to index the terms and compute term frequencies in
each artifact. The ANC and standard Tracer components
generated candidate traceability links through computing
the cosine similarity between each pair of source artifacts
and target artifacts. The Results analysis components,
such as the ANC results chart and the Invoke Matlab Graphs
components computed metrics and displayed results.

Each component was written in java, C#, or C++ and
then modified to make it compatible with TraceLab. Mod-
ifications include two steps of (i) defining meta data that
documents the name, purpose, version, and interface of the
component, and (ii)using the TraceLab SDK to define I/O
calls on the TraceLab data cache. Both of these modifica-
tions are depicted for the Stemmer component in Figure 2.
A TraceLab experiment is modeled as a precedence graph,
showing the order in which components must be executed.
TraceLab is multi-threaded and can therefore support con-
current execution of components. Precedence is typically
established according to data dependencies. For example,
in Figure 1 the Artifact and Traces Importer reads use cases
from an xml file, transforms them into a standard Trace-
Lab datatype, and writes the data to the TraceLab data
cache. This same data structure is used and modified by
downstream components such as the stemmer and stopper.

4. RESULTS

Traceability results are often evaluated using the standard
metrics of recall, which measures the fraction of relevant
documents which are correctly retrieved, precision, which
measures the fraction of retrieved documents which are rel-
evant, and finally FPR (false positive rate), which measures

77

the number of non-relevant documents retrieved as a frac-
tion of the total number of non-relevant documents. In this
paper, we utilize recall, precision, and FPR to compute av-
erage precision, interpolated precision, and ROC as follows:

Zivzl (P(r) * relevant(r))
Num.O f Relevant Documents

(4)

AveragePrecision =

where r is the rank of the document in the ordered set of
candidate traceability links, IV is the number of retrieved
documents, relevant() is a binary function assigned 1 if the
rank is relevant and 0 otherwise, and P(r) is the precision
computed after truncating the list immediately below that
ranked position. Average Precision returns a higher value
(approaching 1) when more relevant documents are retrieved
towards the top of the ranked list. Interpolated precision
reports precision at fixed recall levels, while compensating
for peculiarities of peaks and valleys in the recall/precision
graph. Interpolated Precision is computed as follows:

InterpolatedPrecision(r) =

()

= max P(r)
r'>=r
where r is the recall at a certain recall level, P(r') is the
precision for any recall level »’ >= r. Interpolated Preci-
sion is computed at 11 recall levels (0.0, 0.1, 0.2, ...1.0) to
compare models. Finally, a ROC graph shows the trade-off
between recall and false positive rate.

Average precision results, reported in Table 2, show that
local idf values outperformed global ones in all four cases,
with most significant differences in the Easy Clinic and E-
Tour datasets. The interpolated precision and ROC results
resported in Figure 3, also indicate that local idf values out-
performed global ones. Differences were particularly pro-
nounced in the case of Easy Clinic and E-Tour; however this
could be explained by the fact that both datasets contain
Italian terms not found in the ANC. In the CM1 dataset,

Interpolated Precision

=

—+— Global IDF
+ Local DF

)

=

)

Interpolated Precision

g .
"
08

02 04 08

Recall

08 1 i 0.2 0.4 [

Recall

(c) eTour (d) WV-CCHIT

Global IDF
Local IDF

Global IDF
Local IDF

02 04 [iR=) 1

06
FPR

(g) eTour (h) WV-CCHIT

Figure 3: Interpolated precision-recall graphs(a-d) and ROC graphs(e-h)

DEI o o) a8 i DD) 7 o o i
Recall Recall

(a) CM1 (b) EasyClinic

02 Legocba\a:[‘)[f 02 Global IDF

Local IDF

s 02 U“FPRUE o ! " " EIAFF’RDE o 1

(e) CM1 (f) EasyClinic
Table 2: Average Precision

Dataset Local idf | Global idf

CMI 0.482 0.386

Easy Clinic | 0.721 0.196

E-Tour 0.331 0.192

WV-CCHIT | 0.296 0.294

the local approach also outperformed the global one; how-
ever this is potentially explained by the fact that CM1 con-
tains numerous highly technical terms which are also not
found in the ANC. It was due to these possible issues that
we added a fourth dataset to the three standard challenge
datasets. The WV-CCHIT dataset does not contain overly
technical or Italian terms, and in this case the two idf meth-
ods returned almost identical average precision scores, but
showed higher interpolated precision at lower levels of recall,
and lower interpolated precision at higher levels.

S. CONCLUSIONS

This report evaluated the impact of computing idf values
using frequencies obtained from the ANC instead of from
the local dataset. Results show that the local idf approach
outperformed the global idf approach in three of the four
datasets, and performed equivalently in the fourth one. An
analysis of the results shows that the global approach signif-
icantly under-performs with datasets containing terms not
found in the ANC. Future work could therefore investigate
a hybrid approach which utilizes global rankings for terms
in the ANC and local weightings for other terms. Finally,
this experiment demonstrated the viability of using Trace-
Lab to model and execute a realistic traceability experiment,
including making calls to Matlab in order to analyze and re-
port results.

6. ACKNOWLEDGMENTS

The work described in this paper was primarily funded by
Major Research Instrumentation grant #CNS-0959924 from
the U.S. National Science Foundation.

78

7. REFERENCES

[1] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and
E. Merlo. Recovering traceability links between code
and documentation. IEEE Trans. Software Eng.,
28(10):970-983, 2002.

J. Cleland-Huang, B. Berenbach, S. Clark, R. Settimi,
and E. Romanova. Best practices for automated
traceability. IEEE Computer, 40(6):27-35, 2007.

J. Cleland-Huang, A. Czauderna, A. Dekhtyar,

O. Gotel, J. Huffman Hayes, E. Keenan, G. Leach,

J. Maletic, D. Poshyvanyk, Y. Shin, A. Zisman,

G. Antonio, B. Berenbach, A. Egyed, and P. Maeder.
Grand challenges, benchmarks, and tracelab:
Developing infrastructure for the software traceability
research community. 2011.

J. Cleland-Huang, A. Dekhtyar, J. Huffman Hayes,

G. Antoniol, B. Berenbach, A. Egyed, S. Ferguson,

J. Maletic, and A. Zisman. Grand Challenges of
Traceability. Center of Excellence for Software
Traceability, http://www.coest.org, 2006.

J. Huffman Hayes, A. Dekhtyar, S. K. Sundaram, and
S. Howard. Helping analysts trace requirements: An
objective look. In RFE, pages 249-259, 2004.

C. Macleod, N. Ide, and R. Grishman. The american
national corpus: Standardized resources for american
english. In Second Language Resources and Fvaluation
Conf. American National Corpus Project, 2000.

A. Marcus, J. I. Maletic, and A. Sergeyev. Recovery of
traceability links between software documentation and
source code. Intn’l Journal of Software Engineering and
Knowledge Engineering, 15(5):811-836, 2005.

R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De
Lucia. On the equivalence of information retrieval
methods for automated traceability link recovery. In
Proc. of 18th IEEE Intn’l Conference on Program
Comprehension (ICPC’10), pages 68-71, 2010.

G. Salton. Automatic text processing: the
transformation, analysis, and retrieval of information
by computer. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 1989.

[4]

[5]

