
fm2011.lero.ie

WCRE is the premier research conference on the theory and
practice of recovering information from existing software and

systems. WCRE explores innovative methods of extracting
the many kinds of information that can be recovered from

software, software engineering documents, and systems arti-
facts, and examines innovative ways of using this information

in system renovation and program understanding.

GENERAL CHAIRS
Jim Buckley

University of Limerick, Ireland

Elliot Chikofsky
Engineering Management & Integration, USA

PROGRAM CHAIRS
Martin Pinzger

Delft University of Technology, The Netherlands
Denys Poshyvanyk

The College of William and Mary, USA

DOCTORAL SYMPOSIUM
Michele Lanza

University of Lugano, Switzerland

Radu Marinescu
University of Timisoara, Romania

WORKSHOP CHAIRS
Michael Collard

The University of Akron, USA

Jens Knodel
Fraunhofer IESE, Germany

TOOL DEMO CHAIRS
Mircea Lungu

University of Berne, Switzerland

Huzefa Kagdi
Winston-Salem State University, USA

PUBLICITY CHAIR
Michaela Greiler

Delft University of Technology, The Netherlands

http://www.cs.wm.edu/semeru/wcre2011

http://www.lero.ie/fm2011
http://www.lero.ie

fm2011.lero.ie

FULL TECHNICAL PAPERS (TITLES)
	Make it or Break it: Mining Anomalies in Linux Kbuild
	Object-Based Dynamic Protocol Recovery for Multi-Threading
 Programs
	Recommending People in Developers’ Collaboration Network
	Automatic Extraction of Secrets from Malware
	Automatic Segmentation of Method Code into Meaningful
 Blocks to Improve Readability
	Locating the Meaning of Terms in Source Code
	Requirements Traceability for Object Oriented Systems by
 Partitioning Source Code
	Approximate Code Search in Program Histories
	A Novel Analysis of Co-change
	Incremental Code Clone Detection: A PDG-based Approach
	SmartDec: approaching C++ decompilation
	Can we predict dependencies using domain information?
	Reverse Engineering of Mobile Application Lifecycles
	Assessing the Doc. of Design Patterns on Code
 Comprehension: Two Controlled Experiments
	How Long does a Bug Survive? An Empirical Study
	Reverse Engineering of Event Handlers of RAD-Based
 Applications
	A preliminary evaluation of text-based/dependency-based
 techniques for determining the origin of bugs
	Impact of Installation Counts on Perceived Quality: A Case
 Study on Debian
	Monitoring Software Quality Evolution by Analyzing Deviation
 Trends of Modularity Views
	An Expl. Study of the Evolution of Communicated Info. about
 the Execution of Large Systems
	Towards the Extraction of Domain Concepts from the
 Identifiers
	Precise Static Analysis of Binaries by Extracting Relational
 Information
	Reverse Engineering of Protocols from Network Traces
	An Entropy Evaluation Approach for Triaging Field Crashes: A
 Case Study of Mozilla Firefox
	Exploring the Intent behind API Evolution: A Case Study
 On the Effectiveness of Simhashing in Clone Detection on
 Large Scale Software System
	An empirical study of framework design and usage for .NET

SHORT TECHNICAL PAPERS (TITLES)
	An Empirical Validation of the Benefits of Adhering to the Law
 of Demeter
	An Investigation into the Impact of Software Licenses on Copy-
 and-Paste Reuse in OSS Projects
	Reasoning over the evolution of source code with quantified
 regular path expressions
	Refactoring Traditional Forms into Ajax-enabled Forms
	Meta-Level Runtime Feature Awareness for Java
	Analyzing the Source Code of Multiple Software Variants for
 Reuse Potential
	Using Dynamic Analysis and Clustering for Implementing
 Services by Reusing Legacy Code
	An Android Security Case Study with Bauhaus
	An Empirical Study of Refactoring in the Context of FanIn and
 FanOut Coupling
	Reverse Engineering Feature Models From Programs’ Feature
 Sets
	Assessing Software Quality by Program Clustering and Defect
 Prediction
	Modularization Metrics: Assessing Package Org. in Legacy
 Large Object-Oriented Software
	Code Search via Topic-Enriched Dependency Graph Matching
	Reverse Engineering Co-maintenance Relationships Using
 Conceptual Analysis of Code
	Concern Localization using Information Retrieval: An Empirical
 Study on Linux Kernel
	Measuring the Accuracy of Information Retrieval Based Bug
 Localization Techniques
	Got Issues? Do New Features and Code Improvements Affect
 Defects?
	Internet-scale Real-time Code Clone Search via Multi-level
 Indexing
	Useful, but usable? Factors Affecting the Usability of APIs
	An Exploratory Study of Software Reverse Engineering in a
 Security Context

KEYNOTES
Professor Mike Hinchey
Evolving Critical Systems

Mr Philip H. Newcomb
Architecture-Driven Modernization of the European Air Traffic Management System

http://www.lero.ie/fm2011
http://www.lero.ie

