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Abstract. Obtaining high accuracy singular triplets for large sparse matrices is a significant5
challenge, especially when searching for the smallest triplets. Due to the difficulty and size of these6
problems, efficient methods must function iteratively, with preconditioners, and under strict memory7
constraints. In this research, we present a Golub-Kahan Davidson method (GKD), which satisfies8
these requirements and includes features such as soft-locking with orthogonality guarantees, an inner9
correction equation similar to Jacobi-Davidson, locally optimal +k restarting, and the ability to10
find real zero singular values in both square and rectangular matrices. Additionally, our method11
achieves full accuracy while avoiding the augmented matrix, which often converges slowly for the12
smallest triplets due to the difficulty of interior eigenvalue problems. We describe our method in13
detail, including implementation issues that arise. Our experimental results confirm the efficiency14
and stability of our method over the current implementation of PHSVDS in the PRIMME software15
package.16
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1. Introduction. Assuming a large sparse matrix, A ∈ <m,n with m ≥ n, the19

economy size singular value decomposition (SVD) is given by20

(1.1) A = UΣVT ,21

where U ∈ <m,n and V ∈ <n,n are orthonormal bases and Σ = diag(σ1, . . . , σn) ∈22

<n,n with σ1 ≤ σ2 ≤ · · · ≤ σn is a diagonal matrix containing the singular values of23

A. The singular triplets of A are defined as (ui, σi,vi), where bold face differentiates24

from search space vectors in this paper. When using inexact arithmetic, we have the25

left and right singular value residuals, defined as ru = ATu − σv and rv = Av − σu26

respectively.27

This decomposition has become increasingly important and is frequently used in28

fields like statistics for principal component analysis [14], computer science for image29

compression [23] and web search clustering [21], and genomics for expression data30

processing [2]. More specifically, finding the smallest singular triplets is useful for31

total least squares problems and the determination of the effective rank of a matrix32

[9], and for variance reduction of inverse operators [7].33

Additionally, finding high accuracy solutions is crucial when running in a single or34

low precision environment. In single precision, matrix multiplication can only provide35

1.2E-7‖A‖ of accuracy, and in practice this bound is optimistic for iterative solvers36

due to accumulated error. Despite this limitation, single-precision calculations have37

become increasingly important for deep learning applications [11] which are often38

resistant to errors and therefore require less than full double precision. Reducing39

the precision of matrix vector multiplications can provide speed ups on CPUs due to40

increased vectorization, and GPUs can obtain speedups of 2x-4x [32]. In addition,41

using single precision cuts the storage requirements in half. Specifically, the use of42
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single precision calculations is encouraged by Advanced Micro Devices (AMD) for43

OpenCL applications [1], and half precision, which can only provide 1E-3‖A‖ digits44

of accuracy, has been growing in popularity on NVIDIA’s GPUs [18].45

When the matrix A is large enough, it can be inefficient to compute the SVD46

with dense methods. Furthermore, applications often require only a few of the largest47

or smallest singular values and vectors. These considerations have lead to the use of48

iterative algorithms like Golub-Kahan-Lanczos (GKL) also known as Lanczos bidiag-49

onalization [8]. However, when the solution requires many iterations, it may be in-50

feasible to store all the GKL vectors necessary for full or partial reorthogonalization.51

To solve this, restarted versions of GKL that limit the maximum basis size, such as52

IRLBA [4], have been developed. Additionally, other methods have emerged, such as53

Jacobi-Davidson (JDSVD) [12], the Preconditioned Hybrid SVD method (PHSVDS)54

[31], and the Preconditioned Locally Minimal Residual method (PLMR SVD) [28].55

These methods can use the more advanced +k (also known as locally optimal) restart-56

ing and can take advantage of preconditioning, which can provide significant speedups57

for difficult problems.58

In general without preconditioning or +k restarting, these methods build Krylov59

spaces on the normal equations matrix C = ATA or on the augmented matrix,60

(1.2) B =

[
0 AT

A 0

]
.61

We denote a k-dimensional Krylov space on a square matrix A with initial vector v162

by Kk(A, v1) = span{v1, Av1, . . . , Ak−1v1} and ‖ · ‖ denotes the Euclidean norm.63

Frequently, methods that build their search space with B, like JDSVD and64

PLMR SVD, are able to achieve accuracy of ‖rB‖ < O(‖A‖εmach) when searching65

for the smallest singular triplets, where εmach is the working machine precision and66

rB = [ru; rv] is the eigenvalue residual on B. However, B has singular values ±σi [22],67

so searching for the smallest singular triplets is a highly interior eigenvalue problem68

that can converge slowly. Worse, when A is rectangular, the spectrum of B contains69

m − n zero eigenvalues that are not in the spectrum of A. Therefore, methods on70

B are unable to distinguish real zero singular values of A within the spectrum when71

m 6= n.72

Alternatively, methods that build Kk(C, v1) explicitly are only able to achieve73

accuracy O(‖C‖εmach) = O(‖A‖2εmach) for the eigenvalue residual on C, rC . Addi-74

tionally, rC is equivalent to a scaling of ru, as seen in equation 1.3.75

(1.3) rC = ATAv − σ2v = σ(ATu− σv) = σru.76

Thus, if σ1 6= 0, the norm of the singular value residual when searching for the77

smallest singular value cannot be better than O(‖A‖κ(A)εmach), where κ(A) = σn

σ1
78

is the condition number of A. Despite the squaring of the spectrum, these methods79

usually converge faster than methods on B, both in theory and in practice, due to the80

extremal problem they solve. Furthermore, these methods are often able to find real81

zero singular values of A, as the corresponding eigenproblem on C does not introduce82

extraneous zero eigenvalues.83

In this work, we introduce a Golub-Kahan Davidson method (GKD), which keeps84

the convergence of methods on C, but attains the full accuracy of methods on B.85

Specifically, we define full accuracy to be
√
‖ru‖2 + ‖rv‖2 < ‖A‖εmach. First, we86

discuss related methods such as GKL, JDSVD, PLMR SVD and PHSVDS, followed87

by a detailed description of our method including implementation details. Lastly, we88
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provide experimental results that highlight the capabilities of GKD compared to the89

current implementation of PHSVDS in the PRIMME software package.90

1.1. Related Work. GKL [16] builds two vector bases, one for the right space91

Kk(ATA, v1) and one for the left space Kk(AAT , Av1). It builds the second basis while92

computing the first one without additional matrix vector multiplications (matvecs).93

More importantly, it avoids directly multiplying vectors with ATA and thus avoids94

the numerical problems associated with working on C. This is done by keeping two95

orthogonal spaces, U and V , where the last vector of V , vk, is used to expand U as96

uk = Avk and the last vector of U , uk, is used to expand V as vk+1 = ATuk. These97

new vectors are orthonormalized to the previous ones in their corresponding bases and98

the coefficients from this process are used to create the bidiagonal projection matrix99

UTAV . GKL solves the smaller singular value problem on this projection matrix to100

approximate the singular triplets.101

While GKL is considered to be one of the most accurate and effective algorithms102

for finding small singular triplets, the standard version is unrestarted and cannot103

be preconditioned. Therefore, GKL tends to be computationally slow for poorly104

separated triplets of large matrices. Many restarted versions have been developed105

[5, 4, 13] but use primarily implicit or thick restarting [29] and thus are unable to106

maintain the convergence of the unrestarted method. Locally optimal (also known107

as +k) restarting uses vectors from successive iterations in a way similar to a non-108

linear conjugate gradient and has been shown to converge similarly to an unrestarted109

method for both eigenvalue [15, 27, 26] and singular value problems [31].110

SVDIFP [17] implements an inner-outer method where the inner one builds a pre-111

conditioned Krylov space Kk(M(C−ρiI), xi), where M is a preconditioner for C and112

(xi, ρi) is the approximate right singular vector and value at the i-th step of the outer113

iteration. SVDIFP is able to avoid numerical problems, at least for the right singu-114

lar vectors, by using a two sided projection similarly to GKL. SVDIFP’s structure,115

however, does not allow for many of the optimization techniques of Davidson-type116

methods which can significantly improve convergence [31].117

JDSVD [12] works on B by using two independent subspaces rather than one. It118

is an inner outer method that expands both spaces by solving a Jacobi-Davidson type119

correction equation on B. Without preconditioning, restarting, or solving the cor-120

rection equation, the JDSVD outer method builds subspaces that span the following121

Krylov spaces:122

(1.4) Uk = K k
2
(AAT , u1)⊕K k

2
(AAT , Av1), Vk = K k

2
(ATA, v1)⊕K k

2
(ATA,ATu1).123

These spaces are similar to the ones used in GKL, but crucially, each space is the sum124

of two different spaces of half dimension. This allows JDSVD to take advantage of125

initial guesses for both the left and right singular vectors. However, it also means that126

the outer solver in JDSVD requires twice as many matvecs to build a space of equal127

Krylov dimension. Furthermore, if we choose initial vectors that satisfy v1 = ATu1,128

the outer iteration of JDSVD becomes wasteful as it builds the same space as a GKL129

with half the dimension (in this case the spaces K k
2
(ATA, v1) and K k

2
(ATA,ATu1) in130

(1.4) differ only by one vector). This is also true of eigensolvers on B as seen below,131

(1.5) B2

[
v
Av

]
=

[
0 AT

A 0

]2 [
v
Av

]
=

[
ATAv

AAT (Av)

]
.132

The inner correction equation used in JDSVD often allows for faster convergence than133

standard eigenvalue methods on B while maintaining the ability to converge to full134
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accuracy. Despite these benefits, it can still suffer from the same issues as other135

eigenmethods on B.136

PHSVDS [31] exploits the different advantages of eigenmethods on B and C by137

utilizing each in a two-stage method. The first stage can use any state-of-the-art138

eigensolver on C, which gives it fast convergence until either the user tolerance is met139

or until switching to a second stage using an eigensolver on B is necessary to reach140

the remaining user tolerance. Switching to an eigensolver on B after a fully converged141

first stage can effectively utilize good initial guesses from the first stage on C, and142

thus PHSVDS can avoid resolving the entire accuracy on an indefinite problem. Its143

implementation in PRIMME can use any of the two near-optimal eigensolvers, GD+k144

or JDQMR. This two-stage approach has been shown to be faster than eigensolvers145

on B alone, and typically has better performance than other SVD methods.146

While PHSVDS has shown significant improvements, it is still limited by the147

speed of eigensolvers on B when the matrix is ill-conditioned. It converges quite well148

for problems that do not need to switch stages, but eigensolvers on C cannot converge149

to high accuracy if the smallest singular value is nearly 0. Once it switches to the150

second stage on B, a significant slowdown occurs associated with interior problems151

and methods based on the augmented matrix. We see later than GDK converges with152

the near-optimal speed of GD+k on C down to O(‖A‖εmach).153

PLMR SVD [28] is a recent method based on a stationary iteration that uses two
separate four-term recurrences to build the following spaces,

span{v(i), r(i)u , P (AT r(i)v − σr(i)u ), v(i−1)}

span{u(i), r(i)v , P (Ar(i)u − σr(i)v ), u(i−1)},

where v(i) and u(i) are the i-th approximations of the right and left singular vectors154

respectively, and r
(i)
v = P (Av(i)−σu(i)) and r

(i)
u = P (ATu(i)−σv(i)) are their precon-155

ditioned right and left residuals respectively. Without a preconditioner, PLMR SVD156

is equivalent to GD+1 with a 3-vector basis (or LOBPCG) on B. There may be addi-157

tional benefits to building the spaces separately, but PLMR SVD lacks the subspace158

acceleration present in GD+k and JDSVD, which can provide superlinear convergence.159

2. Main Contribution. In the following section, we describe the proposed160

method, GKD, in detail, especially focusing on the selection of approximate sin-161

gular triplets from our subspaces and the implementation of our restarting method.162

Additionally, we discuss error accumulations that occur due to restarting and the miti-163

gation strategy required to ensure reliable performance for high accuracy calculations.164

Finally, we extend GKD to an inner-outer method that solves a Jacobi-Davidson cor-165

rection equation.166

2.1. Algorithm. Our algorithm is designed to mimic the numeric nature of GKL167

by keeping two orthonormal bases for the right and left space, V and Q respectively,168

which are built without multiplying directly with ATA. Instead, we build Q such169

that AV = QR is the economy QR factorization of AV . Then, we extend V with170

a left residual based on a Galerkin extraction from R. Without preconditioning or171

+k restarting, this process is identical to GKL, building the right and left spaces172

Kq(A
TA, v1) and Kq(AA

T , Av1) after q iterations or 2q matvecs. Since both the173

extraction of approximate triplets through the SVD of R and the expansion of the174

spaces avoid a direct multiplication with C, we avoid the squaring of the norm and175

condition number that occurs with eigensolvers on C.176
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Specifically, we extract approximate singular triplets from these spaces using a177

Rayleigh-Ritz procedure that is adapted for the SVD. Given search spaces Q ⊂ Rm178

and V ⊂ Rn, we can determine approximations (u, σ, v) with the following two179

Galerkin conditions on the right and left residuals,180

Av − σu ⊥ Q,
ATu− σv ⊥ V.

(2.1)181

Since u ∈ Q and v ∈ V, we can write u = Qx and v = V y, where Q and V form182

k-dimensional orthonormal bases of Q and V respectively. Additionally, AV = QR⇒183

QTAV = R, which allows us to rewrite the conditions as follows:184

QTAV y = σQTQx⇒ Ry = σx

V TATQx = σV TV y ⇒ RTx = σy.
(2.2)185

Therefore, solving the singular value decomposition onR with singular triplets (x, σ, y)186

satisfies both constraints and provides approximations to the singular triplets of A.187

To expand the right search space, we take the approximations from the above188

Rayleigh-Ritz extraction and use them to form the left residual ru = ATu−σv. Then,189

we can choose to expand V with this ru directly, or with the preconditioned residual190

Pru, where P is a suitable preconditioner for ATA or for ATA− σI, if available.191

We expand the left space Q with Avi+1 instead of a preconditioned right residual.192

This differentiates the method from JDSVD with the goal of producing a faster con-193

verging outer method. Specifically, from (1.3) the left residual ru is colinear with the194

residual rC of the Generalized Davidson (GD) method [20] on the matrix C, which is195

also colinear with the new GKL direction for V . In addition, the Rayleigh-Ritz on C196

used by GD gives the same answer as (2.2),197

V TATAV y = σy ⇒ RTRy = σy,198

so, in exact arithmetic, GKD is equivalent to GD solving the eigenproblem on ATA.199

Without preconditioning or restarting, it is also equivalent to GKL and thus it is twice200

as fast as JDSVD if the latter is used only as an outer method. By construction, GKD201

has similar numerical properties as GKL, whereas the accuracy of GD is limited by202

working directly on ATA. GKD can also be used with thick and +k restarting, which203

in exact arithmetic makes it equivalent to GD+k on C, the first stage method of204

PHSVDS, but without the numerical limitations. Algorithm 2.1 shows the restarted205

and preconditioned version of GKD when seeking one singular triplet. Although206

the orthogonalization of step 13 can be avoided without preconditioning [24], it is207

needed for high accuracy and in our more general method that allows for flexible208

preconditioning. Furthermore, the algorithm can be extended to find more than one209

singular triplets by using soft or hard locking. A block version is similarly possible.210

2.2. Restarting and Locking. Our restart procedure takes the current best211

approximations to the s singular triplets closest to the user specified target, σ̃, and212

uses them together with those from the +k restarting to compress V , Q and R down to213

dimension s+ k. The steps for building the restarted V follow closely the description214

in [26] and are shown in lines 1-7 of Algorithm 2.2.215

The simplest method to restart Q and R, without recomputing the QR factoriza-216

tion of the restarted AV t, is to set them as QQ̃ and R̃ respectively, where Rt = Q̃R̃217

is the QR factorization of Rt with t = [Y1, vnew] from line 6 of Algorithm 2.2. This218
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Algorithm 2.1 GKD Iteration

1: Define target σ̃, initial vector v1, max basis size q, tolerance δ, preconditioner P ,
and i = 1

2: Build V = [v1], Q = [ Av1
‖Av1‖ ], and R = ‖Av1‖

3: while
√
‖ru‖2 + ‖rv‖2 > ‖A‖δ do

4: while i < q do
5: Compute SVD of R
6: Choose the singular triplet (x, σr, y) of R nearest to the target σ̃
7: Save vold = y for +k restarting
8: Set u = Q(:, 1 : i)x, v = V (:, 1 : i)y
9: Compute left residual: ru = ATu− σrv

10: V (:, i+ 1) = Pru
11: Orthogonalize V (:, i+ 1) against V (:, 1 : i)
12: Q(:, i+ 1) = AV (:, i+ 1)
13: Orthogonalize Q(:, i+ 1) against Q and update R(:, i+ 1)
14: i = i+ 1
15: end while
16: call Algorithm 2.2 to restart
17: end while

Algorithm 2.2 Restart Procedure

1: Define restart size s and target σ̃
2: Compute SVD of R = XΣrY

T

3: Choose s singular triplets of R closest to σ̃ (called (X1,Σ
(1)
r , Y1))

4: Save the remaining singular triplets from the SVD of R, (X2,Σ
(2)
r , Y2)

5: vnew ← Orthogonalize saved +k vectors [vold; 0] from main iteration against Y1
6: t = [Y1, vnew]
7: V = V t
8: if Reset criteria is met then
9: Reorthogonalize V and build Q and R such that AV = QR

10: else
11: QR factorize Σ

(2)
r Y T2 vold = Q̃R̃

12: Set Q = Q[X1X2Q̃] and R =

[
Σ

(1)
r 0

0 R̃

]
.

13: end if

can introduce numerical error of magnitude O(‖R‖εmach), which can be as large as219

O(‖A‖εmach). Although this error is acceptable for a single QR factorization, the er-220

ror accumulates over many restarts causing the factorization not to correspond to the221

actual AV and eventually causing loss of convergence. It is possible to intelligently222

compute Q and R to avoid direct multiplications with R through the already available223

SVD of R as seen below,224

AV t = QRt = Q
[
X1 X2

] [Σ
(1)
r 0

0 Σ
(2)
r

] [
I 0
0 Y T2 vold

]
= Q

[
X1 X2

] [Σ1 0

0 Σ
(2)
r Y T2 vold

]
.

(2.3)225
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From (2.3), the new Q and R can be obtained with minimal effort by performing a226

QR factorization Σ
(2)
r Y T2 vold = Q̃R̃. The restarted Q and R are given in Line 12227

of Algorithm 2.2. This strategy has better numerical behavior because we separate228

the space of small singular values that are kept in thick restarting (X1) from the229

+k restarting space which has correction directions over the entire singular space230

(including those of large magnitude). By explicitly decoupling Σ
(1)
r and R̃ in R,231

any errors in R̃ do not affect the ability of the algorithm to compute the smallest232

eigenvectors and they only affect the correction directions. Moreover, as the +k233

algorithm typically uses only k = 1 previous vectrors, no errors are expected.234

To accurately find many singular triplets, we implement two versions of locking.235

The first, hard-locking, locks singular vectors out of the search space explicitly once236

the required user tolerance is reached. At every iteration, we orthogonalize the vector237

added to V against the locked right singular vectors, as well as the previous vectors238

in V . In practice, the vectors added to Q do not require orthogonalization against the239

locked left singular vectors. The second, soft-locking, merely flags converged singular240

triplets while leaving them in the basis.241

It is known that hard locking can cause stagnation in some rare cases or when242

the number of locked vectors is large. This is caused by the error still present in the243

locked vectors, which may contain critical directions for other singular triplets [25].244

We have not seen any matrices in this paper that exhibit this behavior. However,245

soft-locking can provide left and right singular vectors that are orthogonal to ma-246

chine precision, while hard-locking only obtains left singular vectors orthogonal up to247

O(‖A‖δ). Therefore, we present only soft-locking results in this paper. We intend to248

address the issues with hard-locking more thoroughly in the future.249

2.3. Resetting. Since AV = QR, the right residual rv = Av − σu should be250

zero throughout our procedure,251

(2.4) rv = Av − σu = AV y −Q(σx) = AV y −QRy = (AV −QR)y = 0.252

Generally, this means we can avoid the extra matrix-vector multiplication (or storage253

for AV ) necessary to compute rv. In practice though, ‖rv‖ cannot be better than254

O(‖A‖εmach) due to the multiplication AV when computing the left space. Worse,255

‖rv‖ grows as O(
√

numRestarts‖A‖εmach), which has also been noticed in [30]. There-256

fore, our method must calculate ‖rv‖ explicitly when ‖ru‖ < ‖A‖δ, where δ is the257

user selected tolerance. This ensures we meet the convergence criteria of Algorithm258

2.1.259

The errors we observe in rv may grow large enough to exceed the user tolerance,260

which would make convergence impossible. These errors come from two main sources.261

The first source is from the loss of orthogonality of V , and the second is the loss of262

accuracy of the QR factorization of AV . We have found experimentally that both of263

these errors can impede or halt convergence as the SVD of R no longer corresponds264

to the singular triplets in A. We note that this issue is rare and only occurs when265

δ ≈ εmach
√

numRestarts. To correct these errors, we implement a resetting procedure266

that reorthogonalizes V , and rebuilds Q and R directly from a newly computed AV .267

It is critical to only reset sparingly, as rebuilding Q and R from scratch takes268

s + k matvecs to obtain AV and a full QR factorization. Additionally, resetting can269

cause an increase in the residual norm by a factor of κ(A), which may require a few270

iterations to reduce back to its previous level. In order to track the errors mentioned271

above, we have devised two inexpensive criteria that help to avoid unnecessary resets.272

From (2.4), we can estimate errors in the QR factorization directly from the norm of273
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Fig. 1. Demonstrating the need for resetting on lshp3025 (‖A‖ = 7) with GKD (q = 35, s = 15,
δ =1E-14, and k = 1).

the right residual. We choose to reset when ‖ru‖ < 1.25‖rv‖, as the errors in the QR274

factorization directly impact the convergence of ru. Experimentally, we have found a275

few cases where the small 25% buffer between ru and rv is needed to detect potential276

stagnation.277

The error in the orthogonality of V may also cause failures to converge. Therefore,278

we estimate how large ‖E‖ = ‖V TV −I‖ can be before it begins to affect convergence.279

Based on the Galerkin conditions, we should have solved the equivalent eigenproblem,280

RTRy = V TATAV y = σ2V TV y. In practice, we solve RTRy = V TATAV y = σ2y281

regardless of the orthonormality of V . Therefore, we obtain a Ritz vector and Ritz282

value that will not converge to a 0 residual for the original problem, since V TV 6= I.283

However, the Ritz pair produced by our inexact Galerkin can be considered as a Ritz284

pair of an exact Galerkin condition applied to the nearby generalized eigenproblem285

ATAV y = σ2MV y where M = V (V TV )−2V T as seen below,286

(2.5) V TATAV y = σ2V TMV y = σ2V TV (V TV )−2V TV y = σ2y.287

In order to correctly monitor and maintain convergence, the residual we use for288

expansion, rC = σru = ATAv−σ2v, should not drift too far from this exact residual,289

rE = ATAv − σ2V (V TV )−2V T v, where v = V y. Assuming ‖E‖ < 1, we have290

‖rE − rC‖ = σ2‖V y − V (V TV )−1y‖
≤ σ2‖V ‖‖I − (V TV )−1‖ = σ2‖V ‖‖I − (I + E)−1‖
≤ σ2(1 + ‖E‖)‖(I + E)−1‖‖E‖

≤ σ2(1 + ‖E‖)

∥∥∥∥∥I +

∞∑
i=1

Ei

∥∥∥∥∥ ‖E‖
= σ2‖E‖+O(σ2‖E‖2).

(2.6)291

Since we want ru = rC/σ to converge to tolerance ‖A‖δ, we limit the distance ‖rE −292

rC‖ < ‖A‖δσ. Thus, from (2.6), we perform a reset when ‖E‖ ≥ ‖A‖δ/σ. In practice293

we have noticed only a few situations where this criteria caused a reset.294

To demonstrate this problem, we ran lshp3025, a problem from the SuiteSparse295

Matrix Collection [6], which requires thousands of restarts before convergence. Prop-296
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erties of this problem can be found in Table 1. The criteria outlined in the previous297

paragraphs combine to avoid the stagnation seen in Fig. 1. Due to the very low298

tolerance of 1E-14 = 50 ∗ εmach, approximately 2,500 restarts or 35,000 matvecs may299

cause the reset criteria to be met. It is clear our criteria is somewhat conservative,300

as resets occur approximately every 40,000 matvecs, even when the method is able to301

converge without it. However, without resetting, the method completely stagnates at302

around 110,000 matvecs. Moreover, with or without resets, we observe convergence303

to the first 8 smallest singular values in a similar number of matvecs (110,000), even304

though adding resets should increase the overall number of matvecs. This indicates305

the increased stability of the method also can improve performance slightly.306

2.4. Inner Solver. Inner-outer solvers like JDSVD and the JDQMR implemen-307

tation in PRIMME utilize extra matvecs inside of an inner solver as a refinement step308

to improve the convergence speed of the outer iterations. By solving a related linear309

system, these methods can provide a significant speedup in time for problems that310

have a relatively inexpensive matrix-vector multiplication. Furthermore, solving this311

linear system can reduce the residual of the solution without requiring the expansion312

of the outer basis. Consequently, the number of orthogonalizations as well as the313

number restarts are reduced, which avoids their associated error and resets. This is314

particularly critical for problems that require a significant number of iterations.315

GKD can be extended to a Jacobi-Davidson variant, GKJD, that expands the316

subspace V by the approximate solution of the correction equation317

(2.7) (I − vvT )(ATA− σ2I)(I − vvT )t = −ru318

instead of applying a preconditioner at line 10 of Algorithm 2.1. Here, and for the319

remainder of this section, σ without a subscript denotes the shift used for the inner320

solver, which may be different than the user specified target σ̃ or the current approx-321

imate singular value. As before, σi will denote the ith singular value. The inner322

equation can also utilize a preconditioner, improving convergence further. In par-323

ticular, our inner solver is based on the symmetric Quasi-Minimal Residual method324

(QMRs) used in PRIMME’s JDQMR. QMRs can utilize indefinite preconditioners and325

solve indefinite systems which may occur when σ lies in the interior of the spectrum.326

In order to avoid over utilizing the inner method when convergence is poor or327

the correction equation does not match the desired singular values, or under utilizing328

the inner method when convergence is good, extra steps must be taken. Due to the329

smooth convergence of QMRs, we can include dynamic stopping conditions based on330

estimated eigenvalue residuals to stop the linear solve in a near-optimal way. We have331

adopted the same QMRs solver and dynamic criteria used in PRIMME’s JDQMR [26].332

Our inner solver for (2.7) works directly on ATA− σ2I so its numerical stability333

needs to be justified. As with an outer iteration on ATA, no numerical issues are334

expected when σ is in the largest part of the spectrum, but when seeking the small-335

est part, singular values below O(‖A‖√εmach) will become indistinguishable when336

squared. However, the solution of the inner correction equation still provides useful337

directions even when a few singular values of A are below O(‖A‖√εmach). The reason338

is well understood numerically and it is why inverse iteration works well despite a339

nearly singular linear system [22, sec. 4.3].340

Assume there are k singular values below the noise level, i.e., σk ≤ ‖A‖
√
εmach <341

σk+1, and a shift σ ≤ ‖A‖√εmach. If we ignore the projectors for simplicity, the342

numerically computed solution of (2.7), t̃, satisfies343

(2.8) t̃ = t+ V(Σ2 − σ2)−1VTEt̃,344
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where the backward error satisfies ‖E‖ ≤ ||ATA||εmach. Therefore, the relative for-345

ward error is a vector t̃−t
‖t̃‖ =

∑n
i=1 vici with the coefficients satisfying346

(2.9) |ci| =
|vTi Et̃|

|σ2
i − σ2|‖t̃‖

≤ ‖A‖
2εmach

|σ2
i − σ2|

.347

For i > k, we have σi ≥ σk+1 > ‖A‖
√
εmach, and thus |ci| = O(‖A‖

2

σ2
i
εmach) < 1. As348

the separation increases, σk+1 � ‖A‖
√
εmach, we have ci � 1 and the errors in the349

vi, i > k, directions become negligible. For i ≤ k, we have |σ2
i −σ2| < ‖A‖2εmach and350

thus the corresponding ci could blow up. In practice, calculations at the noise level of351

the arithmetic will limit ci = O(1) but either way these vi, i ≤ k, directions dominate352

the correction vector.353

The behavior is similar when the backward error is at the level of the residual354

norm at which we solve (2.7), i.e., ‖E‖ ≤ ‖A‖2θ, for some tolerance θ. Typically we355

ask for a residual norm reduction relative to ‖ru‖ but this can be translated to a θ.356

Then, the |ci| in (2.9) have the same bounds as above only multiplied by θ/εmach.357

Since the approximate solution has ‖t‖ = O(θ), the effect of the noise error is larger.358

We can view the noise of the numerically computed correction t̃ as the application359

of a low pass filter with the diagonal matrix diag(ci), where the i < k singular360

components dominate the result. Clearly, the inner iteration cannot differentiate361

between these k smallest singular directions which look like a multiplicity. However,362

the Rayleigh Ritz of the outer method has no problems approximating these singular363

vectors as long as their k-dimensional space is sufficiently represented in the outer364

search space.365

If the outer method in GKJD has a restart size s ≥ k and the gap σk+1/σk is366

large, then the filter ensures that all vi, i = 1, . . . , k, will be approximated well after k367

outer iterations. As the gap narrows, the filter boosts also directions of larger singular368

values up to σf , where ‖A‖
2

σ2
f
εmach starts to become negligible. Therefore, the outer369

method may take more than k iterations, although convergence depends on the gaps370

in the “filtered” σ1, . . . , σf spectrum, which has much smaller spread than the entire371

spectrum.372

The situation is similar if the restart size s < k and σk+1/σk is large, since373

the search space cannot capture all small singular vectors, so convergence will occur374

based on the perceived gaps after the implicit application of the filter. In the extreme375

case of s� k and/or very small spectral gaps, we can expect the method to be slow.376

However, in such ill-conditioned problems, no better algorithmic options exist without377

a preconditioner.378

Figures 2 and 3 show examples of how GKJD with dynamic stopping condi-379

tions for the inner iteration can converge even when several singular values are below380

‖A‖√εmach. They also show that GKJD is competitive and sometimes faster than381

GKD in terms of matrix-vector products, in addition to the benefit of a less expen-382

sive iteration. The matrices have a specified spectrum Σ and random left and right383

singular vectors.384

In Figure 2 the matrix has 16 singular values below ‖A‖√εmach but we limit GKD385

and GKJD to a restart size of only 15. Even with this limitation, GKJD is able to386

converge to the smallest singular triplet with relative accuracy of 1E-14, and it does387

so three times faster than GKD. Additionally, with only a few extra outer iterations,388

GKJD can find 14 of the smallest singular values.389

The difference seen between GKD and GKJD is due to the large number of390
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restarts for GKD and their associated error. As the errors caused by restarts grows391

above the relative tolerance within approximately 2,000 restarts (40,000 matvecs),392

GKD may have numerical issues and not converge although this behavior is sensitive393

to the choice of random orthonormal bases U and V . Since GKJD performs orders394

of magnitude fewer outer iterations, it is not affected by this source of error heavily395

and therefore is not sensitive to the random left and right singular spaces. With a396

marginally less strict tolerance, GKD does not exhibit this behavior.397

In Figure 3 we consider an example where the matrix has 20 singular values398

below the ‖A‖√εmach threshold. We use single precision arithmetic, which allows for399

relatively larger spectral gaps that make convergence tractable. We search for the400

smallest singular value with a maximum basis size of 50, the dynamic inner stopping401

criteria, and a tolerance of 1E-5 for all tests while varying the restart size used by402

the GKD and GKJD. We see that smaller restart sizes do not impede convergence of403

GKJD and only slow it down by less than a factor of two. However, the effects of404

a small restart size are much more severe on GKD, which is unable to converge to405

the desired tolerance within 75,000 matvecs for restart sizes less than 10. This shows406

that GKJD is able to rebuild the space lost during restarting much more quickly than407

GKD, as the inner equation can sufficiently filter out directions corresponding to the408

unwanted portions of the spectrum.409

3. Benefits over PHSVDS.410

3.1. Avoiding the Augmented Problem. As mentioned earlier, methods on411

B often exhibit problems due to the interior nature of the spectrum that they work on.412

In order to demonstrate these issues, Figure 4 shows convergence on the problem A413

= diag([1e-10, 2e-10, 5e-10, 1e-9, 3e-9, 1e-8, 1e-6, 1e-4, 1:1000]). First, this problem414

is very poorly conditioned (κ(A) = 1E13) and since the 6 smallest singular values415

are below 1E-8, the first stage of PHSVDS is unable to distinguish them from zero.416

Second, because the spectrum is reflected across 0 for the augmented problem, it is417

very difficult to converge only to the positive part of the spectrum.418

In searching for 3 singular values to a user tolerance of 1E-14, PHSVDS took419

more than 4 times more matvecs, but more importantly, it missed 5 smaller singular420
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values as the third converged value was 1e-4. Even worse, the vectors that were421

returned for left and right spaces were not orthogonal, as ‖QTQ− I‖ ≈ ‖V TV − I‖ ≈422

6E-5. Therefore, the true residuals after orthogonalization did not meet the full user423

tolerance. Comparatively, GKD converges to all 6 of the smallest singular values and424

did so with fully orthogonal left and right vectors. As we can see from the figure, the425

convergence for GKD is fairly smooth, converging to each of the six singular values426

below 1E-8 before finishing. This is a vast improvement over the second stage of427

PHSVDS, which exhibits irregular convergence with large spikes in the left residual428

and long stagnations.429

3.2. Switching Problems. One of the biggest practical advantages of GKD430

over PHSVDS or any two stage algorithm is that it avoids the need to switch. For431

PHSVDS, choosing the right time to switch is crucial so as to give the best possible432

initial guesses to the second stage in order to avoid excessive use of the second stage433

on B. However, if an overly optimistic bound is used, it may cause stagnations in the434

first stage before switching. In general, it can be difficult to converge down to the435

theoretical limit for the first stage in practice, and determining the minimum constant436

above the theoretical limit that works for every problem is most likely impossible.437

Worse, preconditioning can increase this difficulty as it can cause errors that are438

difficult to account for within the switching criteria.439

Specifically, we found these switching issues to occur when testing PHSVDS on440

LargeRegFile (another matrix from the SuiteSparse Collection [6]) with Block Jacobi441

preconditioning and δ =1E-12. It is clear from the highlighted portions of Figure 5442

that PHSVDS is unable to meet the convergence criteria for the first stage. In fact,443

while the case shown in Figure 5 is able to reach the criteria eventually, most cases444

like this stagnate completely. For example, the same problem (LargeRegFile) when445

solved with an inner solver (JDQMR) is never able to meet the first stage convergence446

criteria. Since GKD never requires switching methods, we can avoid these problems447

entirely and provide more reliable convergence.448
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3.3. Space and Time Comparisons. For computations on large matrices, it is449

important to consider the convergence rate, the space requirements, and the total work450

that the algorithm requires. Therefore, we provide a short comparison of the latter451

between our method and PHSVDS before presenting numerical results in Section 4.452

GKD requires storage for two spaces, V and Q that are n×q and m×q respectively453

where q is the maximum basis size. In the PRIMME implementation of PHSVDS,454

a similar same space is required to store the resulting left and right singular vector455

approximations. However, the first stage of PHSVDS requires a working memory456

set of two spaces of size n × q, for V and ATAV . Therefore, for square matrices,457

the working space required for the first stage of PHSVDS is equivalent to GKD. For458

very tall and skinny matrices (n � m), the first stage of PHSVDS uses a reduced459

memory footprint for most of the computation, but only if the user can guarantee460

that switching to the second stage will not be required. Otherwise, the second stage461

of PHSVDS will require two spaces of dimension (m + n) × q. This corresponds to462

double the storage requirement of GKD. For very large problems, this might force the463

user to reduce the max basis size in order to store the bases in memory.464

In terms of execution cost, GKD performs two orthogonalizations per iteration,465

one for V and one for Q, while the first stage of PHSVDS performs only one orthog-466

onalization for V . Therefore, with low required accuracy where the second stage is467

not involved, PHSVDS is more efficient per step computationally. For robustness,468

primme svds implements the second stage of PHSVDS using refined extraction which469

requires two orthogonalizations on vectors of dimension m+n and thus has double the470

orthogonalization cost of GKD. Additionally, these vectors of size m + n incur more471

error in dot product computations, so baseline calculations will not be as accurate.472

When using low precision calculations (single or half), these errors become even more473

important to avoid if possible.474

4. Numerical Results. To verify our algorithm’s performance, we utilized the475

same matrices given in the original PHSVDS publication [31] as well as three matrices476

with dimension larger than one million from [30]. These matrices are publicly available477

through the SuiteSparse Matrix Collection [6] and represent real world applications.478

These problems are quite difficult for iterative solvers and are used to stress test479

the capabilities of GKD and PHSVDS. Since these matrices are sparse, we provide480

their dimensions and the number of non-zero entries of A, nnz(A), as well as the481

norm of A, ‖A‖, the condition number of A, κ(A), and the gap ratio for σ1, γ1 =482

(σ2 − σ1)/(σn − σ2).483

The matrices listed in Table 1 and Table 2 are listed from least to most difficult484

(left to right) as generally their condition numbers increase, and the gap ratios for485

their smallest singular values decrease. It should be noted that none of these matrices486

are particularly poorly conditioned, and do not require the second stage in PHSVDS487

to improve the singular vector estimates more than a few orders of magnitude. There-488

fore, the benefits we would expect to gain on very poorly conditioned problems are489

significantly larger.490

We restrict GKD and PRIMME’s PHSVDS Matlab interface, primme svds, to a491

maximum basis size of 35 vectors, a minimum restart size of 15 vectors and a user492

tolerance of δ = 1E-14 for the smaller matrices and δ = 1E-12 for the larger ones. We493

also enforce one retained vector from the previous iteration (for +1 restarting) except494

for the three large cases, where we enforce +2 restarting. Additionally, we choose to495

soft lock converged triplets, but due to the interior nature of the augmented method in496

primme svds, we are unable to set soft-locking for the second stage while searching for497
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Matrix pde2961 dw2048 fidap4 jagmesh8 wang3 lshp3025
dimension 2961 2048 1601 1141 26064 3025

nnz(A) 14585 10114 31837 7465 77168 120833
κ(A) 9.5E+2 5.3E+3 5.2E+3 5.9E+4 1.1E+4 2.2E+5
‖A‖ 1.0E+1 1.0E+0 1.6E+0 6.8E+0 2.7E-1 7.0E+0
γ1 8.2E-3 2.6E-3 1.5E-3 1.7E-3 7.4E-5 1.8E-3

Table 1
Basic Properties of Square Matrices

Matrix well1850 lp ganges deter4 plddb ch lp bnl2
rows 1850 1309 3235 3049 3700 2324

columns 712 1706 9133 5069 8291 4486
nnz(A) 8755 6937 19231 10839 24102 14996
κ(A) 1.1E+2 2.1E+4 3.7E+2 1.2E+4 2.8E+3 7.8E+3
‖A‖ 1.8E+0 4.0E+0 1.0E+1 1.4E+2 7.6E+2 2.1E+2
γ1 3.0E-3 1.1E-1 1.1E-1 4.2E-3 1.6E-3 7.1E-3

Table 2
Basic Properties of Rectangular Matrices

Matrix sls Rucci1 LargeRegFile
rows 1,748,122 1,977,885 2,111,154

columns 62,729 109,900 801,374
nnz(A) 6,804,304 7,791,168 4,944,201
κ(A) 1.3E+3 6.7E+3 1.1E+4
‖A‖ 1.3E+3 7.0E+0 3.1E+3
γ1 8E-7 5E-5 3E-7

Table 3
Basic Properties of Large Scale Matrices

the smallest singular triplets. It should be noted that hard-locking generally improves498

performance for our method when searching for more than one singular value, but does499

not provide the same orthogonality guarantees and is subject to the numerical issues500

mentioned earlier.501

4.1. Unpreconditioned Results. We compare GD+k (implemented as the502

default MIN MATVECS method in primme svds) against GKD, and the JDQMR503

method (MIN TIME in primme svds) against GKJD. As shown in Figure 6, GKD and504

GKJD require fewer matrix-vector multiplications than their primme svds counter-505

parts for all matrices. Also, the matrices that show the largest benefits are lshp3025,506

wang3, jagmesh8, and lp ganges. As expected, these correspond to the matrices that507

required more significant use of the second stage in primme svds, due to their larger508

κ(A).509

For most cases, we see a slight drop off in performance when searching for the510

10 smallest singular values, but this is mostly caused by different implementations of511

soft-locking. Since primme svds uses two stages, the first stage soft locks each vector512

at a tolerance above the user specified tolerance. However, since they are soft-locked,513

the first stage of primme svds can improve the initial guesses to the second stage in514

some cases, since it leaves the estimated singular triplets in the basis while converging515

to other vectors. To check this, we ran GKD using a pseudo two-stage implementation516

that mimics the primme svds behavior. This was done by converging to all 10 singular517

values to a higher tolerance first (κ(A)‖A‖εmach), before converging to the full user518

tolerance. In this case, GKD can further improve performance for soft-locking over519

primme svds.520

For rectangular matrices, we also tested whether our method could find a true521
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zero singular value by appending one extra column to the matrix equal to the first522

column. GKD is able to find the real zero in all cases. primme svds will not return523

this numerically zero value, as outlined in its documentation, since its second stage524

has no way to distinguish real zeros from the null space created by the augmented525

matrix.526

For the large scale matrices, Figure 6 shows a fairly even performance between527

primme svds and GKD/GKJD. This is expected as the tolerance is higher (tol =528

1E-12) than the small cases, and therefore primme svds only uses the second stage529

sparingly. The biggest difference is seen for sls and for the inner-outer methods530

(JDQMR/GKJD), where the high multiplicity (14) at the second smallest singular531

value causes issues with convergence. Specifically, JDQMR only converges to two of532

these numerically equal singular values before finding five converged triplets, while533

GKJD is able to recognize the higher multiplicity and spends extra iterations finding534

a third. We also note that the number of matvecs for GKD/GKJD are significantly535

smaller than the numbers for SLEPc’s implementation of LBD reported in [30].536

In general, iterative methods may have trouble finding multiplicities or may con-537

verge out of order causing the methods to miss directions [19]. This is especially538

true for Krylov solvers which, in exact arithmetic, are unable to find more than one539

eigenvector corresponding to a multiplicity. In order to solve this problem, many540

algorithms including PHSVDS can utilize a block solver where the block size approx-541

imates the degree of the multiplicity [5, 3, 10]. Additionally, multiple initial guesses542
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can be used to reduce the likelihood of initial vectors being deficient in the invariant543

space of the multiplicity. Both of these ideas would be simple extensions that could544

be added to GKD to improve robustness.545

4.2. Single Precision Results. In order to demonstrate the versatility of our546

method, we ran tests in single precision looking for the largest 10 or 100 singular547

values of matrices to tolerance δ = 1E-4. Although much less taxing on the solver,548

these kinds of requirements are common in many SVD applications. We compare our549

results to IRLBA (which is the default method in MATLAB’s svds for largest singular550

values). Since we are looking for low accuracy, we omit results from PRIMME since551

it would use only the first stage which is equivalent to GKD.552

Figures 8 and 9 report results on Rucci1. We also ran these tests on sls and553

LargeRegFile, but convergence was achieved in too few iterations (requiring only one554

restart) so all methods were similar. We vary the maximum basis size to understand555

how GKD compares when the user has more or less space than IRLBA uses as a556

default. When searching for 100 singular triplets, we choose basis sizes close to 100557

to mimic the situation where space is at a premium and only a small number of extra558

vectors can be stored. For 10 singular triplets, we show how IRLBA compares to559

GKD when the basis size is much larger than the number for desired triplets.560

Figure 8 shows that both IRLBA and GKD provide fairly similar results for 100561

singular values. GKD performs better in the most extreme memory limitation as it562

can selectively target the desired values when building its space. However, when there563

is more room to build a Krylov space, this targeting is no longer required.564

Figure 9 shows increased advantages of GKD when fewer singular values are565

needed. For 10 singular values, the standard version of IRLBA defaults to a maximum566

basis size of 30. In some cases, the system may have additional space for a larger basis567

size which can improve convergence. However, since IRLBA generally only checks568

convergence after a full basis is built, a larger basis size can limit how often IRLBA569

performs these checks. This allows GKD to outperform IRLBA, even though they570

obtain nearly identical performance for smaller basis sizes.571

4.3. Preconditioned Results. We provide a preconditioner for the small ma-572

trices built using Matlab’s ILU with the ilutp factorization, a drop-tolerance of 1E-3,573
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Matrix Name
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Finding 1 or 10 Smallest SVs on Preconditioned Square Matrices

GD+k/GKD

GD+k/GKD 10SV

JDQMR/GKJD

JDQMR/GKJD 10SV

Fig. 10. Preconditioned Results with an ILU Preconditioner for finding the smallest and 10
smallest singular triplets.

sls Rucci1 LargeRegFile
1

1.5

2

M
V

R
at

io

Finding 5 Smallest SVs on
Preconditioned Large-Scale Problems

GD+k/GKD 5SV
JDQMR/GKJD 5SV

sls Rucci1 LargeRegFile
GKD 6515 16074 810
GD+k 11972 16426 1106
GKJD 8204 18198 1266

JDQMR DNF 18734 DNF

Fig. 11. Large-Scale Results with Block Jacobi Preconditioner (block size=600 on ATA) for
the 5 smallest singular triplets. Required matvecs for GKD,GD+k, GKJD and JDQMR are shown
in the table.

and a pivot threshold of 1.0. Our results show the significant benefit of an effec-574

tive preconditioner, as all of the small problems required less than 150 matvecs when575

searching for one singular value with GKD. However, these preconditioners sometimes576

caused significant issues for primme svds, as it was unable to converge for lshp3025577

when searching for the 10 smallest singular values, and exhibited significant difficulty578

converging to 10 singular values for wang3, jagmesh8 and fidap4. Specifically, when579

searching for 10 singular values, wang3 requires 12x more matvecs for JDQMR, and580

jagmesh8 requires 56x and 14x more matvecs for GD+k and JDQMR respectively.581

These issues are caused by primme svds’ switching issues mentioned earlier.582

For the three large matrices, ILU becomes significantly more expensive, so we583

use a Block-Jacobi preconditioner, inverting exactly diagonal blocks of ATA each584

of size 600. This is relatively inexpensive to compute and it is also parallelizable.585

Again, we see a significant decrease in matvecs as all three problems required less586

than 15% of the matvecs needed for the unpreconditioned cases. For Rucci1 the587

convergence differences between our methods and primme svds are negligible, but for588

sls and LargeRegFile, GKD and GKJD provide significant improvements in speed589

and robustness. Again, as seen earlier in Figure 5, primme svds’ switching criteria590

are too stringent for preconditioned cases, which causes slowdowns for GD+k on591

LargeRegFile. Worse, primme svds’ JDQMR suffers stagnations that cause failures592

to converge when preconditioned on sls and LargeRegFile.593

The 80% improvement on sls over GD+k comes from primme svds being unable594

to separate the directions corresponding to the large degree multiplicity. During addi-595
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tional testing, we found the number of matvecs required to find the 5 smallest singular596

values with primme svds is only marginally less than the number required to find 10.597

Since primme svds is unable to appropriately separate the directions corresponding to598

the multiplicity, it converges to all 10 values concurrently. However, GKD is able to599

distinguish these directions and converge smoothly for each one individually, provid-600

ing a substantial improvement. Testing GKD to converge to 10 values as well, we still601

found an improvement over primme svds, however the gap between the two methods602

was significantly reduced.603

5. Conclusions. We have presented GKD, a new method for finding the small-604

est singular triplets of large sparse matrices to full accuracy. Our method works605

iteratively, under limited memory, with preconditioners, while including features such606

as soft-locking with orthogonality guarantees, +k restarting, and the ability to find607

real zero singular values in both square and rectangular matrices. Additionally, GKJD608

adds a Jacobi-Davidson inner solver for the ATA correction equation into GKD, which609

can lower execution time when the matrix-vector multiplication operation is inexpen-610

sive and can reduce the errors caused by restarting. Both of these methods have shown611

to be more reliable and efficient than PHSVDS, and thus over other SVD methods,612

for nearly all cases.613
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