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Abstract. Computing the trace of the inverse of large matrices is typically ad-
dressed through statistical methods. Deflating out the lowest eigenvectors or
singular vectors of the matrix reduces the variance of the trace estimator. This
work summarizes our efforts to reduce the computational cost of computing the
deflation space while achieving the desired variance reduction for Lattice QCD
applications. Previous efforts computed the lower part of the singular spectrum
of the Dirac operator by using an eigensolver preconditioned with a multigrid
linear system solver. Despite the improvement in performance in those appli-
cations, as the problem size grows the runtime and storage demands of this
approach will eventually dominate the stochastic estimation part of the compu-
tation.
In this work, we propose to compute the deflation space in one of the following
two ways. First, by using an inexact eigensolver on the Hermitian, but maxi-
mally indefinite, operator Aγ5. Second, by exploiting the fact that the multigrid
prolongator for this operator is rich in components toward the lower part of the
singular spectrum. We show experimentally that the inexact eigensolver can
approximate the lower part of the spectrum even for ill-conditioned operators.
Also, the deflation based on the coarser grid is more efficient to compute and ap-
ply, and, despite its limitation to approximate the fine level spectrum, it obtains
similar variance reduction on the trace estimator.

1 Introduction

To estimate ab initio elementary particle properties, Lattice Quantum Chromodynamics
(LQCD) involves the evaluation of correlation functions expressed as traces over products
of propagators with constant matrices. The propagators include the inverse of the Dirac op-
erator defined on a 4- or 5-dimensional lattice. In practice, the resulting matrix size makes
it impossible to compute these traces directly by evaluating the propagators at every point in
the lattice. The general strategy is to replace the exact computations by stochastic estimations
and control its variance. For the case study in this paper, the propagators are closed, which
leads to the evaluation of the trace on the inverse of the Dirac operator, A−1.

There are several methods to estimate the trace of an inverse matrix. The simplest method
is to estimate the trace as a multiple of the average diagonal element of A−1, E[Ne†i A−1ei],
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where ei is the i-th column of the identity matrix, and N is the dimension of A. The variance
of this estimator grows with N2 and can be very large even when the diagonal elements of
A−1 have a small variance. Sophisticated versions of this approach can be found in [1, 2].

The standard tool for this problem is the Hutchinson method [3] which estimates the trace
of A−1 as

t(A−1) = E[x†Ax] =
1
s

s∑
j=1

x†j A
−1x j, (1)

where x is a random vector whose elements xi satisfy E[x†i x j] = δi, j.
If the xi are Rademacher vectors, i.e., following the discrete uniform distribution with

values ±1, the trace estimator can also be written as t(A−1) = 1
s A−1 � XX†, where X is a

matrix with all the xi as columns and � is the element-wise product of matrices. Then, the
variance associated with the trace estimator t(A−1) is

Var[t(A−1)] =
2
s
‖A−1‖2F −

2
s

N∑
i=1

|(A−1)i,i|2. (2)

In practice A−1x j is computed approximately as A−1
ξ (x j) by an iterative solver that stops

when ‖A A−1
ξ (x j) − x j‖ ≤ ξ ‖x j‖. The bias of the resulting operator can be corrected by an

independent estimation of the trace of A−1 − A−1
ξ .

As in any Monte-Carlo process, the variance reduces linearly with the number of samples,
s. Every sample involves solving a linear system with the Dirac operator, and for cases
where the variance is too large, collecting enough samples can be expensive. Partitioning and
deflation can reduce the variance further.

A deterministic way to reduce the variance is by partitioning the matrix rows and columns
into k groups and approximating the trace of the diagonal blocks [4–6]. As k approaches N,
the variance reduces to zero. In practice, it is used to remove known strongly coupled compo-
nents on A−1 by setting them on different groups. Examples of this technique are spin-color
dilution (separating strongly coupled spin-color components) and partitioning (separating
close spacetime components). The most basic way of lattice spacetime partitioning is the
red-black (immediate neighbors have the opposite color to the node). Hierarchical probing
[7] is a sophisticated extension of this approach that identifies a series of nested colorings at
increasing lattice distance. The nesting ensures that, in case of increasing the number of par-
titions, only linear systems associated with the new colors have to be solved. The drawback
of this technique is that the variance is significantly reduced only at the particular number
of partitions k = 2Di, for i = 0, 1, . . . and D being the number of dimensions of the lattice.
Those particular values of k are called the closing colors.

For similar configurations to the 323 × 64 lattice used in this paper, and with spin-color
dilution in all cases, the red-black partition reduces the variance of the original trace estimator
by 3-fold, while using higher-level hierarchical probing with 512 vectors reduces the variance
by 10-fold [8, 9]. The latter reduction in variance is modest compared with merely using
Hutchinson with the same number of random vectors. In practice, partitioning is combined
with other techniques and especially deflation.

The initial motivation for deflation is that singular values near zero of the Dirac operator
are responsible for the large variance in the trace estimator. Equation (2) relates the variance
with the spectrum of the traceless matrix inverse through the Frobenius norm, which is the
addition of all singular values squared. The singular value spectrum of the traceless matrix
is a small perturbation of the original spectrum if the largest singular values of A−1 are far
greater than the diagonal elements of A−1 in magnitude, which is the case for Dirac operators.



A−1 A−1(I − UU†) (A−1(I − UU†)) � (HH†)

Figure 1. Absolute value of the elements of the inverse of a Wilson 2D 322 (left), after deflating the
space associated to the 100 smallest singular values (middle), and, besides that, applying spin-color
dilution and 32 basis of hierarchical probing (right).

As shown in [9], if the left and the right singular vectors of a non-Hermitian matrix A are
statistically independent standard random unitary matrices, then the variance of t(A−1) is
approximately

∑N
i=1 σ

−2
i (Theorem 2.6 in [9]), where σi are the singular values of A. The

authors also show various examples where the variance is close to that estimation, even when
the assumptions of the theorem on the singular vectors are slightly relaxed.

The above suggests that the trace estimator has less variance if applied to an operator
removing the near-null part of the spectrum (deflation). The strategy is, therefore, to split the
trace into two parts, A−1P and A−1(I−P), so that the trace of A−1P can be efficiently computed,
and the variance of estimating the trace of A−1(I−P) is far smaller than the variance with A−1.
If the singular values of A−1 decay quickly, only a small percentage of the spectrum needs to
be deflated to reduce sufficiently the variance on the trace estimator of A−1(I − P). For the
trace of A−1, the left singular vectors of A should be used in P [9].

An interesting synergy occurs when combining partitioning and deflation. The lower part
of the operator’s spectrum (slow modes) has the dominant contribution to the magnitude of
the elements of A−1, mainly affecting the matrix elements that correspond to long distances
in the lattice (see Fig. 1, left). After removing some of the slow modes, higher frequency
modes contribute to more localized regions of the matrix (see middle graph), for instance,
among certain subdiagonals of the matrix, that can be better addressed by partitioning (see
right graph). For the same lattice 323 × 64 that hierarchical probing reduces the variance by
10-fold over Monte-Carlo; also deflating 1000 approximate singular values gives a 100-fold
total variance reduction [9]. In [10], they reported a speedup of two in cost by combining both
techniques. They also considered the acceleration stemming from solving linear systems with
the deflated operator, A−1(I − P), which is a well-known effect [11–13].

To compute the deflation space, previous efforts computed the eigenpairs of the Hermi-
tian Dirac operator, Aγ5, usually with Chebyshev-accelerated Arnoldi [10, 14]. [9] briefly
discussed alternatives to compute the deflation space. In particular, they discourage the use
of methods such as eigCG [15] or Lanczos because they have to be used unpreconditioned,
and thus the convergence is slow. Instead they show results using the state-of-the-art pre-
conditioned eigensolver PRIMME [16]1 on A†A. The preconditioner employed is based on

1For an introduction to preconditioned eigensolvers see [17] and section 11 in [18].



the adaptive algebraic multigrid (AMG) [13] as implemented in QOPQDP2. In this paper, we
consider a different strategy for preconditioning that seems more effective.

Because the number of singular vectors required scales as a small percentage of the lattice
volume, for large-size lattices the cost of computing and storing the singular vectors becomes
unaffordable. Iterative eigensolvers, e.g., Krylov and Davidson-type, access the operator at
least once for every singular vector computed, yielding a quadratic cost in terms of lattice
volume3. Similarly, storage and the application of the deflation basis involve quadratic terms.
In addition, orthogonalization of eigenvectors introduces a cubic cost on the number of sin-
gular vectors, and thus on the lattice volume, albeit with a much smaller constant because of
more efficient memory access patterns.

In LQCD, the Dirac operator becomes more ill-conditioned as the fermion mass is lighter
and, as a consequence, linear system solvers take more iterations (critical slowing down). The
adoption of multigrid techniques has accelerated the solution of the linear systems dramat-
ically, not only keeping the number of iterations independent of the operator’s conditioning
but also making the cost of the solvers scale linearly to the lattice volume [13, 19].

In this work we propose the use of multigrid directly into reducing the variance of the
trace estimator to overcome the scalability limitations of deflation. The approach is described
in section 2. Although we compute the lower part of the singular spectrum of a much smaller
dimension operator, its performance continues to be critical, as we show in section 3. In
section 4, we evaluate the variance reduction of the new approach experimentally. We offer
some conclusions in Section 5.

2 Multigrid Variance reduction

To establish notation, we show the two-grid method for solving Ax = b for a Hermitian
matrix A. A two-grid iterative method alternates between the following two steps:

1. Coarse grid correction: xc
i = xi + V(V†AV)−1V†(b − Axi)

2. Smoothing: xi+1 = xc
i + M−1(b − Axc

i ).

In step 1, the method projects the residual vector to a lower dimension (coarsening),
corrects it, and prolongates it back. The matrices V and V† are the multigrid’s prolongator
(or interpolator) and restrictor respectively. In step 2, the new residual vector b − Axc

i is
smoothed by applying few iterations of a linear system solver, e.g., GCR, on A which we
represent by the operator M−1. The goal of the coarse grid is to correct directions that the
fine grid smoothing struggles to fix. One of the most relevant distinctions between multigrid
variants is the coarsening.

In adaptive multigrid for LQCD, the setup starts with the approximate solutions of
Ay(i) = 0 for n different random initial guesses. The returned n solution vectors, Y , are rich in
directions of singular vectors with singular values close to the origin (slow or low-frequency
modes), because linear solvers have difficulty resolving these lower spaces. Interestingly,
these slow modes look similar on a local lattice scale, and nearby singular vectors can be
generated by combining local pieces from different singular vectors [20, 21]. Taking ad-
vantage of that, the adaptive multigrid method partitions the lattice into a set of m compact
subdomains that maintain these “local” features. Then, each of the solution vectors is bro-
ken into j = 1, . . . ,m vectors, each with support only on the subdomain D j. This process is

2http://usqcd-software.github.io/qopqdp/
3The block version of the eigensolvers can reduce the number of accesses and the computational time by a

constant factor, but it does not remove the quadratic term of the cost.



referred to as blocking,

[Y]D = [D1Y, D1Y, . . . , DmY] , with Di ∩ D j = ∅ ∀i , j,

where Di is the projector onto the domain Di. For numerical stability, implementations work
with an orthonormal basis V of the blocked solutions [Y]D.

To see the role of deflation in multigrid, we rewrite the previous two steps in terms of the
oblique projector P = AV(V†AV)−1V† on the space of V ,

xi+1 = xi + A−1P(b − Axi) + M−1(I − P)(b − Axi).

The coarse grid correction is interpreted as the exact solution of the components of the resid-
ual vector on P, and smoothing takes care of the remaining components of the residual vector.
The deflation view suggests that, in general, if V approximates the lower part of A’s spectrum,
then the effective condition number of A−1(I − P) is smaller than that of A−1, accelerating the
convergence of the iterative method M−1.

In the case of the trace estimation, the deflation splits the trace of A−1 into the trace of
A−1(I − P) and the trace of A−1P, so that the trace of A−1P can be computed efficiently, and
the variance of estimating the trace of A−1(I−P) is far smaller than with A−1. As with solving
linear systems, we are interested in P approximating the lower part of A’s spectrum.

2.1 Choice of projector

If P is the oblique projector defined above and V is of much smaller rank than N, the trace
of A−1P can be computed efficiently since trace A−1AV(V†AV)−1V† = trace V(V†AV)−1V† =

trace(V†AV)−1, which is the trace of a smaller matrix. If V is an invariant subspace, P be-
comes the orthogonal spectral projector. If V is far from an invariant space, the variance of
the trace estimator t(A−1(I−P)) is usually smaller with the orthogonal projector than with the
oblique projector. Unfortunately, there is no efficient way to approximate the trace of A−1P
if P = VV†, unless V is close enough to left singular space of A so that the errors on the
singular values are smaller than the standard deviation of the trace estimator. In this work,
we propose the use of the oblique projector but also spend the time to compute and report the
variance of t(A−1(I − P)) for the orthogonal projector as a rough estimate of the lower bound
to the variance achievable by any projector of that rank.

If A is not a Hermitian positive definite matrix, and V is not close to a left singular
space, the coarse operator V†AV may have singular values that are close to zero but do not
correspond to singular values of A, which are known as spurious values. In addition to making
V†AV ill-conditioned, these small spurious values increase the variance of the t(A−1(I − P)).
One can consider variants of the oblique projector that may prevent the directions in V that
are far from an eigenspace from harming the final variance,

trace A−1 = trace A−1(I − AV(V†KAV)−1V†K) + trace V†KV(V†KAV)−1.

Setting K = A−1 avoids the problems of spurious values and makes P the orthogonal
projector on V . If A is not Hermitian, another obvious choice for K is A†, but it makes
the coarse operator more expensive by introducing more nonzero elements. In the results
presented in Section 4, we use K = γ5, that does not protect against the directions in V
that are far from eigenspaces and may result in small spurious eigenvalues, but it is somehow
optimal as we explain in the following. For the spurious values, we supplement this technique
with filtering of the prolongator space, as explained in the next section.

If A−1 is not Hermitian, one can reduce the variance by evaluating the trace of the sym-
metric operator (A−1+A−T )/2 instead, which has the same trace and less or equal variance. So



symmetric and Hermitian matrices are optimal for variance reduction under symmetrization.
The spin-color dilution probing basis H makes any γ5-Hermitian matrix being Hermitian,
and we wish that the deflated operator be also γ5-Hermitian. It is easy to see that the operator
with the projector for K = γ5, A−1(I − AV(V†γ5AV)−1V†γ5), is γ5-Hermitian.

2.2 Filtering

The blocking of the approximate solutions to the n equations Ayi = 0 (the yi are often called
the null vectors) produces approximations to a large part of the lowest singular spectrum of A.
However, the quality of these approximations deteriorates rapidly beyond a few lowest sin-
gular vectors. Still, using these approximations as an orthogonal projector would effectively
reduce the variance of the trace estimator. With the oblique projector, there is an optimal size
for the deflation space beyond which the interior singular vectors are not accurate at all, and
variance increases. We have confirmed this experimentally with Laplacian matrices and the
ensembles presented in Section 4.

It is not clear how to identify this optimal size of the deflation basis a priori. However,
this is not necessary since the application of the oblique deflation operator can be decoupled
from the inversions of A−1zi in the Hutchinson method. Specifically, we propose to compute
and store first a sufficiently large rank of the lower part of the spectrum of the coarse operator
V†AV , say ŪΣV̄†. The deflated operator in the Hutchinson method would then involve A−1(I−
P)zi = A−1zi − VV̄(Ū†V†KAVV̄)−1Ū†V†Kzi, for the entire Ū, V̄ or some column subset
of them. After completing the inversions with the noise vectors Z = {zi, i = 1, . . . , n}, the
deflation part can be recomputed with different number of triplets, and the optimal rank of P
can be identified. This a posteriori analysis can be done efficiently without storing any vector
of lattice dimension, just the matrices, Z†VV̄ , and Ū†V†KZ.

Finally, we note the difference between our approach, which computes the eigenspaces
from the coarse space, and the approach in [21] where the computed fine grid eigenspace is
stored compactly using the prolongator.

3 Computation of the deflation space

The γ5-Hermiticity of the Wilson operator as well as of the coarse operators built by multigrid
allows for several algorithmic alternatives for computing the smallest singular values and their
vectors. First, we examine the relative performance of these alternatives. However, as the
density of singular values near zero increases with lattice volume, the eigenvalue problems
become particularly challenging for iterative methods, and complementary techniques must
be employed.

3.1 Choice of eigensolver

A common approach to approximate the smallest singular values of A is to use some variant
of the Lanczos method on either A†A or Aγ5. However, without preconditioning, Lanczos
converges slowly for the operators that we are working with. Alternatively, the shift-and-
invert Lanczos has much faster convergence at the expense of solving a linear system of
equations per (outer) iteration. We consider the inexact Lanczos variant, in which the linear
systems are solved approximately with a relative tolerance ξ. The approximation also limits
the accuracy of the computed eigenspace by ξ.

Besides inexact Lanczos, we also consider Generalized Davidson, a preconditioned
method that offers a few more techniques for improving convergence and robustness (the



Table 1. Number of inversions in computing the 10 smallest singular vectors on a Wilson 322 with
several approaches. The eigensolvers mark an eigenpair (λ, x) as converged when

‖γ5A−1x − λ−1x‖ ≤ 10−2‖A−1‖. The inverter used in all cases, A−1
ξ , is QMR stopping at relative

tolerance ξ = 10−2. GD+k is from PRIMME, and Lanczos is Matlab’s eigs, both with default settings.

Approach # Inversions
GD+k on A†A with preconditioner A−1

ξ A−1
ξ

† 60

GD+k on A−1
ξ A−1

ξ

† 34
GD+k on Aγ5 with preconditioner γ5A−1

ξ 27
GD+k on γ5A−1

ξ 23

Lanczos on A−1
ξ A−1

ξ

† 100
Lanczos on γ5A−1

ξ 25

GD+k method) [22]. We test both the inexact GD+k variant on the operator A−1
ξ and the

exact GD+k on the operator Aγ5 or A†A, while providing the solution of linear systems as a
preconditioner instead.

Table 1 shows a comparison of the various eigensolver alternatives on a Wilson operator4,
a 322 lattice, and β = 6. The experiments are performed in MATLAB and, although the prob-
lem size is small, they are indicative of the performance of these methods on much larger
problem sizes. We observe that working with A†A involves more solutions of linear sys-
tems than working with Aγ5. For the latter operator, inexact Generalized Davidson performs
slightly better than Generalized Davidson with preconditioner and inexact Lanczos.

3.2 Eigensolver tuning

The Dirac operators that we work with exhibit a fast decay of the singular value spectrum,
so most of the eigenmethods on γ5A−1

ξ obtain good approximations within an average of two
iterations per singular triplet. The singular triplets closest to the origin need more inversions
(outer steps), and each of those inversions takes many more iterations than for more interior
triplets. Therefore tuning the eigensolver and the multigrid inverter can be performed early
before computing thousands of singular triplets.

Because γ5A−1
ξ and the corresponding coarse grid operator are indefinite Hermitian ma-

trices, they still may suffer from many spurious eigenvalues near zero. In some cases, this
may cause the inverter to stagnate at an error level well above the requested ξ. A common
way to avoid stagnation is to shift the operator of the linear systems to reduce its condition
number. Shifting the operator by the diagonal iγ5 moves the eigenvalues away from the origin
(see Fig 2, left), while the eigenvectors of γ5A−1 and (Aγ5 + iτI)−1 have the same order with
respect to the distance of their eigenvalues from the origin (see Fig 2, right).

The new operator after the shifting is no longer Hermitian but is normal. One option is
to modify a Hermitian eigensolver to support normal operators. Specifically, the projected
Rayleigh-Ritz problem at every iteration needs to be solved with a Schur decomposition
instead of a Hermitian eigensolver. Another option is to use non-Hermitian eigensolvers. We
followed the former approach, making the proper changes in PRIMME. When the inverter
fails, it happens in the first few iterations of the eigensolver when spurious eigenvalues near
zero are present. In that case, we rebuild the multigrid inverter with a larger shift, and the
eigensolver is restarted.

4Generated with quantum-mg, source code at https://github.com/weinbe2/quantum-mg.



Table 2. Configuration of the Dirac-Wilson operator and the multigrid solver used in the experiments.
The Preconditioned settings build the multigrid for the odd-even operator for solving linear systems.

The Unpreconditioned multigrid is used to obtain the singular vectors of the original operator.

Preconditioned Unpreconditioned
Configuration Dimension Blocking Null vectors Blocking Null vectors Dimension

fine grid (N) per level (m) per level (n) per level per level of coarsest

323 × 64 25,165,824 44, 24 24, 32 44 24 393,216
β = 6.3 44, 24 24, 32 32,768

µ = −0.2390 44 48 786,432
44, 24 48, 64 65,536

643 × 128 402,653,184 44, 23 × 4 24, 32 44 48 12,582,912
β = 6.3 44, 24 48, 64 1,048,576

µ = −0.2416

Table 3. Running times for computing the partial singular decomposition on Wilson operators and
coarse operators listed on Table 2.

Configuration # Inversions Inverter time Ortho. time Total time

Wilson 323 × 64 on 22 nodes:

1024 SV on A τ = 0.00 1,429 655 254 957
nv 24 & 1024 SV on coarse op. τ = 0.04 7,544 1,770 16 1,797

nv 24, 32 & 1024 SV on coarse op. τ = 0.04 6,664 90 2 97
nv 48 & 1024 SV on coarse op. τ = 0.04 7,794 8,570 92 8,826

nv 48, 64 & 1024 SV on coarse op. τ = 0.04 7,725 193 22 364

Wilson 643 × 128 on 256 nodes:

1024 SV on A τ = 0.02 3,821 5,874 860 6,952
nv 48, 64 & 1024 SV on coarse op. τ = 0.02 6,675 586 119 807
nv 48, 64 & 4096 SV on coarse op. τ = 0.02 21,865 1,919 1,036 3,122

A challenge with any eigensolver that computes a large number of eigenpairs is the cost of
orthogonalization. The number of floating-point operations associated with orthogonalization
grows as O(N × #SV × iterations). In addition, on massively parallel environments, orthogo-
nalization involves between O(#SV) and O(#SV2) global synchronizations depending on the
algorithm. It is clear, therefore, that for sufficiently many singular values (#SV) orthogonal-
ization time eventually dominates the eigensolver performance for LQCD. We demonstrate
the performance of the GD+k eigensolver on the configurations of two large lattices shown
in Table 2.

In Table 3 we can see that orthogonalization time starts to dominate for the coarse operator
of the Wilson 643 × 128 case. Going from 1024 to 4096 singular triplets, the number and the
cost of inversions increases by a factor of 3.3. However, the orthogonalization time increases
by a factor of 8.8, making it a third of the total computation time. Block variants of iterative
methods, including GD+k, can utilize better optimized linear algebra library functions and
thus may reduce the orthogonalization time by a small factor. However, orthogonalization
remains the scalability bottleneck.

The motivation to find the deflation space from a coarse operator is twofold: compute a
much larger space and do all the operations on matrices of much smaller dimension. However,
the benefits are not commensurate. First, the coarse level operators V†AV are typically much
denser in nonzeros per row than A, so despite a significant reduction in the dimension of the
matrix, the time savings are moderate. For example, consider the 323 × 64 lattice in Table 2.
The first coarse level (24 null vectors) is 12 times smaller than the fine level. Yet, the cost
per inversion is only half. Second, although the floating-point operations in orthogonalization



0 2 4

−1

0

1

Real part

Im
ag

in
ar

y
pa

rt
Eigenvalue spectra

A
A + .5iγ5

A + iγ5

0 10 20

0.5

1

1.5

2

abs(eig(γ5A−1))

ab
s(

ei
g(

(A
γ

5
+
τi

I)
−1

))

Eigenvalues in absolute value

τ = .5
τ = 1

Figure 2. Eigenvalue spectrum after shifting a Wilson 2D, A, with τiγ5 for values of τ of 0.5 and 1
(left). Transformation of the eigenvalue spectrum of the inverse of the Hermitian operator, γ5A−1, after
shifting, (Aγ5 + τiI)−1 (right).

reduce linearly with the dimension, the number of processors and synchronizations remains
the same. Therefore the parallel performance of the orthogonalization kernel deteriorates and
its time does not reduce. In the examples of Table 2, the matrix of the coarsest levels (with
48, 64 null vectors) is 384 times smaller than the fine level. However, when solving for 1024
singular vectors, the orthogonalization times per iteration reduce only by factors of 62 and 12
for the lattices 323 × 64 and 64 × 128 respectively.

To conclude, even though the inverter on A spends most of the time on the coarsest level,
the eigensolver on the coarse operator spends significantly less time on the inverter.

4 Experimental Performance of the Estimator

Our benchmark deflation test is the use of the orthogonal projector of the approximate left
singular vectors of A, computed with an inexact eigensolver as described in Section 3 and
Algorithm 1 below. Our proposed method uses an oblique projector to deflate the subspace
of a multigrid prolongator that corresponds to the lower part of the singular spectrum of the
coarse operator as described in Algorithm 2.

Input: Operator, A; deflation space rank, k; tolerance, ξ; shift, τ; partition basis, H
1 Compute deflation space: U = eigs(γ5(A + iτγ5)−1

ξ , largest magnitude, k, ξ)
2 Compute the deterministic part: t0 =

∑
i u†i A−1

ξ ui

3 Compute the stochastic part: t1 = t(A−1
ξ (I − UU†) � HH†)

4 Return t0 + t1
Algorithm 1: Variance reduction for trace estimation using an orthogonal projector of ap-
proximate singular vectors of A

The implementation is developed within QOPQDP, a library in the US LQCD suite which
provides several operators and linear system solvers. We only use the Wilson with anisotropic
clover operator and the multigrid even-odd solver. We instantiate two multigrid variants as
explained in the caption of Table 2. The preconditioned multigrid variant is based on the



Input: Operator, A; deflation space rank, k; tolerance, ξ; shift, τ; partition basis, H
1 Compute multigrid prolongator W; γ5W = WγW

5
2 Compute deflation: Ū = eigs(γW

5 (W†AW + iτγW
5 )−1

ξ , largest magnitude, k, ξ)
3 Factorize ÛΛÛ† = Ū†γW

5 W†AWŪ, and set U = ŪÛ
4 Compute the direct part: t0 =

∑
i u†i γ5uiλ

−1
i

5 Compute the stochastic part: t1 = t(A−1
ξ (I − AWγ5UΛ−1U†W†) � HH†)

6 Return t0 + t1
Algorithm 2: Variance reduction for trace estimation using an oblique projector from ap-
proximate singular subspace of the coarse operator

odd-even operator and is used for solving the linear systems in the stochastic approximation
of the trace, and also for the inversions of the inexact eigensolver of Algorithm 1. The unpre-
conditioned multigrid variant is used for generating the prolongators and the coarse operators
from which the deflation space will be computed in Algorithm 2. At coarse levels, the so-
lution of the linear systems is not accelerated with a multigrid recursion. Instead, even-odd
preconditioned GCR is employed. We extended the implementation of QOPQDP solvers to
support the implicit iτγ5 shifting of the operator and the access to the coarse operators from
PRIMME.

For the stochastic estimation step, t(A−1
ξ (I − P) � HH†), our implementation follows a

blocked approach in which the 12 vectors of spin-color dilution of each hierarchical probing
vector hi are processed together. This can potentially accelerate the solution of the linear sys-
tems, and the application of the projectors for Algorithm 1, where the orthogonal projectors
can employ optimized BLAS matrix-matrix multiplication routines.

Tuning the prolongators configuration is crucial to get good variance reduction. In the
examples tested, we found that the number of null vectors used for setting up the multigrid
levels should be twice as many for Algorithm 2 than the ones used only to solve linear sys-
tems. For variance reduction, we configure the solver used on the null vectors to stop at a
relative residual norm tolerance of 10−2 or after 200 iterations.

4.1 Variance Reduction

We show that deflating with a prolongator subspace reduces the variance of the trace estima-
tor, and the effectiveness is related to how close the prolongator subspace is to the lower part
of the operator’s spectrum. As a base case for comparison, we consider the undeflated matrix
after 2 hierarchical probing (HP) vectors have been applied with full spin-color dilution, i.e.,
24 inversions. The best results are obtained after 512 HP vectors with the maximum number
of vectors deflated.

In Fig. 3(a) we show results on the Wilson 323 × 64 lattice. Deflating the 1024 smallest
singular triplets computed with Algorithm 1 with tolerance ξ = 10−2 and 512 HP, spin-color
diluted vectors reduces the variance more than four orders of magnitude. The top-left graph
in Fig. 3(a) shows the effect of prolongators with the four different configurations listed in
Table 2. For the HP2 and HP32 cases, deflation does not have as much of an effect because the
nearest neighbor connections that HP has not removed yet dominate. For 512 HP vectors, we
see that deflation from the first coarse level is very close to the benchmark fine grid deflation
(curves 1 and 3). Deflating with singular spaces from the second level is also close to the
benchmark up to 100 singular vectors but deflating with more does not have an additional
benefit.
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Figure 3. Experimental estimation of the variance of t(A−1
ξ (I − P) � HH†) as the rank of the deflation

projector P increases (left), and the sine of the angles between the approximate singular vectors from
the operator and the subset of the prolongators used for deflation (right), for Wilson 323 × 64 (top) and
Wilson 643 × 128 (bottom). Error bars indicate the jackknife error. The tolerance is ξ = 10−2.

An explanation for the limited benefit at the coarsest level is seen in the top-right graph
of Fig. 3 that shows the sines of the angles between the computed singular vectors of A
and the prolongator subspaces. The prolongators with smaller angles tend to perform better.
The graph also shows how fast these angles increase in the interior of the spectrum. All
prolongator subspaces have almost no component to singular spaces after the 1000th lowest
one, and we should not expect a further reduction on the variance estimation by increasing
the rank. Finally, notice that prolongators generated with more null vectors (curves 3 and 5)
yield a smaller variance.

In Fig. 3(b) we show a similar experiment on the Wilson 643 × 128 lattice. We limit the
number of computed triplets from the original operator to 1024 due to memory limitations on
Edison’s nodes, but we let the multigrid deflation use up to a rank of 4096. As in the previous
case, both deflation spaces have a similar effect on the variance for the same rank. Deflation
achieves a speedup of 20 over the undeflated HP512 experiment.

The second operator is 16 times larger than the first, so it expected that many more vectors
are needed to get a similar deflation effect as on the first operator. At the same time, the pro-
longator subspace from the second coarse level of the second operator has more components



Table 4. Times on NERSC’s EdisonRIP estimating the trace from 2 noise vectors (s = 2) solving the
linear systems with a tolerance ξ = 10−2 using a partitioning of full spin-color dilution and 512

hierarchical proving vectors. Approaches detailed in algorithms 1 and 2 are compared.

Computing t(A−1
ξ (I − P) � HH†)

Computing deflating space P Applying P Solving LS Variance

Wilson 323 × 64 on 22 nodes:

1024 SV on A 957s 353s 2,400s 10
nv 24 & 1024 SV on coarse op. 269s 297s 2,400s 35

nv 24 32 & 1024 SV on coarse op. 97s 303s 2,400s 55
nv 48 & 1024 SV on coarse op. 5489s 318s 2,400s 8

nv 48 64 & 1024 SV on coarse op. 430s 326s 2,400s 18

Wilson 643 × 128 on 256 nodes:

1024 SV on A 6,952s 725s 5,903s 1,700
nv 48 64 & 4096 SV on coarse op. 3,122s 1,126s 5,903s 640

on the inner part of the spectrum. This fact may indicate that the effectiveness of the multi-
grid deflation also scales with the operator dimensions. Further experiments are required to
confirm these claims.

Finally, we give a rough estimate on the speedup of these techniques over performing
simply a Hutchinson method with random vectors and no HP or dilution. Both experiments
start at 24 inversions and obtain a little more than 4 orders of magnitude improvements with
512*12 = 6144 inversions. This corresponds to speedups of about 50-100 over the Hutchin-
son method.

4.2 Performance

Table 4 reports the timings for the computational kernels involved in estimating the trace with
just two noise vectors. The most expensive operations are the computation of the deflation
space and the inversions in the stochastic estimation of the trace. Notice that applying the
deflation for approximate singular vectors from the original matrix is usually cheaper than
applying the oblique projector in multigrid deflation, even though the latter prolongator re-
quires less storage. This is because the oblique projector involves a multiplication with the
original operator, and because the orthogonal projector is implemented in a block fashion,
which is ten times faster than applying the deflation vector by vector. Using a block version
of the oblique projectors, i.e., applying the operator and the prolongators on multiple vectors
at once, may also accelerate the computation significantly.

5 Summary

In this work, we show that, in the context of reducing variance in the stochastic evaluation of
disconnected loops in LQCD, inexact eigensolvers are efficient in approximating the lower
part of the singular value spectrum when a fast linear system solver is available. The Dirac
operator can be shifted if the problem is too ill-conditioned. However, computing and storing
a fraction of the lattice volume of the singular vectors is computationally prohibitive.

We show that the prolongators generated by adaptive multigrid solvers without even-odd
preconditioning have limited accuracy on the lower part of the spectrum, and the accuracy
degrades quickly into the inner part of the spectrum. However, the decay in the accuracy may
be slower on larger Dirac operators. In addition, proper tuning of the multigrid configuration



can give enough accuracy to make the prolongators suitable for reducing the variance of trace
estimators on the ensembles we have tested and with significant computational gains over the
fine-grid deflation. As noted before, for large matrices, the speedup over plain Hutchinson
method without hierarchical probing can reach two orders of magnitude.
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