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SUMMARY

The technique that was used to build #igCGalgorithm for sparse symmetric linear systems is extended
to the nonsymmetric case using tB&CG algorithm. We show that, similarly to the symmetric case,
we can build an algorithm that is capable of computing a fevallrat magnitude eigenvalues and their
corresponding left and right eigenvectors of a nonsymmetatrix using only a small window of tHgiCG
residuals while simultaneously solving a linear systenhilitat matrix. For a system with multiple right-
hand sides, we give an algorithm that computes incremgntadire eigenvalues while solving the first
few systems and then uses the computed eigenvectors toed®ifla® Stabfor the remaining systems. Our
experiments on various test problems, including LatticeDQ&how the remarkable ability afigBiCG

to compute spectral approximations with accuracy comparebthat of the unrestarted, nonsymmetric
Lanczos. Furthermore, our incremerggBiCGfollowed by appropriately restarted and deflaB@GStab
provides a competitive method for systems with multipléatigand sides.

KEY WORDS: BICG; BiCGStab; deflation; nonsymmetric linegstems; eigenvalues; sparse matrix;
Lanczos; multiple right-hand sides

1. INTRODUCTION

Many scientific and engineering applications require thetsm of linear systems of equations with
many right-hand sidels:
Al‘i:bi, 7::172,...,1157 (1)

where A is a large, sparse, nonsymmetric matrix of dimensio&fficient algorithms should take
advantage of the fact that all these systems corresponcetedime matrix. Because of size and
sparsity, dense-matrix methods that reuse the matrixriaat@dn cannot be used. Krylov iterative
methods 1, 2] are the fundamental tool to solve such systems. Howevey, bluild a separate
iteration for each system and, thus, can be inefficient, @alhe when the number of right-hand
sides is large. Variants of Krylov methods that exploit tkenenon matrix on multiple right hand
sides have been proposed in the literature. These includé bhethodsT, 3, 4, 5, 6, 7, 8, 9, 10],
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seed methodslfl, 12, 13, 14, 15], deflation methods1[6, 17, 18, 19, 20, 21, 22, 23, 24], and their
combinations 25, 26]. We focus on deflation methods as they do not require all igjiet-hand
sides to be available from the start (as block methods do¥atmdct intrinsic information about the
common matrix, not in relation to the right hand sides (asl seethods do).

Deflation is based on the fact that, for a large class of illdiboned problems, the slow
convergence of Krylov linear system solvers is caused byllssigenvalues of the matrix. If
the eigenvectors corresponding to those small eigenvalaesknown, one could project them out
(deflate them) from the initial residual and then solve th#atled system, which will converge
much faster. Although other issues relating to eigenvalgtibution and conditioning may also
cause problems to nonsymmetric Krylov methods, for manyiegujons the problemis in the small
eigenvalues, and where most current deflation researcedsciMoreover, preconditioners are often
used to deal with these other issues, and deflation can dppliehe preconditioned matrix for
further improvements.

In principle, one can use a separate eigensol2&r 28] to compute small eigenvalues of
and then use them to deflat&).(However, it is more efficient to compute the small eigeneal
simultaneously while solving the linear systems. Recentéyproposed an algorithm that uses such
strategy for Symmetric Positive Definite (SPD) matric2g[ The algorithm—calledigCG—has
the following features:

1. The linear system is solved with the Conjugate-Gradig®@G)( algorithm which is
computationally and memory efficient.

2. While solving the linear systerejgCGcomputes a few small eigenvalues and eigenvectors
using only a small window of the CG residuals.

3. The computation of the eigenvalues does not affect thdiealof the linear system, and no
restarting of the linear system occurs.

4. eigCGcomputes small eigenvalues with the same efficiency andsilthe same accuracy as
unrestarted Lanczos, using much smaller memory requiremen

The number and precision of the few eigenvalues computesigfyGwhile solving a single right-
hand side are usually not sufficient for efficient deflatioswibsequent systems. To compute more
eigenvalues and improve their accuracy, we developethtttemental eigCGlgorithm. Our tests
on various problems showed thatremental eigCGvas able to compute accurately a large number
of eigenvalues and solve systems with multiple right hadésiwith speed-ups up to an order of
magnitude over undeflated CG.

The reason for the successafilCGcan be traced to a combination of thick and locally optimal
restarting techniques for eigenvalue proble$ 30, 31]. These techniques manage to maintain
appropriate orthogonality information during restart@aafearch space so that the optimality of the
Galerkin procedure continues to hold as if on the unresta¢tglov space. What is surprising with
eigCGis that these techniques continue to work when future itaratectors are not generated
based on this space (as in subspace iteration) but borrowedsf Lanczos or CG proces®y].

In this paper we study the extension&@fjCGto the nonsymmetric case. Our goal is similar:
approximate eigenvectors from a small search space thdit@ned as a by-product of some
Krylov method (of Arnoldi orBiCG type) and maintains approximately the orthogonality over
all seen Krylov vectors. The subspace built by Arnoldi typetimods is typically restarted, and
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thus loses global orthogonality against past vectors wbéinot be recovered effectively with our
eigCGtechnique. Other efforts to correct this have resulted messhat limited succes82, 33].
Therefore, we turn to thBiCG method because (1) it uses an inexpensive three term racerte
produce a biorthogonal Krylov basis, at least in exact arétic, and (2) the restarting technique
used ineigCGis effective in the context of biorthogonal eigenvalue sob34].

The new algorithm is calledigBiCGand computes a few eigenvalues and their corresponding
left and right eigenvectors using a small windowB)CG residuals while solving a linear system.
The BiCG method is unaffected. For multiple right-hand sides, wemdtthelncremental eigCG
to the Incremental eigBiCGalgorithm. We first solve a few systems accumulating eigetore
with Incremental eigBiCGUsing these eigenvectors, the rest of the systems aredsoyvdeflated
BiCGStabwhich can especially benefit from deflation with both lefdaight eigenvectors3s).

For the eigenvalue computation phase, we Bi&gG instead ofBiCGStabbecause the Lanczos
parameters and space are readily availablBi®G. Recently, it has been shown that Ritz values
and right Ritz vectors could be computed using ftieR algorithm, which is related tBiCGStab
[36]. Such a method might solve the initial few linear systemitke Imore efficiently tharBiCG,
but it would incur additional costs to find the eigenvectddere importantly, it is not clear how
to obtain the left eigenvector space frdnCGStab Either way, the majority of the systems are
already solved with deflateBiCGStah so exploring this potential method is beyond the scope of
the current paper.

There are other algorithms in the literature for solvingteys with multiple right-hand sides
using deflation. We mention in particular Lanczos with deffiatestarting (Lan-DR)Z3, 37],
GMReswith deflated restarting@MRes-DRand GMRes-Prgj for the nonsymmetric caselT,

38, 24], and Recycled Krylov methodsl, 19. The algorithms we propose are different in
several waysGMRestype algorithms solve both the linear system and eigenvatablem with
restarted Arnoldi whileeigBiCG solves the linear system with an unrestarted method. Athou
our eigenvector search space is restarted, our experinsbotg that convergence is similar to
the unrestarted bi-Lanczos. In some cases, this yieldsrbeitjenvalue approximations than the
restarted Arnoldi. AlsoGMRes-DRobtains the eigenvectors from a single linear system and doe
not update them subsequently. RecydB@G is closer toeigBiCGas it is a two sided method
and uses a small eigenvector search space borrowed frorstaneelBiCG. However, without
the locally optimal restarting technique, its spectralragpnations are not accurate eigenvectors
and therefore have been used mainly in applications wheredtrix changes between right hand
sides. On the other hand, the deflated nonsymmetric LaneZ8g]iis a thick restarted eigensolver.
For deflation, other methods project the obtained eigenvedt every stepGMRes Recycled
BiCG) or at every restartGMRes-Prqg). This adds an expensive overhead when the number of
eigenvectors is large. Our methods deflate a linear systéyraosmall, constant number of times
which is independent of the convergence of the system.

We want to point out at the outset an inherent limitation éfdaflation methods. For many
applications, such as PDEs or our motivating applicatiomflattice quantum chromodynamics
(QCD), the density of the eigenvalues near zero grows lipesith the matrix sizen. Thus, to
achieve a constant number of iterations with growinghe cost of deflation becoméyn?), and
the cost of obtaining these eigenvectors beco@gs’). Although the constants in the complexity
are small, for a sufficient large multigrid methods should scale better than deflatit8).[Recent
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advances in lattice QCD, in particular, have resulted in esiga of algebraic multigrid where
the interpolators are generated by an approximate neaemggdhspaces0, 41]. Generating this
preconditioner is also expensive, but researchers haxtedt® see benefits in some of the larger
lattices today. In this paper, we focus on problems that ddaibin this asymptotic realm or on
problems where the preconditioner has not fully removetballmagnitude eigenvalues.

In the following we denote byl, AT, Af the complex conjugate, the transpose, and the Hermitian
conjugate of a non-defective mattik respectively. We denote by w, v >= w’v the dot product
of two vectorsv andw, and we usd| - || as the 2-norm of vectors and matrices. The complex
conjugate and the norm of a complex numbeare denoted by and|«| respectivelyV (™), or
V' when there is no ambiguity, represents a matrix whose caduana the vectors,, vs, . .., v,.
When the number of columns is changing we use the not&tien[v, vo, .. .].

2. BACKGROUND

2.1. Eigenvalue computation @igCG

We first review how theeigCG algorithm computes approximations to a few eigenvalueisléns
CG using a subspace of limited size and how this subspace sriedt Assume we look fok
smallest eigenpairs of an SPD matdxof dimensiom. Letm > k be the maximum dimension of
the subspace that will be used to compute the approximagéewagtors. Denote by (") ¢ R

an orthonormal basis of this subspace. Aftessteps ofLanczos(or CG), V(™) holds the firstm
Lanczos vectors (d€Gresiduals properly normalized). In a plain thick restay@pproach1, 20],

we would computé Ritz vectors of interest and restart the subspace with thés&z vectors (see
Figurel). Then, we would continue the iteration, filling the remainin — & positions in the basis
with new Lanczos vectors. This approach is followed in Réy®INRESbut does not approximate
the eigenpairs very welllg]. In eigCG we restart not only with the Ritz vectors computed at step
m, but also with thé: Ritz vectors computed at step — 1 (if m > 2k). For stability, the2k vectors
are orthonormalized. The remaining— 2k positions of the basis are then filled with new Lanczos
vectors. This approach for restarting the eigenvalue besubspace is based on Locally Optimal
CG (LOCG) and in eigensolvers consistently yields conwecgavhich is almost indistinguishable
from unrestarted Lanczo3, 42, 43, 31, 44, 45, 29, 30]. Surprisingly, it performs equally well
when the search space is made of recycled Lanczos vectamgdnalization of the eigenvectors
from stepsm andm — 1 can be done with small vectors of lengthat negligible cost. Figur@
shows how this is implemented.

2.2. Bi-Lanczosalgorithm

Given vectorsy,, w1 with < wq,v; >= 1, m iterations of theBi-Lanczosalgorithm (6, 1] build

biorthogonal base® (™) = [v1, ..., v,,] andW ("™ = [w1, ..., w,,] of the Krylov subspaces
]anm) (A, 1)1) = Spar{vl,Avl,A2v1, . 714771711)1}

(m) 2 m—1 (2)
ICl (AT,wl) :Spa.l"{ﬂ)l,14]LU)1,14]L wl,...7AT wl}
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Thick restarting with k& Ritz vectors

GivenV (™ andT = V(mitAy (m).
(1) Solve for thek eigenvalues of interesTly; = \jy;, i = 1,2,.., k
(2) (\;, u;) are Ritz pairs ofd with u; = V("™)y, fori = 1,2, ... k
(3) Restart:
V) = [uy, ug, . .., ug
T;; =0fori,j =1,2,...m
Tii=Nivi=1,2,...k

Figure 1. Thick restarting witk Ritz vectors: symmetric case.

Thick and locally optimal restarting with 2k Ritz vectors

GivenV (™) T = V(M Ay (m) andT = v (=Dt gy (m—1).
(1) Solve for thek eigenvalues of interest at stepsandm — 1:
Ty; = Nivi, T = Niiv i = 1,2, .,k
Y = [y17y23 “ayk]’ Y = [gla g2~a <oy gk}
Append am!” row of zeros toY’
orthonormalize” againstt” to getC' = [cq, ¢a, .., Coi]
Note thate; = y; fori = 1,2, .., k since these are orthonormal
(3) H = C'TC is a2k x 2k matrix
(4) Solve the eigenvalue problefz; = d;z; fori = 1,2, ..,2k
(5) (d;, u;) are Ritz pairs ofd with u; = V(™ Cz; fori = 1,2,.., 2k
(6) Restart:
V(Qk) = [Ul, U2, ... 7u2k}
T;; =0fori,j =1,2,...m
Tii=dii=1,2,.,2k

Figure 2. Thick and locally optimal restarting wigt: Ritz vectors: symmetric case.

using a three-term recurrence with a tridiagonal projectimtrix 7 = W (™7 AV (™) To solve a
linear systemAx = b with initial guesszg, v1 is chosen as; = ry = b — Az, and the solution
is given by:z = z + V™ T 1w ™ty Using the Rayleigh-Ritz procedure &™) and W (™),
we can also compute: approximate eigentriplets of. If y andz are right and left eigenvectors
of T corresponding to the eigenvalue thenp = V(™y andq = W™z are the right and left
Ritz vectors ofA corresponding to the Ritz value Note that in order to compute approximate
eigenvectors, we need to store all the basis vedtéts andiV (™) or re-compute them. For solving
a linear system, this storage is not needed msgiven by theBiCG three-term recurrence.

2.3. BiCG algorithm

The BiCG algorithm (7] is derived form theBi-Lanczosalgorithm by replacing the three-term
recurrence by a coupled two-term recurrences. For soliadihear systemdx = b with initial
guessry, the algorithm is given in Figurd. The biorthogonal basis vectoVs = [v;, v9,...] and
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W = [wy,ws,...] of theBi-Lanczosalgorithm are parallel to thBiCG residuals as
Vi1 = 9]‘7’]', Wiy1 = (ijj, j = 0, 1, e (3)

The normalization factorg; and¢; are chosen such that w;,,v;41 >= 1. We choose the
following normalization which balances the normgf, ; andw; 1,

0. — 1 _ 1 5.:\/‘<72j,7"]‘>|:\/‘pj| )
V<> Vel <77 > pj

The elements of the tridiagonal projection matfix= W (™) AV (™) can also be computed from
the scalars in thBiCG algorithm (see alsdlP]). Using Equation §), the relations

r; =p; — Bi—1pj—1, Tj = p; — Bj—1Dj-1, 5)

and the biorthogonality conditions of tB#CG algorithm< py, Ap; >=0, k # [, we find

1
T = o
0
1 B )
Tt i1 = — + 224 19,
J+1,5+1 a; aj_1 J (6)

Tji1,j42 = —0;0,418; < pj, Ap; >, j=0,1,2,...,
Tj+2,j+1 - _5]+19]ﬁ] <23]7Ap] >, ] :071>27”“

These relations will be useful for computing approximateapairs insid&iCG.

The BiCG Algorithm:

Solve Ax = b given initial guess:
(0) ro = b — Azg, po = 1o
Choosery such that 7,79 ># 0
Po =70, -1 =0
po =< 70, To >, if po = 0 stop
(1) forj =0,1,2,... till convergence
() o =p;/ <pjAp; >
@) zj ==zt a;p;
(4) ’l’j+1 = ’I"j — ajApj
(5)  Fjp1 =7 —a;Alp;
6)  pit1 =<rFjp1,7541 >, if pjp1 = 0 stop
(7)  Bj=pj+1/p;
(8)  pj+1=Tj+1+B;p;
9)  Djr1 = Tiv1 + BD;

Figure 3. TheBiCG algorithm for solving a linear systethz = b
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3. THE EIGBICG ALGORITHM

We augment the standaBiCG algorithm with a part that approximates a few eigentriplsiag the
BiCGresiduals)y (™), W (™) which we restart similarly teigCG(Figure2). The difference is that

in eigBiCGwe deal with two biorthogonal bases. [84], we suggested such a restarting approach
in the context of a biorthogonal Jacobi-Davidson (JD) meths with linear systems, restarting
causes a slowdown in convergence of eigensolvers. Moreiovéie nonsymmetric case, certain
Ritz values may cease to converge or disappear completety the restarted basis. When the left
and right eigenspace is not too ill-conditioned, our teghrimanaged to alleviate and sometimes
eliminate these effects. The difference betweggBICG and JD is that the restarted eigenvalue
search space is not used to determine subsequent iteratitory. For the same reason, restarting
has no effect on the solution of the linear system.

3.1. Computing eigenvalues and eigenvectoBiDG

Let k£ be the number of eigenpairs we need to compute, for exampse tvith smallest absolute
value, andmn be the size of the right and left subspad€s” and W (") such thatm > 2k. We
compute2k approximate Ritz vectors and values (from steps- 1 andm) and restarl’ ") and
W (™) as shown in Figuré.

Restarting with 2k Ritz vectors. BiCG case

GivenV (™), w(m) T = Wt Ay (m) andT = Wm=Dt Ay (m=1).
(1) Solve forthe = 1, ..., k eigentriplets of interest at stepsandm — 1:

Compute(\;, y;, ;) eigenvalues, right and left eigenvectorslof

Compute(\;, 7, %;) eigenvalues, right and left eigenvectorslof

@Y =[y1,y2, -y, Y = [§1,92, .-, Uil
7z = [21, 22y ey Zk], 7z = [21, 22,~.., 2!@] B
Append am!”" row of zeros toY’, andZ
(3) BiorthogonalizY', Z) against(Y, Z) to get(C, D)
C= [Cl, Co, .., CQk} andD = [dl, dg, . dgk}
Note thatc; = y; andd; = z;,7 = 1,2, .., k since these are biorthogonal
(4) H = DIT"™(C, a2k x 2k matrix
(5) Compute thek eigenvaluesy; and the corresponding
right and left eigenvectorg andg; of H
(6) i, u;, g; are Ritz values, right, and left Ritz vectors #fwith
U; = Vv(m)C’fZ andqi = W(m)Dgi, 1 =1,2, .., 2k
(7) Restart:
VR — [U1,U2, .- ~7U2k:]
W(Qk) = [QD q2; ... 7QQI<:]
T;; =0fori,j =1,2,...m
E,i = Yi, 1= 1727 72]€

Figure 4. Restarting witBk Ritz vectors: nonsymmetric case.

After the firstmn steps ofBiCG, the based’ (™ andW (™) are given by thé8iCG residuals and
the projection matrix” = W (™1 AV (™) s tridiagonal. After restartingl” has a diagonalk x 2k
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block and the firsek basis vectors if ™ andW (™) are the approximate right and left Ritz vectors.
Subsequent residuals from the origiB#CG, 7,11, "1, T'm+2, F'mi2, - - - Will be appended to the
remainingm — 2k positions of V, W, i.e., vor11, Wogt1, Vak+2, Wak+2, - - .. By construction, the
new residuals remain biorthogonal to all the vectors alydad/, W, and the coefficients of the
tridiagonal projection matrix are computed using the eigmatin 6). The only exception is the
vectorsvyy 11 andws1 Which need special attention.

After restarting, the elements o541 = q}Avng andTopy1,; = w;k+1Aui, i=1,...,2k are
nonzero. These elements can be computed without additieaitaix-vector products at the cost of
storing two additional vectors. Let and+; be the last residuals that were added to the bases as
vectorsuv,,, w,, at iteration;j. The next basis vectois;1 andwsy, after restart are proportional
tor;+; andr;,;. Thus, to compute the elemenfts,, 1 andTs,1 ; itis sufficient to havedr;
andA'#;4. To avoid additional matrix-vector multiplications we use relations:

ATj+1 = Apj+1—ﬁg;z4pj, @)
Al = Alpi — B ATp;.

The vectorsdp;; andATp;,; are available at iterationin BiCG, while the vectorsip; andA'p;
are specifically stored irigBiCG Note that copying the vectordp,; and Ap; to their storage is
only needed just before restarting and not in every itenatgiarting from th&2k + 2)-th vectors,
the elements of the projection matrix are given by the theser recurrence in equation8)( The
structure of the projection matrix after any restart is gibg:

Al

X

V2

T=WTAV = Yok (8)

X X X X

3.2. Algorithm implementation

Figure5 shows theeigBiCGalgorithm as an extension BiCG. It solvesAz = b while computing
k approximate eigentriplets of. The maximum size of the eigenvalue search spage is

In terms of memory cost, the algorithm requires storage Herdix vectors normally stored in
BiCG, i.e.,r;, 7}, pj, bj, Apj, ATp;. In addition, the algorithm requires storageef vectors for
V(™) andW (™), two vectorst andé for storing Ap; and Atj; in (7), plus small matrices of order
m. So, the additional storage cost in comparisoBi©G is O((2m + 2)n + m?).

Computationally, the additional expensesi BiCGoverBiCG is the computation of thk left
and right Ritz vectors at every restart and the computatitheoik elementsl; 551 andZsgy1 4,
1=1,2,...,2k, using (7). This amounts t@(8k(m + 1)n) flops at every restart. The flop count
is less (20% less) than a similarly restarted Arnoldi methadh methods restart a basis, and while
Arnoldi orthogonalizes new vectors at every iteratieigBiCG restarts both left and right bases
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eigBiCG algorithm: solve Az = b and compute k approximate eigenvalues

(0) ro = b— Axg, po =10
Choosery such that 7, rg >+ 0
Po = Po
(0.1) n=Apy, = ATﬁo
po =< Tqg, 19 >, if pg = 0 stop
0.2) 6= —F—, dp = +—
( ) 0 \/m7 0 G070
p-1=0, 1o =<po,n >, 7-1=0,1=0
(0.3) updateev=true
@ fori =0, 1, .. till convergence dq

(1.2) if (updateev) {l =1+ 1,v =0;r;, w = (SZ’IA’Z}
2) a; =2
(3-5) Tigl = X + QP;, Tig1 = T — Q1) Tipl = Ty — Qi)
(6) pit1 =< Fiy1; Tip1 >, if piyy = O stop

6.2) i (updateev) {01 = —— 6ips = i)

(7-9) B; = p;’,:fl » Dit1 = Tig1 + Bipi, ﬁi-‘r} = Pip1 + BiD
(9.1) if (( = m) & (updateev)) {{ =1, £ =10}
(9.2) n=Apiy1, 1 = ATPip1, Tig1 =< Piy1,n >
(9.3) if (updateev) {

(9.4) Ty = 6:0i (i + B7_17i-1) -
(9.5) if (0 <m){T141 = —0i0is18iTis Ti41, = —0ip10: 57 }
(9.6) if ( =m){
(9.7) if (w! V=1 > (m — 1)btol) updateev = false
(9.8) (btol is a tolerance for biorthogonality loss (see secBd3))
(9.9) Use the algorithm in Figuréto compute Ritz triplets
(9.10) usingl’ (™), W) andT = W™t AV (™) and restart
(911) Seﬂ’2k+1,j = (2_;,.1 < 77 — B’ié7 Vj >, forj =1,2,..., 2k
(9.12) SeTj72k+1 =011 < Wiy, 1 — Gi& >, forj=1,2,...,2k
(9.13) Set = 2k
}
}
}

Compute final eigenvectors and eigenvalues before retyirnin
(10.1) (ptiona) Biorthogonalizel’®, W ® and recomputd = W ®' Ay
(10.2) Compute thé eigenvalues;, right eigenvectorg;,
and left eigenvectorg; of interestofl’, j =1,2,..,k
(10.3) Return thé Ritz valuesy;, right Ritz vectors:;, and left Ritz vectorg;
whereu; = VU f; andg; = Wlg;, j=1,2,... k

Figure 5. TheeigBiCGalgorithm. Steps that are whole digit numbers corresporBiGe.

(see R9| for a related complexity analysis). The expense of solgmall eigenvalue problems and
biorthogonalizing vectors of siz@(m) is negligible.

Before returning,eigBiCG computes the finak eigenvalues and eigenvectors (steps (10.1-
10.3)). If solving for a single right-hand side, it is ad\b&a to biorthogonalize the final set of
basis vectors and recompute the projection matrix (stedlJ)L& guard against biorthogonality



10 A. ABDEL-REHIM ET. AL.

loss during theBiCG iterations. The associated cost@¥m?) dot products and)(m) matrix-
vector multiplications. If solving for multiple right-hansides, we can simply compute the firal
eigenvectors based on the current bases since these widlitiedgonalized in the outéncremental
eigBiCG method (described in the following section). Even thenp ¢.1) might be advisable
when a large degree of loss of biorthogonality is expected.

3.3. Effect of loss of biorthogonality

As in the symmetricLanczosmethod, the nonsymmetricanczosvectors lose biorthogonality
when Ritz values start to convergég[ 49]. In addition, biorthogonality is lost due to round off
in near-breakdown situations. In this paper we assume thareakdown occurs. For look-ahead
techniques to avoid near-breakdowns we refer the readé0i& 1, 52, 53]. Loss of orthogonality
or biorthogonality in linear systems is less of a problencsiit leads to thd.anczosmethod
taking more iterations to converge. For eigenvalue problelmss of orthogonality has more
serious effects: it leads to spurious eigenvalues and esgéors, limits the attainable accuracy
of computed eigenvalues, and if left unchecked could redbeeachieved accuracy of already
converged eigenvalues.

One solution is to apply selective biorthogonalizationtw# BiCG residuals with respect to the
almost converged Ritz vectors ™) andW ("), To avoid this significant expense, we opt instead
to stop updating the Ritz vectors when the monitored lossathogonality of V(™) and 17 (")
reaches a user-specified threshold. Instead of an expecisaek with |[I — W™V ()| we
monitor the biorthogonality loss of the last vector befastartw, ,. If wi, V=1 > (m — 1)btol,
we stop updating” ™) andW (™) and letBiCG converge to the linear system. Although this check
occurs only at every restart, we can further reduce its es@&nwve only start monitoring it after
some Ritz vectors have sufficiently converged. The residoah of thek-th Ritz vector is given by
the well known formulaj T} xzx-vr+1], and thus can be monitored at no additional expense.

4. SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES

In this section, we describe thecremental eigBiC@lgorithm for solving multiple right-hand sides.
The algorithm uses an outer basis to accumulate and impigeewectors found by subsequent runs
of eigBiCGand uses deflation to accelerate convergence.

4.1. DeflatingBiCG andBiCGStab

LetUM andUl(k) be twon x k matrices whose columns are approximate right and left e&yetors

of A such that/ " ") = I. There are several ways to defl&#&G or BiCGStabfor solving a
linear system of equations. One popular way is to use anatiplileflated operatod by applying

a projector at each iteration. Similarly, one can use a splegteconditioner ford. This way, the
Krylov method finds solutions in the complementla&fk), Ul(k) [35, 40, 17, 18]. By projecting

at every Krylov iteration this approach guarantees thatirections iU~ , Ul(k) are repeated and
thus achieves the most effective deflation. However, fostimee reason, it can become prohibitively
expensive with large deflation subspaces.2# ve advocated that the simpler option of deflating
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the initial guess can be made to work equally well. kgtbe a given initial guess of the linear
systemAx = b. A deflated initial guess will be given by

Fo = xo + UM OPTAUR) 1T (b — Az). )

This approach is callethit-BiCG andinit-BiCGStab(as an extension of the symmetiidt-CG
[16]). When U™ and Ul(k) are exact eigenvectors, and in exact arithmeiiit;BiCG and init-
BiCGStabshould converge as fast asl?ﬁk), Ul(k) were projected at every step. However, when
these vectors are accurate only to a certain tolerancetidafia init-BiCG andinit-BiCG Stabwill

be effective only till the linear system converges rougluytiie same tolerance. After that point,
convergence will be similar to undeflatBdCG andBiCGStab We avoid this problem by restarting
init-BiCG andinit-BiCGStabwhen this tolerance is reached. The restarted residuaflaed again
using @), and therefore the linear system converges with deflateddspintil the same relative
tolerance is achieved again. 187 we found that 1-2 restarts are sufficient 106G to achieve
convergence similar to a fully projected system with exagptevectors.

4.2. Incrementally increasing eigenvector accuracy anchber

After solving a single linear system usimigBiCG the number and accuracy of the computed
eigenvalues is not sufficient to effectively deflBi€ GStabfor subsequent systems. This is because
when the linear system converges, typically only the smabégenvalue is computed to a similar
accuracy while the rest of the eigenvalues that are negefwmadeflation have lower accuracy.
In addition, the limited search space éigBiCG can only hold information for a small number
k of eigenvalues. One could run tleegBiCGfurther until all required eigenvectors are obtained.
However, this would be similar to applying an eigensolveagseprocessing phase. Instead, we
extend the method we developed for the symmetric case tmwephe number and accuracy of the
computed eigenvalues while solving linear systems. Waldithe method into two phases.

In the first phase, we solve a subsegtof the systems usingigBiCG With each linear system
solved, a new set of left and right Ritz vecta@ps and(@,. are computed witleigBiCG These new
vectors are biorthogonalized and appended to the currdiatida subspaced/;, andU,.. These
incrementally built spaces are then used to deflate the iggttimand side usingdj. This deflation
not only speeds up the next linear system but also guarathiztesgBiCGwill produce Ritz vectors
in the complement of the previodg and@),.

At the end of the first phase, we have accumulated biorthdgieftation subspaces; and
U, of dimensionnik. In the second phase, we uEg and U,. to deflateBiCGStabfor the next
linear systemsp, + 1, .., n,. Since the eigenvectors computed in the first phase are aot,@t-
BiCGStabmay need to be restarted as discussed in Seétibn

The resulting algorithmincremental eigBiCGis described in Figuré and applies to systems
with n, multiple right-hand sides for a non-defective matdx The user specifies the number
ny Of right-hand sides that will be solved witigBiCG This choice depends on computational
and storage cost of the projectat. and k are the sizes of the search subspaces and the number
of eigenvectors computed witigBICG andtol is the tolerance to which the linear systems are
solved. We restaBBiCGStabwhen the linear system converges below the user specifiédThis
restarting tolerance is usually close to the accuracy oftimeputed eigenvalues.
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Computationally, every call teigBiCGin the first phase is followed by a biorthogonalization
of the k£ newly computed eigenvectors, which cokt&s + k& — 1) axpy-dot operations when using
(9), wheres is the number of vectors ify;. In addition, to augment the projection matiik the
algorithm cost2k matrix-vector products angk dot products. In the second phase the deflation
projection is the only overhead, which is small given that festarts oBiCGStabare used.

The algorithm as given in Figuerequires the storage 8knq vectors inl; andU,.. Additionally,

a temporary storage @&m vectors is used bgigBiCGto computek approximate eigenvectors.
Normally, storage oRkn; + 2m vectors is not a problem as this number is on the order of the
number of right-hand sides to be solved. Finally,andU, are not used irigBiCGor BiCGStab
and can be kept in a secondary storage.

Incremental eigBiCG algorithm for solving Axz; = b;, i = 1,2,..,n,

Input: m, k, tol, btol, rtol > tol,n1 < ng, andz;q initial guesses for;
Output: Solutionsz;, deflation subspacég, U,, andH = UZTAUT

First phase: Solve; systems usingigBiCG
Q) fori=1,2,...,n;do
2) if (i = 1) Fi0 = 240 €lSe Fyo = i0 + U, H (U] (b— Azy))

3) SolveAz; = b; with Z;9 as initial guess to toleranc¢el usingeigBiCG
with search space of size and obtaint biorthogonal eigenvectors
Qr and@,
if (i =1)

(4) U =@Q,U,=Q.,,andH = UZTAUT
else{

5) Biorthogonalize@,, Q;) againstU,, U;) to get(Q.., Q;)

(6) Extend the projection matrix:

o ( H Ul AQ!. )
(@)TAU,  (Q)TAQ;
(7 Append the new vectors to the deflation subspaces:
Ui U Q) andU, — [U, Q)]
}

Second phase: Solve remaining systems with deflated es$BEGStab
(1) fori=n;+1,...,nsdo

2 0 = rtol

3) repeat

4) Setii = zio + U, H LU (b — Azig))

5) SolveAx; = b; with Z,9 as initial guess usinBiCGStahto tolerancemax(tol, ¢)
(6) Set) =0 - rtol, x;0 = x;

@) until converged to toleranael

Figure 6.Incremental eigBiCGlgorithm
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5. NUMERICAL EXPERIMENTS

We test a MATLAB implementation o&igBiCG and Incremental eigBiCGwith matrices from
various applications. All computations are performed imlale precision on a Linux workstation
with quad core Intel Xeon W3530 processors at 2.80GHZ witlB8&Mche and 6GB of memory.
The right-hand sides are random vectors generated usirigribgonr and() in MATLAB.

5.1. Test Matrices

We use the following test matrices in our numerical expentse

e Discretized partial differential operatoiThe matrix used in this test corresponds to the five-
point discretization of the operator

B 0%u B 0%u _’_B(a_u_’_@
Oxdxr  Oydy or Oy

L(u) = ) (10)
on the unit square with homogeneous Dirichlet conditionstloe boundary. First order
derivatives are discretized by central differences. Thkerétization grid sizei8 = 1/(1 + 1)
which yields a matrix of size = [2. The matrix, which we scale by?, is real, nonsymmetric
with a positive definite symmetric parti(gif > 0). We uses = 1 and! = 50 which gives
a matrix sizen = 2,500. The matrix is generated using the SPARSKIT softw&r@ and is
labeled asP D in our tests.

e Examples from Sparse Matrix CollectioiVe use two examples from the University of Florida
Sparse Matrix Collectiorg]. The first is the matritight_in_tissuedescribing light transport
in soft tissue. This matrix is complex nonsymmetric withesiz= 29, 282. The second is the
matrix Orsreg_1 from oil reservoir simulation. It is real, nonsymmetric efthite matrix of
sizen = 2,205.

e Examples from Lattice QCDLattice QCD methodsH6, 57] study the theory of the strong
nuclear force (Quantum Chromodynamcis or QCD) betweenkguand gluons g8, 59
as defined on a discrete space-time grid. Lattice calculatiequire the solution of linear
systemsAz; = b; for many right-hand sides6p, 61, 62], where A is a large, sparse,
nonsymmetric matrix called thBirac operator The matrixA depends on the quark mass
parametern, and the background gauge field. In our tests we use Wilsometiization for
quarks in which case the Dirac operator has the form

A= (mg+4)I — %D, (11)

where | is a unit matrix and is a matrix that depends on the gauge field. In addition, we
use areven-oddoreconditioner, which is equivalent to first coloring theesiof the lattice as
even-odd and then solving the Schur complement only on tbe gies:

1 1
(mg +4)* I — 7 DeoDoc)re = (Mg + 4)be + 5 Deobo. (12)

The subscriptse, eo, oeefer to even-even, even-odd and odd-even lattice blockeatively.
Gauge fields were generated using the Wilson plaquetteraatid sea quark effects were
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ignored. We use two examples corresponding to the parasngiiean in Tabld. The values
of the mass parametet, were chosen such that quarks have very small mass in whieh cas
the system is nearly ill conditioned.

Table |. Parameters for the test QCD matrices

Matrix Lattice Size Gauge Coupling] myq
QCD-49K 8X8x 8x8 5.5 —1.25
QCD-249K | 12 x 12 x 12 x 12 5.8 —0.95

5.2. Stopping Criteria for linear systems

In some of our numerical experiments, where we study theviehaf eigBiCGalone, we solve the
linear system to a toleran¢e! which is close to machine double precision. For these teststop
eigBiCGbased on the criteriofir || < tol (|| A||cs: * |2 + ||b]]), wherer(®, () are theBiCG
residual and approximate solution at tretep, and| A||.s: is an estimate of the norm of obtained
inexpensively from the Lanczos iteration. For our testhitcremental eigBiCGve converge to
higher tolerancesol and therefore we use the simpler criteriori? || < tol||b]|.

5.3. Benchmark algorithms

The quality of the eigenvector approximations fraigBiCG depends on the size of the search
space and on how well it maintains biorthogonality agaimetjpusBiCG residuals. To explore
these effects, we compare the eigenvalues computeigBrCGwith three benchmark algorithms:

e Unrestartedi-LanczosAll the residuals generated while solving the linear syséee used to
compute the approximate eigenspace. Comparing with thighm should show the effect
of using a small size subspace. However, loss of biorthdggigpresent.

e BiorthogonalizedBi-Lanczos This is the same asnrestarted Bi-Lanczobut with explicit
biorthogonalization of th@®i-Lanczosvectors. This should be the ideal algorithm since it is
not affected by limited search space size or by loss of baginality.

e biortho-eigBIiCG This is identical toeigBiCGwith the exception that thBiCG vectors are
explicitly biorthogonalized (twice) against all previdyiseen Lanczos vectors. In this case,
only the limited subspace size should have an effect on thpated eigenvalues.

5.4. Results witleigBiCG

We first demonstrate the propertiesedf BiCGby exploring the following issues. (1) the accuracy
of the computed eigenvalues in comparison to the benchmigdritams. (2) the effect of
biorthogonality loss on the computed eigenvalues. (3) idewsome guidance on choosing the
subspace sizep, and the number of eigenvectors to compute,

5.4.1. Comparing with benchmark algorithnis. the following tests, we solve the linear system
to tol = 1072 using eigBiCG with k = 10,m = 40. Updating the eigenvectors stops after
biorthogonality is lost tdtol = 1074,



EXTENDING EIGCG TO NONSYMMETRIC SYSTEMS 15

e PD matrix: The linear system in this case converge$'ifi iterations. We observe that both
eigBiCGand the benchmark methods computed 10 Ritz values that wearBqgally identical.
Moreover, the norms of the residuals of the Ritz vectgrdg — Aql|/||¢||, were all within
10~ relative difference between methods. The only exceptios thha smallest eigenvalue,
for which different methods showed residual norms with 14 absolute difference. Tablé
shows seven of the computed Ritz values and their residuatsi@for only one method as
they do not differ in the first 6 digits). Note that the smalleiyenvalue has converged to
about the same accuracy as the the linear system.

Table Il. Seven smallest Ritz value and their residual ndom®D matrix.

RitzVal 7.78e-03 1.91e-02 3.05e-02 3.80e-02 4.94e-02 ec024 6.83e-02
ResNorm 1.11e-10 3.40e-08 3.98e-05 1.97e-06 1.21e-04 e-B57 4.03e-03

e light_in_tissue matrixin this case, the linear system convergesdf iterations All methods
computed the same ten smallest eigenvalues with agreemanlgast 6 relative digits. Such
good agreement is surprising given tlagBIiCG used a subspace of size = 40, while
unrestarted Lanczos computed the same eigenvalues usihgeese of siz&36.

e Orsregl matrix:This matrix is highly indefinite with several eigenvaluessd to zero, and all
methods, including a fully biorthogonal Bi-Lanczos, fail® approximate any eigenvalues.

e QCD-49K matrix:The linear system in this case converge8iia iterations.eigBiCGfound
the same Ritz values as the other methods with at least é/ethgjits of accuracy, except for
a single spurious eigenvaluehe same (3rd smallest) spurious eigenvalue was prodused al
by thebiortho-eigBiCGmethod, but not by the unrestartBdLanczos This implies that this
is an artifact of the limited window size and not of the los®imirthogonalityln Figure7, we
show the residuals for the eigenvalues computed with @iffealgorithms.

e QCD-249K matrix:In this case,eigBiCG(10,40)converges to the linear system 98
iterations. A similar behavior was observed as in @€D-49Kcase. The six eigenvalues
with smallest magnitude agree in 6 relative digits betwdemathods, while one spurious
eigenvalue (the 5th) is produced by beflgBiCGandbiortho-eigBiCG The 7th through the
10th eigenvalues had larger discrepancies. See Figdoe comparison of the eigenvalue
residual norms computed by different methods.

The above observations, concurring with our experimentseveral other matrices, suggest that
eigBiCGis able to compute approximations to a few smallest eigeiegathat are as accurate as
unrestartedi-Lanczos in spite of the limited size of the subspace used. On ther dthed, the
limited size may cause an occasional spurious interiorne@ee, as evidenced by the fact that
this appears only froreigBiCGandbiortho-eigBiCG but not from unrestarted or biorthogonalized
Bi-Lanczos The failure of all benchmark algorithms on matéxsreglshows the limitation of the
underlyingBiCG method for indefinite matrices rather thaigBiCG

Figure8 shows the convergence history of tbigBICGfor the five smallest eigenvalues of the
matrix light_in_tissue Although not shown, the eigenvalue convergence histothefunrestarted
Bi-Lanczoss identical. The right part of the figure plots- || ™1V (™)|| as a measure of the loss
of biorthogonality between left and right basis vectors.eXpected, this increases as the smallest
eigenvalue converges.
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Figure 7. Comparing eigenvalue residual norms obtainel e@BiCGand benchmark algorithms for the
QCD-49K(left) andQCD-249K(right) matrices.
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5.4.2. Choosingn andk for eigBiCG. Beyond the conditiom > 2k, the parameters:, k& should

be chosen to minimize the computational cost and approeimagll as many eigenvalues as
possible. As we discussed earlieigBiCGis stopped when the linear system converges so interior
eigenvalues are not expected to be as accurate as the sroakle§ herefore, choosinglarge in
order to approximate more eigenvalues has diminishingmetwhile increasing computational cost
asO(k?). On the other hand, th# vectors should encapsulate the information of the whde)
subspace at restart, so choosirnmpo small deteriorates eigenvalue convergence. In ourarpats

we have observed that values lobetween 10 and 15 yield the best results. Given a reasonable
choice fork, we have observed that the accuracy of the eigenvectord igemp sensitive to the
value ofm, so there is no reason to increasetoo much. A typical choice such & + 10 or

2k + 20 was found to be sufficient. An exploration of the effect ofigas choices ofn, k for the
QCD matrices is shown in Figur&and10. These results are typical of other matrices as well. A
further fine-tuning ofm, k is also problem dependent, based on the conditioning of titex(as
deflation benefits may be limited) and the number of rightehsides.
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5.5. Experiments witilncremental eigBiCG

We generated 21 random right-hand sidiesThe first 20 systems are solved usigigBiCGand
the 21st system is solved usimgt-BiCGStabthat is deflated by the accumulated approximate
eigenspace. The 21st system is also solved using undea@&siStabfor comparison.

In Figurell, we show the convergence of the residual norm of every tiieht system in phase
one and for the 21st system (phase two) for matriggs_in_tissue andPD. We usetol = 10719,
m = 40, k = 10, andbtol = 10~*. We observe faster convergence as we solve more systems and
deflate with more and better quality eigenvectors. Durirgfttst phase, i.e. solving the first 20
systems usingigBiCG the residual norm drops faster up to a certain value anddbevergence
slows down. As we discussed earlier, when the linear systsidual converges to a tolerance
comparable to the accuracy of the eigenvectors, the iterddees” again the eigenvectors and
deflation effects cease. As more systems are solved, theveig®rs improve incrementally, and
thus the slow down occurs at lower tolerances. If we restadt deflate again, we obtain faster
convergence as we see for the 21st system witiBiCGStab

In Figure 12, we show the number of matrix-vector multiplications useddach convergence
for the 21 systems solved. We also show results for undefBi€& and BiCGStah which are
respectively 5 and 2.5 times slower than our method.

In Figure 13, we compare the speedup obtained for solving the 21st sywitninit-BiCGStab
when deflating with different numbers of approximate eigaors. For these problems, a modest
number of eigenvectors provide the most part of speedupeieml, this would depend on the
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Figure 11. Convergence of some of the linear systems solsied) aigBiCG andinit—BiCGStabfor the
matrix P D(left) andlight_in_tissue(right). The first 20 systems are solved us@igBiCG(40,10), and the
21st system is solved usimgjt-BiCGStabdeflated with 200 eigenvectors.
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We next show results for the QCD matrices. For these testssedm = 40, k = 15, tol =
10~1°, andbtol = 10~4. init-BiCGStabwas only restarted once when the linear system converged
to a tolerance o10~®. In Figure 14, we compareBiCGStabto init-BiCGStabwhere the number
of deflated eigenvectors is obtained from different numbérght hand sides. Overall, just a few
eigenvectors yield a speedup of two or more. To illustraggriprovement of the eigenvectors as we
solve more systems, we show in Figurethe residual norm for the best 50 eigenvalues computed

and how this improves over time.

We conclude this subsection by observing that in all our iprey experiments, a single restart
of the deflatednit-BiCGStabgave the best convergence. Therefore, as long as the veetotse
stored, the computational cost of applying the deflatiorjgator is negligible (in QCD problems
one matrix-vector operation costs about the same as arcappii of a projector with 300 vectors).
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5.6. Comparing with GMRes—DR/GMRes—Proj

The GMRes-DR(m,kalgorithm [L7] solves a nonsymmetric linear system using resta@&tRes
and simultaneously computésapproximate eigenvectors. LilkaigBiCG it uses a subspace of
maximum sizen which is restarted to updateapproximations to the desired eigenvectors. Unlike
eigBiCG however, it explicitly orthogonalizes future iteratesliesek eigenvector approximations,
thus improving also the convergence of the resta@dRes(m) In theory, the advantages of
eigBiCGare that (a) the biorthogonality of the whole space is inipl{b) it uses not only thick
but also locally optimal restarting to update theigenvectors, (c) the underlying Krylov method
is unrestarted, and (d) produces both left and right eigeiove The advantage &MRes-DR(m,k)

is that it is equivalent to the IRA eigensolv&7]. In practice, the most important difference is the
performance of the underlying methoda\Res(m)BiCG) on a particular problem.

For systems with multiple right-hand sides, the computgémiectors from the first system are
used to deflatdRestarted GMRefor the following systems. Because it is expensive to deflate
thesek vectors at every step d8MRes-DR(m,K)they are used in thEMRes-Projmethod Bg].

In GMRes-Projcycles ofGMRes(n') are alternated with a minimum residual projection over¢hes

k eigenvectors. To maintain the same memory cost, usudlly m — k. Therefore GMRes-Proj
applies deflation only periodically, like our restarted-BiCGStab The difference is thaEMRes-

Proj applies the projection eveny)’ steps and thus the total number of projections depends on
the convergence rate of the problem, whil#-BiCGStabis restarted a constant number of times,
tol/rtol. Moreover, all eigenspace information comes from one rubfRes-DR(m,k)while
Incremental eigBiCuilds the eigenspace by accumulating vectors frgmight-hand sides.

A thorough comparison betwedncremental eigBiCGand GMRes—DRGMRes-Projrequires
experimentation on a large parametric space, with diffeobjectives (time, memory, iterations),
and application problems. This is beyond the scope of thiepdnstead, we provide a sample
experiment that shows that our method is competitive to te-sththe-art method for solving
systems with multiple right-hand sides. We use the two QCOrines from our previous
experiments and report also timings because the methoeésdiféerent costs per iteration.

We solve linear systems for 100 random right-hand sidéB-to< 10~1°||b||. After solving the
first system withGMRes—DR(80,60We obtain 60 (approximate) eigenvectors which we deflate at
every cycle olGMRes(20)-Proj(60jor the next 99 systems. Forcremental eigBiCGwe solve the
first 5 systems usingigBiCG(12,40)ccumulating 60 left and right eigenvectors. These are then
used to deflatait-BiCGStabwithout restarting for the rest 95 systems. To match the nmgmsed
by Incremental eigBiCGwe also compare againStMIRes—DR(140,120pllowed by GMRes(20)—
Proj(120). The large subspace makes the latter method more expersigtep but it should have
better deflation properties.

In Figure 16, we compare the residual norms of the best 60 eigenvectanputed by each of
the three methods. We mention that the eigenvalues of the Q&tfces are symmetrically located
around 0 which does not fav8i-LanczosAs an exact eigensolver with a large subspace (80 or 140
vectors) GMRes-DRproduces better residual norms tHaoremental eigBiCG

Figure17 shows the cost for solving each of the 100 system&iGD—-49K For the first system
the number of iterations is similar for all methods, BIi€G requires two matrix-vector products
per iteration. For subsequent deflated systeBinSG Stabrequired only a few more products than
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Figure 16. Residual norms of the lowest 60 eigenvalues ofQB® matrices computed using GMRes—
DR(60,80), GMRes-DR(120,140), and Incremental eigBiG@3Q) for 5 right-hand sides.

the GMRES—-Projvariants. The right part of the figure shows that the inexpendeflation and
iteration step ofit-BiCGStabmake it faster thaGMRES—Pragjespecially when a large number of
right-hand sides need to be solved. The only exception istibet incremental phase wheBe&CG

is used which converges slower thRICGStab
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Figure 17. Solving 100 right-hand sides using GMRES-DRJrarld Incremental eigBiCG(nev,m) for the
QCD-49K matrix. The first system is solved with GMRES-DR(rgkd the subsequent 99 systems are
solved using GMRES(m-k)—Proj(k) in which k eigenvectors deflated. For Incremental eigBiCG(nev,m),
the first 5 systems are solved with eigBiCG(nev,m) and theemibent 95 systems with init-BiCGStab with
5*nev eigenvectors deflated. On the left, we show the numbsratrix-vector products in both cases. On
the right we show the solution time. For this problem, Inceeial eigBiCG is faster than GMRES-DR.

Figure18 shows similar results for the matf@CD-249K init-BiCGStabtook about 50% more
matrix-vector products tha@MRes-DR(although the number of iterations was smaller) but all
methods achieved solutions in similar times.

We note that the parameter choiceslftcremental eigBiCGvere not the best ones identified in
previous sections because we wanted all methods to use thigheame number of deflation vectors
or the same memory. With the best parameters, the numbertokmactor products olncremental
eigBiCGis less than that ot6MRES—Profor QCD-49Kand about the same f@QCD—-249K(see
Figure14) and thus we expect our method to be quite faster.
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Figure 18. Solving 100 right-hand sides using GMRES-DR]marld Incremental eigBiCG(nev,m) for the
QCD-249K matrix. The procedure and parameters are the ssune~&gurel?. On the right we show the
solution time. For this problem, Incremental eigBiCG is @&ufast to GMRES-DR.

6. CONCLUSIONS

We have extended thegCGalgorithm for solving linear systems with multiple righdsind sides to
the nonsymmetric case. The resulting algoritlegBiCG approximates a few smallest magnitude
eigenvalues and their corresponding left and right eigetave while a linear system is solved with
BiCG. The algorithm uses only a small size window of B G residuals without affecting the
convergence of the linear system and without restaBi@G. The eigBiCGalgorithm was tested
on matrices from different applications. For nonsymmefan-defective matrices with a positive
definite symmetric pareigBiCGwas able to compute eigenvalues almost as accurately as thos
computed with unrestarted and even explicitly biorthodiged Bi-Lanczosalgorithms.

For systems with multiple right-hand sides, we have givenakyorithm that incrementally
improves the number and accuracy of the eigenvalues coahpitteeigBiCGwhile solving the first
few systems. The computed eigenvectors are then used toed®ifEG Stabnot at every step, but
only initially at the right-hand side. Repeating this defiatonce or twice by restartinBiCGStab
was always sufficient. In our experiments our deflated mettobieved speedups of a factor of two
or more. We also showed that the method is competitive tota-sfathe-art method for multiple
right-hand sides, th& MRes-DR/GMRes-Proj

Further improvements of the algorithms that are also relever the SPD case could be
investigated in the future. Examples include, how to immainselective biorthogonalization to
reduce the effect of biorthogonality loss @gBiCG how to reduce the number of accumulated
vectors inlncremental eigBiCQy restarting the bases, or what the effect of deflation ishen t
accuracy of the solution of the linear system.

ACKNOWLEDGEMENTS

This work was supported by the National Science Foundatiantg"CF-0728915, the DOE Jefferson Lab,
and the Jeffress Memorial Trust grant J-813.



EXTENDING EIGCG TO NONSYMMETRIC SYSTEMS 23

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

REFERENCES

. Saad Ylterative Methods for Sparse Linear Syste®\M: Philadelphia, PA, USA, 2003.
. Simoncini V, Szyld DB. Recent computational developreeint Krylov subspace methods for linear systems.

Numerical Linear Algebra with AppR2007;14(1):1-59.

. Gutknecht MH. Block Krylov space methods for linear sgstewith multiple right-hand sides: an introduction.

Modern Mathematical Models, Methods and Algorithms forlRéarld SystemsAnamaya Publishers: New Delhi,
India, 2006. Http://www.sam.math.ethz.elmhhg.

. Golub GH, Underwood R. The block Lanczos method for coigugigenvaluesMathematical Software IJIRice

JR (ed.). Academic Press, 1977; 361-377.

. O’Leary DP. The block conjugate gradient algorithm ardtezl methodd.in. Alg. Appl.Feb. 198029:293-322.
. Guennouni AE, Jbilou K, Sadok H. The block Lanczos metlordifiear systems with multiple right hand sides.

Appl. Numer. Math2004;51(2—3):243-256.

. Freund RW, Malhotra M. A block QMR algorithm for non-Hetrah linear systems with multiple right-hand sides.

Linear Algebra and its Applications997;254(1-3):119-157.

. Vital B. Etude de quelquesdthodes dedsolution de proliimes liréaires de grande taille sur multiprocesseur. PhD

Thesis, Universit de Rennes, Rennes, France 1990.

. Guennouni AE, Jbilou K. Block and seed BiCGStab algorgHor nonsymmetric multiple linear systems 2000.

Http://citeseerx.ist.psu.edu/viewdoc/summary?doi£1011.6249.

Guennouni AE, Jbilou K, Sadok H. A block version of BiC@$for linear systems with multiple right-hand sides.
Electronic Transactions on Numerical Analy8i803;16:129-142.

Smith CF. The performance of preconditioned iterativhods in computational electromagnetics. PhD Thesis,
University of lllinois at Urbana-Champaign, Urbana, IL 798

Smith C, Peterson A, Mittra R. A conjugate gradient atgor for the treatment of multiple incident
electromagnetic field$EEE Trans. Antennas and Propagati®889;37:1490-1493.

Simoncini V, Gallopoulos E. An iterative method for ngmsnetric systems with multiple right hand sid€8AM

J. Sci. Comput1995;16(4):917-933.

Chan TF, Wan WL. Analysis of projection methods for sodviinear systems with multiple right hand sid8$AM

J. Sci. Comput1997;18:1698-1721.

Saad Y. On the Lanczos method for solving symmetric tisgatems with several right hand sidé$ath. Comp.
1987;48:651-662.

Saad Y, Yeung M, Erhel J, Guyomarc’h F. A deflated versibthe conjugate gradient algorithr8IAM J. Sci.
Comput.2000;21(5):1909-1926.

Morgan RB. GMRES with deflated restarti®AM J. Sci. Compu002;24:20-37.

Wang S, de Sturler E, Paulino GH. Large-scale topologynopation using preconditioned Krylov subspace
methods with recyclinginternational Journal for Numerical Methods in Engineggin007;69(12):2441-2468.
Ahuja K, de Sturler E, Chang ER, Gugercin S. Recyclingy bar model reduction 2010. ArXiv:1010.0762v1
[http://arxiv.org/abs/1010.0762].

Wu K, Simon H. Thick-restart Lanczos method for large sygtric eigenvalue problem&IAM J. Matrix Anal.
Appl.2000;22(2):602—616.

Stathopoulos A, Saad Y, Wu K. Dynamic thick restartinghef Davidson, and the implicitly restarted arnoldi
methodsSIAM J. Sci. Comput1998;19(1):227—-245.

Stathopoulos A, Orginos K. Computing and deflating eigkres while solving multiple right-hand side linear
systems with an application to quantum chromodynan8¢aM J. Sci. Compu010;32(1):439-462.
Abdel-Rehim AM, Morgan RB, Nicely DA, Wilcox W. Deflatechd restarted symmetric lanczos methods for
eigenvalues and linear equations with multiple right-hgideés.SIAM J. Sci. Compu010;32:129-149.

D Darnell RBM, Wilcox W. Deflated GMRES for systems withliiple shifts and multiple right-hand siddsinear
Algebra and its Application2008;429:2415-2434.

Morgan RB. Restarted block-GMRES with deflation of eigdmes. Applied Numerical Mathematic2005;
54:222-236.

Kilmer M, Miller E, Rappaport C. QMR-based projectiootiaiques for the solution of non-hermitian systems with
multiple right-hand sidesSIAM Journal on Scientific Computir&§02;23(3):761-780.

Lehoucq RB, Sorensen DC, Yang ARPACK User's Guide: Solution of Large-Scale EigenvaluebRms with
Implicitly Restarted Arnoldi Method$IAM, Philadelphia, PA, USA 1998.

Stathopoulos A, McCombs JR. PRIMME: PReconditionedatiee Multimethod Eigensolver: Methods and
software descriptioPACM Transaction on Mathematical Softwét810;37(2):21:1-21:30.



24

29

30.

31.

32.
33.

34.

35.
36.

37.

38.

39.

40.
41.

42.

43.

44,

45.

46.
47.

48.

49.

50.
51.

52.

53.

54.

55.
56.
57.
58.

59.
60.
61.
62.

A. ABDEL-REHIM ET. AL.

Stathopoulos A. Nearly optimal preconditioned metHod$lermitian eigenproblems under limited memory. Part
I: Seeking one eigenvalu8lAM J. Sci. CompuR007;29:481-514.

Stathopoulos A, McCombs JR. Nearly optimal precondé@dmethods for Hermitian eigenproblems under limited
memory. Part Il: Seeking many eigenvalu8$AM J. Sci. CompuR007;29:2162—-2188.

Knyazev AV. Toward the optimal preconditioned eigemenl Locally optimal block preconditioned conjugate
gradient methodSIAM J. Sci. CompuR001;23(2):517-541.

de Sturler E. Truncation strategies for optimal Krylabspace methods 19986:864—-889.

Baker A, Jessup E, Manteuffel T. A technigue for accélegahe convergence of restarted gm®8sM Journal

on Matrix Analysis and Applicatior2005;26:962-984.

Stathopoulos A. A case for a biorthogonal Jacobi-Daridsethod: restarting and correction equatiShAM
Journal on Matrix Analysis and Applicatior2902;24(1):238-259.

Frank J, Vuik C. On the construction of deflation-baset@nditionersSIAM J. Sci. Compu001;23:442.

Rendel O, Jens-Peter M Z. Tuning IDR to fit your appliaai®roceedings of a Workshop at Doshisha University
2011. Http://www.tu-harburg.de/matjz/papers/.

Morgan RB, Nicely DA. Restarting the nonsymmetric Lagcalgorithm for eigenvalues and linear equations
including multiple right-hand sideSIAM J. Sci. CompuR011;33:3037—3056.

Morgan RB, Wilcox W. Deflated iterative methods for lineguations with multiple right-hand sideEechnical
Report BU-HEPP-04-01Baylor University 2004. ArXiv:math-ph/0405053.

Brandt A. Multi-level adaptive solutions to boundasltie problemsMath. Comp1977;31(138):333—-390.
Luscher M. Local coherence and deflation of the low quaskies in Lattice QCDIHEP 2007;0707:081.

Babich R, Brannick J, Brower RC, Clark MA, Manteuffel TcCormick SF, Osborn JC, Rebbi C. Adaptive
multigrid algorithm for the lattice Wilson-Dirac operatoPhys. Rev. Lett2010; 105:201 602, doi:10.1103/
PhysRevLett.105.201602.

D’yakonov EG. Iteration methods in eigenvalue probleteth. Notesl983;34:945-953.

Knyazev AV. Convergence rate estimates for iterativehous for symmetric eigenvalue problems and its
implementation in a subspackaternational Ser. Numerical Mathematid991;96:143-154. Eigenwertaufgaben
in Natur- und Ingenieurwissenschaften und ihre numeriggtendlung, Oberwolfach, 1990.

Murray CW, Racine SC, Davidson ER. Improved algorithanglie lowest eigenvalues and associated eigenvectors
of large matrices). Comput. Phys1992;103(2):382—-389.

Stathopoulos A, Saad Y. Restarting techniques for big@mvidson symmetric eigenvalue methoBgectr. Trans.
Numer. Anal1998;7:163-181.

Lanczos C. Solution of systems of linear equations bymiaed iterationsJ. Res. Nat. Nur. Stan952;49:33-53.
Fletcher R. Conjugate gradient methods for indefiniggesys.Lecture Notes in Mathematicgol. 506. Springer-
Verlag: Berlin-Heidelberg-New York, 1976; 73-89.

Tong CH, Ye Q. Analysis of the finite precision Bi-Conjtg&radient algorithm for nonsymmetric linear systems.
Math. CompOct 2000;69(232):1559-1575.

Bai Z. Error analysis of the lanczos algorithm for the syonmetric eigenvalue problenMath. Comp.1994;
65:209-226.

Taylor DR. Analysis of the look ahead Lanczos algoritRimD Thesis, University of California, Berkeley 1982.
Parlett BN, Taylor DR, Liu ZA. A look ahead Lanczos algiom for unsymmetric matriceddath. Comp. 1985;
44:105-124.

Freund RW, Gutknecht MH, Nachtigal NM. An implementatiof the look ahead lanczos algorithm for non-
hermitian matrices, Part Technical Report 90.43RIACS, NASA Ames Research Center 1990.

Freund RW, Gutknecht MH, Nachtigal NM. An implementatiof the look ahead lanczos algorithm for non-
hermitian matrices, Part ITechnical Report 90.4RIACS, NASA Ames Research Center 1990.

Saad Y. SPARSKIT: A basic tool-kit for sparse matrix computationsHttp://www-
users.cs.umn.edu/ saad/software/SPARSKIT/sparskit.ht

Davis T. The university of florida sparse matrix collentihttp://www.cise.ufl.edu/research/sparse/matiiicgésx. html.
Rothe HJLattice Gauge Theories: An introductioworld Scientific Publishing Co. Pte. Ltd., 2005.

Gupta R. Introduction to Lattice QCD 1998. ArXiv:hep®807028v1 [http://arxiv.org/abs/hep-lat/9807028].
Muta T.Foundations of Quantum Chromodynamics, An IntroductioRedurbative Methods in Gauge Theories
World Scientific Publishing Co. Pte. Ltd., 1987.

Donoghue J, Golowich E, Holstein BRynamics of the Standard Modé&ambridge University Press, 1992.
Giisken S. Flavor singlet phenomena in Lattice QCD. ArXiv:eg9906034.

Wilcox W. Noise methods for flavor singlet quantities 98rXiv:hep-lat/9911013v2.

Bali GS, Collins S, Schaefer A. Effective noise redutttechniques for disconnected loops in Lattice QCD.
Computer Physics Communicatio?810;181:1570-1583.



	1 Introduction
	2 Background
	2.1 Eigenvalue computation in eigCG
	2.2 Bi-Lanczos algorithm
	2.3 BiCG algorithm

	3 The eigBiCG Algorithm
	3.1 Computing eigenvalues and eigenvectors in BiCG
	3.2 Algorithm implementation
	3.3 Effect of loss of biorthogonality

	4 Systems with multiple right-hand sides
	4.1 Deflating BiCG and BiCGStab
	4.2 Incrementally increasing eigenvector accuracy and number

	5 Numerical Experiments
	5.1 Test Matrices
	5.2 Stopping Criteria for linear systems
	5.3 Benchmark algorithms
	5.4 Results with eigBiCG
	5.4.1 Comparing with benchmark algorithms.
	5.4.2 Choosing m and k for eigBiCG.

	5.5 Experiments with Incremental eigBiCG
	5.6 Comparing with GMRes--DR/GMRes--Proj

	6 Conclusions

