
HIERARCHICAL PROBING FOR ESTIMATING THE TRACE OF
THE MATRIX INVERSE ON TOROIDAL LATTICES

ANDREAS STATHOPOULOS † , JESSE LAEUCHLI † , AND KOSTAS ORGINOS ‡§

Abstract. The standard approach for computing the trace of the inverse of a very large, sparse
matrix A is to view the trace as the mean value of matrix quadratures, and use the Monte Carlo
algorithm to estimate it. This approach is heavily used in our motivating application of Lattice
QCD. Often, the elements of A−1 display certain decay properties away from the non zero structure
of A, but random vectors cannot exploit this induced structure of A−1. Probing is a technique that,
given a sparsity pattern of A, discovers elements of A through matrix-vector multiplications with
specially designed vectors. In the case of A−1, the pattern is obtained by distance-k coloring of the
graph of A. For sufficiently large k, the method produces accurate trace estimates but the cost of
producing the colorings becomes prohibitively expensive. More importantly, it is difficult to search
for an optimal k value, since none of the work for prior choices of k can be reused.

First, we introduce the idea of hierarchical probing that produces distance-2i colorings for a
sequence of distances 20, 21, . . . , 2m, up to the diameter of the graph. To achieve this, we do not
color the entire graph, but at each level, i, we compute the distance-1 coloring independently for
each of the node-groups associated with a color of the distance-(2i−1) coloring. Second, based on
this idea, we develop an algorithm for uniform, toroidal lattices that simply applies bit-arithmetic
on local coordinates to produce the hierarchical permutation. Third, we provide an algorithm for
choosing an appropriate sequence of Hadamard and Fourier vectors, so that earlier vectors in the
sequence correspond to hierarchical probing vectors of smaller distances. This allows us to increase
the number of probing vectors until the required accuracy is achieved.

Several experiments show that when a decay structure exists in the matrix, our algorithm finds
it and approximates the trace incrementally, starting with the most important contributions. We
have observed up to an order of magnitude speedup over the standard Monte Carlo.

Key words. Probing, trace of the inverse, sparse matrix, torus, Hadamard, Fourier, Lattice
QCD

AMS subject classifications. 65F15, 05B20, 81V05, 65C05, 65F50

1. Introduction. A computationally challenging task in numerical linear alge-
bra is the estimation of the trace or the determinant of functions of matrices. The
source of computational difficulty is twofold: first, the function of the matrix or its
action on a vector must be computed, and following this, its trace must be estimated.
We focus on the trace of the inverse of the matrix, Tr(A−1), but our approach can
be adapted to the determinant, as Tr(log A), or other functions.

These problems are common in many statistical applications [26], in data min-
ing [9], in uncertainty quantification [8], in optimal code design [33], as well as in
quantum physics applications such as quantum Monte Carlo [1]. Our motivation for
this work comes from some particularly computationally intensive problems in lattice
quantum chromodynamics (LQCD). The goal of LQCD is to calculate the properties,
structure, and interactions of hadrons, the basic constituents of matter [23, 35]. These
calculations, together with experiments from particle accelerators, enable physicists
to form a comprehensive picture of the subatomic world. Computation of observables
in LQCD entails averaging of correlation functions over an ensemble of gauge fields,
which in turn requires certain sections of the inverse of a matrix, the trace of the

†Department of Computer Science, College of William and Mary, Williamsburg, Virginia 23187-
8795, U.S.A.(amrehim@cs.wm.edu)

‡Department of Physics, College of William and Mary, Williamsburg, Virginia 23187-8795,
U.S.A.(andreas@cs.wm.edu)

§Jefferson National Laboratory, 12000 Jefferson Avenue, Newport News, Virginia, 23606,
U.S.A.(kostas@jlab.org)

1

2 Stathopoulos, Laeuchli, Orginos

inverse, or sometimes the ratio of determinants of two such matrices. The matrix
discretizes a differential operator containing first and second order derivatives on a
four dimensional (space-time), uniform lattice with periodic conditions, where each
point (site) has an internal dimension of 12 related to the color and spin degrees of
freedom. Clearly, this is a very large and sparse matrix.

For problems of small size, Tr(A−1) can be computed efficiently through varia-
tions of dense or sparse LU decomposition methods, [2, 17]. For larger problems
stemming from some 2-D and 3-D discretizations, algorithms have been developed
using the banded structure, or based on preconditioning-type algorithms such as do-
main decomposition [30, 31, 41]. Such algorithms, however, focus on the accurate
computation of the trace, and have complexities O(N3/2) or O(N2) for 2-D or 3-D
problems respectively, where N is the matrix size. For our 4-D LQCD problem, time
and memory complexities are even higher, making such methods impractical for large
N . Moreover, this expense is not warranted in many problems, including LQCD,
where only a low accuracy estimation of the trace is required. Preconditioner-based
approaches have also been proposed for related problems [28, 29, 34, 41] but their
computational costs tend to be similar to the above approaches. On the other hand,
the matrix trace, which can be viewed as an expectation value (sum of all eigenvalues),
is not approximated well by a projection onto a Krylov space. The Lanczos method,
even in exact arithmetic, would require N iterations to calculate Tr(A−1).

In the realm of such problem sizes, stochastic methods have become the standard
approach. Given f some function of A and s random vectors zk with independent,
identically distributed (i.i.d.) entries, 1

s

∑s
k=1 zT

k f(A)zk is an unbiased estimator of
Tr(f(A)) [26]. Thus, we can set up a Monte Carlo process (MC) and at each step
approximate the Gaussian quadrature zT f(A)z using the Lanczos method [5, 22, 40].
MC converges slowly, as O(1/

√
s), but it is unbiased which is important in LQCD

where the traces of a large sequence of matrices must be averaged.
The convergence rate of the MC method depends on the variance of the estimator.

Choosing the vector entries as Z2 noise (i.e., z(i) = ±1 with probability 0.5) is known
to minimize variance over real random vectors [12, 26]. Various choices of Z2 vectors
have been proposed [9, 27, 45]. In [3], the authors provide a thorough analysis of both
the variance and the number of steps required to achieve an ε-approximation of the
trace for various choices of vectors. They show that differences exist in the theoretical
bounds governing convergence, but their experiments do not reveal these differences
in practice. As we can rarely afford to run MC to the asymptotic regime, practical
improvements can only come from deterministic variance reduction mechanisms. Over
the last decade there have been some efforts to equip MC with specially selected
vectors based on the structure of the matrix [3, 9, 21, 42, 45]. In this research, we
address the problems that prevented two of these otherwise very promising methods
from capturing the structure of more general matrices.

The first method borrows ideas from coding theory and selects deterministic vec-
tors for the MC as columns of a Hadamard matrix [9]. These vectors are orthogonal
and, although they produce the exact answer in N steps, their benefit stems from
systematically capturing certain diagonals of the matrix. For example, if we use the
first 2m Hadamard vectors, the error in the trace approximation comes only from
non-zero elements on the (k2m)th matrix diagonal, k = 1, . . . , N/2m. Thus, the MC
iteration continues annihilating more diagonals with more Hadamard vectors, until
it achieves the required accuracy. However, in most practical problems the matrix
bandwidth is too large, the non-zero diagonals do not fall on the required positions,

Hierarchical probing for trace estimation 3

or the matrix is not even sparse (which is typically the case for A−1).
The second method is based on probing [42], which selects vectors that annihilate

the error contribution from the heaviest elements of A−1. For a large class of sparse
matrices, elements of A−1 decay exponentially away from the non-zero elements of
A. In other words, the magnitude of the A−1

i,j element relates to the distance of the
minimum path between nodes i and j in the graph of A. Assume that the graph of
A has a distance-k coloring (or distance-1 coloring of the graph of Ak) with m colors.
Then, if we define the vectors zj , j = 1, . . . ,m, with zj(i) = 1 if color(i)=j, and
zj(i) = 0 otherwise, we obtain Tr(A) =

∑m
j=1 zT

j Azj . For Tr(A−1) the equation is
not exact, but it annihilates errors from all elements of A−1 that correspond to paths
between vertices that are distance-m neighbors in A. The probing technique has
been used for decades in the context of approximating the Jacobian matrix [16, 19] or
other matrices [38]. Its use for approximating the diagonal of A−1 in [42] (see also [9])
is promising as it selects the important areas of A−1 rather than the predetermined
structure dictated by Hadamard vectors. However, the accuracy of the trace estimate
obtained through a specific distance-k probing can only be improved by applying
Monte Carlo, using random vectors that follow the structure of each probing vector.
To take advantage of a higher distance probing, all previous work has to be discarded,
and the method rerun for a larger k. We discuss this in Sections 1.1.3 and 2.

In this paper we introduce hierarchical probing which avoids the problems of the
previous two methods; namely it annihilates error stemming from the heaviest parts
of A−1, and it does so in an incremental way until the required accuracy is met. To
achieve this, we relax the requirement of distance-k coloring of the entire graph. The
idea is to obtain recursively a (suboptimal) distance-2i+1 coloring by independently
computing distance-1 colorings of the subgraphs corresponding to each color from the
distance-2i coloring. The recursion stops when all the color-subgraphs are dense, i.e.,
we have covered all distances up to the diameter of the graph. We call this method,
“hierarchical coloring”. The number of colors produced may differ between subgroups
for general matrices. For lattices, however, each subgroup has the same number of
colors, which enables an elegant, hierarchical basis for probing. If we consider an
appropriate ordering of the Hadamard and/or Fourier vectors and permute their rows
based on the hierarchical coloring, the first m such vectors constitute a basis for the
corresponding m probing vectors. We call this method, “hierarchical probing”. It can
be implemented using only bit arithmetic, independently on each lattice site. We
also address the issue of statistical bias by viewing hierarchical probing as a method
to create a hierarchical basis starting from any vector, including random.

Section 2 describes the general idea of hierarchical coloring and probing. In Sec-
tion 3, we consider the case of uniform grids and tori with sizes that are power of
two, and develop a modified hierarchical probing that uses only local coordinate in-
formation and bit operations and produces the hierarchical probing vectors in parallel
and highly efficiently. In Section 3.4, we extend the hierarchical coloring to lattices
with size that includes non-power of two factors. In Section 4, we provide several
experiments for typical lattices and problems from LQCD that show that MC with
hierarchical probing has much smaller variance than random vectors and performs
equally well or better than the expensive, large distance probing method.

1.1. Preliminaries. We use vector subscripts to denote the order of a sequence
of vectors, and parentheses to denote the index of the entries of a vector. We use
MATLAB notation to refer to row or column numbers and ranges. The matrix A, of
size N ×N , is assumed to have a symmetric structure (undirected graph).

4 Stathopoulos, Laeuchli, Orginos

1.1.1. Lattice QCD problems. Lattice Quantum Chromo-Dynamics (LQCD)
is a formulation of Quantum Chromo-Dynamics (QCD) that allows for numerical cal-
culations of properties of strongly interacting matter (Hadron Physics) [44]. These
calculations are performed through Monte Carlo computations of the discretized the-
ory on a finite 4 dimensional Euclidean lattice. Physical results are obtained after
extrapolation of the lattice spacing to zero. Hence calculations on multiple lattice
sizes are required for taking the continuum and infinite volume limits. In this for-
mulation, a large sparse matrix D called the Dirac matrix plays a central role. This
matrix depends explicitly on the gauge fields U . The physical observables in a LQCD
calculation are computed as averages over the ensemble of gauge field configurations.
In various stages of the computation one needs, among other things, to estimate the
determinant as well as the trace of the inverse of this matrix. The dimensionality
of the matrix is 3 × 4 × L3

s × Lt, where Ls and Lt are the dimensions of the spatial
and temporal directions of the space-time lattice, 3 is the dimension of an internal
space named “color”, and 4 is the dimension of the space associated with the spin and
particle/antiparticle degrees of freedom. Typical lattice sizes in todays calculations
have Ls = 32 and Lt = 64 and the largest calculations performed on leadership class
machines at DOE or NSF supercomputing centers have Ls = 64 and Lt = 128. As
computational resources become available and precision requirements grow, lattices
sizes will become even bigger.

1.1.2. The Monte Carlo method for Tr(A−1). Hutchinson introduced the
standard MC method for estimating the trace of a matrix and proved the following
[26].

Lemma 1.1. Let A be a matrix of size N×N and denote by Ã = A−diag(A). Let
z be a Z2 random vector (i.e., whose entries are i.i.d Rademacher random variables
Pr(z(i) = ±1) = 1/2). Then, zT Az is an unbiased estimator of Tr(A), i.e.,

E(zT Az) = Tr(A),

and

var(zT Az) = ‖Ã‖2
F = 2

(
‖A‖2

F −
N∑

i=1

A(i, i)2
)

.

The MC method converges with rate
√

var(zT Az)/s, where s is the sample size
of the estimator (number of random vectors). Thus, the MC converges in one step
for diagonal matrices, and very fast for strongly diagonal dominant matrices. More
relevant to our Tr(A−1) problem is that large off-diagonal elements of A−1 contribute
more to the variance ‖Ã−1‖2

F and thus to slower convergence.
Computationally, the Gaussian quadrature zkA−1zk can be computed using the

Lanczos method [5, 20, 39]. This method produces also upper and lower bounds on the
quadrature, which are useful for terminating the process. A simpler alternative is to
solve the linear system A−1zk. Although this is not recommended for non-Hermitian
systems because of worse floating point behavior [40], for Hermitian systems it can be
as effective if we stop the system earlier. Specifically, the quadrature error in Lanczos
converges as the square of the system residual norm [20], and therefore we only need
to let the residual converge to the square root of the required tolerance. A potential
advantage of solving A−1zk is that the result can be reused when computing multiple
correlation functions involving bilinear forms yT A−1zk (e.g., in LQCD).

Hierarchical probing for trace estimation 5

1.1.3. Probing. Probing has been used extensively for the estimation of sparse
Jacobians [16, 19], for preconditioning [38], and in Density Functional Theory for
approximating the diagonal of a dense projector whose elements decay away from the
main diagonal [9, 42]. The idea is to expose the structure and recover the non-zero
entries of a matrix by multiplying it with a small, specially chosen set of vectors.
For example, we can recover the elements of a diagonal matrix through a matrix-
vector multiplication with the vector of N 1’s, 1N = [1, . . . , 1]T . Similarly, a banded
matrix of bandwidth b can be found by matrix-vector multiplications with vectors
zk, k = 1, . . . , b, where

zk(i) =
{

1, for i = k : b : N
0, otherwise .

To find the trace (or more generally the main diagonal) of a matrix, the methods
are based on the following proposition [9].

Proposition 1.2. Let Z ∈ <N×s be the matrix of the s vectors used in the MC
trace estimator. If the i-th row of Z is orthogonal to all those rows j of Z for which
A(i, j) 6= 0, then the trace estimator yields the exact Tr(A).

In the above example of a banded matrix, we choose the vectors zk such that their
rows only overlap for structurally orthogonal rows of A (i.e., for rows farther than b
apart). Thus the proposition applies and the trace computed with these zk is exact.

If A is not banded but its sparsity pattern is known, graph coloring can be used
to identify the structurally orthogonal segments of rows, and derive the appropriate
probing vectors [42]. Assume the graph of A is colorable with m colors, each color
having n(k) number of vertices, k = 1, . . . ,m. The coloring is better visualized if we
let q be the permutation vector that orders first vertices of color 1, then vertices of
color 2, and so on. Then A(q, q) has m blocks along the diagonal, the k-th block is of
dimension n(k), and each block is a diagonal matrix. Figure 1.1 shows an example of
the sparsity structure of a permuted 4-colorable matrix. Computationally, permuting
A is not needed. If we define the vectors:

zk(i) =
{

1 if color(i) = k
0 otherwise , k = 1, . . . ,m (1.1)

we see that Proposition 1.2 applies, and therefore Tr(A) =
∑m

k=1 zT
k Azk.

..

...

...

... ...

...
...
1

.
0

0

0

0

0
0

0 0

1

0

0

1
1

0

0

00

0

0

0
0

1

1

0

0
1
1

Fig. 1.1. Visualizing a 4-colorable matrix permuted such that all rows corresponding to color 1
appear first, for color 2 appear second, and so on. Each diagonal block is a diagonal matrix. The
four probing vectors with 1s in the corresponding blocks are shown on the right.

When the matrix is dense and all its elements are of similar magnitude, there is no
structure to be exploited by probing. The inverse of a sparse matrix is typically dense,

6 Stathopoulos, Laeuchli, Orginos

but, for many applications, its elements decay on locations that are farther from the
locations of the non-zero elements of A. Such small elements of A−1 can be dropped,
and the remaining A−1 is sparse and thus colorable. Diagonal dominance of the matrix
is a sufficient (but not necessary) condition for the decay to occur [16, 42]. This
property is exploited by approximate inverse preconditioners and can be explained
from various points of view, including Green’s function for differential operators, the
power series expansion of A−1, or a purely graph theoretical view [10, 11, 15, 25]. In
the context of probing, we drop elements A−1(i, j) whose vertices i and j are farther
than k links apart in the graph of A. Because this graph corresponds to the matrix
Ak, our required distance-k coloring is simply the distance-1 coloring of the matrix
Ak [19, 42]. Computing Ak for large k, however, is time and/or memory intensive.

The effectiveness of probing depends on the decay properties of the elements of
A−1, and the choice of k in the distance-k coloring. The problem is that k depends
both on the structure and the numerical properties of the matrix. If elements of
A−1 exhibit slow decay, choosing k too small does not produce sufficiently accurate
estimates because large elements of A−1 (linking vertices that are farther than k
apart) contribute to the variance in Lemma 1.1. Choosing k too large increases the
number of quadratures unnecessarily, and more importantly, makes the coloring of Ak

prohibitive. This problem has also been identified in [42] but no solution proposed.
A conservative approach is to use probing for a small distance (typically 1 or 2) to

remove the variance associated only with the largest, off-diagonal parts of the matrix.
Then, for each of the resulting m probing vectors, we generate s random vectors that
follow the non-zero structure of the corresponding probing vector, and perform s MC
steps (requiring ms quadratures). In LQCD this method is called dilution. In its
most common form it performs a red-black ordering on the uniform lattice and uses
the MC estimator to compute two partial traces: one restricted on the red sites, the
other on the black sites of the lattice [6, 18, 32]. Therefore, all variance caused by the
direct red-black connections of A−1 is removed. The improvement is modest, however,
so additional “dilution” is required based on spin-color coordinates [4, 32].

1.1.4. Hadamard vectors. An N×N matrix H is a Hadamard matrix of order
N if it has entries H(i, j) = ±1 and HHT = NI, where I is the identity matrix of
order N [9, 24]. N must be 1, 2, or a multiple of 4. We restrict our attention to
Hadamard matrices whose order is a power of 2, and can be recursively obtained as:

H2 =
[

1 1
1 −1

]
, H2n =

[
Hn Hn

Hn −Hn

]
= H2 ⊗Hn.

For powers of two, Hn is also symmetric, and its elements can be obtained directly as

Hn(i, j) = (−1)
Plog N

k=1 ikjk , (1.2)

where (ilog N , . . . , i1)2 and (jlog N , . . . , j1)2 are the binary representations of of i−1 and
j − 1 respectively. We also use the following notation to denote Hadamard columns
(vectors): hj = Hn(:, j + 1), j = 0, . . . , n− 1. Hadamard matrices are often called the
integer version of the discrete Fourier matrices,

Fn(j, k) = e2π(j−1)(k−1)
√
−1/n. (1.3)

For n = 2, H2 = F2, but for n > 2, Fn are complex. These matrices have been
studied extensively in coding theory where the problem is to design a code (a set of

Hierarchical probing for trace estimation 7

1 1

1 -1

1 1

1 -1

1 1

1 -1

1 1

1 -1

1 1

1 -1

1 1

1 -1

1 1

1 -1

1 1

1 -1

Red−black order

vs

Hadamard natural order 1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 1

1 -1

1 -1

1 -1

1 -1

1 -1

1 -1

1 -1

1 -1

Fig. 2.1. Left: the first two natural order Hadamard vectors select some neighboring vertices in
the lexicographic ordering of a 2-D uniform lattice and thus cannot cancel their variance. Right: if
the grid is permuted with the red nodes first, the first and the middle Hadamard vectors completely
cancel variance from nearest neighbors and correspond to the distance-1 probing vectors.

s < N vectors Z) for which ZZT is as close to identity as possible [9]. Hn and Fn

vectors satisfy the well known Welch bounds but the Hn do not achieve equality [43].
Moreover, Fn are not restricted in powers of two. Still, Hadamard matrices involve
only real arithmetic, which is important for efficiency and interoperability with real
codes, and it is easy to identify the non-zero pattern they generate. Later, we will
view the Hadamard matrix as a methodical way to build an orthogonal basis of a
power of two size space.

Consider the first 2k columns of a Hadamard matrix Z = H(:, 1 : 2k). The
non-zero pattern of the matrix ZZT consists of the i2k upper and lower diagonals,
i = 0, 1, . . . [9]. Because Tr(ZT A−1Z) = Tr(A−1ZZT) and because of Lemma 1.1
and Proposition 1.2, the error in the MC estimation of the trace is induced only by
the off-diagonal elements of A−1 that appear on the same locations as the non-zero
diagonals of ZZT . If the matrix is banded or its diagonals do not coincide with the
ones of ZZT , the trace estimation is exact. When the off-diagonal elements of A−1

decay exponentially away from the main diagonal, increasing the number of Hadamard
vectors achieves a consistent (if not monotonic) reduction of the error. We note that
this special structure of ZZT is achieved only when the number of vectors, s, is a
power of two. For 2k < s < 2k+1, the structure of ZZT is dense in general, but the
weight of ZZT elements is largest on the main diagonal (equal to s) and decreases
between diagonals i2k and (i+1)2k. Thus, estimation accuracy improves with s, even
for dense matrices. However, to annihilate a certain sparsity structure of a matrix,
the estimates at only s = 2k should be considered. Similar properties apply for the
Fn matrices.

2. Hierarchical probing. We seek to construct special vectors for the MC
estimator that perform at least as well as Z2 noise vectors, but can also exploit the
structure of the matrix, when such structure exists. Although Hadamard vectors
seem natural for banded matrices, they do not take into account deviations from the
expected structure. For example, the first two Hadamard vectors compute the exact
trace of a tridiagonal matrix. For the matrix that corresponds to a 2-D uniform
lattice of size 2n × 2n with periodic boundary conditions and lexicographic ordering,
producing the exact trace requires the first s = 2n+1 Hadamard vectors. However, if
we consider the red-black ordering of the same matrix, only two Hadamard vectors,
the first h0 and the middle h2n−1 , are sufficient. This is shown in Figure 2.1.

The previous example shows that although Hadamard vectors are a useful tool,
probing is the method that discovers matrix structure. Therefore, we turn to the
problem of how to perform probing efficiently on Ak and for large k. Ideally, a

8 Stathopoulos, Laeuchli, Orginos

method should start with a small k and increase it until it achieves sufficient accuracy.
However, the colorings, and therefore the probing vectors, for two different k’s are
not related in general. Thus, in addition to the expense of the new coloring, all the
quadratures performed previously have to be discarded and new ones performed. Our
hierarchical probing provides an elegant solution to this problem.

First let us persuade the reader that work from a previous distance-k probing
cannot be reused in general. Assume the distance-1 coloring of a matrix of size 6
produced three colors: color 1 has rows 1 and 2, color 2 has rows 3 and 4, color 3 has
rows 5 and 6. Next we perform a distance-2 coloring of A, and assume there are four
colors: color 1 has row 1, color 2 has rows 2 and 3, color 3 has rows 4 and 5, color 4
has row 6. As in Figure 1.1, the distance-1 and distance-2 probing vectors, Z(1) and
Z(2) respectively, are the following:

Z(1) =


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1

 , Z(2) =


1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

 .

Unfortunately, the three computed quadratures Z(1)T A−1Z(1) (or solutions to A−1Z(1))
cannot be used to avoid recomputation of the four quadratures Z(2)T A−1Z(2).

Consider now a matrix of size 8 with two colors in its distance-1 coloring. Assume
that its distance-2 coloring produces four colors, and that all rows with the same
color belong also to the same color group for distance-1. Then the subspace of the
corresponding probing vectors is spanned by certain Hadamard vectors:

Z(1) = Z(2) =

1 0
1 0
1 0
1 0
0 1
0 1
0 1
0 1


∈ span(



1 1
1 1
1 1
1 1
1 −1
1 −1
1 −1
1 −1


),



1 0 0 0
1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1
0 0 0 1


∈ span(



1 1 1 1
1 1 1 1
1 1 −1 −1
1 1 −1 −1
1 −1 1 −1
1 −1 1 −1
1 −1 −1 1
1 −1 −1 1


).

The four Hadamard vectors are h0, h4, h2, h6. More interesting than the equality
of the spans is that the two bases are an orthogonal transformation of each other.
Specifically, Z(1) = 1/2[h0, h4]H2 and Z(2) = 1/2[h0, h2, h4, h6]H4. Because the trace
is invariant under orthogonal transformations, we can use the Hadamard vectors in-
stead (as we implicitly did in Figure 2.1 for the lattice). Clearly, for this case, the
quadratures of the first two vectors can be reused so that the distance-2 probing will
need computations for only two additional vectors.

A key difference between the two examples is the nesting of colors between succes-
sive colorings. In general, such nesting cannot be expected and thus an incremental
approach to probing will necessarily discard prior work. A second difference is that all
color groups are split into the same number of colors in the successive coloring. This
property holds for lattices. Our hierarchical probing method performs two tasks.
First, it enforces a nested, all-distance coloring by making certain compromises. Sec-
ond, it finds a set of Hadamard vectors that spans exactly the probing basis for the

Hierarchical probing for trace estimation 9

above nested coloring (i.e., the Z(1), Z(2), . . . of the previous subsection). When the
matrix size is not a power of two, Fourier vectors can be used instead.

2.1. The hierarchical coloring algorithm. The goal is to provide a permuta-
tion of all matrix rows that corresponds to a nested coloring for each probing distance.
Algorithm 1 is based on the following ideas:

• We perform probing only for distance-2k colorings, but for all k = 0, 1, . . .
until the number of colors is N (i.e., a dense graph).

• As it is infeasible to color A2k

for all possible k, we perform hierarchical
coloring independently on each submatrix that corresponds to the row indices
of a each color i. The recursion continues until every element of the matrix
is colored uniquely.

• We use any efficient greedy coloring algorithm (see [36]), and permute nodes
of the same color together using Colors2Perm().

Algorithm 1 Hierarchical coloring
% Input:
% Matrix block: Ablock. The first time this is the original matrix.
% start, end: The global range of row indices of the current block.
% n: The recursive level.
% Input/Output:
% perm: Global permutation array reflecting the hierarchical coloring.
% Update perm(start:end).
% colorOffsets: Global array, initially empty. Records (start, end, n) for all blocks
1. function HierarchicalColoring(Ablock, start, end, n)
2. global colorOffsets = [colorOffsets ; (start, start+size(Ablock,1)-1, n)]
3. [numColors newColors] = GreedyColor(Ablock)
4. if (numColors=end-start+1) OR (numColors=1) then
5. return perm % dense or diagonal matrix. Do not reorder global rows
6. [perm(start : end) numRowsPerColor] = Colors2Perm(newColors)
7. colorStarts = start
8. for (i = 1 : numColors)
9. colorEnds = colorStarts+numRowsPerColor(i)-1
10. rowIndices = perm(colorStarts : colorEnds)
11. AdiagBlock = Ablock(rowIndices, :)*Ablock(: , rowIndices)
12. HierarchicalColoring(AdiagBlock,colorStarts,colorEnds,n+1)

We initialize perm to the identity permutation, colorOffsets to empty, and call the
algorithm at level 1 with the original matrix A: HierarchicalColoring(A, 1, N, 1).
In line 2, we record (start,end) indices and recursion level for this block. At the end,

these offsets provide the number of nodes per color at every level. In line 3, the local
matrix is colored. Lines 4-5 are the base case of the recursion. We stop when the
given subgraph is fully connected (could be just one node), or it is fully disconnected
and is assigned one color. In either case, the existing permutation is a valid ordering.
In line 6, the algorithm Colors2Perm() creates the local coloring permutation array
from the given local colors. Note that this only reorders elements appearing between
start and end in the permutation array. Moreover, Colors2Perm() returns an array
with the number of rows assigned to each color. In line 8, we visit each color of this
local matrix, and in line 11, we compute A2 but only for the row indices of this color.
This is the compromise step, where each subgraph is colored independently in the

10 Stathopoulos, Laeuchli, Orginos

following levels. Line 12 calls the algorithm recursively to produce a hierarchical
coloring only for the rows of the current color i.

Hierarchical coloring produces more colors at distance 2k than classic coloring of
the graph of A2k

(although the classic method would be computationally prohibitive
even for small k). If the task were to approximate the trace of the matrix A2k

, the
extra colors would be redundant and the additional probing vectors would represent
unnecessary computational work. However, we approximate the trace of A−1, which
is dense. Thus, the larger number of hierarchical probing vectors at distance 2k will
also approximate some elements that represent node distances larger than 2k.

Line 11 performs a sparse matrix-matrix multiplication and could result in a
much denser matrix, AdiagBlock. However, depending on the number of colors at
the level, AdiagBlock is of much smaller dimension than Ablock, and only one such
block for color i is computed. Although we can show that the additional memory
requirements are limited, such analysis is only relevant for general sparse matrices,
and not for lattices where no matrix is stored. Based on Algorithm 1 we derive later
a lattice version that requires no additional memory. Exploiting the algorithm for
general sparse matrices is the topic of future research.

Finally, the algorithm computes the permutation perm which orders vertices with
the same color in adjacent positions, so that the permuted A(perm, perm) is block
diagonal as in Figure 1.1, but has also a similar hierarchical, off-diagonal structure.
To compute the quadratures, it is more convenient to permute the rows of the vector
with the inverse permutation of perm, i.e., iperm(perm) = 1 : N . Given a vector z,
zT A(perm, perm)z = z(iperm)T Az(iperm).

2.2. Generating the probing basis. Assume for the moment that the hierar-
chy of colors generated by Algorithm 1 is a power of two, i.e., the nodes are split in
two colors at the first level, then the vertices of each color are split into two colors,
and so on until the base level. Obviously, this requires N = 2m. Consider also the
permuted colored matrix A(perm, perm) so that colors appear in the block diagonal.
In the beginning of Section 2 we saw the Hadamard vectors required for probing the
first two levels of this recursion for a 8× 8 matrix: [h0, h4] and [h0, h2, h4, h6,]. If we
denote by 1k = [1, . . . , 1]T the vector of k ones, we note that these can be written as:

[h0, h4] = H2 ⊗ 14,

[h0, h2, h4, h6] = [H2 ⊗H2(:, 1), H2 ⊗H2(:, 2)]⊗ 12.

This pattern extends to any recursion level k = 1, 2, . . . , log2 N . If we denote by Z(k)

the Hadamard vectors that span the k-th level probing vectors, these are obtained by
the following recursion:

Z(1) = H2 ⊗ 1N/2,

Z(k) =
[
Z(k−1) ⊗H2(:, 1), Z(k−1) ⊗H2(:, 2)

]
⊗ 1N/2k . (2.1)

Intuitively, this says that at every level, we should repeat the pattern devised in the
previous level to double the domains for the first 2k−1 vectors (Kronecker product
with [1, 1]T), and then should split each basic subdomain in two opposites (Kronecker
product with [1,−1]T).

The hierarchy Z(k−1) = Z(k)(:, 1 : 2k−1) implies that quadratures performed with
Z(k−1) can be reused if we need to increase the probing level. To obtain the m-
th probing vector, therefore, we can consider the m-th vector of Z(log2 N). Its rows

Hierarchical probing for trace estimation 11

can be constructed piece by piece recursively through (2.1) and without constructing
all Z(log2 N). In fact, we can even avoid the recursive construction and compute
any arbitrary element of Z(log2 N)(i,m) directly. This is useful in parallel computing
where each processor generates only the local rows of this vector. The reason is that
recursion (2.1) produces a known permutation of the natural order of the Hadamard
matrix, specifically the column indices are:

0, N/2, N/4, 3N/4, N/8, 5N/8, 3N/8, 7N/8, (2.2)

We can compute a-priori this column permutation array, Hperm, for all N , or for
as many vectors as we plan to use in the MC estimator. Given also the inverse
hierarchical permutation iperm from the previous section, the i-th element of the
m-th probing vector can be be computed directly through (1.2) as:

zm(i) = HN (iperm(i),Hperm(m)). (2.3)

We observe now that the assumption that each subgroup is colored with exactly
two colors is not necessary. The ordering given in (2.2) is the same if each subgroup
is colored by any power of two colors, which could be different at different levels. For
example, the nodes mightbe split in four colors at the first level, then the vertices of
each color are split into eight colors, and so on. The sequence (2.2) is built on the
smallest increment of powers of two and thus subsumes any higher powers.

We can extend the above ideas to generate the probing basis for arbitrary N ,
when at every level each color block is split into exactly the same (possibly non-power
of two) colors. For example, at the first level we split the graph into 3 colors, at level
two, each of the 3 color blocks is colored with exactly 5 colors, at level three, each of
the 5 color blocks is colored with exactly 2 colors, and so on. The problem is that
Hadamard matrices do not exist for arbitrary dimensions. For example, for 3 probing
vectors, there is no orthogonal basis Z of ±1 elements, such that ZZT = I. In this
general case, we must resort to the N -th roots of unity, i.e., the Fourier matrices Fn.

Assume that the number of colors at level k is c(k) for all blocks at that level,
then the probing basis is constructed recursively as:

Z(1) = FC(1) ⊗ 1N/γ1 ,

Z(k) =
[
Z(k−1) ⊗ Fc(k)(:, 1), . . . , Z(k−1) ⊗ Fc(k)(:, c(k))

]
⊗ 1N/γk

, (2.4)

where γk =
k∏

i=1

c(i).

By construction, the vectors of Z(k−1) are contained in Z(k), and any arbitrary vector
can be generated with a simple recursive algorithm. However, we have introduced
complex arithmetic which doubles the computational cost for real matrices. On the
other hand, if a c(k) is a power of two, its Fc(k) can be replaced by Hc(k). This can
be useful when the non-power of two colors appear only at later recursion levels for
which the number of probing vectors is large and may not be used, or when only one
or two Fc(k) will suffice.

To summarize, we have provided an inexpensive way to generate, for any matrix
size, an arbitrary vector of the hierarchical probing sequence through (2.4), as long
as the number of colors is the same within the same level for each subgraph. If, in
addition, the matrix size and the color numbers are powers of two, (2.2–2.3) provide

12 Stathopoulos, Laeuchli, Orginos

an even simpler way to generate the probing sequence. In LQCD, many of the lattices
fall in this last category.

We end this section with an open problem that is reserved for future work, as it is
only encountered in general sparse matrices and not in lattices. When blocks at the
same level are not colored with the same number of colors, the probing basis cannot
be spanned incrementally by Fourier or Hadamard matrices. Consider for example
two colors at level 1. At level 2, the first block is split into 3 colors and the second
color split in 2 colors. Then, for the first level, Z(1) is:

Z(1) =


1 0
1 0
1 0
0 1
0 1

 =
[

13 13

12 −12

]
,

but Z(2) can only be given as F5. Moreover, no two columns of F5 span Z(1). A
possible solution for general matrices would be to modify Algorithm 1 to enforce the
same number of colors per block at the same level. At the lower levels (which are the
farthest distances in the graph) one may choose to stop the recursion and leave the
1N/γk

from (2.4), or replace it with a random vector of size N/γk.

3. Hierarchical probing on lattices. Uniform d-D lattices allow for a far
more efficient implementation of the hierarchical coloring algorithm, based entirely
on bit-arithmetic, and guarantee the existence of a hierarchical probing basis.

Consider first the 1-D case, where the lattice has N = 2k points, where k = log2 N ,
which guarantees the 2-colorability of the 1-D torus. Any point has a coordinate
0 ≤ x ≤ N − 1 with a binary representation: [bk, bk−1, . . . , b1] = dec2bin(x). At
the first level, the distance-1 coloring is simply red-black (we associate red with 0 and
black with 1), and x gets the color of its least significant bit (LSB), b1. In the coloring
permutation, we order first the N/2 red nodes. At the second level, we consider red
and black points separately and split each color again, but now based on the second
bit b2. Thus, points [∗ ∗ . . . ∗ ∗00] and [∗ ∗ . . . ∗ ∗10] take different colors, and by
construction all colors are given hierarchically. The second level permutation will not
mix nodes between the first two halves of the first level, but will permute nodes within
the respective halves, i.e., points with 0 in the LSB always appear in the first half of
the permutation. The process is repeated recursively for each color, until all points
have a different color.

The binary tree built by the recursive algorithm splits the points of a subtree
in half at the m-th level based on bm. Thus, to find the final permutation we trace
the path from the root to a leaf, producing the binary string: [b1b2 . . . bk], which is
the bit reversed string for x. Denote by P the final permutation array such that
node x = 0, . . . , N − 1 in the original ordering is found in location P (x) of the final
permutation. This is the same inverse permutation iperm of Section 2.1, only with
index numbering starting at 0. Then, P (x) =bin2dec(bitreverse(dec2bin(x))) and the
computation is completely independent for any i.

Extending to torus lattices of d dimensions, where N =
∏d

j=1 2kj , has three
complications: First, the subgraph of the same color nodes is not a conformal uniform
lattice. Second, the geometry does not allow a simple bit reversal algorithm. Third,
not all dimensions have the same size (kj 6= ki). The following sections address these.

3.1. Splitting color blocks into conformal d-D lattices. Consider a point
with d coordinates (x1, x2, . . . , xd). Let [bj

kj
, . . . , bj

2, b
j
1] be the binary representation

Hierarchical probing for trace estimation 13

of coordinate xj with 0 ≤ xj < 2kj . We know that uniform lattices are 2-colorable, so
at the first level, red black ordering involves the least significant bit of all coordinates.
The color assigned to the point is mod(

∑d
j=1 bj

1, 2). However, the red partition, which
is half of the lattice points, is not a regular d-dimensional torus. Every red point is
distance-2 away from any red neighbor, and therefore it has more neighbors (e.g., in
case of 2-D it is connected with 8 neighbors, in 3-D with 18, and so on). To facilitate
a recursive approach, we observe that the reds can be split into 2d−1 d-dimensional
sublattices, if we consider them in groups of every other row in each dimension.
Similarly for the blacks. For the 2-D case this is shown in Figure 3.1.

k=2

2 3 2 30 1 0 1
0 1 4 52 3 7 8

k=2
k=1

k=4

k=1

Fig. 3.1. When doubling the probing distance (here from 1 to 2) we first split the 2-D grid to
four conformal 2-D subgrids. Red nodes split to two 2× 2 grids (red and green), and similarly black
nodes split to blues and black. Smaller 2-D grids can then be red-black ordered.

This partitioning is obtained based on the value of the binary string: [b1
1, b

2
1, . . . , b

d
1].

For each value, the resulting sublattice contains all points with the given least signif-
icant bits in its d coordinates. Because each coordinate loses one bit, the size of each
sublattice is

∏d
j=1 2kj−1. At this second level, each of the 2d sublattices can be red-

blacked colored independently and with distinct colors for each sublattice. As long as
we remember which were the reds in the first level, the coloring can be hierarchical.

3.2. Facilitating bit reversal in higher dimensions. The above splitting
based on the LSBs from the d coordinates does not order the adjacent colors to-
gether. For example, the partitioning at the first level of d = 2 gives four sublattices
(00,01,10,11) of which the 00 and 11 are reds while 01 and 10 are blacks. We can
recursively continue partitioning and coloring the sublattices. However, if we con-
catenate at every level the new 2 bits from the 2 coordinates, as in the bit reversed
pattern in the 1-D case, the resulting ordering is not hierarchical. In our example, all
red points in the first level are ordered in the first half, but at the second level, the
colors associated with the 00 reds will be in the first quarter of the ordering, while
the colors associated with the 11 reds will be in the fourth quarter of the ordering.
Since the hierarchical ordering is critical for reusing previous work, we order the four
sublattices not in the natural order (00,01,10,11) but in a red black order: (00 11 01
10). Algorithm 2 produces this Red-Black reordering in d dimensions.

A more computationally convenient way to obtain the RB permutation is based
on the fact that every point on the stencil has neighbors of opposite color. In other
words, color([x1, . . . , xd]) = ¬color([x1, . . . , xd]± ej), where ej is the unit row-vector
in the j dimension, j = 1, . . . , d, and ¬ is the logical not. With two points per
dimension, in one dimension the colors are c1 = [0, 1]. Inductively, if the colors in
dimension d−1 are cd−1, the second d−1 plane in dimension d will have the opposite
colors, and thus: cd = [cd−1,¬cd−1]. Therefore, we can create the RB with only a
check per point instead of counting coordinate bits. This is shown in Algorithm 3.

14 Stathopoulos, Laeuchli, Orginos

Algorithm 2 Red-Black order of the 2d

torus (slow)

RB = bitarray(2d, d)
reds = 0, blacks = 2d−1

for i = 0 : 2d − 1
if dec2bin(i) has even number of bits

newbits = dec2bin(reds, d)
reds = reds + 1

else
newbits = dec2bin(blacks, d)
blacks = blacks + 1

RB(i, :) = newbits

Algorithm 3 Red-Black order of the 2d

torus (fast)

c0 = 0
for j = 1 : d

cj = [cj−1,¬cj−1]
RB = bitarray(2d, d)
reds = 0, blacks = 2d−1

for i = 0 : 2d − 1
if cd(i) == 0

newbits = dec2bin(reds, d)
reds = reds + 1

else
newbits = dec2bin(blacks, d)
blacks = blacks + 1

RB(i, :) = newbits

We are now ready to combine the Red-Black reordering with the bit-reversing
scheme to address the d-dimensional case. First, assume that the lattice has the same
size in each dimension, i.e., kj = k,∀j = 1, . . . , d. Then the needed permutation is
given by Algorithm 4.

Algorithm 4 Hierarchical permutation of the lattice – case kj = k

% Input:
% the coordinates of a point x = (x1, x2, . . . , xd)
% the global RB array produced by Algorithm 3
% Output:
% The location in which x is found in the hierarchical permutation
function loc = LatticeHierPermutation0((x1, x2, . . . , xd))

% Make a d× k table of all the coordinate bits
for j = 1 : d

(bj
k, . . . , bj

2, b
j
1) = dec2bin(xj)

% Accumulate bit-reversed order. Start from LSB
loc = []
for m = 1 : k

% A vertical section of bits. Take the m-th bit of all coordinates
% and permute it to the corresponding red-black order
(s1, . . . , sd) = RB(bin2dec(b1

m, b2
m, . . . , bd

m))
% Append this string to create the reverse order string
loc = [loc, (s1, . . . , sd)]

return bin2dec(loc)

3.3. Lattices with different sizes per dimension. At every recursive level,
our algorithm splits the size of each dimension in half (removing one bit), until there is
only 1 node per dimension. When the dimensions do not all have the same size, some
of the dimensions reach 1 node first and beyond that point they are not subdivided.

Hierarchical probing for trace estimation 15

If m from the d dimensions have reached size 1, the above algorithm should continue
as in a d − m dimension lattice, at every level concatenating only the active d − m
bits in loc. In this case, however, the red-black permutation RB should correspond to
that of a d−m dimensional lattice. The following results allow us to avoid computing
and storing RBj for each j = 1, . . . , d. As before, we consider cd the array of 0/1
colors of the 2-point, d-dimensional torus.

Lemma 3.1. For any d > 0, cd(2i) = cd−1(i),∀i = 0, . . . , 2d−1 − 1.
Proof. We use induction on d. For d = 2, c2 = [0, 1, 1, 0] and the result holds.

Assume the result holds for any dimension d − 1 or lower. Then for d dimensions,
since the first half of cd is the same as cd−1, for i = 0, . . . 2d−1 − 1, we have

cd(2i) = ¬cd(2i− 2d−1) = ¬cd−1(2i− 2d−1) (recursive definition of cd)
= ¬cd−2(i− 2d−2) = ¬cd(i− 2d−2) (inductive hypothesis)
= ¬cd−2(i− 2d−2) = ¬(¬cd−1(i)) = cd−1(i) (recursive definition of cd).

Lemma 3.2. For any d > 0, cd(2i) = ¬cd(2i + 1), i = 0, 1, . . . , 2d−1 − 1.
Proof. Because cd are the colors of the two-point, d dimensional torus, every even

point 2i is the beginning of a new 1-D line and thus has a different color from its
neighbor 2i + 1. It can also be proved inductively, since by construction 2i and 2i + 1
cannot be split across cd−1 and cd.

Lemma 3.3. For any d > 0 the values of RBd(i), i = 0, . . . , 2d − 1 are given by:

RBd(i) =
{
bi/2c, if cd(i) = 0
bi/2c+ 2d−1, if cd(i) = 1 .

Proof. Because of Lemma 3.2, after every pair of indices (2i, 2i+1) is considered,
the number of reds or blacks increases only by 1. Algorithm 4 sends all red (cd(i) = 0)
points i to the first half of the permutation in the order they are considered, which
increases by 1 every two steps. Hence the first part of the equation. Black colors are
sent to the second half, which completes the proof.

We can now show how RBm,m < d, can be obtained from RBd.
Theorem 3.4. Let RBd be the permutation array that groups together the same

colors in a red-black ordering of the two-point, d dimensional lattice, as produced by
Algorithm 3. For any 0 < m < d,

RBm(i) = bRBd(i2d−m)/2d−mc, i = 0, . . . , 2m − 1.

Proof. We show first for m = d − 1. Because of Lemma 3.1, we consider the
even points in RBd. Assume first cd(2i) = cd−1(i) = 0. From Lemma 3.3 we have,
RBd(2i) = b2i/2c = i. Then, RBd−1(i) = bi/2c = bRBd(2i)/2c. Now assume
cd(2i) = cd−1(i) = 1. From Lemma 3.3 we have, RBd(2i) = 2d−1 + b2i/2c = 2d−1 + i,
and therefore RBd−1(i) = 2d−2+bi/2c = 2d−2+b(RBd(2i)−2d−1)/2c = bRBd(2i)/2c,
which proves the formula for both colors. A simple inductive argument proves the
result for any m = 1, . . . , d− 2.

The theorem says that given RBd in bit format, RBm is obtained as the left (most
significant) m bits of every 2d−m number in RBd. We now have all the pieces needed
to modify Algorithm 4 to produce the permutation of the hierarchical coloring of d
dimensional lattice torus of size N =

∏
2kj ,∀j = 1, . . . , d.

16 Stathopoulos, Laeuchli, Orginos

Algorithm 5 Hierarchical permutation of the lattice – case 2ki 6= 2kj

% Input:
% the coordinates of a point x = (x1, x2, . . . , xd)
% the global RB array produced by Algorithm 3
% Output:
% The location in which x is found in the hierarchical permutation
function loc = LatticeHierPermutation((x1, x2, . . . , xd))

% Make a d×max(kj) table of all the coordinate bits
% Dimensions with smaller sizes only have up to kj bits set
for j = 1 : d

(bj
kj

, . . . , bj
2, b

j
1) = dec2bin(xj)

% Accumulate bit-reversed order. Start from LSB
loc = []
for m = 1 : max(kj)

% A vertical section of bits. Take the m-th bit of all coordinates
% in dimensions that can still be subdivided (m ≤ kj).
% Record number of such dimensions
activeDims = 0
bits = []
for j = 1 : d

if (m ≤ kj)
bits = [bits, bj

m]
activeDims = activeDims + 1

% permute it to the corresponding red-black order using RBm

index = bin2dec(bits)2d−activeDims

(s1, . . . , sactiveDims) = bRB(index)/2d−activeDimsc
% Append this string to create the reverse order string
loc = [loc, (s1, . . . , sactiveDims)]

return bin2dec(loc)

For d > 1, Algorithm 5 is not equivalent to Algorithm 1 because it pre-splits color
subgroups into conformal lattices. In general, the difference in the number of colors
is small. At level m = 0, 1, . . ., Algorithm 5 performs (at least) a distance-2m coloring
and produces 2dm+1 colors.

For classic probing, the minimum number of colors required for distance-2m col-
oring of lattices is not known for d > 2 [13]. An obvious lower bound is the number of

lattice sites in the “unit sphere” of graph diameter 2m. If
(

d
i

)
denotes the binomial

coefficient, with a 0 value if d < i, the lower bound is given by [7, Theorem 2.7]:

d∑
i=0

(
d
i

)(
d− i + 2m−1

d

)
.

For sufficiently large distances, this is O(23m−1/3) for d = 3, and O(24m−3/3) for
d = 4. Thus, we can bound asymptotically how many more colors our method gives:

Number of colors in hierarchical probing
Number of colors in classic probing

{
< 12, if d=3
< 48, if d=4.

Hierarchical probing for trace estimation 17

In practice, we have observed ratios of 2–3. On the other hand, because hierarchical
probing uses more vectors, the variance reduction it achieves when a certain distance
coloring completes, i.e., after 2dm+1 quadratures in the MC estimator, is typically
better than classic probing for the same distance.

In terms of computational cost, the algorithm is not only tractable (compared to
classic probing), but it is very efficient. As an example, producing the hierarchical
permutation of a 644 lattice takes about 6 seconds on a Macbook Pro with 2.8 GHz
Intel Core 2 Duo. More importantly, the permutation of each coordinate is obtained
independently which facilitates parallel computing.

3.4. Coloring lattices with non-power of two sizes. Consider a lattice of
size N =

∏d
i=1 ni. Sometimes, LQCD may generate lattices where one or more ni are

not powers of two. In this case, it is typical that ni = 2mp, where p 6= 2 is a small
prime number. Our hierarchical coloring method works up to m levels, but then the
remaining subgrids are of odd size in the i-th dimension, causing coloring conflicts
because of wrap-around. We show that such a lattice is three-colorable.

Theorem 3.5. A toroidal, uniform lattice of size N =
∏d

i=1 ni, where one or
more ni are odd, admits a three-coloring with point x = (x1, . . . , xd) receiving color:

C(x) =

(
d∑

i=1

xi +
d∑

i=1

δ(xi)

)
mod 3, where δ(xi) =

 1, if (xi = ni − 1) and
(ni − 1 mod 3 = 0)

0, everywhere else.

Proof. We show that C(x) 6= C(x′) for any two points, x, x′ with ||x− x′||1 = 1.
These two points differ by one coordinate, j, since otherwise they are no longer unit
length apart. So, C(x) − C(x′) =

(∑N
i=1(xi − x′i) +

∑N
i=1(δ(xi)− δ(x′i))

)
mod 3 =(

xj − x′j + δ(xj)− δ(x′j)
)

mod 3. We consider the following cases.
If neither x and x′ lie on the boundary of the j-th dimension, xj 6= nj − 1, then

δ(xj) = δ(x′j) = 0, and C(x)− C(x′) = (xj − x′j) mod 3 = ±1 mod 3 6= 0.
Since xj , x

′
j both vary along the j-th dimension, only one of these points can lie on

the boundary point of that dimension, consequently, only one of the two deltas can be
equal to one. Without loss of generality, we assume that xj is on the boundary of the
j-th dimension, so C(x)−C(x′) = (xj − x′j + δ(xj)) mod 3. In this case xj − x′j = 1,
or in the warp around case, where x′j = 0, xj − x′j = nj − 1. There are two subcases:

1. δ(xj) = 0, then xj = nj − 1 with nj − 1 mod 3 6= 0, so C(x)− C(x′) = 1, or
C(x)− C(x′) = (nj − 1 mod 3) and thus is non-zero.

2. δ(xj) = 1, then xj = nj − 1 and nj − 1 mod 3 = 0, so C(x) − C(x′) is
equal to (1 + δ(xj)) mod 3 = (1 + 1) mod 3 6= 0, or C(x)− C(x′) is equal to
(nj − 1 + δ(xj)) = (0 + δ(xj)) mod 3 = 1 mod 3 6= 0.

After the method produces the three-coloring, no further hierarchical colorings
can be produced. This is because the three-coloring yields blocks of nodes that are
not conformal lattices, and are of irregular sizes and shapes. This prevents the use of
a method similar to the one described in section 3. Because of this, for lattices which
have dimensions with factors other than two, we can proceed only one level further
after the factors of two have been exhausted by the hierarchical coloring algorithm.
This is not a shortcoming in LQCD, since, by construction, lattices have dimensions
with only one odd factor. Finally, note that the number of hierarchical probing vectors
produced before exhausting the powers of two in each dimension is typically very large

18 Stathopoulos, Laeuchli, Orginos

already, obviating the use of the last, three-coloring step to produce even more vectors.

4. Removing the deterministic bias. The probing vectors produced in Sec-
tion 2.2 are deterministic and, even though they give better approximations than
random vectors, they introduce a bias. To avoid this, we can view formula (2.1) not
as a sequence of vectors but as a process of generating an orthogonal basis starting
from any vector and following a particular pattern. Therefore, consider a random
vector z0 ∈ ZN

2 , and [z1, z2, . . . , zm] the sequence of vectors produced by (2.1). If �
is the element-wise Hadamard product, the vectors built as

V = [z0 � z1, z0 � z2, . . . , z0 � zm] (4.1)

have the same properties as Z, i.e., V T V = ZT Z and V V T has same non-zero pattern
as ZZT (V V T = (z0z

T
0)� ZZT), but it does not have the bias.

5. Numerical experiments. We present a set of numerical examples on control
test problems and on a large QCD calculation, in order to show the effectiveness
of hierarchical probing over classic probing, and over standard noise Monte Carlo
estimators for Tr(A−1). We also study the effect of removing the bias on convergence.

Our standard control problem is the discretization of the Laplacian on a uniform
lattice with periodic boundary conditions. We control the dimensions (3-D or 4-D),
the size per dimension, and the conditioning (and thus the decay of the elements of
the inverse) by applying a shift to the matrix. Most importantly, for these matrices we
know the trace of the inverse analytically. We will refer to such problems as Laplacian,
with their size implying their dimensionality.

5.1. Comparison with classic probing. For this set of experiments we con-
sider a 643 Laplacian, shifted so that its condition number is O(100). Therefore, its
A−1 exhibits dominant features on and close to (in a graph theoretical sense) the
non-zero structure of A, with decay away from it. The decay rate depends on the
conditioning of A. Our methods should be able to pick this structure effectively.

Figure 5.1 shows the performance of classic probing, which is a natural benchmark
for our methods. The left graph shows that for larger distance colorings, probing
performs extremely well. For example, with 317 probing vectors, which correspond
to a 8-distance coloring, we achieve more than two orders reduction in the error. Of
course, if the approximation is not good enough, this work must be discarded, and
the algorithm must be repeated for higher distances. Hadamard vectors, used in their
natural order, do not capture well the nonzero structure of this A.

The right graph in Figure 5.1 shows one way to improve accuracy beyond a
certain probing distance. After using [0, . . . , 0,1T

c(k), 0, . . . 0]T as the probing vector
for color k, we continue building a Hadamard matrix in its natural order only for
the c(k) coordinates of that color. If probing has captured the most important parts
of the matrix, the remaining parts could be sufficiently approximated by natural
order Hadamard vectors. This is confirmed by the results in the graph, if one knows
what initial probing distance to pick. On the other hand, hierarchical probing, which
considers all possible levels, achieves better performance than all other combinations.

In Figure 5.2, left graph, we stop our recursive algorithm at various levels and
use the resulting permutation to generate the vectors for the trace computation. It
is clearly beneficial to allow the recursion to run for all levels. We also point out
that stopping at intermediate levels behaves similarly to classic probing with the
corresponding distance. On the right graph of Figure 5.2, we observe no difference

Hierarchical probing for trace estimation 19

2 16 62 317 2048
10

3

10
4

10
5

10
6

10
7

 Error for case 64 × 64 × 64, cond= 1e+02

Number of quadratures

T
ra

ce
 e

rr
or

Probingk1
Probingk2
Probingk4
Probingk8
Nat−Had.

2 16 62 317 2048
10

2

10
3

10
4

10
5

10
6

10
7

 Error for case 64 × 64 × 64, cond= 1e+02

Number of quadratures

T
ra

ce
 e

rr
or

Probingk1
Probingk2
Probingk4
Probingk8
Hier−Hada.

Fig. 5.1. Error in the Tr(A−1) approximation using the MC method with various determin-
istic vectors. Classic probing requires 2,16,62, and 317 colors for probing distances 1,2,4, and 8,
respectively. Left: Classic probing approximates the trace better than the same number of Hadamard
vectors taken in their natural order. Going to higher distance-k requires discarding previous work.
Right: Perform distance-k probing, then apply Hadamard in natural order within each color. Per-
forms well, but hierarchical performs even better.

2 16 128 1024
10

2

10
3

10
4

10
5

10
6

10
7

T
ra

ce
 e

rr
or

Number of quadratures

 Error for case 64 × 64 × 64, cond= 1e+02

Natural Hada
Hada Level1
Hada Level2
Hada Level3
Hada Level4
Hada Level5

2 16 62 317 2048
10

7

10
8

10
9

10
10

10
11

 Error for case 64 × 64 × 64, cond= 1e+06

Number of quadratures

T
ra

ce
 e

rr
or

Probingk1
Probingk2
Probingk4
Probingk8
Hier−Hada.

Fig. 5.2. Left: The hierarchical coloring algorithm is stopped after 1, 2, 3, 4, 5 levels correspond-
ing to distances 2, 4, 8, 16, 32. The ticks on the x-axis show the number of colors for each distance.
Trace estimation is effective up to the stopped level; beyond that the vectors do not capture the
remaining areas of large elements in A−1. Compare the results with classic probing in Figure 5.1,
which requires only a few less colors for the same distance. Right: When the matrix is shifted to have
high condition number, the lack of structure in A−1 causes all methods to produce similar results.

between methods for high conditioned matrices. The reason is that the eigenvector of
the smallest eigenvalue of A is the vector of all ones, 1N . The more ill conditioned A
is, the more A−1 is dominated by 1N1T

N , which has absolutely no variation or pattern.
We point out that the experiments in this subsection did not use the bias removing

technique that takes a Hadamard product of all vectors in the sequence with the same
random Z2 vector. This has a severe effect for the Laplacian matrix because the first
vector of our Hadamard sequences is h0 = 1N , the lowest eigenvector. Even for a well
conditioned Laplacian, starting with h0 guarantees that the first trace estimate will
have no contribution from other eigenvectors, and thus will have a large error. From
a statistical point of view, h0 is the worst starting vector for Laplacians, but it better

20 Stathopoulos, Laeuchli, Orginos

exposes the rate at which error reduces by various methods.

5.2. Comparison with random-noise Monte Carlo. Having established
that hierarchical probing discovers matrix structure as well as classic probing, we
turn to gauge its improvements over the standard Z2 noise MC estimator. First, we
show three sets of graphs for increasing condition numbers of the Laplacian. We use
the 643, 324, and 64 × 1282 lattices, and plot the convergence of the trace estimates
for hierarchical probing, natural order Hadamard, and for the standard Z2 random
estimator. Both Hadamard sequences employ the bias removing technique (4.1). As
it is typical, the random estimator includes error bars designating the two standard
deviation confidence intervals, ±2(V ar/s)1/2, where V ar is the variance estimator.

Figure 5.3 shows the convergence history of the three estimators for well condi-
tioned shifted Laplacians, which therefore have prominent structure in A−1. Hierar-
chical probing exploits this structure, and thus performs much better than the other
methods. Note that the problem on the left graph is identical to the one used in the
previous section. The far better performance of the Hadamard sequences in this case
is due to avoiding the eigenvector h0 as the starting vector. Once again, Hadamard
vectors in natural order should only be used for special banded matrices.

Figures 5.4 and 5.5 show results as the condition number of the problems increase.
As expected, the advantage of hierarchical probing wanes as the structure of A−1

disappears, but there is still no reason not to use it as the method still provides
improvement, albeit diminishing. We have included 4-D lattices in our experiments,
first because of their use in LQCD, and second because they are more difficult to
exploit their structure than lower dimensionality lattices. For 1-D or 2-D lattices
which we do not show, hierarchical probing was significantly more efficient.

16 32 64 128 256 512 1024 2048
5.935

5.94

5.945

5.95

5.955

5.96

5.965

5.97
x 10

4 Trace for case 64 × 64 × 64, cond= 1e+02

Number of quadratures

T
ra

ce
 v

al
ue

s

Z

2
 random

Z
2
.*Nat−Had.

Z
2
.*Hier−Had.

Color completes
Exact trace

16 32 64 128 256 512 1024 2048
1.5775

1.578

1.5785

1.579

1.5795

1.58

1.5805
x 10

5 Trace for case 32 × 32 × 32 × 32, cond= 2e+02

Number of quadratures

T
ra

ce
 v

al
ue

s

Z

2
 random

Z
2
.*Nat−Had.

Z
2
.*Hier−Had.

Color completes
Exact trace

Fig. 5.3. Convergence history of Z2 random estimator, Hadamard vectors in natural order,
and hierarchical probing, the latter two with bias removed as in (4.1). Because of small condition
number, A−1 has a lot of structure, making hierarchical probing clearly superior to the standard
estimator. As expected, Hadamard vectors in natural order are not competitive. The markers on
the plot of the hierarchical probing method designate the number of vectors required for a particular
distance coloring to complete. It is on these markers that structure is captured and error minimized.

Once we use a random vector z0 to modify our sequence as zk � z0 (4.1), hier-
archical probing becomes a stochastic process, whose statistical properties must be
studied. Thus, we generate z

(i)
0 , i = 1 : 100, Z2 random vectors, and for each one we

produce a modified sequence of the hierarchical probing vectors. Then, we use the
100 values xT

k A−1xk, where xk = z
(i)
0 � zk, at every step of the 100 MC estimators to

Hierarchical probing for trace estimation 21

16 32 64 128 256 512 1024 2048
2.615

2.62

2.625

2.63

2.635

2.64
x 10

5 Trace for case 64 × 128 × 128, cond= 1e+04

Number of quadratures

T
ra

ce
 v

al
ue

s

Z

2
 random

Z
2
.*Nat−Had.

Z
2
.*Hier−Had.

Color completes
Exact trace

16 32 64 128 256 512 1024 2048
1.626

1.628

1.63

1.632

1.634

1.636

1.638

1.64
x 10

5 Trace for case 32 × 32 × 32 × 32, cond= 2e+04

Number of quadratures

T
ra

ce
 v

al
ue

s

Z

2
 random

Z
2
.*Nat−Had.

Z
2
.*Hier−Had.

Color completes
Exact trace

Fig. 5.4. Convergence history of the three estimators as in Figure 5.3 for a larger condition
number O(104). As the structure of A−1 becomes less prominent, the differences between methods
reduce. Still, hierarchical probing has a clear advantage.

16 32 64 128 256 512 1024 2048
3

3.2

3.4

3.6

3.8

4

4.2

4.4
x 10

5 Trace for case 64 × 128 × 128, cond= 1e+06

Number of quadratures

T
ra

ce
 v

al
ue

s

Z

2
 random

Z
2
.*Nat−Had.

Z
2
.*Hier−Had.

Color completes
Exact trace

16 32 64 128 256 512 1024 2048
2

2.2

2.4

2.6

2.8

3

3.2
x 10

5 Trace for case 32 × 32 × 32 × 32, cond= 2e+06

Number of quadratures

T
ra

ce
 v

al
ue

s

Z

2
 random

Z
2
.*Nat−Had.

Z
2
.*Hier−Had.

Color completes
Exact trace

Fig. 5.5. Convergence history of the three estimators as in Figure 5.3 for a high condition
number O(106). Even with no prominent structure in A−1 to discover, hierarchical probing is as
effective as the standard method.

calculate confidence intervals. These are shown in Figure 5.6. We emphasize that the
confidence intervals for the Z2 random estimator are computed differently, based on
the V ar estimator of the preceding MC steps, so they may not be accurate initially.
Even on a 4-D problem, hierarchical probing provides a clear variance improvement.

5.3. A large QCD problem. The methodology presented in this paper has the
potential of improving a multitude of LQCD calculations. In this section, we focus
on the calculation of C = Tr(D−1), where the Dirac matrix D is a non-symmetric
complex sparse matrix. This is representative of a larger class of calculations usually
called “disconnected diagrams”. The physical observable C is related to an important
property of QCD called spontaneous chiral symmetry breaking.

Our goal is to compare the standard MC approach of computing the trace with
our hierarchical probing method. Our test was performed on a single gauge field
configuration using the Dirac matrix that corresponds to the “strange” quark Dirac
matrix resulting from the Clover-Wilson fermion discretization [37]. The strange quark
is the third heaviest quark flavor in nature. The gauge configuration had dimensions

22 Stathopoulos, Laeuchli, Orginos

16 32 64 128 256 512 1024 2048
9840

9850

9860

9870

9880

9890

9900
Trace for case 16 × 16 × 16 × 16, cond= 2e+02

Number of quadratures

T
ra

ce
 v

al
ue

s

Exact trace
Z

2
 random

Z
2
.*Hier−Had.

Color completes
Z

2
.*Hier−Had ± 2σ

Fig. 5.6. Providing statistics over 100 random vectors z0, used to modify the sequence of
2048 hierarchical probing vectors as in (4.1). At every step, the variance of quadratures from the
100 different runs is computed, and confidence intervals reported around the hierarchical probing
convergence. Note that for the standard noise MC estimator confidence intervals are computed
differently and thus they are not directly comparable.

of 323 × 64 with a lattice spacing of a = 0.11fm, for a problem size of 24 million.
First, we used an ensemble of n = 253 noise vectors to estimate the variance of the

standard MC method, with complete probing (dilution) of the internal color-spin space
of dimension 12 to completely eliminate the variance due to connections in this space.
Then, for each of these noise vectors, we modified as in (4.1) a sequence of hierarchical
probing vectors which were generated based on space-time connections. As with the
standard MC estimator, full dilution of the color-spin space was performed. This
procedure was performed in order to statistically estimate the variance of hierarchical
probing, similarly to the test in Figure 5.6. In Figure 5.7(a), we present the variance of
the hierarchical probing estimator as a function of the number of space-time probing
vectors in the sequence. The main feature in this plot is that the variance drops as
more vectors are used. Local minima occur at numbers of vectors that are powers
of 2, where all connections of a given Manhattan distance are eliminated from the
variance. The uncertainty of the variance, represented by the errorbars in the plot, is
estimated using the Jackknife resampling procedure of our noise vector ensemble.

In addition to the variance, we estimate the speed-up ratio of the hierarchical
probing estimator over the standard MC estimator. We define speed-up ratio as:

Rs =
Vstoc

Vhp(s) × s
,

where Vhp(s) is the variance over the n different runs when the s-th hierarchical
probing vector is used, and Vstoch is the variance of the standard MC estimator as
estimated from n = 253 samples. The rescaling factor of s is there to account for the
fact that if one had been using a pure stochastic noise with n×s vectors, the variance
would be smaller by a factor of s. Thus, the variance comparison is performed on
equal amount of computation for both methods. In Figure 5.7(b) we present the
speed-up ratio Rs as a function s. The errorbars on Rs are estimated using Jackknife
resampling from our ensemble of starting noise vectors. The peaks in this plot occur
at the points where s is a power of 2, as in the variance case. A maximum overall
speed-up factor of about 10 is observed at s = 512. Note that the color completion
points for this experiment are at s = 2, s = 32 and s = 512 vectors.

Hierarchical probing for trace estimation 23

1 2 4 8 16 32 64 128 256 512
10

1

10
2

10
3

10
4

10
5

10
6

va
ria

nc
e

N
hadamard

1 2 4 8 16 32 64 128 256 512

10
0

10
1

sp
ee

d
up

 (
R

s)

N
hadamard

Fig. 5.7. (a) Left: The variance of the hierarchical probing trace estimator as a function of
the number of vectors (s) used. The minima appear when s is a power of two. The places where the
colors complete are marked with the cyan circle. These minima become successively deeper as we
progress from 2 to 32 to 512 vectors. (b) Right: Speed-up of the LQCD trace calculation over the
standard Z2 MC estimator. The cyan circles mark where colors complete. The maximal speed up is
observed at s = 512. In both cases the uncertainties are estimated using the Jackknife procedure on
a sample of 253 noise vectors, except for s = 256 and 512 where 37 vectors were used.

Finally, we report on a comparison with classic probing for this large QCD prob-
lem. There is a variety of approaches for efficient distance-2 coloring in the literature
[19, 14], but we have not found any extensions to distance-k coloring. To provide a re-
alistic comparison, we have implemented two different distance-k coloring algorithms.

The first is a more general method that applies Dijkstra’s algorithm on each node
to produce the lengths of the shortest paths from this node to all nodes up to a
selected maximum distance km. We use a Fibonacci heap implementation to exploit
sparsity. With this array available, we can then distance-k color this node for one or
more k ≤ km, at the same time. A parallel implementation of this naturally sequential
algorithm is rather involved (see [14] for the distance-2 version), and it may result in
more colors. Instead, we run it for a maximum distance km = 16 on a state-of-the-art,
Intel Xeon X5672, 3.2GHz server. After several days of runtime, we extrapolated that
total execution time would be one year!

The second method is based on the fact that the distance-k neighborhood of a
lattice node is explicitly known geometrically. We implemented a coloring algorithm
that visits only this neighborhood for each node, thus achieving the minimum possible
complexity for this problem [14]. The distance-4 coloring of our LQCD lattice pro-
duced 123 colors and took 457 seconds on the above Xeon server. Using four random
vectors for each of these probing vectors (so that the total number of quadratures is
similar to our hierarchical probing), we ran 50 sets of experiments, and measured the
variance of classical probing. We found that its variance was 2.16 times larger than
our hierarchical probing, or in other words, our method was 2.16 times faster. This is
expected as we explained earlier. Finally, note that computing the quadratures took
4 hours on four GPUs, on a dedicated machine for LQCD calculations. Even though
classic probing with distance-4 is feasible for this problem, computing the distance-8
coloring requires 5377 seconds, which becomes comparable to the time for computing
the quadratures. Contrast that to the 2 seconds needed to compute the hierarchical

24 Stathopoulos, Laeuchli, Orginos

probing.

6. Conclusions. The motivation for this work comes from our need to compute
Tr(A−1) for very large sparse matrices and LQCD lattices. Current methods are based
on Monte Carlo and do not sufficiently exploit the structure of the matrix. Probing
is an attractive technique but it is very expensive and cannot be used incrementally.
Our research has addressed these issues.

We have developed the idea of hierarchical probing that produces suboptimal but
nested distance-k colorings recursively, for all distances k ≥ 1 up to the diameter of
the graph. We have adapted this idea to uniform lattices of any dimension in a very
efficient and parallelizable way.

To generate probing vectors that follow the hierarchical permutation, and can
be used incrementally to improve accuracy, we have developed an algorithm that
produces a specific permutation of the Hadamard vectors. This algorithm is limited
to cases where the number of colors produced at every level is a power of two. We
have also provided a recursive algorithm based on Fourier matrices that provides
the appropriate sequence under the weaker assumption of having the same number
of colors per block within a single level. These conditions are satisfied on toroidal
lattices. Finally, we proposed an inexpensive technique to avoid deterministic bias
while using the above sequences of vectors.

We have performed a set of experiments in the context of computing Tr(A−1),
and have shown that providing a hierarchical coloring for all possible distances is to
be preferred over classic probing for a specific distance. We also showed that our
methods provide significant speed-ups over the standard Monte Carlo approach.

We are currently working on combining the ideas in this paper with other vari-
ance reduction techniques, in particular deflation type methods. Hierarchical coloring
ideas might also be useful for general sparse matrices for trace computations or in
preconditioning.

Acknowledgements. Support for this work has been provided by NSF under
a grant No. CCF-1218349, through the Scientific Discovery through Advanced Com-
puting (SciDAC) program funded by U.S. Department of Energy, Office of Science,
Advanced Scientific Computing Research and Nuclear Physics under award number
DE-FC02-12ER41890, and the Jeffress memorial grant. Some of the experiments
were performed using computational facilities at the College of William and Mary
which were provided with the assistance of the National Science Foundation, the Vir-
ginia Port Authority, Sun Microsystems, and Virginia’s Commonwealth Technology
Research Fund.

REFERENCES

[1] K. Ahuja, B. Clark, E. de Sturler, D. M. Ceperley, and J. Kim, Improved scaling for
Quantum Monte Carlo on insulators, (7 May 2011).

[2] P. R. Amestoy, I. S. Duff, Y. Robert, F.-H. Rouet, and B. Ucar, On computing in-
verse entries of a sparse matrix in an out-of-core environment, Tech. Rep. TR/PA/10/59,
CERFACS, Toulouse, France, 2010.

[3] H. Avron and S. Toledo, Randomized algorithms for estimating the trace of an implicit
symmetric positive semi-denite matrix, Journal of the ACM, 58 (2011), p. Article 8.

[4] R. Babich, R. Brower, M. Clark, G. Fleming, J. Osborn, C. Rebbi, and D. Schaich,
Exploring strange nucleon form factors on the lattice, (4 May 2011).

[5] Z. Bai, M. Fahey, and G. H. Golub, Some large-scale matrix computation problems, Journal
of Computational and Applied Mathematics, 74 (1996), pp. 71–89.

Hierarchical probing for trace estimation 25

[6] G. S. Bali, S. Collins, and A. Schaefer, Effective noise reduction techniques for discon-
nected loops in Lattice QCD, (2010).

[7] M. Beck and S. Robins, Computing the Continuous Discretely: Integer-Point Enumeration
in Polyhedra, Springer, 2007.

[8] C. Bekas, A. Curioni, and I. Fedulova, Low cost high performance uncertainty quantication,
in In WHPCF 09: Proc. of the 2nd Workshop on High Performance Computational Finance,
New York, NY, USA, 2009, ACM, pp. 1–8.

[9] C. Bekas, E. Kokiopoulou, and Y. Saad, An estimator for the diagonal of a matrix, Appl.
Numer. Math., 57 (2007), pp. 1214–1229.

[10] M. Benzi, P. Boito, and N. Razouk, Decay properties of spectral projectors with applications
to electronic structure, SIAM Review, (to appear).

[11] M. Benzi and G. H. Golub, Bounds for the entries of matrix functions with applications to
preconditioning, BIT, 39 (1999), pp. 417–438.

[12] S. Bernardson, P. McCarty, and C. Thron, Monte Carlo methods for estimating lin-
ear combinations of inverse matrix entries in lattice QCD, Comput. Phys. Commun.,
78 (1994), pp. 256–264.

[13] M. Blaum and J. Bruck, Interleaving schemes for multidimensional cluster errors, IEEE
Transactions on Information Theory, 44 (1998), pp. 730–743.

[14] D. Bozdag, U. Catalyurek, A. Gebremedhin, F. Manne, E. Boman, and F. Ozguner,
Distributed-memory parallel algorithms for distance-2 coloring and related problems in
derivative computation, SIAM J. Sci. Comput, 32 (2010), pp. 2418–2446.

[15] E. Chow and Y. Saad, Approximate inverse preconditioners via sparse-sparse iteration, SIAM
J. Sci. Statist. Comput., 19 (1998), pp. 995–1023.

[16] T. F. Coleman and J. J. Moré, Estimation of sparse Jacobian matrices and graph coloring
problems, SIAM Journal on Numerical Analysis, 20 (1983), pp. 187–209.

[17] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, Oxford
University Press, USA, 1989.

[18] J. Foley., K. J. Juge, A. O’Cais, M. Peardon, S. Ryan, and J.-I. Skullerud, Practical
all-to-all propagators for lattice qcd, Comput. Phys. Commun., 172 (2005), pp. 145–162.

[19] A. H. Gebremedhin, F. Manne, and A. Pothen, What color is your Jacobian? Graph
coloring for computing derivatives, SIAM Rev., 47 (2005), pp. 629–705.

[20] G. H. Golub and G. Meurant, Matrices, moments and quadrature, in Numerical Analysis
1993, D. Griffiths and G. Watson, eds., vol. 303, Longman Scientific & Technical, Pitman
Research Notes in Mathematics Series, 1994.

[21] H. Guo, Computing traces of functions of matrices, Numerical Mathematics, A Journal of
Chinese Universities (English series), 2 (2000), pp. 204–215.

[22] H. Guo and R. Renaut, Estimation of utf(a)v for large-scale unsymmetric matrices, Numer-
ical Linear Algebra with applications, 11 (2004), pp. 75–89.

[23] R. Gupta, Introduction to Lattice QCD. arXiv:hep-lat/9807028v1 [http://arxiv.org/abs/hep-
lat/9807028], 1998.

[24] K. J. Horadam, Hadamard matrices and their applications, Princeton University Press, 2006.
[25] T. Huckle, Approximate sparsity patterns for the inverse of a matrix and preconditioning,

Appl. Numer. Math., 30 (1999), pp. 291–303.
[26] M. F. Hutchinson, A stochastic estimator of the trace of the influence matrix for Laplacian

smoothing splines, J. Commun. Statist. Simula., 19 (1990), pp. 433–450.
[27] T. Iitaka and T. Ebisuzaki, Random phase vector for calculating the trace of a large matrix,

Phys. Rev. E, 69 (2004), p. 05770110577014.
[28] I. C. Ipsen and D. J. Lee, Determinant approximations, Tech. Rep. TR 03-30, North Carolina

State University, Department of Mathematics, 2003.
[29] D. J. Lee and I. C. F. Ipsen, Zone determinant expansions for nuclear lattice simulations,

Phys. Rev. C, 68 (2003), p. 064003.
[30] L. Lin, J. Lu, L. Ying, R. Car, and W. E, Fast algorithm for extracting the diagonal of the

inverse matrix with application to the electronic structure analysis of metallic systems,
Commun. Math. Sci., 7 (2009), pp. 755–777.

[31] L. Lin, C. Yang, J. C. Meza, J. Lu, L. Ying, and W. E., Selinv–an algorithm for selected
inversion of a sparse symmetric matrix, ACM Transactions on Mathematical Software, 37
(4), pp. Article 40, pages 19.

[32] C. Morningstar, J. Bulava, J. Foley, K. Juge, D. Lenkner, M. Peardon, and C. Wong1,
Improved stochastic estimation of quark propagation with Laplacian Heaviside smearing
in lattice QCD, Phys. Rev. D, 83 (2011).

[33] F. Pukelsheim, Optimal design of experiments, SIAM, Classics in Applied Mathematics. 50.,
1993.

26 Stathopoulos, Laeuchli, Orginos

[34] A. Reusken, Approximation of the determinant of large sparse symmetric positive definite
matrices, SIAM J. Matrix Anal. Appl., 23 (2002), pp. 799–818.

[35] H. J. Rothe, Lattice Gauge Theories: An introduction, World Scientific Publishing Co. Pte.
Ltd., 2005.

[36] Y. Saad, Iterative methods for sparse linear systems, SIAM, 2nd edition, Philadelphia, PA,
USA, 2003.

[37] B. Sheikholeslami and R. Wohlert, Improved Continuum Limit Lattice Action for QCD
with Wilson Fermions, Nucl.Phys., B259 (1985), p. 572.

[38] C. Siefert and E. de Sturler, Probing methods for generalized saddle-point problems, Elec-
tronic Transactions on Numerical Analysis, 22 (2006), pp. 163–183.

[39] Z. Strakos and G. H. Golub, Estimates in quadratic formulas, Numerical Algorithms, 8
(1994), pp. 241–268.

[40] Z. Strakos and P. Tichy, On efficient numerical approximation of the bilinear form c∗a−1b,
SIAM J. Sci. Comput., 33 (2011), pp. 565–587.

[41] J. Tang and Y. Saad, Domain-decomposition-type methods for computing the diagonal of a
matrix inverse, Report UMSI 2010/114.

[42] , A probing method for computing the diagonal of the matrix inverse, Report UMSI
2010/42.

[43] L. R. Welch, Lower bounds on the maximum cross correlation of signals, IEEE Trans. on
Info. Theory, 20 (May 1974), pp. 397–399.

[44] K. G. Wilson, Confinement of quarks, Phys. Rev., D10 (1974), pp. 2445–2459.
[45] M. N. Wong, F. J. Hickernell, and K. I. Liu, Computing the trace of a function of a sparse

matrix via Hadamard-like sampling, Tech. Rep. 377(7/04), Hong Kong Baptist University,
2004.

