Solution of Large Eigenvalue Problems in Electronic Structure Calculations*

Y. Saad†, A. Stathopoulos‡, J. Chelikowsky§, K. Wu‖ and S. Öğüt¶

December 1995

Abstract.

Predicting the structural and electronic properties of complex systems is one of the outstanding problems in condensed matter physics. Central to most methods used in molecular dynamics is the repeated solution of large eigenvalue problems. This paper reviews the source of these eigenvalue problems, describes some techniques for solving them, and addresses the difficulties and challenges which are faced. Parallel implementations are also discussed.

1 Introduction

One of the fundamental problems encountered today in chemistry and physics is to understand the dynamics of microscopic particles. It is possible to explain or predict certain material properties at a microscopic scale from knowledge of their initial state and given external perturbations. For example, it may be desirable in certain cases to follow the dynamics of atoms/electrons until a 'steady state' corresponding to minimum total energy is reached.

The numerical problems to be solved in these calculations are among the most challenging in computational sciences today. The central computation in this minimization is the repeated solution of a large, symmetric eigenvalue problem. Traditional approaches use a plane-wave basis to expand the required wave-functions (eigenvectors). This approach is comparable to spectral techniques used in solving other types of partial differential equations. A projection process on the finite plane-wave basis gives rise to a discrete matrix eigenvalue problem which is dense. The matrix is not formed explicitly, but matrix-vector product operations are performed with the help of FFT transforms. An alternative to this approach based on high-order finite difference schemes has recently been advocated. For localized systems, it has proved to be as accurate and more efficient than plane-wave techniques[6, 7, 16, 15]. The matrices resulting from both finite difference methods and plane-wave techniques are large, and the number of eigenvalues and eigenvectors required is proportional to the number

*Work supported by NSF grants DMR-9217287 and ASC 95-04038, and by the Minnesota Supercomputer Institute
†Department of Computer Science, University of Minnesota
‡Department of Chemical Engineering, University of Minnesota
of atoms in the system. Herein lies the challenge. For complex systems involving hundreds or thousands of atoms, more accuracy is required, which means larger matrices, but also more eigenvalues are needed, due to the physics.

The size of the eigenvalue problem, the large number of required eigenpairs, as well as its repeated solution for each molecular dynamics step, pose huge computational demands on high performance computers and eigenvalue solvers. In this paper, some of the efforts for meeting these demands are described. We present an eigenvalue solver based on the preconditioned Lanczos (generalized Davidson) method [11, 8, 23] which can tackle hundreds of eigenpairs. We also address several issues such as efficient preconditioning, matrix-vector multiplication, orthogonalization, as well as robustness.

Parallel processing can help make substantial improvements in solution times and thus play a crucial role in meeting some of the challenges posed by electronic structure calculations. A parallel implementation of the application on a cluster of workstations is outlined. In particular, we discuss an efficient design of the partitioning scheme and other preprocessing techniques needed to reduce the impact of frequent communication required during the iteration process.

2 The Problem

The electronic structure of a condensed matter system, e.g., cluster, liquid or solid is described by a wave function Ψ which can be obtained by solving the Schrödinger equation:

$$\mathcal{H}\Psi = \mathcal{E}\Psi,$$

where \mathcal{H} is the Hamiltonian operator for the system and \mathcal{E} the total energy. In quantum mechanics, $|\Psi(r)|^2$ represents the charge density at a location r in space. In its original form the operator \mathcal{H} is very complex, involving sums over all electrons and nuclei, Laplacian related to each nucleus, etc. However, most theories of condensed matter systems make two fundamental approximations which make the problem more tractable. These are the Born-Oppenheimer approximation and the one-electron approximation [20].

With these approximations the following simplified form of the Schrödinger equation is obtained:

$$\left[-\frac{\hbar^2 \nabla^2}{2m} + V_{\text{tot}}[\rho(r),r] \right] \psi(r) = E\psi(r),$$

where the Laplacian is the kinetic operator, \hbar is Planck’s constant, m is the electron mass, and V_{tot} is the total potential at some point r in the system. The potential depends on a specific charge density $\rho(r)$. The charge density function in turn depends on the wavefunctions of the above equation via,

$$\rho(r) = \sum_{\text{occupied states}} |\psi_i(r)|^2.$$

The dependence of the potential V_{tot} on $\rho(r)$ is a complicated nonlinear function. The above problem can be viewed as a nonlinear eigenvalue problem because of
the nonlinear dependence of the operator on the left-hand side on the eigenfunctions.

With the local density approximation theory [20], and the use of Pseudopotentials, the potential V_{tot} is simplified to a summation of three distinct terms, specifically,

$$V_{\text{tot}} = V_{\text{ion}} + V_H + V_{\text{xc}}$$ \hspace{1cm} (2.4)

where V_{ion} is the ionic potential, V_H is the Hartree potential, and V_{xc} is the exchange-correlation potential. The exchange-correlation potential V_{xc} is easily approximated by a potential from the local density expression. Once the charge density $\rho(r)$ is known, the Hartree potential is obtained by solving the Poisson equation:

$$\nabla^2 V_H = -4\pi \rho(r).$$ \hspace{1cm} (2.5)

This can be solved either by the Conjugate Gradient method, or by a fast Poisson solver. Both potentials V_H and V_{xc} have a local character and are represented by diagonal matrices in the discrete form of the problem.

The ionic potential is more complex, consisting of both a local and a non-local term[7]:

$$V_{\text{ion}} = \sum_a V_{\text{loc}}(r_a) \psi + \sum_{a, l m} \frac{\Delta V_l(r_a)}{<\Delta V^a_{lm}>} u_{lm}(r_a) \int u_{lm}(r_a) \Delta V_l(r_a) \psi d^3r,$$ \hspace{1cm} (2.6)

where $<\Delta V^a_{lm}>$ is the normalization factor,

$$<\Delta V^a_{lm}> = \int u_{lm}(r_a) \Delta V_l(r_a) u_{lm}(r_a) d^3r.$$ \hspace{1cm} (2.7)

Here, the superscript a denotes an atom in position \mathbf{R}_a, $r_a = r - \mathbf{R}_a$, and the functions u_{lm} are the atomic pseudopotential wave functions of angular momentum associated with quantum number l, m, from which the l dependent ionic pseudopotential $V_l(r)$ are generated. $\Delta V_l(r) = V_l(r) - V_{\text{loc}}(r)$ is the difference between the l component of the ionic pseudopotential and the local ionic potential. What is of interest to matrix computations specialists is the nature of the non-local term in (2.6). If we set $U_{a,l,m}(r_a) = \Delta V_l(r_a) u_{lm}(r_a)$ and we consider the discretization of the equation, the non-local term becomes a sum of rank-one updates:

$$V_{\text{ion}} = \sum_a V_{\text{loc}} \psi + \sum_{a, l m} c_{a,l,m} U_{a,l,m} U_{a,l,m}^T \psi,$$ \hspace{1cm} (2.8)

where $c_{a,l,m}$ are normalization coefficients and all other variables are the discretized matrix and vector forms of the operators and functions.

From (2.3), ρ can be computed from the wavefunctions ψ_i for all occupied states. However, ψ_i are the solution of the eigenvalue problem in (2.2) whose coefficients depend on the potential. In turn, the V_H potential depends on ρ. The above constitute a set of non-linear equations, which are solved by the so-called Self Consistent Field (SCF) iteration. This algorithm can be viewed as an inexact Newton method for accelerating the fixed-point iteration $V_{\text{tot}}^{\text{new}} = \mathcal{M}(V_{\text{tot}})$
in which \(\mathcal{M}(V_{\text{tot}}) \) represents the new potential obtained from solving (2.2) and using (2.4) with the resulting wavefunctions and values. The term 'Mix' used in line 4, refers to any quasi-Newton approach for this acceleration.

Algorithm 2.1. Self Consistent Iteration

0. Obtain initial \(\rho(r) \) by superposing atomic charge densities.
 Obtain \(V_{xc}, V_{ion} \) and initial \(V_H \).
2. Set \(\rho(r) = \sum \psi_i^2(r) \).
3. Compute new \(V_H \) from (2.5), and \(V_{tot} \).
4. 'Mix' potentials with a Broyden-type quasi-Newton approach.
5. If self-consistent stop, else repeat from 1.

In matrix form, the Hamiltonian is the sum of a Laplacian matrix, three diagonal matrices and a matrix representing the nonlocal contributions. Two of three diagonal matrices arise from discretizing \(V_{xc} \) and \(V_H \). The third is due to the local part of the ionic potential. The nonlocal matrix is the sum of simple rank-one updates over all atoms and quantum numbers. Typically, a small number of steps is required for the SCF iteration to converge.

3 Solving the Eigenvalue Problem

3.1 Problem Setup

In the SCF iteration the solution of the eigenvalue problem is the dominant computation, comprising more than 80% of the total time. Traditionally, a plane-wave basis has been used to expand the wavefunctions and obtain a matrix eigenvalue problem. The problem is solved in Fourier space and the solution is transferred back to real space through fast Fourier transforms (FFT). This method is very similar to spectral methods used in solving certain types of Partial Differential Equations. The basis used is of the form: \(\{ e^{i\vec{k} \cdot \vec{r}} \}_k \), where \(\vec{k} \) is the wave number, a vector with three components \((k_x, k_y, k_z) \) and \(\vec{r} \) is the variable, a vector of three components \((r_x, r_y, r_z) \) representing an arbitrary location in three-dimensional space. When representing the Hamiltonian \(H = \Delta + V \), with respect to this basis, the Laplacian term \(\Delta \) gives rise to a diagonal matrix while the potential term \(V \) gives rise to a dense matrix. These matrices are never formed explicitly however.

There are two main advantages of this approach. First, the pseudo-wavefunctions for isolated atoms are smooth and plane-waves are a reasonable basis, providing rapid convergence in Fourier space. Second, it is easy to precondition the resulting matrix in Fourier space by exploiting the fact that a smaller subset of planewaves gives a good approximation to the large matrix. One technique that has been used with success [32] is to approximate the desired eigenvalues by using a smaller planewave basis, and the larger ones by using the eigenvalues of the Laplacian ignoring the potential terms. An approximation to \((H - \sigma I)^{-1} \) can be easily built this way.
However, there are several disadvantages to this approach. In case of non-periodic systems such as clusters, liquids or glasses, the plane-wave basis can only be applied if a *supercell method* [4] is employed. This is very similar to the situation with spectral methods. Spectral methods are excellent at solving problems with rectangular geometries which have periodic boundary conditions. The supercell technique artificially repeats the localized configuration to impose periodicity on the system. Difficulties arise when this basis fails to replicate the localized system and vacuum regions at the same time, and when cells interact with each other. Besides these physical problems, the eigenvalue problem can be expensive to solve mainly because the matrix is dense. Although this dense matrix is not explicitly formed, two FFTs must be carried out at each step of the iteration procedure. This can be costly, especially in high performance environments [3]. Further, the size of the matrix increases with the number of atoms, and for large problems the cost of these methods is prohibitive.

In recent years, finite difference techniques have started to challenge planewave techniques. Surprisingly, these methods have only appeared sparingly in the area in the last half century [17, 12]. Our approach combines finite differences with a high-order expansion of the derivatives [3, 13, 5]. Since the pseudo-wavefunctions for isolated atoms are smooth, the wave-functions can be expanded locally in Taylor series and a good approximation is expected as with plane-waves. In addition, the supercell problems are overcome, the eigenvalue calculations can be performed efficiently in real space using sparse matrices, and the codes are much easier to parallelize. There are two disadvantages with finite differences: larger matrices may be required to reach the same accuracy as with plane-waves, and these are more difficult to precondition. Nevertheless, the size of the matrices increases more slowly with the number of atoms in finite differences than in the plane-waves, and the method is fast. In fact, the new method can be an order of magnitude faster than a traditional one based on planewaves (Figure 3.1).

The basic grid is a uniform three dimensional cube. However, it is often the case that many points in the cube are far from any atoms in the system and have a negligible charge. Their charge can be replaced by zero and computations with the associated points can be avoided. Special data structures may be used to optionally select points only from spheres surrounding the atoms, and cylinders connecting such spheres. In some cases, the size of the Hamiltonian is decreased by a factor of two to three. Further, since the Laplacian can be represented by a simple stencil, and since all local potentials sum up to a simple diagonal, the Hamiltonian need not be stored. The non-local potential is computed implicitly as the sum of several rank one matrices for each atom (2.8).

3.2 The Preconditioned Lanczos Algorithm

Iterative methods which require the matrix only in the form of matrix-by-vector products are the most common means of solving large eigenvalue problems such as the ones considered here. In addition to their sheer size, the eigenvalue problems in this application present other difficulties. First, the number of required eigenvectors is proportional to the atoms in the system, and can grow
up to several hundreds or even thousands. Maintaining the orthogonality of these vectors is an additional problem. Second, the separation of the eigenvalues which determines the rate of convergence of iterative solvers becomes increasingly poor as the matrix size increases. Preconditioning techniques attempt to alleviate this problem. Finally, for every eigenvalue problem to be solved, very good initial eigenvector estimates are available from the previous SCF iteration. An iterative method should be able to use this information.

The Davidson method is a popular preconditioning variant of the Lanczos iteration [11, 25]. In its original form it used only diagonal (Jacobi) preconditioning, and some general purpose Davidson codes are available [28]. In this application, a code based on the preconditioned Lanczos (generalized Davidson [23]) has been developed. This code addresses the problems mentioned above, and it is has been favored over other Lanczos codes mainly for its preconditioning flexibility and the exploitation of initial guesses. Moreover, effective Lanczos codes are used without restarting. Besides the significant storage requirements in these cases, maintaining orthogonality, or detecting spurious eigenvalues may be very expensive [24, 9]. The algorithm is sketched below for the case where the smallest eigenvalue of a matrix A is computed. The basis size is limited to m vectors, and at each step a preconditioner $M_{(j)}$ is applied. MGS denotes the modified Gram-Schmidt procedure.
Algorithm 3.1. Preconditioned Lanczos

0. Choose an initial unit vector v_1.
1. Until convergence Do:
 2. Set $V_1 = [v_1]$.
 3. For $j = 1, \ldots, m$ Do:
 4. Compute $w := A v_j$.
 5. Compute $V_{(j)}^T w$, the last column of $H_{(j)} := V_{(j)}^T A V_{(j)}$.
 6. Compute the smallest eigenpair λ, y of $H_{(j)}$.
 7. Compute $u := V_{(j)} y$ and $r := A u - \lambda u$.
 8. Test $\|r\|$ for convergence. If satisfied Return.
 9. If $j < m$ compute $t := M_{(j)}^{-1} r$
 and $V_{(j+1)} := MGS([V_{(j)}, t])$.
 10. Enddo
 11. Set $v_1 := u$ and restart.
 12. Enddo

To compute the residual r in line 7, without an additional matrix-vector product operation, the vectors $w_j = A v_j$ are saved in $V_{(j)}$ along with the basis vectors $V_{(j)}$. It is then possible to compute r as $r := W_{(j)} y - \lambda u$.

As the number of required eigenvectors increases, the number of basis vectors m should also increase. The targeted applications of the method involve about a thousand eigenpairs. For these applications, the storage demands of both V and W arrays are very large. Disk storage is a rather expensive alternative since the basis vectors are needed in several steps of the algorithm. Another problem with large basis sizes is the solution of the Rayleigh-Ritz problem in step 6. We need to solve dense matrix eigenvalue problems of size, say, 1000, at every step.

The solution provided in the current program is implicit deflation. Every time an eigenvector converges, it is locked out of the current basis and all basis vectors are orthogonalized against it. Therefore eigenvectors are not altered after they are locked out. Notice that the work space required for the basis and the K eigenvectors sought can be viewed as:

Converged eigenvectors $\underline{w}_1, \ldots, \underline{w}_k$, Basis vectors $\underline{v}_1, \ldots, \underline{v}_m$, for $k < K$, and a user defined m.

The benefits are twofold. First, the Rayleigh-Ritz problem grows only up to the user defined size m. Second, since only v_i contribute to the small problem, only w_i, $i = 1, \ldots, m$ need to be stored. Therefore, the storage requirements of the method reduce from $O(2K)$ to $O(2m + K)$, and the small problem is much easier to solve.

There are some considerations with using this deflation scheme. The first involves the choice of a proper convergence test, and the second the choice of the targeting vector, i.e., which approximation to improve in the next step. Deciding on convergence of some eigenvector can be misleading, since a poorly converged locked eigenvector (e.g., u_1) may hinder convergence to the following
eigenvectors (e.g., \(u_2, \ldots \)). On the other hand, extreme eigenvector accuracy is wasteful since low levels of accuracy are often adequate in the SCF iteration. In our approach a heuristic is used in which the required accuracy is decreased as more eigenvectors inside the spectrum converge. In case of a few tens of eigenvalues, the convergence criterion for the residual of each eigenpair \(i = 1, \ldots, K \) is \(\| \text{res}_i \|_2^2 < \epsilon \), while in case of hundreds of eigenvalues, the criterion used is \(\| \text{res}_i \|_2 (K - i + 1) < \epsilon \). This usually eases convergence of inner eigenpairs and also saves considerable time.

The issue of targeting is handled by the use of a window of possible targets from the set of basis vectors. The window size is \(p < m \), and depending on a user option, up to \(p \) eigenvectors can be targeted simultaneously (block Davidson [22]). The robustness of the code is enhanced by carefully selecting and locking the converged eigenpairs from the targeted ones. This scheme significantly reduces the possibility of “missing” an eigenpair.

Finally, orthogonalization is a very expensive part of the code since it involves all converged and basis vectors. Nonetheless, it is a crucial one. Solutions cannot be obtained if the basis vectors loose their mutual orthogonality. For that purpose, a reorthogonalization procedure has been employed similar to the one proposed in [10]. Whenever the norm of a vector is reduced below a threshold during the orthogonalization, the procedure is repeated. The procedure is cheaper than full reorthogonalization, yet provides adequate accuracy. Currently, we are looking at alternative ways to avoid or reduce orthogonalization constraints imposed by this problem.

3.3 Preconditioning

As the size of the Hamiltonian grows, the relative separation of the eigenvalues becomes smaller, causing slow convergence of the Lanczos process. Although the lowest eigenvalues remain roughly the same with finer discretization, the larger ones are less affected by the local and non-local potentials and are therefore governed by the largest eigenvalues of the Laplacian. One strategy is to focus on this part of the Hamiltonian.

In the earlier plane-wave version of the code, subspace iteration with Jacobi preconditioning was used [32]. This worked well because of the diagonal form of the Laplacian in Fourier space. In real space, the Laplacian consists of a number of diagonals and Jacobi preconditioning is not effective. An idea would be to solve only the Laplacian in Fourier space. This can be performed very efficiently with fast Poisson solvers for \((\nabla^2 - \sigma I)x = f \). However, it is not clear how efficient it will be for eigenvalues well inside the spectrum. Also, FFT transforms of two vectors are needed at each step adding on the expense of the preconditioned Lanczos.

One preConditioner used in our approach is based on a filtering idea and the fact that the Laplacian is an elliptic operator [31]. The eigenvectors corresponding to the few lowest eigenvalues of \(\nabla^2 \) are smooth functions. Physically, the wavefunctions corresponding to the lowest occupied states are smoothly varying functions. When an approximate eigenvector is known at the points of the grid,
a smoother eigenvector, and therefore a better approximation, can be obtained
by averaging the value at every point with the values of its neighboring points.
Assuming a \((x, y, z)\) coordinate system, the low frequency filter acting on the
value at the point \((i, j, k)\), which corresponds to one element of the eigenvector,
is described by:

\[
V_{i,j,k} := \frac{V_{i-1,j,k} + V_{i,j-1,k} + V_{i,j,k-1} + V_{i+1,j,k} + V_{i,j,k+1} + V_{i,j,k+1}}{12} + \frac{V_{i,j,k}}{2}
\]

This preconditioning has provided significant improvements on the iteration
count of preconditioned Lanczos. However, this is only true for the lowest few
(few tens) eigenvalues. Eigenvectors associated with higher eigenvalues may
not benefit as much from the above filter, possibly due to the lower degree of
smoothness of the associated eigenfunction. In case of hundreds or thousands
of eigenpairs, new preconditioners should be devised that extend the above idea
of filtering. A major weakness of current eigenvalue solvers is that they do not
address the issue of preconditioning for eigenvalues that are well inside the spec-
trum. Direct solution techniques are the only known means of preconditioning
which work well in this situation. However they are excessively costly. Despite
the above, preconditioner (3.1) has been used successfully with very large calcula-
tions, where 800 eigenpairs are required. In these calculations, an average of
30 matrix-vector multiplications per eigenpair sought is observed.

4 Parallel Implementations

To study real systems with thousands of atoms it is vital to be able to re-
duce the execution time by several orders of magnitude. As is often the case
in such calculations, a combination of efficient algorithms and powerful com-
puting platforms can provide gains in time that can help solve problems that
would otherwise be practically infeasible. Finite difference techniques provided
one order of magnitude improvement over of plane-wave techniques. The choice
of better preconditioners and eigenvalue codes might provide a significant addi-
tional factor. These improvements must be realized with parallel computing in
mind. There are few limits in the gains that can be achieved through parallel
processing, safe for the need to use appropriate algorithms.

4.1 Parallel environment and models

The parallel implementation of the current application uses the PVM com-
munication library [14, 29]. The parallel environment used for the development
is a cluster of four Silicon Graphics Power Challenge workstations, each with
four processing elements, interconnected through HiPP1 and Fiber channels. A
cluster of eight IBM 590 workstations, interconnected through an A.T.M. An
IBM SP-2 multiprocessor with 10 processors will soon be incorporated as well.
The architecture of the SGI symmetric multiprocessors encourages the use of
a hierarchical programming model with shared memory paradigm among intra-
node processing elements and message passing among inter-node workstations.
Although the program is based on PVM and the message passing paradigm, directives and compiler optimizations can easily be performed so that each workstation runs with one process but uses multithreading to parallelize each loop, as in shared memory machines.

The master-slave model is followed for the SCF procedure. The master performs most of the preprocessing, computing of scalar values, and receiving the new potential at each SCF iteration. The master is also responsible for applying the mixing scheme on the potentials. The slaves are assigned all the computationally intensive work: solving for the eigenvalues and eigenvectors, updating the charge density, and solving the Poisson equation for the Hartree potential.

4.2 Problem Mapping

The problem is mapped onto the processors in a data parallel way. The rows of the Hamiltonian (and therefore the rows of the eigenvectors and potential vectors) are assigned on different processors, according to a partitioning of the physical domain. The subdomains are naturally chosen as sub-cubes or slabs of
the domain as illustrated in Figure 4.1. The program only requires a function
P(i,j,k) that returns the processor number where point (i,j,k) resides. Arbitrary partitionings are thus possible, although it is not clear whether other ones
that the matrix is not actually stored, an explicit reordering can be considered so that the nodes of a processor are numbered consecutively. Under this conceptually easier scheme, only a list of pointers is needed that denote where the rows of each processor start. The non-local part of the matrix, which is a sum of rank-one updates, is mapped in a similar way. For each atom, and for each pair of quantum numbers, the vector
of the rank-one update is partitioned according to the rows it contributes to.

With this mapping, the storage requirements of the program are completely
distributed and large problems can be solved on the aforementioned SGI cluster.

4.3 Parallel Preconditioned Lanczos

In the preconditioned Lanczos algorithm, the basis vectors V, and the auxiliary vectors W follow the same distribution as the eigenvectors. Thus, all vector
updates (saxpy operations) can be performed in parallel, and all reduction operations (e.g., sdot operations) require a global reduction (e.g., global sum) of the partial results on each processor.

The matrix-vector multiply is performed in three steps. First, the contributions of the diagonals (potentials and the Laplacian diagonal) is computed in parallel on all processors. Second, the contribution of the Laplacian is considered on the rows of each processor. As in the sequential code, this is performed by using the stencil information. However, some of the neighbors of the local subdomain may reside on different processors, and communication is necessary. For this reason, a special preprocessing phase has been implemented, which is a special case of the PSPARSLIB library [26]. During the setup of the non-local information by the master, the slaves locate which of their rows are needed in the stencils of other processors. Data structures are built for all the information that needs to be communicated among the appropriate processors. In the second step of matrix-vector multiplication, this information is exchanged among the processors and the stencil multiplication can proceed completely in parallel. Since, only nearest neighbor communication is required, this technique is considerably more efficient than globally collecting the whole vector on all processors. In the third step, each of the rank-one updates of the non-local components is computed as a distributed dot product. All local dot products are first computed before a global summation of their values takes place. Thus, matrix-vector multiplication requires two communication/synchronization points. Notice that solving (2.5) for the Hartree potential with Conjugate Gradient, also requires a matrix-vector multiplication with the stencil. The procedure is equivalent to the second step above.

Orthogonalization is a very expensive phase of the preconditioned Lanczos, and as the number of required eigenvectors increases, it is bound to be the dominant one. Although reorthogonalization recovers the numerical accuracy of the Gram-Schmidt procedure, its nature is sequential and induces several
synchronization points. In the current application, global summations of the dot-products have been delayed so that only one synchronization is needed for their computation. Also, easily obtained estimations of the vector norms are used to perform the reorthogonalization test. As a result the procedure has only two synchronization points and it is quite efficient. We are currently working on an orthogonalization procedure which is based only on BLAS-3 routines, and it also involves only two synchronization points.

Finally, the preconditioning used is still the averaging scheme over the neighbors. However, the use of the stencil requires the same communication pattern as in matrix-vector multiplication. Experiments have shown that if the averaging is limited on the local rows on each processor, the number of Lanczos iterations does not increase considerably, but the total execution time may be reduced. Future, directions include a domain decomposition preconditioner based on the physical partitioning of the domain.

5 Beyond Eigenvalue Computations

One of the biggest challenges in electronic structure calculations is in molecular dynamics. What is sought is the ground state corresponding to the minimum energy level, among all possible topological structures of the cluster.

The typical approach in this context uses simulated annealing [18]. The goal is to find a ‘steady-state’ distribution, meaning, for p particles, find locations R_1, \ldots, R_p to minimize the total energy $E(R_1, R_2, \ldots, R_p)$ of the system. This is done by solving an artificial time-dependent problem of the form [7],

$$m \frac{d\mathbf{v}}{dt} = F + \gamma \mathbf{v} + G(t, T)$$

In the above equation, \mathbf{v} is the velocity of the given particle, F is the force acting on it, and γ is some damping (viscosity) coefficient. The additional term G, a variable of time t and temperature T, is a random force that is added to the system essentially to prevent converging to a local minimum. The forces F are easily obtained from the energies by differentiation, and explicit formulas are available for this. Thus, the system is started from some initial configuration, and then time-stepped using the forces obtained from previous step and a simple randomization scheme. This is repeated until the energy stabilizes. An illustration is shown in Figure 5.1.

It is important to realize that the number of steps required to reach this ground state can be very large, potentially in the order of tens of thousands. Each of these steps itself requires a full-blown self-consistent calculation, i.e., a few iterations each requiring the calculation of possibly hundreds or thousands of eigenvalues. This constitutes a real computational challenge. The core of the calculation resides in the computation of a large number of eigenvectors which is the main source of difficulty. Indeed, most known numerical methods for large eigenvalue problems are efficient in computing a small number of the smallest (or largest) eigenvalues. When this number is an important fraction of the size
Figure 5.1: Time-stepping in a molecular dynamics simulation

\[P = VV^H \]

is a projector, and the charge density at a given point \(r_i \) in space is the \(i \)-th diagonal element of \(P \). A number of techniques have been developed based on this observation [1, 21, 30]. In the following we will only sketch the main ideas for the purpose of illustrating possible new linear algebra problems of interest.

In the so-called Order-\(n \) methods, an approximation to the projector \(P \) in (5.1) is constructed without knowledge of eigenvectors. Denote by \(p_{ij} \) the coefficients of the matrix \(P \). A number of properties are exploited for this purpose. First,
are the following two relations:
\[
\text{tr}[P] = \sum_i p_{ii} = \text{particle number}
\]
\[
\text{tr}[PH] = \sum_{i,j} p_{ij}H_{ji} = \text{system energy}.
\]

The first relation is a consequence of the fact that each \(p_{ii} \) represents the charge density at point \(r_i \) as was mentioned above. The second is a consequence of the fact that \(PH = PHP \) is the restriction of \(H \) to the invariant subspace associated with eigenvalues corresponding to the occupied states. The trace of \(PH \) is therefore the sum of these eigenvalues, which is the total energy of the system.

Another important property that is exploited is the physical fact that \(P \) decays away from the main diagonal. Hence the idea to try to find a \(P \) whose trace is fixed and which minimizes the trace of \(PH \). The trace constraint can be avoided by shifting \(H \)
\[
\text{tr}[P(H - \mu I)] = \text{tr}[PH] - \mu N_e,
\]
where \(N_e \) is the particle number.

The above optimization problem is not yet well posed since without constraints on \(P \) the minimum can be arbitrarily negative or small. The missing constraint is to force \(P \) to be a projector. As it turns out, this can be achieved by forcing its eigenvalues to be between zero and one [21]. The minimization will yield a matrix \(P \) which has eigenvalues equal to either one or zero, thus satisfying the desired idempotent constraint automatically.

One strategy that has been used in [21] for this purpose is to seek \(P \) in the form
\[
P = 3S^2 - 2S^3
\]
If the eigenvalues of \(S \) are in the range \([-0.5, 1.5]\) this transformation will map them into \([0,1]\). The procedure then is to seek a banded \(S \) that minimizes
\[
\text{tr}[(3S^2 - 2S^3)(H - \mu I)]
\]
using descent type algorithms. The gradient of the above function is computable.

The drawback of this approach is its lack of accuracy. The minimization is also not well understood. In addition, the band required for \(S \) may not be so small for certain systems. Nevertheless, it is interesting to note that explicit eigenvalue calculations are avoided. Some global approximation of the invariant subspace associated with these eigenvalues is extracted, meaning that a global approximation to the set of eigenfunctions is computed via the approximation to the projector \(P \).

6 Conclusion

There are several challenges arising in the electronic structure problem. Among the current issues, are to find algorithms for computing large numbers of eigenvectors, specifically methods for preconditioning. The methods currently in use
are expensive when the number of eigenvalues is very large. Beyond these issues, there is a potential to make orders of magnitude improvements in standard electronic calculations by combining three ingredients: (1) efficient matrix methods; (2) better solution to the underlying optimization problem; and (3) parallel processing.

REFERENCES

29. A. Statthopoulos and A. Ynnerman and C. F. Fischer, A PVM implementation of the MCHF atomic structure package, *The International Journal*

