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A GOLUB-KAHAN DAVIDSON METHOD FOR ACCURATELY
COMPUTING A FEW SINGULAR TRIPLETS OF LARGE SPARSE
MATRICES *

STEVEN GOLDENBERG, ANDREAS STATHOPOULOS, ELOY ROMERO f

Abstract. Obtaining high accuracy singular triplets for large sparse matrices is a significant
challenge, especially when searching for the smallest triplets. Due to the difficulty and size of these
problems, efficient methods must function iteratively, with preconditioners, and under strict memory
constraints. In this research, we present a Golub-Kahan Davidson method (GKD), which satisfies
these requirements and includes features such as soft-locking with orthogonality guarantees, an inner
correction equation similar to Jacobi-Davidson, locally optimal +k restarting, and the ability to
find real zero singular values in both square and rectangular matrices. Additionally, our method
achieves full accuracy while avoiding the augmented matrix, which often converges slowly for the
smallest triplets due to the difficulty of interior eigenvalue problems. We describe our method in
detail, including implementation issues that arise. Our experimental results confirm the efficiency
and stability of our method over the current implementation of PHSVDS in the PRIMME software
package.
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1. Introduction. Assuming a large sparse matrix, A € R™" with m > n, the
economy size singular value decomposition (SVD) is given by

(1.1) A=UxV7T,
where U € ™" and V € R™" are orthonormal bases and ¥ = diag(o1,...,0,) €
R™" with 01 < 09 < -+ < 0, is a diagonal matrix containing the singular values of

A. The singular triplets of A are defined as (u;, 0;,v;), where bold face differentiates
from search space vectors in this paper. When using inexact arithmetic, we have the
left and right singular value residuals, defined as r, = ATu — ov and r, = Av — ou
respectively.

This decomposition has become increasingly important and is frequently used in
fields like statistics for principal component analysis [14], computer science for image
compression [23] and web search clustering [21], and genomics for expression data
processing [2]. More specifically, finding the smallest singular triplets is useful for
total least squares problems and the determination of the effective rank of a matrix
[9], and for variance reduction of inverse operators [7].

Additionally, finding high accuracy solutions is crucial when running in a single or
low precision environment. In single precision, matrix multiplication can only provide
1.2E-7||A]| of accuracy, and in practice this bound is optimistic for iterative solvers
due to accumulated error. Despite this limitation, single-precision calculations have
become increasingly important for deep learning applications [11] which are often
resistant to errors and therefore require less than full double precision. Reducing
the precision of matrix vector multiplications can provide speed ups on CPUs due to
increased vectorization, and GPUs can obtain speedups of 2x-4x [32]. In addition,
using single precision cuts the storage requirements in half. Specifically, the use of
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2 STEVEN GOLDENBERG, ANDREAS STATHOPOULOS, ELOY ROMERO

single precision calculations is encouraged by Advanced Micro Devices (AMD) for
OpenCL applications [1], and half precision, which can only provide 1E-3||A|| digits
of accuracy, has been growing in popularity on NVIDIA’s GPUs [18].

When the matrix A is large enough, it can be inefficient to compute the SVD
with dense methods. Furthermore, applications often require only a few of the largest
or smallest singular values and vectors. These considerations have lead to the use of
iterative algorithms like Golub-Kahan-Lanczos (GKL) also known as Lanczos bidiag-
onalization [8]. However, when the solution requires many iterations, it may be in-
feasible to store all the GKL vectors necessary for full or partial reorthogonalization.
To solve this, restarted versions of GKL that limit the maximum basis size, such as
IRLBA [4], have been developed. Additionally, other methods have emerged, such as
Jacobi-Davidson (JDSVD) [12], the Preconditioned Hybrid SVD method (PHSVDS)
[31], and the Preconditioned Locally Minimal Residual method (PLMR_SVD) [28].
These methods can use the more advanced +k (also known as locally optimal) restart-
ing and can take advantage of preconditioning, which can provide significant speedups
for difficult problems.

In general without preconditioning or +k restarting, these methods build Krylov
spaces on the normal equations matrix C = AT A or on the augmented matrix,

(1.2) B= [Sx lﬂ .

We denote a k-dimensional Krylov space on a square matrix A with initial vector vy
by Ki(A,v1) = span{vy, Avy,..., A*tv;} and || - || denotes the Euclidean norm.

Frequently, methods that build their search space with B, like JDSVD and
PLMR_SVD, are able to achieve accuracy of ||rg|| < O(||A|l€macn) when searching
for the smallest singular triplets, where €, is the working machine precision and
rB = [ru;Ty] is the eigenvalue residual on B. However, B has singular values +o; [22],
so searching for the smallest singular triplets is a highly interior eigenvalue problem
that can converge slowly. Worse, when A is rectangular, the spectrum of B contains
m — n zero eigenvalues that are not in the spectrum of A. Therefore, methods on
B are unable to distinguish real zero singular values of A within the spectrum when

Alternatively, methods that build Ky (C,v1) explicitly are only able to achieve
accuracy O(||C|lemach) = O(||Al|?€macn) for the eigenvalue residual on C, r¢. Addi-
tionally, r¢ is equivalent to a scaling of r,, as seen in equation 1.3.

(1.3) ro = AT Av — 0%v = o(ATu — ov) = or,,.

Thus, if 01 # 0, the norm of the singular value residual when searching for the
smallest singular value cannot be better than O(|[Al|k(A)€emacn), where K(A) = 2=
is the condition number of A. Despite the squaring of the spectrum, these methods
usually converge faster than methods on B, both in theory and in practice, due to the
extremal problem they solve. Furthermore, these methods are often able to find real
zero singular values of A, as the corresponding eigenproblem on C' does not introduce
extraneous zero eigenvalues.

In this work, we introduce a Golub-Kahan Davidson method (GKD), which keeps
the convergence of methods on C, but attains the full accuracy of methods on B.
Specifically, we define full accuracy to be /||7u||? + [|7o]|? < |All€macn- First, we
discuss related methods such as GKL, JDSVD, PLMR_SVD and PHSVDS, followed
by a detailed description of our method including implementation details. Lastly, we
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A GOLUB-KAHAN DAVIDSON METHOD FOR THE SVD 3

provide experimental results that highlight the capabilities of GKD compared to the
current implementation of PHSVDS in the PRIMME software package.

1.1. Related Work. GKL [16] builds two vector bases, one for the right space
K (AT A v1) and one for the left space Ki(AAT, Avy). Tt builds the second basis while
computing the first one without additional matrix vector multiplications (matvecs).
More importantly, it avoids directly multiplying vectors with AT A and thus avoids
the numerical problems associated with working on C. This is done by keeping two
orthogonal spaces, U and V', where the last vector of V', vy, is used to expand U as
u = Avy, and the last vector of U, uy, is used to expand V as vgp 1 = ATus. These
new vectors are orthonormalized to the previous ones in their corresponding bases and
the coeflicients from this process are used to create the bidiagonal projection matrix
UTAV. GKL solves the smaller singular value problem on this projection matrix to
approximate the singular triplets.

While GKL is considered to be one of the most accurate and effective algorithms
for finding small singular triplets, the standard version is unrestarted and cannot
be preconditioned. Therefore, GKL tends to be computationally slow for poorly
separated triplets of large matrices. Many restarted versions have been developed
[5, 4, 13] but use primarily implicit or thick restarting [29] and thus are unable to
maintain the convergence of the unrestarted method. Locally optimal (also known
as +k) restarting uses vectors from successive iterations in a way similar to a non-
linear conjugate gradient and has been shown to converge similarly to an unrestarted
method for both eigenvalue [15, 27, 26] and singular value problems [31].

SVDIFP [17] implements an inner-outer method where the inner one builds a pre-
conditioned Krylov space K (M (C — p;I),x;), where M is a preconditioner for C' and
(24, p;) is the approximate right singular vector and value at the i-th step of the outer
iteration. SVDIFP is able to avoid numerical problems, at least for the right singu-
lar vectors, by using a two sided projection similarly to GKL. SVDIFP’s structure,
however, does not allow for many of the optimization techniques of Davidson-type
methods which can significantly improve convergence [31].

JDSVD [12] works on B by using two independent subspaces rather than one. It
is an inner outer method that expands both spaces by solving a Jacobi-Davidson type
correction equation on B. Without preconditioning, restarting, or solving the cor-
rection equation, the JDSVD outer method builds subspaces that span the following
Krylov spaces:

(14) U = Ky (AAT )0 K (AAT, Avr), Vi = K (ATA 0) @Ky (ATA, ATuy).

[SEd

These spaces are similar to the ones used in GKL, but crucially, each space is the sum
of two different spaces of half dimension. This allows JDSVD to take advantage of
initial guesses for both the left and right singular vectors. However, it also means that
the outer solver in JDSVD requires twice as many matvecs to build a space of equal
Krylov dimension. Furthermore, if we choose initial vectors that satisfy v; = AT uq,
the outer iteration of JDSVD becomes wasteful as it builds the same space as a GKL
with half the dimension (in this case the spaces K% (AT A, v1) and Kg (AT A, ATyy) in
(1.4) differ only by one vector). This is also true of eigensolvers on B as seen below,

(1.5) p2| v |0 AT T o [ AT Av

’ Av|  |A 0 Av| — [AAT (Av) |~
The inner correction equation used in JDSVD often allows for faster convergence than
standard eigenvalue methods on B while maintaining the ability to converge to full
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4 STEVEN GOLDENBERG, ANDREAS STATHOPOULOS, ELOY ROMERO

accuracy. Despite these benefits, it can still suffer from the same issues as other
eigenmethods on B.

PHSVDS [31] exploits the different advantages of eigenmethods on B and C' by
utilizing each in a two-stage method. The first stage can use any state-of-the-art
eigensolver on C, which gives it fast convergence until either the user tolerance is met
or until switching to a second stage using an eigensolver on B is necessary to reach
the remaining user tolerance. Switching to an eigensolver on B after a fully converged
first stage can effectively utilize good initial guesses from the first stage on C, and
thus PHSVDS can avoid resolving the entire accuracy on an indefinite problem. Its
implementation in PRIMME can use any of the two near-optimal eigensolvers, GD+k
or JDQMR. This two-stage approach has been shown to be faster than eigensolvers
on B alone, and typically has better performance than other SVD methods.

While PHSVDS has shown significant improvements, it is still limited by the
speed of eigensolvers on B when the matrix is ill-conditioned. It converges quite well
for problems that do not need to switch stages, but eigensolvers on C' cannot converge
to high accuracy if the smallest singular value is nearly 0. Once it switches to the
second stage on B, a significant slowdown occurs associated with interior problems
and methods based on the augmented matrix. We see later than GDK converges with
the near-optimal speed of GD+k on C down to O(||A|l€mach)-

PLMR_SVD [28] is a recent method based on a stationary iteration that uses two
separate four-term recurrences to build the following spaces,

span{v® 7 P(ATr® — op()) -1}

Span{u(i)7rgi)7 p(AT,q(j) _ 0_7,1()1'))’ u(iq)},

where v and u(?) are the i-th approximations of the right and left singular vectors
respectively, and ri = P(Av® —gu) and ri¥) = P(ATu) —ov®) are their precon-
ditioned right and left residuals respectively. Without a preconditioner, PLMR_SVD
is equivalent to GD+1 with a 3-vector basis (or LOBPCG) on B. There may be addi-
tional benefits to building the spaces separately, but PLMR_SVD lacks the subspace

acceleration present in GD+k and JDSVD, which can provide superlinear convergence.

2. Main Contribution. In the following section, we describe the proposed
method, GKD, in detail, especially focusing on the selection of approximate sin-
gular triplets from our subspaces and the implementation of our restarting method.
Additionally, we discuss error accumulations that occur due to restarting and the miti-
gation strategy required to ensure reliable performance for high accuracy calculations.
Finally, we extend GKD to an inner-outer method that solves a Jacobi-Davidson cor-
rection equation.

2.1. Algorithm. Our algorithm is designed to mimic the numeric nature of GKL
by keeping two orthonormal bases for the right and left space, V' and @ respectively,
which are built without multiplying directly with AT A. Instead, we build @ such
that AV = QR is the economy QR factorization of AV. Then, we extend V with
a left residual based on a Galerkin extraction from R. Without preconditioning or
—+k restarting, this process is identical to GKL, building the right and left spaces
K, (AT A jv1) and K, (AAT Avq) after g iterations or 2g matvecs. Since both the
extraction of approximate triplets through the SVD of R and the expansion of the
spaces avoid a direct multiplication with C, we avoid the squaring of the norm and
condition number that occurs with eigensolvers on C.
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A GOLUB-KAHAN DAVIDSON METHOD FOR THE SVD 5

Specifically, we extract approximate singular triplets from these spaces using a
Rayleigh-Ritz procedure that is adapted for the SVD. Given search spaces @ C R™
and V C R", we can determine approximations (u,o,v) with the following two
Galerkin conditions on the right and left residuals,

Av—ou L Q,

2.1
21) ATu— v L V.

Since u € Q and v € V, we can write u = Qz and v = Vy, where () and V form
k-dimensional orthonormal bases of @ and V respectively. Additionally, AV = QR =
QT AV = R, which allows us to rewrite the conditions as follows:

QTAVYy =0Q"Qr = Ry = ox

22) VIATQz = oVTVy = RTz = oy.
Therefore, solving the singular value decomposition on R with singular triplets (z, o, y)
satisfies both constraints and provides approximations to the singular triplets of A.
To expand the right search space, we take the approximations from the above
Rayleigh-Ritz extraction and use them to form the left residual 7, = ATu—owv. Then,
we can choose to expand V with this r, directly, or with the preconditioned residual
Pr,, where P is a suitable preconditioner for AT A or for AT A — oI, if available.
We expand the left space @ with Av;; instead of a preconditioned right residual.
This differentiates the method from JDSVD with the goal of producing a faster con-
verging outer method. Specifically, from (1.3) the left residual r,, is colinear with the
residual r¢ of the Generalized Davidson (GD) method [20] on the matrix C, which is
also colinear with the new GKL direction for V. In addition, the Rayleigh-Ritz on C
used by GD gives the same answer as (2.2),

VIATAVY = 0y = RTRy = oy,

s0, in exact arithmetic, GKD is equivalent to GD solving the eigenproblem on AT A.
Without preconditioning or restarting, it is also equivalent to GKL and thus it is twice
as fast as JDSVD if the latter is used only as an outer method. By construction, GKD
has similar numerical properties as GKL, whereas the accuracy of GD is limited by
working directly on AT A. GKD can also be used with thick and +k restarting, which
in exact arithmetic makes it equivalent to GD+k on C, the first stage method of
PHSVDS, but without the numerical limitations. Algorithm 2.1 shows the restarted
and preconditioned version of GKD when seeking one singular triplet. Although
the orthogonalization of step 13 can be avoided without preconditioning [24], it is
needed for high accuracy and in our more general method that allows for flexible
preconditioning. Furthermore, the algorithm can be extended to find more than one
singular triplets by using soft or hard locking. A block version is similarly possible.

2.2. Restarting and Locking. Our restart procedure takes the current best
approximations to the s singular triplets closest to the user specified target, &, and
uses them together with those from the +k restarting to compress V', @ and R down to
dimension s+ k. The steps for building the restarted V follow closely the description
in [26] and are shown in lines 1-7 of Algorithm 2.2.

The simplest method to restart Q and R, without recomputing the QR factoriza-
tion of the restarted AVt, is to set them as QQ and R respectively, where Rt = OR
is the QR factorization of Rt with ¢ = [¥1, Upew] from line 6 of Algorithm 2.2. This
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6 STEVEN GOLDENBERG, ANDREAS STATHOPOULOS, ELOY ROMERO

Algorithm 2.1 GKD Iteration
1: Define target &, initial vector v1, max basis size g, tolerance 9, preconditioner P,
and i =1

2: Build V = [v1], @ = [54], and R = [ Av, ||

3: while /||r.||? + [|7»]|2 > 4|0 do

4:  whilei < q do

5: Compute SVD of R

6: Choose the singular triplet (z,o,,y) of R nearest to the target &
7 Save v,q = y for +k restarting

8: Set u=Q(,1:0)z, v=V(;,1:0)y

9: Compute left residual: r, = ATu — o,v

10: V(i+1)=Pry

11: Orthogonalize V(:,7 + 1) against V'(:,1: 4)

12: Q(,i+1)=AV(,i+1)

13: Orthogonalize Q(:,i + 1) against @ and update R(:,i+ 1)
14: 1=1+1

15:  end while

16:  call Algorithm 2.2 to restart
17: end while

Algorithm 2.2 Restart Procedure

Define restart size s and target &

Compute SVD of R = X%, YT

Choose s singular triplets of R closest to & (called (X7, nM, Y1)

Save the remaining singular triplets from the SVD of R, (Xo, 252), Ys)
Unew ¢ Orthogonalize saved +k vectors [vy4; 0] from main iteration against Y;
t= [Yb Unew]
V=Vt
if Reset criteria is met then
Reorthogonalize V' and build @ and R such that AV = QR
else
QR factorize Z$-2)Y2Tvold = QR

)21 S

0 R|

_ =
= O

12 Set Q = Q[X1X,Q] and R =

13: end if

can introduce numerical error of magnitude O(||R|l€mach), which can be as large as
O(||All€macr ). Although this error is acceptable for a single QR factorization, the er-
ror accumulates over many restarts causing the factorization not to correspond to the
actual AV and eventually causing loss of convergence. It is possible to intelligently
compute @ and R to avoid direct multiplications with R through the already available
SVD of R as seen below,

Y0 |1 o
AVt=QRt =Q[X1 X,] 0o x® {0 YQTUOIJ
(2.3)
pf] 0
= X, X :
Q[ 1 2} {0 Eg)}/QTUold]

This manuscript is for review purposes only.
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A GOLUB-KAHAN DAVIDSON METHOD FOR THE SVD 7

From (2.3), the new @ and R can be obtained with minimal effort by performing a
QR factorization E&Q)YQT%M = QR. The restarted Q and R are given in Line 12
of Algorithm 2.2. This strategy has better numerical behavior because we separate
the space of small singular values that are kept in thick restarting (X7) from the
+k restarting space which has correction directions over the entire singular space
(including those of large magnitude). By explicitly decoupling v and R in R,
any errors in R do not affect the ability of the algorithm to compute the smallest
eigenvectors and they only affect the correction directions. Moreover, as the +k
algorithm typically uses only k& = 1 previous vectrors, no errors are expected.

To accurately find many singular triplets, we implement two versions of locking.
The first, hard-locking, locks singular vectors out of the search space explicitly once
the required user tolerance is reached. At every iteration, we orthogonalize the vector
added to V against the locked right singular vectors, as well as the previous vectors
in V. In practice, the vectors added to @ do not require orthogonalization against the
locked left singular vectors. The second, soft-locking, merely flags converged singular
triplets while leaving them in the basis.

It is known that hard locking can cause stagnation in some rare cases or when
the number of locked vectors is large. This is caused by the error still present in the
locked vectors, which may contain critical directions for other singular triplets [25].
We have not seen any matrices in this paper that exhibit this behavior. However,
soft-locking can provide left and right singular vectors that are orthogonal to ma-
chine precision, while hard-locking only obtains left singular vectors orthogonal up to
O(||A||9). Therefore, we present only soft-locking results in this paper. We intend to
address the issues with hard-locking more thoroughly in the future.

2.3. Resetting. Since AV = @R, the right residual r, = Av — ou should be
zero throughout our procedure,

(2.4) ry = Av—ou=AVy — Q(ox) = AVy — QRy = (AV — QR)y = 0.

Generally, this means we can avoid the extra matrix-vector multiplication (or storage
for AV') necessary to compute r,. In practice though, ||r,| cannot be better than
O(||All€macr) due to the multiplication AV when computing the left space. Worse,
||7»]| grows as O(vnumRestarts|| Al|€mach ), which has also been noticed in [30]. There-
fore, our method must calculate ||r,|| explicitly when |r,|| < ||A||d, where § is the
user selected tolerance. This ensures we meet the convergence criteria of Algorithm
2.1.

The errors we observe in 7, may grow large enough to exceed the user tolerance,
which would make convergence impossible. These errors come from two main sources.
The first source is from the loss of orthogonality of V', and the second is the loss of
accuracy of the QR factorization of AV. We have found experimentally that both of
these errors can impede or halt convergence as the SVD of R no longer corresponds
to the singular triplets in A. We note that this issue is rare and only occurs when
0 & €machVnumRestarts. To correct these errors, we implement a resetting procedure
that reorthogonalizes V', and rebuilds @ and R directly from a newly computed AV.

It is critical to only reset sparingly, as rebuilding @ and R from scratch takes
s + k matvecs to obtain AV and a full QR factorization. Additionally, resetting can
cause an increase in the residual norm by a factor of k(A), which may require a few
iterations to reduce back to its previous level. In order to track the errors mentioned
above, we have devised two inexpensive criteria that help to avoid unnecessary resets.
From (2.4), we can estimate errors in the QR factorization directly from the norm of
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Ishp3025 with and without resetting

102 T T T T T :
——  WithReset
g —— WithoutReset
I 1072 a
=
<
E 1070 i
=
%
oot ) i
&=
(]
3 n
1071/1 - |

| | | | | | |
0 20,000 40,000 60,000 80,000 100,000 120,000 140,000
Matrix Vector Multiplications

F1G. 1. Demonstrating the need for resetting on lshp3025 (||A|| = 7) with GKD (q = 35, s = 15,
6 =1E-14, and k =1).

the right residual. We choose to reset when ||r,| < 1.25|7,||, as the errors in the QR
factorization directly impact the convergence of r,. Experimentally, we have found a
few cases where the small 25% buffer between r,, and 7, is needed to detect potential
stagnation.

The error in the orthogonality of V' may also cause failures to converge. Therefore,
we estimate how large || E|| = ||VTV —I|| can be before it begins to affect convergence.
Based on the Galerkin conditions, we should have solved the equivalent eigenproblem,
RTRy = VTATAVy = o?VTVy. In practice, we solve RTRy = VTATAVy = o2y
regardless of the orthonormality of V. Therefore, we obtain a Ritz vector and Ritz
value that will not converge to a 0 residual for the original problem, since VIV # I.
However, the Ritz pair produced by our inexact Galerkin can be considered as a Ritz
pair of an exact Galerkin condition applied to the nearby generalized eigenproblem
ATAVy = 0?MVy where M = V(VTV)72VT as seen below,

(2.5) VIATAVYy = > VI MVy = 2VIVVTV) 2V T VY = 0%y,
In order to correctly monitor and maintain convergence, the residual we use for

expansion, rc = or, = AT Av — v, should not drift too far from this exact residual,
rp = AT Av — 0?2V (VTV)2V Ty, where v = Vy. Assuming ||E|| < 1, we have

lre —rell = o |Vy = V(VTV)ly||
< VI = VIV = VI - (I +E)~"|
<A+ EDIU +E) £

I+iE"

i=1

= o?|| El| + O(* || B[|*).

(2.6)

< o*(1+||E]) IE]

Since we want r, = r¢ /o to converge to tolerance ||A||d, we limit the distance ||rg —
roll < ||A||6o. Thus, from (2.6), we perform a reset when ||E|| > ||A]|§/o. In practice
we have noticed only a few situations where this criteria caused a reset.

To demonstrate this problem, we ran lshp3025, a problem from the SuiteSparse
Matrix Collection [6], which requires thousands of restarts before convergence. Prop-
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A GOLUB-KAHAN DAVIDSON METHOD FOR THE SVD 9

erties of this problem can be found in Table 1. The criteria outlined in the previous
paragraphs combine to avoid the stagnation seen in Fig. 1. Due to the very low
tolerance of 1E-14 = 50 * €,,4ch, approximately 2,500 restarts or 35,000 matvecs may
cause the reset criteria to be met. It is clear our criteria is somewhat conservative,
as resets occur approximately every 40,000 matvecs, even when the method is able to
converge without it. However, without resetting, the method completely stagnates at
around 110,000 matvecs. Moreover, with or without resets, we observe convergence
to the first 8 smallest singular values in a similar number of matvecs (110,000), even
though adding resets should increase the overall number of matvecs. This indicates
the increased stability of the method also can improve performance slightly.

2.4. Inner Solver. Inner-outer solvers like JDSVD and the JDQMR implemen-
tation in PRIMME utilize extra matvecs inside of an inner solver as a refinement step
to improve the convergence speed of the outer iterations. By solving a related linear
system, these methods can provide a significant speedup in time for problems that
have a relatively inexpensive matrix-vector multiplication. Furthermore, solving this
linear system can reduce the residual of the solution without requiring the expansion
of the outer basis. Consequently, the number of orthogonalizations as well as the
number restarts are reduced, which avoids their associated error and resets. This is
particularly critical for problems that require a significant number of iterations.

GKD can be extended to a Jacobi-Davidson variant, GKJD, that expands the
subspace V' by the approximate solution of the correction equation

(2.7) (I — v (ATA - 21T — vt = -1,

instead of applying a preconditioner at line 10 of Algorithm 2.1. Here, and for the
remainder of this section, o without a subscript denotes the shift used for the inner
solver, which may be different than the user specified target & or the current approx-
imate singular value. As before, o; will denote the ith singular value. The inner
equation can also utilize a preconditioner, improving convergence further. In par-
ticular, our inner solver is based on the symmetric Quasi-Minimal Residual method
(QMRs) used in PRIMME’s JDQMR. QMRs can utilize indefinite preconditioners and
solve indefinite systems which may occur when o lies in the interior of the spectrum.

In order to avoid over utilizing the inner method when convergence is poor or
the correction equation does not match the desired singular values, or under utilizing
the inner method when convergence is good, extra steps must be taken. Due to the
smooth convergence of QMRs, we can include dynamic stopping conditions based on
estimated eigenvalue residuals to stop the linear solve in a near-optimal way. We have
adopted the same QMRs solver and dynamic criteria used in PRIMME’s JDQMR [26].

Our inner solver for (2.7) works directly on AT A — 02I so its numerical stability
needs to be justified. As with an outer iteration on AT A, no numerical issues are
expected when ¢ is in the largest part of the spectrum, but when seeking the small-
est part, singular values below O(||Al|\/€macn) Will become indistinguishable when
squared. However, the solution of the inner correction equation still provides useful
directions even when a few singular values of A are below O(||Al|\/€nacn). The reason
is well understood numerically and it is why inverse iteration works well despite a
nearly singular linear system [22, sec. 4.3].

Assume there are k singular values below the noise level, i.e., o1, < [|All\/€mach <
Ok+1, and a shift o < ||A||\/€mach. If we ignore the projectors for simplicity, the
numerically computed solution of (2.7), t, satisfies

(2.8) t=t+V(E?-o?)"'VIEL

This manuscript is for review purposes only.
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10 STEVEN GOLDENBERG, ANDREAS STATHOPOULOS, ELOY ROMERO

where the backward error satisfies ||E|| < ||AT Al|€mach. Therefore, the relative for-

ward error is a vector ﬁ = >, vi¢; with the coefficients satisfying

|VZTE£| ”A”Qemach

of — a2t = lo? —o?

(2.9) il =

For i > k, we have o; > op11 > ||A||\/€mach, and thus |¢;| = O(“A‘Femach) < 1. As

jil 0.1_2
the separation increases, oj4+1 > ||A||m, we have ¢; < 1 and the errors in the
vi,i > k, directions become negligible. For i < k, we have |02 — 02| < || A||?€nach and
thus the corresponding ¢; could blow up. In practice, calculations at the noise level of
the arithmetic will limit ¢; = O(1) but either way these v;, ¢ < k, directions dominate
the correction vector.

The behavior is similar when the backward error is at the level of the residual
norm at which we solve (2.7), i.e., || E| < ||A]|?6, for some tolerance 6. Typically we
ask for a residual norm reduction relative to ||r,|| but this can be translated to a 6.
Then, the |¢;| in (2.9) have the same bounds as above only multiplied by 6/emqch-
Since the approximate solution has ||t]| = O(6), the effect of the noise error is larger.

We can view the noise of the numerically computed correction ¢ as the application
of a low pass filter with the diagonal matrix diag(c;), where the ¢ < k singular
components dominate the result. Clearly, the inner iteration cannot differentiate
between these k smallest singular directions which look like a multiplicity. However,
the Rayleigh Ritz of the outer method has no problems approximating these singular
vectors as long as their k-dimensional space is sufficiently represented in the outer
search space.

If the outer method in GKJD has a restart size s > k and the gap ox11/0) is

large, then the filter ensures that all v;,¢ = 1,..., k, will be approximated well after k
outer iterations. As the gap narrows, the filter boosts also directions of larger singular
A2

values up to oy, where “5-€y4cn starts to become negligible. Therefore, the outer

method may take more than k iterations, although convergence depends on the gaps
in the “filtered” oy,..., 0 spectrum, which has much smaller spread than the entire
spectrum.

The situation is similar if the restart size s < k and op11/0y is large, since
the search space cannot capture all small singular vectors, so convergence will occur
based on the perceived gaps after the implicit application of the filter. In the extreme
case of s < k and/or very small spectral gaps, we can expect the method to be slow.
However, in such ill-conditioned problems, no better algorithmic options exist without
a preconditioner.

Figures 2 and 3 show examples of how GKJD with dynamic stopping condi-
tions for the inner iteration can converge even when several singular values are below
| All\/€mach- They also show that GKJD is competitive and sometimes faster than
GKD in terms of matrix-vector products, in addition to the benefit of a less expen-
sive iteration. The matrices have a specified spectrum ¥ and random left and right
singular vectors.

In Figure 2 the matrix has 16 singular values below || Al|\/€mnacr but we limit GKD
and GKJD to a restart size of only 15. Even with this limitation, GKJD is able to
converge to the smallest singular triplet with relative accuracy of 1E-14, and it does
so three times faster than GKD. Additionally, with only a few extra outer iterations,
GKJD can find 14 of the smallest singular values.

The difference seen between GKD and GKJD is due to the large number of
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GKD and GKJD on Effect of Minimum Restart Size on

% = [logspace(-10,-8,16) 1:1000] % = [logspace(-5,-4,20) linspace(1le-3,1,1000)]
T T T
— 0 8-104F T ‘ :
X 102 GKD | g —— GKD
S —— GKJD - —o— GKJD
' 8
S 107! 8 & 6-10* |- R
= E
g 1074 i =
< = 4-10%) a
aEi 1077 : g
& % o9.104 | .
ER— | : 2-10
: : : 2 | | |
0 200,000 400,000 600,000 10 20 30
Matrix Vector Multiplications Minimum Restart Size
Fic. 2. Convergence of GKD and GKJD Fic. 3. Convergence of GKJD on a prob-
when there are more SVs below \/€mach than the lem with 20 SVs below \/€mnach in single precision
MazBasisSize (q = 35, s = 15). with varying minimum restart sizes. (Mazimum

Matvecs = 75,000, ¢ = 50)

restarts for GKD and their associated error. As the errors caused by restarts grows
above the relative tolerance within approximately 2,000 restarts (40,000 matvecs),
GKD may have numerical issues and not converge although this behavior is sensitive
to the choice of random orthonormal bases U and V. Since GKJD performs orders
of magnitude fewer outer iterations, it is not affected by this source of error heavily
and therefore is not sensitive to the random left and right singular spaces. With a
marginally less strict tolerance, GKD does not exhibit this behavior.

In Figure 3 we consider an example where the matrix has 20 singular values
below the ||A||\/€mnach threshold. We use single precision arithmetic, which allows for
relatively larger spectral gaps that make convergence tractable. We search for the
smallest singular value with a maximum basis size of 50, the dynamic inner stopping
criteria, and a tolerance of 1E-5 for all tests while varying the restart size used by
the GKD and GKJD. We see that smaller restart sizes do not impede convergence of
GKJD and only slow it down by less than a factor of two. However, the effects of
a small restart size are much more severe on GKD, which is unable to converge to
the desired tolerance within 75,000 matvecs for restart sizes less than 10. This shows
that GKJD is able to rebuild the space lost during restarting much more quickly than
GKD, as the inner equation can sufficiently filter out directions corresponding to the
unwanted portions of the spectrum.

3. Benefits over PHSVDS.

3.1. Avoiding the Augmented Problem. As mentioned earlier, methods on
B often exhibit problems due to the interior nature of the spectrum that they work on.
In order to demonstrate these issues, Figure 4 shows convergence on the problem A
= diag([le-10, 2e-10, 5e-10, 1e-9, 3e-9, 1le-8, le-6, le-4, 1:1000]). First, this problem
is very poorly conditioned (k(A) = 1E13) and since the 6 smallest singular values
are below 1E-8, the first stage of PHSVDS is unable to distinguish them from zero.
Second, because the spectrum is reflected across 0 for the augmented problem, it is
very difficult to converge only to the positive part of the spectrum.

In searching for 3 singular values to a user tolerance of 1E-14, PHSVDS took
more than 4 times more matvecs, but more importantly, it missed 5 smaller singular
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Finding 5 Smallest with Block

Finding 3 Smallest with Difficult Jacobi Preconditioning (LargeRegFile)

Artificial Problem

: :
: :
- 103 — GKD g — GKD ||
S — PHSVDS | — PHSVDS
| 3 -
S )
= -2
% 10 :C .
— 3
< = |
S 2
£ 107 oj" l
= 10—10 |
10—12 . ‘ ‘ ‘ ‘ L L L L L
0 50,000 100,000 150,000 200,000 0 200 400 600 800 1,000
Matrix Vector Multiplications Matrix Vector Multiplications
Fia. 4. Convergence of PHSVDS on a ZIG' 5. Stagna;ions caused by ;Ijgﬁg;
poorly conditioned problem (k(A) = 1E+13) t(o fu]yIEc‘l—)Zzerge in the first stage of
k=1.

values as the third converged value was le-4. Even worse, the vectors that were
returned for left and right spaces were not orthogonal, as |QTQ — I|| ~ [|[VTV —I|| ~
6E-5. Therefore, the true residuals after orthogonalization did not meet the full user
tolerance. Comparatively, GKD converges to all 6 of the smallest singular values and
did so with fully orthogonal left and right vectors. As we can see from the figure, the
convergence for GKD is fairly smooth, converging to each of the six singular values
below 1E-8 before finishing. This is a vast improvement over the second stage of
PHSVDS, which exhibits irregular convergence with large spikes in the left residual
and long stagnations.

3.2. Switching Problems. One of the biggest practical advantages of GKD
over PHSVDS or any two stage algorithm is that it avoids the need to switch. For
PHSVDS, choosing the right time to switch is crucial so as to give the best possible
initial guesses to the second stage in order to avoid excessive use of the second stage
on B. However, if an overly optimistic bound is used, it may cause stagnations in the
first stage before switching. In general, it can be difficult to converge down to the
theoretical limit for the first stage in practice, and determining the minimum constant
above the theoretical limit that works for every problem is most likely impossible.
Worse, preconditioning can increase this difficulty as it can cause errors that are
difficult to account for within the switching criteria.

Specifically, we found these switching issues to occur when testing PHSVDS on
LargeRegFile (another matrix from the SuiteSparse Collection [6]) with Block Jacobi
preconditioning and 6 =1E-12. It is clear from the highlighted portions of Figure 5
that PHSVDS is unable to meet the convergence criteria for the first stage. In fact,
while the case shown in Figure 5 is able to reach the criteria eventually, most cases
like this stagnate completely. For example, the same problem (LargeRegFile) when
solved with an inner solver (JDQMR) is never able to meet the first stage convergence
criteria. Since GKD never requires switching methods, we can avoid these problems
entirely and provide more reliable convergence.

This manuscript is for review purposes only.
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3.3. Space and Time Comparisons. For computations on large matrices, it is
important to consider the convergence rate, the space requirements, and the total work
that the algorithm requires. Therefore, we provide a short comparison of the latter
between our method and PHSVDS before presenting numerical results in Section 4.

GKD requires storage for two spaces, V and @ that are n x g and m X ¢ respectively
where ¢ is the maximum basis size. In the PRIMME implementation of PHSVDS,
a similar same space is required to store the resulting left and right singular vector
approximations. However, the first stage of PHSVDS requires a working memory
set of two spaces of size n x ¢, for V and ATAV. Therefore, for square matrices,
the working space required for the first stage of PHSVDS is equivalent to GKD. For
very tall and skinny matrices (n < m), the first stage of PHSVDS uses a reduced
memory footprint for most of the computation, but only if the user can guarantee
that switching to the second stage will not be required. Otherwise, the second stage
of PHSVDS will require two spaces of dimension (m + n) x g. This corresponds to
double the storage requirement of GKD. For very large problems, this might force the
user to reduce the max basis size in order to store the bases in memory.

In terms of execution cost, GKD performs two orthogonalizations per iteration,
one for V' and one for @, while the first stage of PHSVDS performs only one orthog-
onalization for V. Therefore, with low required accuracy where the second stage is
not involved, PHSVDS is more efficient per step computationally. For robustness,
primme_svds implements the second stage of PHSVDS using refined extraction which
requires two orthogonalizations on vectors of dimension m+n and thus has double the
orthogonalization cost of GKD. Additionally, these vectors of size m + n incur more
error in dot product computations, so baseline calculations will not be as accurate.
When using low precision calculations (single or half), these errors become even more
important to avoid if possible.

4. Numerical Results. To verify our algorithm’s performance, we utilized the
same matrices given in the original PHSVDS publication [31] as well as three matrices
with dimension larger than one million from [30]. These matrices are publicly available
through the SuiteSparse Matrix Collection [6] and represent real world applications.
These problems are quite difficult for iterative solvers and are used to stress test
the capabilities of GKD and PHSVDS. Since these matrices are sparse, we provide
their dimensions and the number of non-zero entries of A, nnz(A), as well as the
norm of A, ||Al|, the condition number of A, k(A), and the gap ratio for o1, 11 =
(02 —01)/(0n — 02).

The matrices listed in Table 1 and Table 2 are listed from least to most difficult
(left to right) as generally their condition numbers increase, and the gap ratios for
their smallest singular values decrease. It should be noted that none of these matrices
are particularly poorly conditioned, and do not require the second stage in PHSVDS
to improve the singular vector estimates more than a few orders of magnitude. There-
fore, the benefits we would expect to gain on very poorly conditioned problems are
significantly larger.

We restrict GKD and PRIMME’s PHSVDS Matlab interface, primme_svds, to a
maximum basis size of 35 vectors, a minimum restart size of 15 vectors and a user
tolerance of § = 1E-14 for the smaller matrices and 6 = 1E-12 for the larger ones. We
also enforce one retained vector from the previous iteration (for +1 restarting) except
for the three large cases, where we enforce +2 restarting. Additionally, we choose to
soft lock converged triplets, but due to the interior nature of the augmented method in
primme_svds, we are unable to set soft-locking for the second stage while searching for

This manuscript is for review purposes only.



ot Ut

ot

[S1 0SB, I |

wt

(S 3G G, NG BIGL B G BV NG 1|

ot

ot
)

14 STEVEN GOLDENBERG, ANDREAS STATHOPOULOS, ELOY ROMERO

Matrix ‘ pde2961  dw2048 fidap4  jagmesh8 wang3 Ishp3025

dimension 2961 2048 1601 1141 26064 3025
nnz(A) 14585 10114 31837 7465 77168 120833
Kk(A) 9.5E+42 5.3E4+3 5.2E+43 5.9E+4 1.1E+4 2.2E+5
[|A]| 1.0E+1 1.0E+0 1.6E+0 6.8E40 2.7E-1 7.0E40
Y1 8.2E-3 2.6E-3 1.5E-3 1.7E-3 7.4E-5 1.8E-3
TABLE 1

Basic Properties of Square Matrices

Matrix ‘ well1850  Ip_ganges deterd plddb ch Ip-bnl2
rows 1850 1309 3235 3049 3700 2324
columns 712 1706 9133 5069 8291 4486
nnz(A) 8755 6937 19231 10839 24102 14996

K(A) 1.1E+2 2.1E+4 3.7E4+2 1.2E+4+4 2.8E+3 T7.8E+3

Al 1.8E40 4.0E4-0 1.0E+1 14E+4+2 7.6E4+2 2.1E42
Y1 3.0E-3 1.1E-1 1.1E-1 4.2E-3 1.6E-3 7.1E-3

TABLE 2

Basic Properties of Rectangular Matrices

Matrix ‘ sls Ruccil LargeRegFile
rows 1,748,122 1,977,885 2,111,154

columns 62,729 109,900 801,374

nnz(A) 6,804,304 7,791,168 4,944,201
K(A) 1.3E+43 6.7E+3 1.1E+4
Al 1.3E+3 7.0E+0 3.1E+3

Y1 8E-7 5E-5 3E-7
TABLE 3

Basic Properties of Large Scale Matrices

the smallest singular triplets. It should be noted that hard-locking generally improves
performance for our method when searching for more than one singular value, but does
not provide the same orthogonality guarantees and is subject to the numerical issues
mentioned earlier.

4.1. Unpreconditioned Results. We compare GD+k (implemented as the
default MIN.MATVECS method in primme_svds) against GKD, and the JDQMR
method (MIN_TIME in primme_svds) against GKJD. As shown in Figure 6, GKD and
GKJID require fewer matrix-vector multiplications than their primme_svds counter-
parts for all matrices. Also, the matrices that show the largest benefits are 1shp3025,
wang3, jagmesh8, and lp_ganges. As expected, these correspond to the matrices that
required more significant use of the second stage in primme_svds, due to their larger
k(A).

For most cases, we see a slight drop off in performance when searching for the
10 smallest singular values, but this is mostly caused by different implementations of
soft-locking. Since primme_svds uses two stages, the first stage soft locks each vector
at a tolerance above the user specified tolerance. However, since they are soft-locked,
the first stage of primme_svds can improve the initial guesses to the second stage in
some cases, since it leaves the estimated singular triplets in the basis while converging
to other vectors. To check this, we ran GKD using a pseudo two-stage implementation
that mimics the primme_svds behavior. This was done by converging to all 10 singular
values to a higher tolerance first (k(A)||All€mach), before converging to the full user
tolerance. In this case, GKD can further improve performance for soft-locking over
primme_svds.

For rectangular matrices, we also tested whether our method could find a true
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Finding 1 or 10 Smallest SVs Finding 1 or 10 Smallest SVs
on Square Matrices on Rectangular Matrices
247 =  GD:ik/GKD || =  GDtk/GKD
2.2 == GD+k/GKD 10SV |4 25| |mm GD+k/GKD 10SV
) JDQMR/GKJD || JDQMR/GKJID
Qo JDQMR,/GKJD 10SV 2 JDQMR/GKJD 10SV
18 1= 2
~ ~
= 1.6 Z
= =
1.4 B 1.5
1.2 :
1 - 1
Blpigss Mgyt e, Mapg 2045 Plezgg, Dby Plagy erer, /D\‘-’anges "elliss,
Matrix Name Matrix Name
Fic. 6. Unpreconditioned Results
Finding 5 Smallest SVs
on Large-Scale Problems
1k -_-, ‘ sls Ruccil LargeRegFile
;% GKD 60298 112668 28766
~ 0.9l | GD+k 62050 117882 30056
E ’ GKJD 50859 138750 27652
== GD+k/GKD 55V JDQMR | 40236 138118 26508
0.8+ == JDQMR/GKJD 5SV |

sls Ruccil LargeRegFile
Matrix Name

Fic. 7. Large-Scale Unpreconditioned Results. Required matvecs for GKD, GD+k, GKJD
and JDQMR are shown in the table. Note that for sls, GKJD finds 3 of the singular values with
multiplicity 14 while JDQMR finds only 2.

zero singular value by appending one extra column to the matrix equal to the first
column. GKD is able to find the real zero in all cases. primme_svds will not return
this numerically zero value, as outlined in its documentation, since its second stage
has no way to distinguish real zeros from the null space created by the augmented
matrix.

For the large scale matrices, Figure 6 shows a fairly even performance between
primme_svds and GKD/GKJD. This is expected as the tolerance is higher (tol =
1E-12) than the small cases, and therefore primme_svds only uses the second stage
sparingly. The biggest difference is seen for sls and for the inner-outer methods
(JDQMR/GKJD), where the high multiplicity (14) at the second smallest singular
value causes issues with convergence. Specifically, JDQMR only converges to two of
these numerically equal singular values before finding five converged triplets, while
GKJD is able to recognize the higher multiplicity and spends extra iterations finding
a third. We also note that the number of matvecs for GKD/GKJD are significantly
smaller than the numbers for SLEPc¢’s implementation of LBD reported in [30].

In general, iterative methods may have trouble finding multiplicities or may con-
verge out of order causing the methods to miss directions [19]. This is especially
true for Krylov solvers which, in exact arithmetic, are unable to find more than one
eigenvector corresponding to a multiplicity. In order to solve this problem, many
algorithms including PHSVDS can utilize a block solver where the block size approx-
imates the degree of the multiplicity [5, 3, 10]. Additionally, multiple initial guesses
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Ruccil: Finding 100 Largest Ruccil: Finding 10 Largest

in Single Precision in Single Precision
2] T T 0 T T
g 2,400 |- —— GKD || é
§ ——IRLBA § 210 |- |
-a E ——
£ 2.200] i £ GKD
= = —o—IRLBA
= =
= = 220 - 8
£ 2,000 |- 8 2
g 5
= >
sl s
= 1,800 - B = 200 B
S =
= | | | = | | | |

110 115 120 20 30 40 50

Max Basis Size Max Basis Size
Fic. 8. Similar performance can be Fic. 9. IRLBA wastes matrix vector multi-

achieved with a relatively small basis size even plications building a full basis without checking
when searching for 100 values. convergence.

can be used to reduce the likelihood of initial vectors being deficient in the invariant
space of the multiplicity. Both of these ideas would be simple extensions that could
be added to GKD to improve robustness.

4.2. Single Precision Results. In order to demonstrate the versatility of our
method, we ran tests in single precision looking for the largest 10 or 100 singular
values of matrices to tolerance § = 1E-4. Although much less taxing on the solver,
these kinds of requirements are common in many SVD applications. We compare our
results to IRLBA (which is the default method in MATLAB’s svds for largest singular
values). Since we are looking for low accuracy, we omit results from PRIMME since
it would use only the first stage which is equivalent to GKD.

Figures 8 and 9 report results on Ruccil. We also ran these tests on sls and
LargeRegFile, but convergence was achieved in too few iterations (requiring only one
restart) so all methods were similar. We vary the maximum basis size to understand
how GKD compares when the user has more or less space than IRLBA uses as a
default. When searching for 100 singular triplets, we choose basis sizes close to 100
to mimic the situation where space is at a premium and only a small number of extra
vectors can be stored. For 10 singular triplets, we show how IRLBA compares to
GKD when the basis size is much larger than the number for desired triplets.

Figure 8 shows that both IRLBA and GKD provide fairly similar results for 100
singular values. GKD performs better in the most extreme memory limitation as it
can selectively target the desired values when building its space. However, when there
is more room to build a Krylov space, this targeting is no longer required.

Figure 9 shows increased advantages of GKD when fewer singular values are
needed. For 10 singular values, the standard version of IRLBA defaults to a maximum
basis size of 30. In some cases, the system may have additional space for a larger basis
size which can improve convergence. However, since IRLBA generally only checks
convergence after a full basis is built, a larger basis size can limit how often IRLBA
performs these checks. This allows GKD to outperform IRLBA, even though they
obtain nearly identical performance for smaller basis sizes.

4.3. Preconditioned Results. We provide a preconditioner for the small ma-
trices built using Matlab’s ILU with the ilutp factorization, a drop-tolerance of 1E-3,
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Finding 1 or 10 Smallest SVs on Preconditioned Square Matrices

8 | | | | | | .
[ GD+k/GKD
== GD+k/GKD 10SV

- 6 JDQMR/GKJD
% JDQMR/GKJD 10SV
a1
>4t 1
=
il N

T
Ishp3025 wang3 jagmesh8 fidap4 dw2048 pde2961

Matrix Name
Fi1G. 10. Preconditioned Results with an ILU Preconditioner for finding the smallest and 10

smallest singular triplets.

Finding 5 Smallest SVs on
Preconditioned Large-Scale Problems

== GD+k/GKD 55V sls Ruccil LargeRegFile

° 2 == JDQMR/GKJID 55V GKD 6515 16074 810
gg GD+k | 11972 16426 1106
= 1.5 GKJD | 8204 18198 1266
= JDQMR | DNF 18734 DNF

sls Ruccil LargeRegFile

FiG. 11. Large-Scale Results with Block Jacobi Preconditioner (block size=600 on AT A) for
the 5 smallest singular triplets. Required matvecs for GKD,GD+k, GKJD and JDQMR are shown
in the table.

and a pivot threshold of 1.0. Our results show the significant benefit of an effec-
tive preconditioner, as all of the small problems required less than 150 matvecs when
searching for one singular value with GKD. However, these preconditioners sometimes
caused significant issues for primme_svds, as it was unable to converge for 1shp3025
when searching for the 10 smallest singular values, and exhibited significant difficulty
converging to 10 singular values for wang3, jagmesh8 and fidap4. Specifically, when
searching for 10 singular values, wang3 requires 12x more matvecs for JDQMR, and
jagmesh8 requires 56x and 14x more matvecs for GD+k and JDQMR respectively.
These issues are caused by primme_svds’ switching issues mentioned earlier.

For the three large matrices, ILU becomes significantly more expensive, so we
use a Block-Jacobi preconditioner, inverting exactly diagonal blocks of AT A each
of size 600. This is relatively inexpensive to compute and it is also parallelizable.
Again, we see a significant decrease in matvecs as all three problems required less
than 15% of the matvecs needed for the unpreconditioned cases. For Ruccil the
convergence differences between our methods and primme_svds are negligible, but for
sls and LargeRegFile, GKD and GKJD provide significant improvements in speed
and robustness. Again, as seen earlier in Figure 5, primme_svds’ switching criteria
are too stringent for preconditioned cases, which causes slowdowns for GD+k on
LargeRegFile. Worse, primme_svds’ JDQMR suffers stagnations that cause failures
to converge when preconditioned on sls and LargeRegFile.

The 80% improvement on sls over GD+k comes from primme_svds being unable
to separate the directions corresponding to the large degree multiplicity. During addi-
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tional testing, we found the number of matvecs required to find the 5 smallest singular
values with primme_svds is only marginally less than the number required to find 10.
Since primme_svds is unable to appropriately separate the directions corresponding to
the multiplicity, it converges to all 10 values concurrently. However, GKD is able to
distinguish these directions and converge smoothly for each one individually, provid-
ing a substantial improvement. Testing GKD to converge to 10 values as well, we still
found an improvement over primme_svds, however the gap between the two methods
was significantly reduced.

5. Conclusions. We have presented GKD, a new method for finding the small-
est singular triplets of large sparse matrices to full accuracy. Our method works
iteratively, under limited memory, with preconditioners, while including features such
as soft-locking with orthogonality guarantees, +k restarting, and the ability to find
real zero singular values in both square and rectangular matrices. Additionally, GKJD
adds a Jacobi-Davidson inner solver for the AT A correction equation into GKD, which
can lower execution time when the matrix-vector multiplication operation is inexpen-
sive and can reduce the errors caused by restarting. Both of these methods have shown
to be more reliable and efficient than PHSVDS, and thus over other SVD methods,
for nearly all cases.
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