Dynamic Load Balancing of an Iterative Eigensolver on
Grids of Heterogeneous Clusters -

James R. McCombs
Department of Computer
Science
College of William and Mary
Williamsburg, Virginia
23187-8795

mccomb jr@cs.wm.edu

ABSTRACT

Clusters of homogeneous workstations built around fast net-
works have become popular and cost effective means of solv-
ing scientific problems. Users commonly have access to sev-
eral such clusters, either within the same or in different com-
putational environments. Harnessing the collective power of
these clusters to solve a single, challenging problem is highly
desirable, and the focus of much recent Grid research. How-
ever, huge network latencies, heterogeneity of different clus-
ters and resource sharing impede the efficient utilization of
Grids except by some naturally parallel applications. It is
our thesis that the complexity of these environments requires
commensurate advances in parallel algorithm design and in
the interaction of the algorithms with the runtime system.

We support this thesis by first illustrating the use of an
application-level load balancing technique that applies to a
wide class of iterative methods. The key characteristic of
this class is that each processor can vary the amount of
work it performs during the iteration without detriment to
the end result. Dynamic load balancing is achieved at each
iteration by stopping each processor after a fixed amount
of time. We develop a library of functions that facilitate
the implementation of the load balancing features on any
method in the class. Second, we introduce multigrain, a
novel algorithmic technique that induces coarse granular-
ity to parallel iterative methods by modifying appropriately
their preconditioning phase. Multigrain allows traditionally

*Work supported by the National Science Foundation
(ITR/ACS-0082094 and ITR/AP-0112727), a DOE compu-
tational sciences graduate fellowship, a grant from the Vir-
ginia Space Grant Consortium, and performed using compu-
tational facilities at the College of William and Mary which
were enabled by grants from the National Science Founda-
tion (}§IA—9977030) and Sun Microsystems (SAR EDU(0-
03-793).

Richard Tran Mills
Department of Computer
Science
College of William and Mary
Williamsburg, Virginia
23187-8795

rtm@cs.wm.edu

Andreas Stathopoulos
Department of Computer
Science
College of William and Mary
Williamsburg, Virginia
23187-8795

andreas@cs.wm.edu

highly synchronous iterative methods to tolerate the large
communication latencies in Grids, and it also enables the
use of the application-level load balancing library. We im-
plement both algorithmic techniques on the popular Jacobi-
Davidson eigenvalue iterative solver. Our experiments on
a Grid-like environment show the effective use of the het-
erogeneous resources, something that cannot be achieved by
traditional implementations of the method.

1. INTRODUCTION

The power and low-cost of todays workstations and the
introduction of inexpensive high-speed networking media
have made clusters of workstations (COWSs) a cost-effective
means of parallel processing for an increasing number of high
performance scientific applications. Massively parallel pro-
cessors (MPPs) are based on the same design philosophy,
targeting a higher performance albeit at a higher cost. The
emergence of Grids promises to deliver this higher perfor-
mance to a large number of applications by enabling the col-
lective use of various existing computational environments
[15, 19].

Unlike MPPs and most COWs, Grid environments are usu-
ally heterogeneous, consisting of several COWs of relatively
homogeneous processors. This heterogeneity arises natu-
rally in realistic situations. For example, different COWs
may be purchased for specific applications or tasks. It is
also common that hardware upgrades occur in stages, re-
placing only specific COWs, or subsets of them. In other
cases, the Grid is simply a network of loosely coupled work-
stations. Finally, even when such an environment is not
locally available, the user often has access to some geo-
graphically dispersed, heterogeneous COWs. The challenge
is twofold. First, provide an easy, integrative way for users
to access these environments, which has been the focus of
much Grid research recently [14, 17, 36]. Second, devise
methods that can harness effectively the power of these en-
vironments. This second challenge has received little atten-
tion in the literature and it is the focus of our research.

Iterative methods are a critical part of many scientific and
engineering applications. As theoretical and technological
advances allow scientists to tackle increasingly larger prob-
lems, the performance and robustness of iterative methods
becomes of central importance in high performance scientific

computing. In this paper, we focus on iterative methods for
the numerical solution of large, sparse, eigenvalue problems,
although much of our discussion applies to a wider class of
iterative methods. To improve convergence rate and robust-
ness, eigenvalue iterative methods typically use a precondi-
tioning technique [12; 30]. Parallel computing is the other
main way of improving execution time and solvable problem
size of these applications. However, achieving high perfor-
mance with iterative methods can be challenging on todays
computational platforms.

Traditionally, iterative methods have been implemented on
MPPs [10, 30] and COWs in a fine grain way. Every itera-
tion requires a matrix-vector multiplication, an application
of the preconditioner operator, and several inner products.
Inner products require a global reduction, an operation that
does not scale with the number of processors. But more im-
portantly, communication overheads have not kept up with
the explosive growth of bandwidth in recent networks. In
case of large number of processors in MPPs or high overhead
interconnection networks in COWSs, such costs can limit the
scalability of the application [23, 33, 35]. In a Grid envi-
ronment, the significantly higher overheads can completely
incapacitate these methods. Block iterative methods and
preconditioners with higher degree of parallelism, such as
domain decomposition, are often employed to increase gran-
ularity and thus scalability [10]. However, the granularity
of these methods is still too fine to be useful on Grids.

Beyond issues that relate to the communication primitives
of the algorithm and the underlying network, scalability,
and often usability, is inhibited by the resource imbalances
on heterogeneous and/or distributed shared environments.
Most parallel implementations of iterative methods assume
homogeneous parallel processors. Even when such imple-
mentations scale well within a cluster, there may be little
gain in speedup and possibly a performance degradation if
heterogeneous clusters are linked together. Powerful load
balancing techniques such as master-worker, and pool of
tasks [13] are not applicable in the context of iterative meth-
ods. A common approach is to partition the data according
to the relative speeds of the processors, either statically [18,
20] or during execution with expensive repartitioning pack-
ages [9, 21]. However, this approach is not effective in the
presence of dynamic external load on some of the COWs.
On the other hand, scheduling parallel programs on shared
environments is also intrinsically difficult, because the sys-
tem cannot predict the variable requirements of programs
[11].

We maintain that the complexity of these environments gives
rise to problems that cannot be addressed solely through
hardware and operating systems advances. New levels of
sophistication are required in parallel algorithm design and
in the interaction of the algorithms with the runtime system.
Current research has focused either on middleware between
the application and the system [6, 7, 1, 22], or on perfor-
mance monitoring and prediction libraries such as NWS [36]
and PAPI [4, 5]. However, besides some preliminary work in
AppLeS [3], no attention has been given on how to use this
system information to dynamically change the algorithm for
better resource utilization.

In [34], we described a unique parallelization approach that
is designed to tolerate high network latencies by combining
both coarse and fine grain in a block Jacobi-Davidson eigen-
value solver. Each processor gathers a different vector from
the block on which it applies the preconditioning step inde-
pendently, thus improving granularity and scalability. The
underlying assumption is that individual nodes in a COW
have access to the whole matrix A. This is often the case be-
cause of increasing memory sizes, and also because many ap-
plications compute the matrix-vector multiplication on the
fly. In [24], we modified this coarse-grain code to be able
to adapt to external CPU and memory load. The first key
idea is to allow each node to perform its local precondition-
ing to different accuracy, stopping after a fixed amount of
time, and thus achieving ideal load balance. The second key
idea tries to reclaim CPU cycles lost to memory thrashing
caused by competing jobs, by receding the preconditioning
phase on a node when memory thrashing is detected. The
scope of both [34] and [24] is limited to a small number of
processors, but the positive experimental results show the
huge potential of a broader approach.

In this paper, we extend the scope of our previous research
to environments of heterogeneous clusters of homogeneous
processors. First, we identify a model for a wide class of
iterative methods that can self adapt to achieve resource
balancing. Our previous coarse grain modifications allow
the Jaobi-Davidson method to be described in this model.
Similar modifications could broaden the range of methods
that can be described in the model. Therefore, we extend
the coarse grain idea to the notion of multigrain, where
an arbitrary number of processors can be split into groups,
each group performing a different preconditioning operation.
This can alleviate the effects of global synchronization, but
more interestingly, it can tolerate high inter-cluster laten-
cies in Grids, if each cluster is represented by a group. To
facilitate the porting of the dynamic load/memory balanc-
ing capabilities to any method in this class, we also develop
a C library. Finally, we describe how the combination of
multigrain and application-level load balancing provides the
empowering mechanism for effective use of Grids, within the
same local area network, in geographically different loca-
tions, or with a combination of both. Our experiments on a
collection of heterogeneous COWs yield time improvements
that cannot be obtained otherwise.

2. LOAD BALANCING FOR A CLASS OF
ITERATIVE METHODS

A common algorithmic paradigm for parallel programs is
that of synchronous iteration, in which processors perform
local work to complete an iteration of a loop, and then syn-
chronize before proceeding to the next iteration. The follow-
ing illustrates synchronous iteration on a single instruction,
multiple data computer:

while (target state has not been reached) {
body (my_rank) ;

‘ Synchronous interaction(s) ‘

We are interested in a very specific but important case of
synchronous iteration: one in which the amount of work
completed by each processor during an execution of the body
may be varied arbitrarily without detriment to the end re-
sult. With smaller amount of work per iteration, the target
can still be reached only with more iterations. We decom-
pose algorithms in this category into two phases: 1) A con-
trol phase, during which synchronous interactions update
global knowledge of the current state, allowing each pro-
cessor to make better decisions later. 2) A flexible phase,
during which local execution of the body occurs. It is “fex-
ible” insofar as each processor can vary the amount of work
that it does during this phase. We designate this type of
parallelism flezible phase iteration.

Although it is very specific, several important algorithms
used in the sciences and engineering fit this model. One class
of such algorithms includes stochastic search optimizers such
as genetic algorithms and simulated annealing. In their syn-
chronous formulations, processors independently perturb an
initial set of configurations to search for more optimal ones.
After a certain number of successes are obtained by each pro-
cessor, they synchronize to decide upon new configurations,
and then continue their search. Because synchronization
could occur before each processor has had a certain num-
ber of successes, the search phase is a flexible phase. The
decision phase is the control phase.

Another important class of algorithms that are amenable
to a flexible phase iteration structure are Krylov-like itera-
tive methods [30]. These methods are widely employed to
solve systems of linear equations, eigenvalue problems, and
even non-linear systems. Their main iteration involves vec-
tor updates and synchronous dot-products, which allow for
little flexibility. However, flexibility can be introduced with
preconditioning. At each outer (Krylov) iteration, precon-
ditioning improves the current solution of the method by
finding an approximate solution to a correction equation.
Flexible variants of Krylov methods can solve this equation
iteratively [29]. In parallel implementations, this allows dif-
ferent processors to apply different number of iterations on
their local portions of the correction equation [26]. Thus,
the preconditioning step is a flexible phase, and the outer
iteration, where the processors update their corrections, is a
control phase. In this paper, we demonstrate an alternative,
multigrain approach for introducing more flexibility during
the preconditioning phase of a Krylov method.

Since each processor need not do the same amount of work
as its peers, perfect load balancing can be achieved during
the flexible phase: If all processors are limited to the same
time T for an execution of the flexible phase, any differences
in the speed of the processors—even due to changes in the
external load—cannot cause load imbalance.

3. THE COARSE GRAIN JACOBI-DAVIDSON
METHOD

Many applications involve the solution of the eigenvalue
problem, Ax; = \;X; for the extreme (largest or smallest)
eigenvalues, i, and eigenvectors, X;, of a large, sparse, sym-
metric matrix A. One such method that has attracted atten-
tion in recent years is the Jacobi-Davidson (JD) method [32,

31]. This method constructs an orthonormal basis of vectors
V that span a subspace K from which the approximate Ritz
values, \;, and Ritz vectors x; are computed at each itera-
tion. These approximations and the residual r; = Ax; — Ax;
are then used to solve the correction equation:

(I —xix]) (A = NI)(I — xix])ei =13, 1

for the vector ¢;, an approximation to the error in x;. These
vectors are then used to extend the basis V. Below we show
a block variant of JD that extends V by computing k cor-
rection vectors at each iteration.

Algorithm: Block JD

starting with k trial vectors ¢;

‘While not converged do:

Orthogonalize €;, 4 =1 : k. Add them to V'
Matrix-vector W; = AV;, i=1:k

H =VTW (local contributions)
Global_Sum(H) over all processor.

Solve Hy; = A\;yi, @ = 1: k (all procs)

x; = Vyi, z2; = Wyi,i =1: k (local rows)
r; =z; — \iX;, t = 1:k (local rows)

. Correction equation Solve eq. (1) for each ¢;
end while

e I e ol e

During the projection phase (steps 1-7), the block algo-
rithm finds the k smallest Ritz eigenpairs and their residu-
als. During the correction phase, k different equations (1)
are solved approximately for ¢;, usually by employing an
iterative solver for linear systems such as BCGSTAB or GM-
RES [30].

Block methods improve robustness for difficult eigenprob-
lems where the sought eigenvalues occur in multiplicities or
are clustered (very close) together [25]. In general, the total
number of outer JD iterations reduce with larger block sizes,
but the total number of matix-vector operations increase [16,
28, 34]. However, larger blocks introduce repetitive patterns
of computation yielding better cache efficiency, and better
computation to communication ratio (coarser granularity)
in parallel programs.

The above block JD method is given in a data parallel (fine
grain) form. The rows of each of the vectors x;, r;, z;, and ¢;
as well as of the matrices A, V', and W are partitioned evenly
among the processors. Thus, vector updates require no com-
munication, while dot products require a global reduction.
Matrix-vector multiplications with A are performed in par-
allel by user-provided subroutines. Fine grain implementa-
tions can scale well when synchronization during global re-
ductions is performed efficiently. However, in many COWs;
scalability is impaired by high overheads, despite the some-
times high bandwidth of the network.

For high latency/overhead environments, it is possible to
modify the JD algorithm to introduce coarser granularity.
The basic assumption is that the memory capacity of each
compute node is large enough to store A in its entirety.
This is a reasonable assumption because the matrices are
large (of dimension 10° to 10°) but sparse, or they are not
stored explicitly but represented by a function that applies
the matrix-vector multiply. Under this assumption, we have

developed a hybrid coarse-grain implementation, which we
call JDcg [34]. The method attempts to improve upon the
performance of the fine grain implementation by eliminat-
ing communication between processors during the correction
phase. We do this by requiring the number of processors to
be equal to the block size and having each processor solve a
distinct correction equation independently of the other pro-
Cessors.

Steps 1-7 of the algorithm are performed as before in a data
parallel manner involving all the processors. However, just
before the start of the correction phase, each processor gath-
ers all the rows of one of the block vectors via an all-to-all
operation. Each processor then solves its respective cor-
rection equation independently with BCGSTAB. The coarse-
grain version of step 8 is summarized as follows:

8. Coarse grain correction equation
All-to-all: send local pieces of x;,r; to proc i,
receive a piece for Xpmyid, 'myia from proc ¢
Apply m steps of (preconditioned) BCGSTAB on
eq. (1) with the gathered Xmyid, Pmyid
All-to-all: send the i-th piece of €544 to proc ¢,
receive a piece for ¢; from proc ¢

The parallel speedup of JDcg can be improved arbitrarily by
increasing the number of BCGSTAB iterations (m). However,
the total number of matrix-vector multiplications increases
if m is chosen too large. Fortunately, large values for m are
often necessary to solve numerically difficult eigenproblems.
In our previous work [34], we have demonstrated the effec-
tiveness of JDcg in hiding the communication latencies of
slow networks.

4. LOADBALANCING JDcg THROUGHAL-
GORITHMIC MODIFICATIONS

JDcg fits the flexible-phase iteration model: The corrections
€; need not be computed to the same accuracy, so the cor-
rection phase is flexible. The highly-synchronous projection
phase is the control phase. Thus we can load-balance JDcg
by restricting each processor to a fixed time T in the cor-
rection phase. Even though imbalances will persist during
the brief projection phase, this virtually eliminates overall
load imbalance, because the correction phase dominates the
execution time. Also, some vectors ¢; may be computed to
lower accuracy, but this only increases the number of outer
iterations and often decreases the amount of total work.

To determine an appropriate T, we follow the commonly
used guideline that BCGSTAB be iterated to a convergence
threshold of 27%¢" where iter is the number of outer itera-
tions [12]. Using classical convergence bounds for Conjugate
Gradient [30], we determine heuristically an “optimal” num-
ber of iterations m that corresponds to the 27" threshold.
To avoid hurting convergence by too large an m, we set a
maximum bound maxits for m. T is then the time required
by the fastest processor to complete m BCGSTAB steps. The
algorithm for the load-balanced correction phase proceeds
as follows:

Load-balanced correction phase of JDcg

1. In the first JDcg iteration, do no load balancing. Each
processor performs maxits BCGSTAB iterations, calcu-
lates the rate at which it performed them, and com-
municates its rate to all other processors.

2. In subsequent JDcg iterations, use the rate measured
in the previous iteration to rank the processors from
fastest to slowest. In the all-to-all communication of
step 8 of JDcg, faster processors gather the extremem-
ost eigenpairs and residuals ensuring numerical progress.

3. Use the highest rate to determine 7', and then iterate
on the correction equation for this time.

In previous work [24], we obtained good results with this
scheme in the presence of external loads introduced by se-
quential jobs. Here, we show that our load balanced JDcg
adapts well even against parallel jobs, and especially jobs
that are themselves dynamically load balanced. In particu-
lar, we present experiments in which JDcg jobs compete with
each other for processors. The experiments are run on nine
Sun Ultra-5 Model 333 machines with 256 MB of RAM, con-
nected via switched Fast Ethernet. Three 4-processor JDcg
jobs execute simultaneously, seeking the lowest eigenvalue
of NASASRB!, with m = 150 and m.uT(20,0) used as the
preconditioner. The table below shows the overlap of the
jobs on the nodes:

Job# Node ids used by each job |
1 1 2 3 4
2 3 4 5 6
3 4 7 8 9

To quantify the load imbalance during execution, we have in-
strumented all MPI communication functions used by JDcg,
to time-stamp their beginning and end. Because these func-
tions are synchronous, we can calculate the imbalance on
a node as the time each communication took to complete
minus the minimum time the same one took to complete on
any of the processors. By summing these imbalances over
all communications and processors, we obtain an aggregate
of all wasted CPU cycles. Dividing by the sum of wall-clock
times over all processors yields the percentage of time wasted
due to load imbalance.

Table 1 summarizes the experimental results. Note that we
expect node 3 to run its two jobs twice as slowly as node
1, and node 4 to run its three jobs 3 times as slowly. Con-
sidering that the non-load balanced code is limited by the
speed of the slowest node, and that running the code on
four otherwise unencumbered nodes takes 1530 seconds, the
timings for the non-load balanced code in table 1 are in
line with our expectations. The observed load imbalance is
around 50%, close to the theoretically expected values. The
load balanced code fares much better, displaying dramati-
cally lower runtimes and load imbalance of around only 5
or 6%. Due to the non-work conserving nature of the JD
algorithm, the load balanced code decreases the number of
matvecs, actually speeding even algorithmic convergence.

lavailable from URL: http://math.nist.gov/MatrixMarket

Without load balancing
Job id | Time | Mvecs | %Imbal
1 4515 | 9571 50.2
2 4448 | 9571 49.8
3 4292 | 9571 49.2
With load balancing
Job id | Time | Mvecs | %Imbal
1 1848 | 7335 4.6
2 1896 | 7625 5.8
3 1852 | 8843 6.4

Table 1: Performance when running three 4 processor
JDcg jobs on nine compute nodes, with some competi-
tion for nodes. “Time” denotes wall-clock time in sec-
onds, “Mvecs” the total number of matrix-vector prod-
ucts computed, and “%Imbal” the percentage of time
wasted by all processors of a job due to load imbalance.

In addition to CPU balancing, the correction phase also
presents an opportunity for balancing memory load. When
the memory requirements of JDcg and any external jobs far
exceed the available memory, a significant number of CPU
cycles are wasted as the system swaps pages to/from disk.
Receding JDcg during the correction phase allows the com-
peting job to use 100% of the CPU and memory resources,
hopefully speeding its completion and hence relinquishment
of resources. We have demonstrated the viability of this
approach in previous work [24].

5. AGENERAL,USER-LEVEL, LOAD BAL-
ANCING LIBRARY

To facilitate general use of our load balancing strategy, we
have written an object-based C library, LBLIB, that hides
much of the required bookkeeping from the application pro-
grammer. The library is simple to use and provides support
for both CPU and memory balancing.

To simplify data management and provide information hid-
ing, data required for resource balancing are stored in a vari-
able of the defined type LBS. An application programmer can
access the data within an LBS structure through LBLIB func-
tions. Data encapsulation is ensured by appropriate use of
void * pointers in the internal implementation. A unique
LBS structure is explicitly associated with a group of pro-
cessors, and implicitly with a particular flexible section that
these processors must load balance. A description of the
basic functionality of the CPU balancing support follows:

LBS 1bnew_1lbstruct(MPI_Comm communicator)

This is the LBS constructor function, where communicator
is the MPI communicator with which the LBS is to be asso-
ciated. Note that a node of an MPI job could participate in
the load balancing of nested, but different, flexible sections.

void 1lb_section_start(LBS 1bs)

double 1b_section_end(LBS 1lbs, double ops_completed)
These functions designate the beginning and end of the flex-
ible section associated with the 1bs structure, that is to be
load balanced. 1b_section_start() begins timing the ex-
ecution of the section and, if memory balancing is used, it
also begins tracking the amount of page swapping and CPU

idling. Once all operations within the flexible section are
completed, 1b_section_end() stops the timing and calcu-
lates the rate at which the local processor performed oper-
ations since 1b_section_start(). This rate is returned by
the function for convenience, though it is also stored in the
1bs. ops_completed is the number of operations that were
completed during the flexible section. It is up to the appli-
cation programmer to decide on a suitable way of counting
the number of operations. In our eigensolver application, we
use the number of iterations performed by the linear system
solver during the correction phase.

double 1b_decide(LBS 1bs, double ops, int method,
[function])

Before entering a section we must determine the time 7' that
all processors will spend in it. This is accomplished by call-
ing 1b_decide(), where ops is the number of operations that
we ideally want each processor to complete. 1b_decide() is
the only synchronous LBLIB call that causes all processors
in the communicator associated with 1bs to gather the com-
putation rates observed by each processor during the most
recent execution of the flexible section. The rates are then
sorted, and are used to determine T using the method spec-
ified by the method argument. In the current version of
LBLIB, the possible values of method and the corresponding
procedure for determining T are as follows:

e LB_USE_FASTEST: T is the predicted time for the fastest
processor to compute ops operations.

e LB _USE_SLOWEST: T is the predicted time for the slowest
processor to compute ops operations.

e LB_USER_DEFINED: A pointer to a user-defined func-
tion for calculating T is passed as a fourth argument.
1b_decide() calls this function, passing ops and the
array of sorted rates to it.

1b_decide() returns the time T, but it also stores it in 1bs
so that the application programmer does not need to know
it. Note that before the first call to 1b_decide(), one exe-
cution of the flexible section should have already been timed
through calls to 1b_section_start() and 1b_section_end().
Otherwise, no computation rates are available for 1b_decide ()
to determine the time 7'.

int 1lb_continue(LBS lbs, double ops_completed,
double ops_needed)

This function allows the programmer to check whether the
allotted time T is about to be exceeded, in which case the
program must exit the flexible section. ops_completed is the
number of operations completed so far during the current
flexible section and ops_needed is the number of operations
that will be completed before another call to 1b_continue ()
can be made. 1b_continue() calculates the execution rate
of the local processor during the current flexible section,
and then uses this rate to predict the time required to do
ops_needed more operations. If this time falls within the al-
lotted time, then 1b_continue() returns 1, indicating that
execution of the flexible section should continue. Other-
wise it returns 0, indicating that we should exit the flex-
ible section to avoid load imbalance. In our eigensolver
application, the value of ops_needed is one, because we

call 1b_continue() after each iteration of the linear system
solver.

double *1b_get_rates(LBS lbs)

int *1b_get_index(LBS 1bs)

It is often necessary for the application programmer to know
the ordered rates of the processors, so that the critical tasks
can be assigned to the most appropriate processors.
1b_get_rates() returns a pointer to an array containing the
rates of the processors, in ascending order. The processor
indices corresponding to each of these rates can be retrieved
through a pointer to an array returned by 1b_get_index().

5.1 Using the library

The above functions simplify significantly the load balancing
of codes that abide with the general model of section 2. We
present the following pseudocode that demonstrates the use
of LBLIB to balance CPU load in our coarse-grain JDcg
eigensolver.

Algorithm: Load balanced JDcg
1bs = 1lb_new_lbstruct(MPI_COMM_WORLD) ;
Until convergence do:
// Control phase
Perform projection phase, steps 1-7 of JDcg
Determine optimal number of iterations optits
1b_decide(1bs,optits ,LB_USE_FASTEST) ;
ordering = 1lb_get_index(1lbs);
All-to-all: faster procs receive more critical residuals
// Flexible Phase
1b_section_start (1bs);
for (ops = 0; lb_continue(lbs,ops, 1) ; ops++)
Perform one BCGSTAB step on eq. (1)
1b_section_end(1bs,ops) ;
end do

Note that, the first time through the flexible section, the for-
loop should execute a constant number of iterations in order
to collect the first set of performance data. The semantics
of the flexible section and its associated data dictate certain
rules when calling some functions of the LBLIB library. Fol-
lowing the 1b_decide() semantics, 1b_continue() must be
placed between 1b_section_start() and 1b_section_end().
Also, 1b_get_rates() must be called only after a call to
1b_decide() has been made, so that the rates have been
exchanged between processors. Finally, between a call to

1lb_section_start(1bsl) and a call to 1b_section_end(1bs1),

we cannot issue another call to 1b_section_start(1lbs1).
However, a call to 1b_section_start(1bs2) is permissible
for a different LBS structure.

In order to enforce such rules, an LBS keeps track of two
fields: scope and context. scope keeps track of whether
program execution is currently within the flexible section,
while context tracks the availability of data for functions
such as 1b_decide(). In case of inappropriate scope or con-
text, LBLIB functions set an error code in the LBS, which the
programmer can check through void lb_chkerr(LBS Ibs).

We should mention that this paper describes only a subset
of the functionality available in LBLIB. For example, in the

functions we have presented, the processor rates are always
computed as average rates over the whole flexible section. In
systems with widely varying external loads, it may be better
to compute “instantaneous” rates over a user-specified inter-
val. The library provides a mechanism for such an update
of rates, and all LBLIB functions that utilize rate informa-
tion have an “instantaneous” counterpart. Finally, there is
a set of functions that implement an anti-thrashing memory
balancing scheme.

6. JDmg: AMULTIGRAINEXTENSIONTO
JDcg

The requirement of JDcg that each processor has access to
the entire matrix may be too stringent in environments with
a large number of processors, where memory demanding ap-
plications need to scale their problem size with the number
of nodes. However, there is a more subtle reason for why
JDcg is not suitable for these environments. Even if the
memory is available, or the matrix is computed on the fly,
a large block size (equal to the number of processors) is ex-
pected to significantly increase the total number of matrix-
vector multiplications. This non work conserving behavior
limits the use of JDcg to small clusters of 4-8 processors.

Yet, the same principle can be used to introduce coarser
granularity on MPPs. Assume an MPP with 256 proces-
sors, and the JD algorithm with a block size of 4 executing
in fine grain on this MPP. We can envision the MPP split in
four groups of 64 processors each, and during the JD correc-
tion phase, each group gathers a distinct residual and solves
a distinct correction equation. The only difference from the
JDcg is that the correction equation is solved by a data par-
allel linear solver on 64 processors. The benefits stem from
the lower communication latencies associated with a cluster
of one fourth the size of the original. In a similar situation, a
fine grain JD method running on four COWs (possibly het-
erogeneous to each other), could assign a different correction
equation to each COW, effectively hiding the latencies of the
network.

We use the term multigrain to refer to this extension of our
coarse-grain technique, where the number of processors P
is greater than the block size k. The only memory require-
ment posed by multigrain is that each processor stores k
times more rows than fine grain alone. With typical block
sizes of 4-8, this does not limit the memory scalability of the
method. In multigrain, matrix-vector multiplications occur
at two levels of granularity, so A is partitioned both in fine
grain over all processors and in coarse grain on a subset of
the processors. An all-to-all similar to the JDcg case trans-
fers information between the two levels. In the particular
case where k divides P, or k is small compared to P, the
all-to-all can be made more efficient. This is typically the
case with MPPs or COWs with large numbers of homoge-
neous Processors.

Multigrain algorithm for MPP’s

Node homogeneity allows for an easy manipulation of the
coarse grain groups. Each such group, called a solve group,
has P/k processors. For presentation simplicity and because
k < P, we assume k divides P. To avoid a global all-to-all
exchange between all processors, we can consider the fol-

solve_group solve_group

(p1,p3) (p2,p4)
n n
pl a2a_group
r, X | (p1,p2)
p2 —_—
all-to-all
— 5
p3 € ia2a_group
: (p3,p4)
p4

Figure 1: Example of MPP multigrain, with more
processors than block vectors. Before the correction
phase, nodes in the same all-to-all group receive the
coarse-grain portions of the residuals and Ritz vec-
tors they are responsible for. Each solve group then
solves its respective correction equation. After this
phase, each node distributes its coarse-grain portion
of ¢; amongst its fellow all-to-all members.

lowing hierarchical partitioning. First, we obtain the coarse
grain partitioning of the matrix onto P/k processors using
partitioning software [27, 21]. Then, each processor parti-
tions its local, coarse grain rows into k subdomains, and
designates one of those as its fine grain partitioning.

This hierarchical partitioning of rows reduces the complex-
ity of the all-to-all communications that now involve only
groups of P/k processors. Before the correction phase, each
member of an all-to-all group sends its fine-grain portions
of the k vectors r; (and x;) to the P/k members of its sub-
group, and receives the P/k pieces that compose its coarse-
grain portion of r; (x;). Figure 1 illustrates this for P = 4
and k = 2. After each solve group finishes its correction
phase, the all-to-all is reversed and each processor’s coarse-
grain portion of ¢; is distributed across all the processors in
the all-to-all group.

Multigrain algorithm for Grids of clusters

In clusters of heterogeneous processors or simply clusters
with different processor numbers, the solve groups are cho-
sen by the user to correspond to the physical boundaries of
the COWSs, or to those processor boundaries where inter-
boundary communication is expensive. In a multigrain im-
plementation, all nodes compute a fine grain partitioning of
A, and each solve group computes an independent coarse
grain partitioning based on the group size. The indepen-
dence of the two partitionings obviates the use of all-to-all
groups, as one processor may be involved in total exchange
with all other processors in the cluster. Therefore, the all-
to-all communications must involve all P processors.

Besides the more expensive all-to-all communication, ad-
ditional permutations and bookkeeping are required for the
multigrain correction phase. We have observed that the time
spent in all-to-alls by the cluster version is usually one order
of magnitude or more greater than that taken by the MPP
method. Still, our experiments show that JDmg is usually
beneficial when the cluster sizes are roughly the same.

7. ENABLING GRID COMPUTATIONS

Multigrain parallelism hides communication latencies, but,
used by itself, it can accentuate or even introduce load im-
balance. For instance, if three identical processors are used
to run JD in fine-grain, there is perfect load balance. How-
ever, if the same three processors are used to run multi-grain
JD with a block size of two, one solve group will contain two
processors and the other only one. Since the latter group is
only half as fast as the former, the load imbalance is now
33.33%! Clearly, the utility of multi-grain is limited if not
used in conjunction with a load balancing scheme.

Fortunately, like the coarse grain version, JDmg also fits
the flexible-phase iteration model and can be load balanced
in the same manner. The only real difference is that solve
groups, rather than individual processors, are the entities
that work independently during the correction phase. Pro-
cessor (of each solve group is responsible for coordinating
the load balancing. At the beginning and end of each cor-
rection phase, the Oth processors call 1b_section_start ()
and 1b_section_end(), respectively. Before the all-to-all
that begins each correction phase, the O0th processors call
1b_decide (). This function returns the execution rates of
each independent solve group. Each processor 0 then uses
these rates to determine which block its subgroup should
receive, and broadcasts this information to the other mem-
bers. During the correction phase, the Oth processors call
1lb_continue () independently after each BCGSTAB iteration,
and then broadcast to their members whether to perform
another iteration or to halt.

7.1 Experiments on a Grid-like environment
We conducted a series of experiments with JDmg, using it
in fine-grain and multigrain modes (both with and without
load balancing). The experiments were run on SciClone,
a heterogeneous cluster of workstations at the College of
William and Mary. SciClone is an ideal testbed for Grid ap-
plications because it employs three different processor con-
figurations, two networking technologies, and is organized as
a cluster of subclusters. Thus it effectively captures three
levels of heterogeneity that are characteristic of Grid-based
computing: node architecture, networks, and number of
nodes at a site. Figure 2 details the architecture of the
portion of SciClone that we use. In all experiments, we use
JDmg with block size k = 4 to compute the lowest eigen-
value of a matrix derived from a 3-D finite element prob-
lem [2]. The matrix is of dimension 268,515 and contains
3,926,823 non-zero elements. BCGSTAB is preconditioned
with a sparse approximate inverse preconditioner from the
ParaSails library [8].

To enable measurement of load imbalance in the multi-grain
experiments, we timestamp synchronous communication calls
in JDmg, much as we did with JDcg. We do not timestamp
communications internal to the solve groups during the cor-
rection phase, because we are interested only in the imbal-
ance across solve groups. Additionally, we do not timestamp
communication calls associated with matrix-vector multipli-
cations because those are performed via ParaSails calls. This
causes a slight underestimate of the overall load imbalance,
during the projection phase. The load imbalance estimates
are quite accurate, however, because the formation of the
matrix-vector products in the projection phase comprises

SciClone Cluster

12—port Gigabit Ethernet

MHz Mem Cache

Ultra5 333 256 2MB

Ultra60 360 512 2MB

Ultra420 450 4GB 4MB
Typhoon

36—port Fast Ethernet Switch 36-port Fast Ethernet Switch

36—port Fast Ethernet Switch 12-port Gigabit Ethernet

|J__| «. 32 SUN UltraS5s ... |£| |J:| «. 32 SUN UltraS5s ... |£|

32 Dual processor
SUN Ultra60s

0

4 Quad processor i
= Ultra 420Rs | ||

Figure 2: SciClone: The William and Mary heterogeneous cluster of three homogeneous clusters: Typhoon,
Tornado (also called C), and Hurricane (also called D). We distinguish between A and B, the subclusters
of Typhoon, because their intercommunication passes through the Gigabit switch. There are three levels of
heterogeneity: node architecture, number of nodes, and networks.

only a small part of the execution time.

We have tested the fine-grain implementation on several
node combinations from various clusters (Table 2). We men-
tion a few important observations here. The speedup from
32 to 64 Ultrab’s (experiments A and AB) is about 1.63,
but the speedup on the Ultra60’s (experiments Cz» and C),
machines with faster processors and more cache memory,
is only about 1.24. We suspect that the poor speedup on
cluster C may be the result of two MPI processes on each
node contending for the network interface. Similar behavior
is observed on the SMPs of the D cluster.

Further improvement in fine-grain speedup can be obtained
by using clusters A and B, with only one processor on each
Ultra60. For instance, there is a speedup of 1.74 between
experiments Csz and ACs2, and 1.95 between A and AC3..
For this small number of relatively homogeneous nodes the
good scalability leaves little room for improvement through
multigrain. However, multigrain can improve performance if
the size of the solve groups is increased. Experiments (AB)C
and ABC3,Cs2 yield significantly better timings compared
to fine-grain test ABC (Table 3) because multigrain is able
to hide the latency introduced by the additional processors.

As expected, multigrain by itself may not result in improve-
ments if the rates at which each subgroup can perform matrix-
vector multiplications vary greatly. In fact, this can result
in significant performance degradation due to load imbal-
ance. For example, the multigrain code often performs sig-
nificantly worse than the fine-grain code when subcluster
D is used in conjunction with other subclusters. Only two
of the multigrain experiments involving subcluster D (AD
and (AB)Cs32C32D) resulted in improvements over their fine-
grain counterparts. This trend is an example of multigrain’s
tendency to accentuate load imbalance: the smaller number
of processors in subcluster D results in a smaller solve group,
and thus greater load imbalance.

Nodes || Time | Mvecs || Nodes Time | Mvecs
A 2912 | 12564 || ACs» 1489 | 11944
AB 1784 11944 ABC 1714 | 13104
Ca2 2597 | 12564 || AD 3378 | 13178
C 2087 11944 ABD 1856 | 12914
Dy 23944 | 13600 || Cs2D 2679 | 13178
Dg 11424 | 12808 CD 1970 | 12914
D 6560 13466 AC3,:D 1813 | 12914

ABCD 1732 14266

Table 2: Performance of the fine-grain JD running on
different node configurations. “Time” is wall-clock time
in seconds and “Mvecs” is the number of matrix-vector
products computed. Strings within the “Nodes” column
specify what nodes are used for an experiment: For each
subcluster that is utilized, its letter is given. If a sub-
script n is appended to that letter, it indicates that only
n processors of the subcluster are utilized; if no subscript
is present, all processors are utilized. For instance, “C”
means that all 64 processors of cluster C are used, while
C32D indicates that 32 processors from cluster C are used
together with all the processors from cluster D.

The experiments using multigrain with load balancing, how-
ever, yield much better results. When combining clusters
of disparate power (e.g., (AB)D or CD) the load balanced
multigrain method outperforms significantly both the unbal-
anced multigrain and fine grain methods. When the clus-
ters involved are relatively homogeneous (e.g., ACs2, (AB)C
or ABC3,C32), load balancing still performs comparably to
multigrain and always improves performance over fine grain.
Overall, load imbalance is almost always below a tolerable
level of 10%, and the problem is solved twice as fast as any
combination of clusters using traditional fine grain methods.

Without load balancing With load balancing
Nodes Time | Mvecs | %imbal || Time | Mvecs | %imbal
AD 3265 | 13058 36.17 1746 | 10515 4.47
A16A16DgDg 4022 | 16910 38.96 1692 | 11208 5.14
Cs2D 3282 | 13058 39.57 1631 | 10478 5.01
A16A16C16C16 1405 | 12424 11.02 1546 | 14698 5.24
C16C16DsDsg 4037 | 16910 41.71 1544 | 10711 6.22
ACs 1585 | 12730 9.46 1450 | 12833 2.05
CD 3495 | 13996 52.37 1381 | 9608 7.68
C32C32DsDsg 3132 | 13124 58.32 1284 | 11202 9.94
(AB)C 1198 | 12656 11.97 1214 | 13653 5.98
(AB)D 3500 | 13996 55.42 1126 | 8870 8.97
ABC32Cs2 981 | 12240 21.00 991 | 14167 8.99
ABDsDs 3152 | 13124 61.58 941 8680 11.78
(AB)C32C32D 1870 | 14534 52.64 724 9481 15.05

Table 3: Performance of the multigrain JD running on different node configurations, with and without load balancing.

“Nodes”, “Time” and “Mvecs” are as in Table 2.

“%imbal” is the percentage of time wasted due to load imbalance.

When multiple subclusters are assigned to one block vector, they are grouped together with parentheses. E.g., “(AB)”
indicates that subclusters A and B work together on the same block vector (are in the same solve group), whereas
“AB” indicates that subclusters A and B work on different block vectors (each composing their own solve group).

8. CONCLUSIONS AND FUTURE WORK

As computing environments become increasingly complex,
consisting of collections of heterogeneous COWs either in
the same local area network or geographically dispersed,
it becomes increasingly important to devise new algorith-
mic techniques that tolerate high network tolerances and
that adapt to the (often dynamically) varying system load.
We have presented two such techniques, multigrain and an
application-level load balancing strategy, that apply to iter-
ative methods. The key idea for multigrain is that it trans-
fers the bulk of the convergence work from the outer iter-
ation to an inner iteration that processors can execute for
a long time independently, thus tolerating arbitrary large
latencies. The key idea for the load balancing technique
is to let every processor execute on the inner iteration for
a fixed amount of time, thus achieving ideal load balanc-
ing during the dominant phase of the algorithm. Iterative
methods for the numerical solution of eigenvalue problems
are notoriously synchronous. Yet, by applying our two tech-
niques on such a method, we have managed to significantly
improve scalability on a Grid of heterogeneous clusters over
traditional fine grain implementations.

Future extensions include identifying potential applications
that fit into the flexible iteration model, and dealing with the
situation of heterogeneous clusters of heterogeneous work-
stations. The latter case can be addressed by applying two
levels of our load balancing library; one inter-cluster and one
intra-cluster using a domain decomposition preconditioner
and a flexible version of GMRES.

9. REFERENCES

[1] A. C. Arpaci-Dusseau and Remzi H. Arpaci-Dusseau.
Information and control in gray-box systems. In 18th
Symposium on Operating Systems Principles (SOSP
’18), October 2001.

[2] L. Bergamaschi, G. Pini, and F. Sartoretto. Parallel
preconditioning of a sparse eigensolver. Parallel
Computing, 27(7):963-76, 2001.

[3] F. Berman, R. Wolski, S. Figueira, J. Schopf, and
G. Shao. Application level scheduling on distributed
heterogeneous networks. In Supercomputing 1996, Fall
1996.

[4] S. Browne, J. Dongarra, N. Garner, G. Ho, and
P. Mucci. A portable programming interface for
performance evaluation on modern processors. In The
International Journal of High Performance Computing
Applications, volume 14, pages 189-204, Fall 2000.

[6] S. Browne, J. Dongarra, N. Garner, K. London, and
P. Mucci. A scalable cross-platform infrastructure for
application performance tuning using hardware
counters. In Supercomputing 2000, November 2000.

[6] P. Chandra, Y.-H. Chu, A. Fisher, J. Gao, C. Kosak,
T.S. Eugene Ng, P. Steenkiste, E. Takahashi, and
H. Zhang. Darwin: Customizable resource
management for value-added network services. 15(1),
2001.

[7] F. Chang and V. Karamcheti. Automatic
configuration and run-time adaptation of distributed
applications. In 9th IEEE Inlt. Symp. on High
Performance Distributed Computing, August 2000.

[8] Edmond Chow. ParaSails: Parallel sparse
approximate inverse (least-squares) preconditioner.
Technical report, Center for Applied Scientific
Computing, Lawrence Livermore National Laboratory,
L-560, Box 808, Livermore, CA 94551, 2001.

[9] K. Devine, B. Hendrickson, E. Boman, M. St.John,
and C. Vaughan. Zoltan: A dynamic load-balancing
library for parallel applications; user’s guide.
Technical Report Tech. Rep. SAND99-1377, Sandia
National Laboratories, Albuquerque, NM, 1999.

[10] J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H.A.
van der Vorst. Numerical Linear Algebra for High
Performance Computers. STAM, Philadelphia, PA,
1998.

[11]

[12]

[13]

[14]

[17]

(18]

[19]

(20]

(21]

(22]

(23]

[24]

25]

D. G. Feitelson and L. Rudolph, editors. 2000
Workshop on Job Scheduling Strategies for Parallel
Processing, volume 1911. LNCS, 2000.

D. R. Fokkema, G. L. G. Sleijpen, and H. A. van der
Vorst. Jacobi-Davidson style QR and QZ algorithms
for the partial reduction of matrix pencils. SIAM J.

Sci. Comput., 20(1), 1998.

1. Foster. Designing and Building Parallel Programs.
Addison Wesley, 1995.

I. Foster and C. Kesselman. Globus: A metacomputing
infrastructure toolkit. International Journal of
Supercomputer Applications, 11(2):115-128, 1997.

I. Foster and C. Kesselman, editors. The Grid —
Blueprint for a New Computing Infrastructure.
Morgan Kaufmann, 1998.

G. H. Golub and R. Underwood. The block Lanczos
method for computing eigenvalues. In J. R. Rice,
editor, Mathematical Software III, pages 361-377, New
York, 1977. Academic Press.

A. S. Grimshaw and W. A. Wulf et al. The Legion
vision of a worldwide virtual computer.
Communications of the ACM, 40(1), 1997.

B. Hendrickson and R. Leland. The Chaco useer’s
guide, Version 1.0. Technical Report SAND92-1460,
Sandia National Laboratories, Albuquerque, NM,
1992.

K. Hwang and Z. Xu. Scalable Parallel Computing.
WCB/McGraw Hill, 1998.

George Karypis and Vipin Kumar. METIS:
unstructured graph partitioning and sparse matrix
ordering system. Technical report, Department of
Computer Science, University of Minnesota,
Minneapolis, 1995.

George Karypis and Vipin Kumar. A parallel
algorithm for multilevel graph partitioning and sparse
matrix ordering. Journal of Parallel and Distributed
Computing, 48:71-85, 1998.

P. Keleher, J. Hollingsworth, and D. Perkovic.
Exploiting application alternatives. In 19th Intl. Conf.
on Distributed Computing Systems, June 1999.

S. Kuznetsov, G. C. Lo, and Y. Saad. Parallel solution
of general sparse linear systems. Technical Report
UMSI 97/98, Minnesota Supercomputer Institute,
University of Minnesota, Minneapolis, MN, 1997.

R. T. Mills, A. Stathopoulos, and E. Smirni.
Algorithmic modifications to the Jacobi-Davidson
parallel eigensolver to dynamically balance external
CPU and memory load. In 2001 International
Conference on Supercomputing, pages 454-463. ACM
Press, 2001.

Beresford N. Parlett. The Symmetric Figenvalue
Problem. STAM, Philadelphia, PA, 1998.

[26]

27]

28]

[29]

(30]

[31]

32]

[33]

[34]

[35]

[36]

Y. Saad and M. Sosonkina. Non-standard parallel
solution strategies for distributed sparse linear
systems. In A. Uhl P. Zinterhof, M. Vajtersic, editor,
Parallel Computation: Proc. of ACPC’99, Lecture
Notes in Computer Science, Berlin, 1999.
Springer-Verlag.

Y. Saad and K. Wu. Parallel SPARSe matrix LIBrary
(P_SPARSLIB): the iterative solvers module.
Technical Report 94-008, Army High Performance
Computing Research Center, Minneapolis, 1994.

Yousef Saad. On the rate of convergence of the
Lanczos and the block-Lanczos methods. SIAM J.
Numer. Anal., 17:687-706, 1980.

Yousef Saad. A flexible inner-outer preconditioned
GMRES algorithm. STAM J. Sci. Comput.,
14(2):461-469, March 1993.

Yousef Saad. Iterative methods for sparse linear
systems. PWS Publishing Company, 1996.

G. L. G. Sleijpen, A. G. L. Booten, D. R. Fokkema,
and H. A. van der Vorst. Jacobi-davidson type
methods for generalized eigenproblems and
polynomial eigenproblems. BIT, 36(3):595-633, 1996.

G. L. G. Sleijpen and H. A. van der Vorst. A
Jacobi-Davidson iteration method for linear eigenvalue
problems. SIAM J. Matriz Anal. Appl., 17(2):401-425,
1996.

A. Stathopoulos and C. F. Fischer. Reducing
synchronization on the parallel Davidson method for
the large,sparse, eigenvalue problem. In
Supercomputing ’93, pages 172-180, Los Alamitos,
CA, 1993. IEEE Comput. Soc. Press.

A. Stathopoulos and J. R. McCombs. A parallel,
block, Jacobi-Davidson implementation for solving
large eigenproblems on coarse grain environments. In
1999 International Conference on Parallel and
Distributed Processing Techniques and Applications,
pages 2920-2926. CSREA Press, 1999.

A. Stathopoulos, Serdar Ogiit, Y. Saad, J. R.
Chelikowsky, and Hanchul Kim. Parallel methods and
tools for predicting material properties. Computing in
Science and Engineering, 2(4):19-32, 2000.

R. Wolski, N. Spring, and J. Hayes. The network
weather service: A distributed resource performance
forecasting service for metacomputing. Journal of

Future Generation Computing Systems,
15(5-6):757-768, 1999.

