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SUMMARY

The technique that was used to build theeigCGalgorithm for sparse symmetric linear systems is extended
to the nonsymmetric case using theBiCG algorithm. We show that, similarly to the symmetric case,
we can build an algorithm that is capable of computing a few smallest magnitude eigenvalues and their
corresponding left and right eigenvectors of a nonsymmetric matrix using only a small window of theBiCG
residuals while simultaneously solving a linear system with that matrix. For a system with multiple right-
hand sides, we give an algorithm that computes incrementally more eigenvalues while solving the first
few systems and then uses the computed eigenvectors to deflate BiCGStabfor the remaining systems. Our
experiments on various test problems, including Lattice QCD, show the remarkable ability ofeigBiCG
to compute spectral approximations with accuracy comparable to that of the unrestarted, nonsymmetric
Lanczos. Furthermore, our incrementaleigBiCGfollowed by appropriately restarted and deflatedBiCGStab
provides a competitive method for systems with multiple right-hand sides.

KEY WORDS: BiCG; BiCGStab; deflation; nonsymmetric linear systems; eigenvalues; sparse matrix;
Lanczos; multiple right-hand sides

1. INTRODUCTION

Many scientific and engineering applications require the solution of linear systems of equations with

many right-hand sidesbi:

Axi = bi, i = 1, 2, . . . , ns, (1)

whereA is a large, sparse, nonsymmetric matrix of dimensionn. Efficient algorithms should take

advantage of the fact that all these systems correspond to the same matrix. Because of size and

sparsity, dense-matrix methods that reuse the matrix factorization cannot be used. Krylov iterative

methods [1, 2] are the fundamental tool to solve such systems. However, they build a separate

iteration for each system and, thus, can be inefficient, especially when the number of right-hand

sides is large. Variants of Krylov methods that exploit the common matrix on multiple right hand

sides have been proposed in the literature. These include block methods [1, 3, 4, 5, 6, 7, 8, 9, 10],
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seed methods [11, 12, 13, 14, 15], deflation methods [16, 17, 18, 19, 20, 21, 22, 23, 24], and their

combinations [25, 26]. We focus on deflation methods as they do not require all the right-hand

sides to be available from the start (as block methods do) andextract intrinsic information about the

common matrix, not in relation to the right hand sides (as seed methods do).

Deflation is based on the fact that, for a large class of ill conditioned problems, the slow

convergence of Krylov linear system solvers is caused by small eigenvalues of the matrixA. If

the eigenvectors corresponding to those small eigenvalueswere known, one could project them out

(deflate them) from the initial residual and then solve the deflated system, which will converge

much faster. Although other issues relating to eigenvalue distribution and conditioning may also

cause problems to nonsymmetric Krylov methods, for many applications the problem is in the small

eigenvalues, and where most current deflation research focuses. Moreover, preconditioners are often

used to deal with these other issues, and deflation can applied on the preconditioned matrix for

further improvements.

In principle, one can use a separate eigensolver [27, 28] to compute small eigenvalues ofA

and then use them to deflate (1). However, it is more efficient to compute the small eigenvalues

simultaneously while solving the linear systems. Recently, we proposed an algorithm that uses such

strategy for Symmetric Positive Definite (SPD) matrices [22]. The algorithm—calledeigCG—has

the following features:

1. The linear system is solved with the Conjugate-Gradient (CG) algorithm which is

computationally and memory efficient.

2. While solving the linear system,eigCGcomputes a few small eigenvalues and eigenvectors

using only a small window of the CG residuals.

3. The computation of the eigenvalues does not affect the solution of the linear system, and no

restarting of the linear system occurs.

4. eigCGcomputes small eigenvalues with the same efficiency and almost the same accuracy as

unrestarted Lanczos, using much smaller memory requirements.

The number and precision of the few eigenvalues computed byeigCGwhile solving a single right-

hand side are usually not sufficient for efficient deflation ofsubsequent systems. To compute more

eigenvalues and improve their accuracy, we developed theIncremental eigCGalgorithm. Our tests

on various problems showed thatIncremental eigCGwas able to compute accurately a large number

of eigenvalues and solve systems with multiple right hand sides with speed-ups up to an order of

magnitude over undeflated CG.

The reason for the success ofeigCGcan be traced to a combination of thick and locally optimal

restarting techniques for eigenvalue problems [29, 30, 31]. These techniques manage to maintain

appropriate orthogonality information during restarts ofa search space so that the optimality of the

Galerkin procedure continues to hold as if on the unrestarted Krylov space. What is surprising with

eigCG is that these techniques continue to work when future iteration vectors are not generated

based on this space (as in subspace iteration) but borrowed from a Lanczos or CG process [22].

In this paper we study the extension ofeigCG to the nonsymmetric case. Our goal is similar:

approximate eigenvectors from a small search space that is obtained as a by-product of some

Krylov method (of Arnoldi orBiCG type) and maintains approximately the orthogonality over

all seen Krylov vectors. The subspace built by Arnoldi type methods is typically restarted, and
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thus loses global orthogonality against past vectors whichcannot be recovered effectively with our

eigCGtechnique. Other efforts to correct this have resulted in somewhat limited success [32, 33].

Therefore, we turn to theBiCG method because (1) it uses an inexpensive three term recurrence to

produce a biorthogonal Krylov basis, at least in exact arithmetic, and (2) the restarting technique

used ineigCGis effective in the context of biorthogonal eigenvalue solvers [34].

The new algorithm is calledeigBiCGand computes a few eigenvalues and their corresponding

left and right eigenvectors using a small window ofBiCG residuals while solving a linear system.

TheBiCG method is unaffected. For multiple right-hand sides, we extend theIncremental eigCG

to the Incremental eigBiCGalgorithm. We first solve a few systems accumulating eigenvectors

with Incremental eigBiCG. Using these eigenvectors, the rest of the systems are solved by deflated

BiCGStab, which can especially benefit from deflation with both left and right eigenvectors [35].

For the eigenvalue computation phase, we useBiCG instead ofBiCGStabbecause the Lanczos

parameters and space are readily available inBiCG. Recently, it has been shown that Ritz values

and right Ritz vectors could be computed using theIDR algorithm, which is related toBiCGStab

[36]. Such a method might solve the initial few linear systems a little more efficiently thanBiCG,

but it would incur additional costs to find the eigenvectors.More importantly, it is not clear how

to obtain the left eigenvector space fromBiCGStab. Either way, the majority of the systems are

already solved with deflatedBiCGStab, so exploring this potential method is beyond the scope of

the current paper.

There are other algorithms in the literature for solving systems with multiple right-hand sides

using deflation. We mention in particular Lanczos with deflated restarting (Lan-DR) [23, 37],

GMReswith deflated restarting (GMRes-DRand GMRes-Proj) for the nonsymmetric case [17,

38, 24], and Recycled Krylov methods [18, 19]. The algorithms we propose are different in

several ways.GMRestype algorithms solve both the linear system and eigenvalueproblem with

restarted Arnoldi whileeigBiCGsolves the linear system with an unrestarted method. Although

our eigenvector search space is restarted, our experimentsshow that convergence is similar to

the unrestarted bi-Lanczos. In some cases, this yields better eigenvalue approximations than the

restarted Arnoldi. Also,GMRes-DRobtains the eigenvectors from a single linear system and does

not update them subsequently. RecycledBiCG is closer toeigBiCGas it is a two sided method

and uses a small eigenvector search space borrowed from unrestartedBiCG. However, without

the locally optimal restarting technique, its spectral approximations are not accurate eigenvectors

and therefore have been used mainly in applications where the matrix changes between right hand

sides. On the other hand, the deflated nonsymmetric Lanczos in [37] is a thick restarted eigensolver.

For deflation, other methods project the obtained eigenvectors at every step (GMRes, Recycled

BiCG) or at every restart (GMRes-Proj). This adds an expensive overhead when the number of

eigenvectors is large. Our methods deflate a linear system only a small, constant number of times

which is independent of the convergence of the system.

We want to point out at the outset an inherent limitation of all deflation methods. For many

applications, such as PDEs or our motivating application from lattice quantum chromodynamics

(QCD), the density of the eigenvalues near zero grows linearly with the matrix size,n. Thus, to

achieve a constant number of iterations with growingn, the cost of deflation becomesO(n2), and

the cost of obtaining these eigenvectors becomesO(n3). Although the constants in the complexity

are small, for a sufficient largen multigrid methods should scale better than deflation [39]. Recent
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advances in lattice QCD, in particular, have resulted in a version of algebraic multigrid where

the interpolators are generated by an approximate near nulleigenspace [40, 41]. Generating this

preconditioner is also expensive, but researchers have started to see benefits in some of the larger

lattices today. In this paper, we focus on problems that do not fall in this asymptotic realm or on

problems where the preconditioner has not fully removed alllow magnitude eigenvalues.

In the following we denote bȳA, AT , A† the complex conjugate, the transpose, and the Hermitian

conjugate of a non-defective matrixA respectively. We denote by< w, v >= w†v the dot product

of two vectorsv andw, and we use|| · || as the 2-norm of vectors and matrices. The complex

conjugate and the norm of a complex numberα are denoted bȳα and |α| respectively.V (m), or

V when there is no ambiguity, represents a matrix whose columns are the vectorsv1, v2, . . . , vm.

When the number of columns is changing we use the notationV = [v1, v2, . . . ].

2. BACKGROUND

2.1. Eigenvalue computation ineigCG

We first review how theeigCG algorithm computes approximations to a few eigenvalues inside

CG using a subspace of limited size and how this subspace is restarted. Assume we look fork

smallest eigenpairs of an SPD matrixA of dimensionn. Let m > k be the maximum dimension of

the subspace that will be used to compute the approximate eigenvectors. Denote byV (m) ∈ ℜn×m

an orthonormal basis of this subspace. Afterm steps ofLanczos(or CG), V (m) holds the firstm

Lanczos vectors (orCGresiduals properly normalized). In a plain thick restarting approach [21, 20],

we would computek Ritz vectors of interest and restart the subspace with thesek Ritz vectors (see

Figure1). Then, we would continue the iteration, filling the remainingm− k positions in the basis

with new Lanczos vectors. This approach is followed in RecycledMINRESbut does not approximate

the eigenpairs very well [18]. In eigCG, we restart not only with thek Ritz vectors computed at step

m, but also with thek Ritz vectors computed at stepm− 1 (if m > 2k). For stability, the2k vectors

are orthonormalized. The remainingm− 2k positions of the basis are then filled with new Lanczos

vectors. This approach for restarting the eigenvalue search subspace is based on Locally Optimal

CG (LOCG) and in eigensolvers consistently yields convergence which is almost indistinguishable

from unrestarted Lanczos [22, 42, 43, 31, 44, 45, 29, 30]. Surprisingly, it performs equally well

when the search space is made of recycled Lanczos vectors. Orthogonalization of the eigenvectors

from stepsm andm− 1 can be done with small vectors of lengthm at negligible cost. Figure2

shows how this is implemented.

2.2. Bi-Lanczosalgorithm

Given vectorsv1, w1 with < w1, v1 >= 1, m iterations of theBi-Lanczosalgorithm [46, 1] build

biorthogonal basesV (m) = [v1, . . . , vm] andW (m) = [w1, . . . , wm] of the Krylov subspaces

K(m)
r (A, v1) = span{v1, Av1, A

2v1, . . . , A
m−1v1}

K(m)
l (A†, w1) = span{w1, A

†w1, A
†2w1, . . . , A

†m−1
w1}

(2)



EXTENDING EIGCG TO NONSYMMETRIC SYSTEMS 5

Thick restarting with k Ritz vectors

GivenV (m) andT = V (m)†AV (m):
(1) Solve for thek eigenvalues of interest:Tyi = λiyi, i = 1, 2, .., k
(2) (λi, ui) are Ritz pairs ofA with ui = V (m)yi for i = 1, 2, .., k
(3) Restart:

V (k) = [u1, u2, . . . , uk]
Ti,j = 0 for i, j = 1, 2, .., m
Ti,i = λi, i = 1, 2, .., k

Figure 1. Thick restarting withk Ritz vectors: symmetric case.

Thick and locally optimal restarting with 2k Ritz vectors

GivenV (m), T = V (m)†AV (m) andT̃ = V (m−1)†AV (m−1):
(1) Solve for thek eigenvalues of interest at stepsm andm− 1:

Tyi = λiyi, T̃ ỹi = λ̃iỹi, i = 1, 2, .., k

Y = [y1, y2, .., yk], Ỹ = [ỹ1, ỹ2, .., ỹk]

Append amth row of zeros toỸ
orthonormalizẽY againstY to getC = [c1, c2, .., c2k]
Note thatci = yi for i = 1, 2, .., k since these are orthonormal

(3) H = C†TC is a2k × 2k matrix
(4) Solve the eigenvalue problemHzi = dizi for i = 1, 2, .., 2k
(5) (di, ui) are Ritz pairs ofA with ui = V (m)Czi for i = 1, 2, .., 2k
(6) Restart:

V (2k) = [u1, u2, . . . , u2k]
Ti,j = 0 for i, j = 1, 2, ..,m
Ti,i = di, i = 1, 2, .., 2k

Figure 2. Thick and locally optimal restarting with2k Ritz vectors: symmetric case.

using a three-term recurrence with a tridiagonal projection matrixT = W (m)†AV (m). To solve a

linear systemAx = b with initial guessx0, v1 is chosen asv1 = r0 = b−Ax0, and the solution

is given by:x = x0 + V (m)T−1W (m)†r0. Using the Rayleigh-Ritz procedure onV (m) andW (m),

we can also computem approximate eigentriplets ofA. If y andz are right and left eigenvectors

of T corresponding to the eigenvalueλ, thenp = V (m)y and q = W (m)z are the right and left

Ritz vectors ofA corresponding to the Ritz valueλ. Note that in order to compute approximate

eigenvectors, we need to store all the basis vectorsV (m) andW (m) or re-compute them. For solving

a linear system, this storage is not needed asx is given by theBiCG three-term recurrence.

2.3. BiCG algorithm

The BiCG algorithm [47] is derived form theBi-Lanczosalgorithm by replacing the three-term

recurrence by a coupled two-term recurrences. For solving the linear systemAx = b with initial

guessx0, the algorithm is given in Figure3. The biorthogonal basis vectorsV = [v1, v2, . . . ] and
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W = [w1, w2, . . . ] of theBi-Lanczosalgorithm are parallel to theBiCG residuals as

vj+1 = θjrj, wj+1 = δj r̂j , j = 0, 1, . . . . (3)

The normalization factorsθj and δj are chosen such that< wj+1, vj+1 >= 1. We choose the

following normalization which balances the norm ofvj+1 andwj+1,

θj =
1

√

| < r̂j , rj > |
=

1
√

|ρj |
, δj =

√

| < r̂j, rj > |
< rj , r̂j >

=

√

|ρj|
ρ̄j

. (4)

The elements of the tridiagonal projection matrixT = W (m)†AV (m) can also be computed from

the scalars in theBiCGalgorithm (see also [19]). Using Equation (3), the relations

rj = pj − βj−1pj−1, r̂j = p̂j − β̄j−1p̂j−1, (5)

and the biorthogonality conditions of theBiCGalgorithm< p̂k, Apl >= 0, k 6= l, we find

T1,1 =
1

α0
,

Tj+1,j+1 =
1

αj

+
βj−1

αj−1
, j = 1, 2, . . . ,

Tj+1,j+2 = −δ̄jθj+1βj < p̂j , Apj >, j = 0, 1, 2, . . . ,

Tj+2,j+1 = −δ̄j+1θjβj < p̂j , Apj >, j = 0, 1, 2, . . . .

(6)

These relations will be useful for computing approximate eigenpairs insideBiCG.

The BiCG Algorithm:

SolveAx = b given initial guessx0

(0) r0 = b− Ax0, p0 = r0

Choosêr0 such that< r̂0, r0 > 6= 0
p̂0 = r̂0, β−1 = 0
ρ0 =< r̂0, r0 >, if ρ0 = 0 stop

(1) for j = 0, 1, 2, . . . till convergence
(2) αj = ρj/ < p̂j , Apj >
(3) xj+1 = xj + αjpj

(4) rj+1 = rj − αjApj

(5) r̂j+1 = r̂j − ᾱjA
†p̂j

(6) ρj+1 =< r̂j+1, rj+1 >, if ρj+1 = 0 stop
(7) βj = ρj+1/ρj

(8) pj+1 = rj+1 + βjpj

(9) p̂j+1 = r̂j+1 + β̄j p̂j

Figure 3. TheBiCGalgorithm for solving a linear systemAx = b
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3. THE EIGBICG ALGORITHM

We augment the standardBiCGalgorithm with a part that approximates a few eigentripletsusing the

BiCG residuals,V (m), W (m), which we restart similarly toeigCG(Figure2). The difference is that

in eigBiCGwe deal with two biorthogonal bases. In [34], we suggested such a restarting approach

in the context of a biorthogonal Jacobi-Davidson (JD) method. As with linear systems, restarting

causes a slowdown in convergence of eigensolvers. Moreover, in the nonsymmetric case, certain

Ritz values may cease to converge or disappear completely from the restarted basis. When the left

and right eigenspace is not too ill-conditioned, our technique managed to alleviate and sometimes

eliminate these effects. The difference betweeneigBiCG and JD is that the restarted eigenvalue

search space is not used to determine subsequent iteration vectors. For the same reason, restarting

has no effect on the solution of the linear system.

3.1. Computing eigenvalues and eigenvectors inBiCG

Let k be the number of eigenpairs we need to compute, for example those with smallest absolute

value, andm be the size of the right and left subspacesV (m) andW (m) such thatm > 2k. We

compute2k approximate Ritz vectors and values (from stepsm− 1 andm) and restartV (m) and

W (m) as shown in Figure4.

Restarting with 2k Ritz vectors: BiCG case

GivenV (m), W (m) , T = W (m)†AV (m) andT̃ = W (m−1)†AV (m−1):
(1) Solve for thei = 1, . . . , k eigentriplets of interest at stepsm andm− 1:

Compute(λi, yi, zi) eigenvalues, right and left eigenvectors ofT

Compute(λ̃i, ỹi, z̃i) eigenvalues, right and left eigenvectors ofT̃

(2) Y = [y1, y2, .., yk], Ỹ = [ỹ1, ỹ2, .., ỹk]

Z = [z1, z2, .., zk], Z̃ = [z̃1, z̃2, .., z̃k]

Append amth row of zeros toỸ , andZ̃

(3) Biorthogonalize(Ỹ , Z̃) against(Y,Z) to get(C, D)
C = [c1, c2, .., c2k] andD = [d1, d2, .., d2k]
Note thatci = yi anddi = zi, i = 1, 2, .., k since these are biorthogonal

(4) H = D†T (m)C, a2k × 2k matrix
(5) Compute the2k eigenvaluesγi and the corresponding

right and left eigenvectorsfi andgi of H
(6) γi, ui, qi are Ritz values, right, and left Ritz vectors ofA with

ui = V (m)Cfi andqi = W (m)Dgi, i = 1, 2, .., 2k
(7) Restart:

V (2k) = [u1, u2, . . . , u2k]
W (2k) = [q1, q2, . . . , q2k]
Ti,j = 0 for i, j = 1, 2, ..,m
Ti,i = γi, i = 1, 2, .., 2k

Figure 4. Restarting with2k Ritz vectors: nonsymmetric case.

After the firstm steps ofBiCG, the basesV (m) andW (m) are given by theBiCG residuals and

the projection matrixT = W (m)†AV (m) is tridiagonal. After restarting,T has a diagonal2k × 2k
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block and the first2k basis vectors inV (m) andW (m) are the approximate right and left Ritz vectors.

Subsequent residuals from the originalBiCG, rm+1, r̂m+1, rm+2, r̂m+2, . . . will be appended to the

remainingm− 2k positions ofV,W , i.e., v2k+1, w2k+1, v2k+2, w2k+2, . . .. By construction, the

new residuals remain biorthogonal to all the vectors already in V,W , and the coefficients of the

tridiagonal projection matrix are computed using the equations in (6). The only exception is the

vectorsv2k+1 andw2k+1 which need special attention.

After restarting, the elementsTi,2k+1 = q†i Av2k+1 andT2k+1,i = w†
2k+1Aui, i = 1, . . . , 2k are

nonzero. These elements can be computed without additionalmatrix-vector products at the cost of

storing two additional vectors. Letrj and r̂j be the last residuals that were added to the bases as

vectorsvm, wm at iterationj. The next basis vectorsv2k+1 andw2k+1 after restart are proportional

to rj+1 andr̂j+1. Thus, to compute the elementsTi,2k+1 andT2k+1,i it is sufficient to haveArj+1

andA†r̂j+1. To avoid additional matrix-vector multiplications we usethe relations:

Arj+1 = Apj+1 − βjApj ,

A†r̂j+1 = A†p̂j+1 − β̄jA
†p̂j .

(7)

The vectorsApj+1 andA†p̂j+1 are available at iterationj in BiCG, while the vectorsApj andA†p̂j

are specifically stored ineigBiCG. Note that copying the vectorsApj andA†p̂j to their storage is

only needed just before restarting and not in every iteration. Starting from the(2k + 2)-th vectors,

the elements of the projection matrix are given by the three-term recurrence in equations (6). The

structure of the projection matrix after any restart is given by:

T = W †AV =































γ1 ×
γ2 ×

. . . ×
γ2k ×

× × × × × ×
× × ×

. . .
. . .

. . .































. (8)

3.2. Algorithm implementation

Figure5 shows theeigBiCGalgorithm as an extension toBiCG. It solvesAx = b while computing

k approximate eigentriplets ofA. The maximum size of the eigenvalue search space ism.

In terms of memory cost, the algorithm requires storage for the six vectors normally stored in

BiCG, i.e.,rj , r̂j, pj, p̂j , Apj , A†p̂j . In addition, the algorithm requires storage of2m vectors for

V (m) andW (m), two vectorsξ andξ̂ for storingApj andA†p̂j in (7), plus small matrices of order

m. So, the additional storage cost in comparison toBiCG is O((2m + 2)n + m2).

Computationally, the additional expense ofeigBiCGoverBiCG is the computation of the2k left

and right Ritz vectors at every restart and the computation of the 4k elementsTi,2k+1 andT2k+1,i,

i = 1, 2, . . . , 2k, using (7). This amounts toO(8k(m + 1)n) flops at every restart. The flop count

is less (20% less) than a similarly restarted Arnoldi method: both methods restart a basis, and while

Arnoldi orthogonalizes new vectors at every iteration,eigBiCG restarts both left and right bases
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eigBiCG algorithm: solve Ax = b and compute k approximate eigenvalues

(0) r0 = b− Ax0, p0 = r0

Choosêr0 such that< r̂0, r0 > 6= 0
p̂0 = p0

(0.1) η = Ap0, η̂ = A†p̂0

ρ0 =< r̂0, r0 >, if ρ0 = 0 stop
(0.2) θ0 = 1√

|ρ0|
, δ0 = 1

θ0ρ̄0

β−1 = 0, τ0 =< p̂0, η >, τ−1 = 0, l = 0
(0.3) updateev= true

(1) for i = 0, 1, .. till convergence do{
(1.1) if (updateev){l = l + 1, vl = θiri, wl = δir̂i}

(2) αi = ρi

τi

(3–5) xi+1 = xi + αipi, ri+1 = ri − αiη, r̂i+1 = r̂i − ᾱiη̂
(6) ρi+1 =< r̂i+1, ri+1 >, if ρi+1 = 0 stop
(6.1) if (updateev){θi+1 = 1√

|ρi+1|
, δi+1 = 1

θi+1ρ̄i+1
}

(7–9) βi = ρi+1

ρi

, pi+1 = ri+1 + βipi, p̂i+1 = r̂i+1 + β̄ip̂i

(9.1) if ((l = m) & (updateev)){ξ = η, ξ̂ = η̂}
(9.2) η = Api+1, η̂ = A†p̂i+1, τi+1 =< p̂i+1, η >
(9.3) if (updateev){
(9.4) Tl,l = δ̄iθi(τi + β2

i−1τi−1)
(9.5) if (l < m) {Tl,l+1 = −δ̄iθi+1βiτi, Tl+1,l = −δ̄i+1θiβiτi}
(9.6) if (l = m) {
(9.7) if (w†

mV (m−1) > (m− 1)btol) updateev= false
(9.8) (btol is a tolerance for biorthogonality loss (see section3.3))
(9.9) Use the algorithm in Figure4 to compute Ritz triplets
(9.10) usingV (m), W (m) andT = W (m)†AV (m) and restart
(9.11) SetT2k+1,j = δ̄i+1 < η̂ − β̄iξ̂, vj >, for j = 1, 2, . . . , 2k
(9.12) SetTj,2k+1 = θi+1 < wj , η − βiξ >, for j = 1, 2, . . . , 2k
(9.13) Setl = 2k

}
}

}
Compute final eigenvectors and eigenvalues before returning:

(10.1) (optional) BiorthogonalizeV (l), W (l) and recomputeT = W (l)†AV (l)

(10.2) Compute thek eigenvaluesγj , right eigenvectorsfj ,
and left eigenvectorsgj of interest ofT, j = 1, 2, .., k

(10.3) Return thek Ritz valuesγj , right Ritz vectorsuj , and left Ritz vectorsqj

whereuj = V (l)fj, andqj = W (l)gj , j = 1, 2, .., k

Figure 5. TheeigBiCGalgorithm. Steps that are whole digit numbers correspond toBiCG.

(see [29] for a related complexity analysis). The expense of solvingsmall eigenvalue problems and

biorthogonalizing vectors of sizeO(m) is negligible.

Before returning,eigBiCG computes the finalk eigenvalues and eigenvectors (steps (10.1–

10.3)). If solving for a single right-hand side, it is advisable to biorthogonalize the final set of

basis vectors and recompute the projection matrix (step (10.1)) to guard against biorthogonality
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loss during theBiCG iterations. The associated cost isO(m2) dot products andO(m) matrix-

vector multiplications. If solving for multiple right-hand sides, we can simply compute the finalk

eigenvectors based on the current bases since these will be biorthogonalized in the outerIncremental

eigBiCGmethod (described in the following section). Even then, step (10.1) might be advisable

when a large degree of loss of biorthogonality is expected.

3.3. Effect of loss of biorthogonality

As in the symmetricLanczosmethod, the nonsymmetricLanczosvectors lose biorthogonality

when Ritz values start to converge [48, 49]. In addition, biorthogonality is lost due to round off

in near-breakdown situations. In this paper we assume that no breakdown occurs. For look-ahead

techniques to avoid near-breakdowns we refer the reader to [50, 51, 52, 53]. Loss of orthogonality

or biorthogonality in linear systems is less of a problem since it leads to theLanczosmethod

taking more iterations to converge. For eigenvalue problems, loss of orthogonality has more

serious effects: it leads to spurious eigenvalues and eigenvectors, limits the attainable accuracy

of computed eigenvalues, and if left unchecked could reducethe achieved accuracy of already

converged eigenvalues.

One solution is to apply selective biorthogonalization of theBiCG residuals with respect to the

almost converged Ritz vectors inV (m) andW (m). To avoid this significant expense, we opt instead

to stop updating the Ritz vectors when the monitored loss of biorthogonality ofV (m) andW (m)

reaches a user-specified threshold. Instead of an expensivecheck with‖I −W (m)†V (m)‖, we

monitor the biorthogonality loss of the last vector before restart,wm. If w†
mV (m−1) > (m− 1)btol,

we stop updatingV (m) andW (m) and letBiCGconverge to the linear system. Although this check

occurs only at every restart, we can further reduce its expense if we only start monitoring it after

some Ritz vectors have sufficiently converged. The residualnorm of thek-th Ritz vector is given by

the well known formula:|Tk+1,kzkrvk+1|, and thus can be monitored at no additional expense.

4. SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES

In this section, we describe theIncremental eigBiCGalgorithm for solving multiple right-hand sides.

The algorithm uses an outer basis to accumulate and improve eigenvectors found by subsequent runs

of eigBiCGand uses deflation to accelerate convergence.

4.1. DeflatingBiCG andBiCGStab

LetU (k)
r andU

(k)
l be twon× k matrices whose columns are approximate right and left eigenvectors

of A such thatU (k)†
l U

(k)
r = I . There are several ways to deflateBiCG or BiCGStabfor solving a

linear system of equations. One popular way is to use an explicitly deflated operatorA by applying

a projector at each iteration. Similarly, one can use a spectral preconditioner forA. This way, the

Krylov method finds solutions in the complement ofU
(k)
r , U

(k)
l [35, 40, 17, 18]. By projecting

at every Krylov iteration this approach guarantees that no directions inU
(k)
r , U

(k)
l are repeated and

thus achieves the most effective deflation. However, for thesame reason, it can become prohibitively

expensive with large deflation subspaces. In [22] we advocated that the simpler option of deflating
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the initial guess can be made to work equally well. Letx0 be a given initial guess of the linear

systemAx = b. A deflated initial guess will be given by

x̃0 = x0 + U (k)
r (U

(k)†
l AU (k)

r )−1U
(k)†
l (b−Ax0). (9)

This approach is calledinit-BiCG and init-BiCGStab(as an extension of the symmetricinit-CG

[16]). When U
(k)
r and U

(k)
l are exact eigenvectors, and in exact arithmetic,init-BiCG and init-

BiCGStabshould converge as fast as ifU
(k)
r , U

(k)
l were projected at every step. However, when

these vectors are accurate only to a certain tolerance, deflation in init-BiCG andinit-BiCGStabwill

be effective only till the linear system converges roughly to the same tolerance. After that point,

convergence will be similar to undeflatedBiCGandBiCGStab. We avoid this problem by restarting

init-BiCG andinit-BiCGStabwhen this tolerance is reached. The restarted residual is deflated again

using (9), and therefore the linear system converges with deflated speed until the same relative

tolerance is achieved again. In [22] we found that 1–2 restarts are sufficient forCG to achieve

convergence similar to a fully projected system with exact eigenvectors.

4.2. Incrementally increasing eigenvector accuracy and number

After solving a single linear system usingeigBiCG, the number and accuracy of the computed

eigenvalues is not sufficient to effectively deflateBiCGStabfor subsequent systems. This is because

when the linear system converges, typically only the smallest eigenvalue is computed to a similar

accuracy while the rest of the eigenvalues that are necessary for deflation have lower accuracy.

In addition, the limited search space ineigBiCG can only hold information for a small number

k of eigenvalues. One could run theeigBiCG further until all required eigenvectors are obtained.

However, this would be similar to applying an eigensolver asa preprocessing phase. Instead, we

extend the method we developed for the symmetric case to improve the number and accuracy of the

computed eigenvalues while solving linear systems. We divide the method into two phases.

In the first phase, we solve a subsetn1 of the systems usingeigBiCG. With each linear system

solved, a new set of left and right Ritz vectorsQl andQr are computed witheigBiCG. These new

vectors are biorthogonalized and appended to the current deflation subspaces,Ul andUr. These

incrementally built spaces are then used to deflate the next right-hand side using (9). This deflation

not only speeds up the next linear system but also guaranteesthateigBiCGwill produce Ritz vectors

in the complement of the previousQl andQr.

At the end of the first phase, we have accumulated biorthogonal deflation subspacesUl and

Ur of dimensionn1k. In the second phase, we useUl andUr to deflateBiCGStabfor the next

linear systems,n1 + 1, .., ns. Since the eigenvectors computed in the first phase are not exact,init-

BiCGStabmay need to be restarted as discussed in Section4.1.

The resulting algorithm,Incremental eigBiCG, is described in Figure6 and applies to systems

with ns multiple right-hand sides for a non-defective matrixA. The user specifies the number

n1 of right-hand sides that will be solved witheigBiCG. This choice depends on computational

and storage cost of the projector.m andk are the sizes of the search subspaces and the number

of eigenvectors computed witheigBiCG, andtol is the tolerance to which the linear systems are

solved. We restartBiCGStabwhen the linear system converges below the user specifiedrtol. This

restarting tolerance is usually close to the accuracy of thecomputed eigenvalues.
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Computationally, every call toeigBiCG in the first phase is followed by a biorthogonalization

of thek newly computed eigenvectors, which costsk(2s + k − 1) axpy-dot operations when using

(9), wheres is the number of vectors inUl. In addition, to augment the projection matrixH the

algorithm costs2k matrix-vector products andsk dot products. In the second phase the deflation

projection is the only overhead, which is small given that few restarts ofBiCGStabare used.

The algorithm as given in Figure6 requires the storage of2kn1 vectors inUl andUr. Additionally,

a temporary storage of2m vectors is used byeigBiCG to computek approximate eigenvectors.

Normally, storage of2kn1 + 2m vectors is not a problem as this number is on the order of the

number of right-hand sides to be solved. Finally,Ul andUr are not used ineigBiCGor BiCGStab

and can be kept in a secondary storage.

Incremental eigBiCG algorithm for solving Axi = bi, i = 1, 2, .., ns

Input: m, k, tol, btol, rtol ≥ tol, n1 < ns, andxi0 initial guesses forxi

Output: Solutionsxi, deflation subspacesUl, Ur, andH = U†
l AUr

First phase: Solven1 systems usingeigBiCG.
(1) for i = 1, 2, . . . , n1 do
(2) if (i = 1) x̃i0 = xi0 else x̃i0 = xi0 + UrH

−1(U†
l (b−Axi0))

(3) SolveAxi = bi with x̃i0 as initial guess to tolerancetol usingeigBiCG
with search space of sizem and obtaink biorthogonal eigenvectors
Ql andQr

if ( i = 1)
(4) Ul = Ql, Ur = Qr, andH = U†

l AUr

else{
(5) Biorthogonalize (Qr, Ql) against(Ur, Ul) to get(Q′

r, Q
′
l)

(6) Extend the projection matrix:

H =

(

H U†
l AQ′

r

(Q′
l)
†AUr (Q′

l)
†AQ′

r

)

(7) Append the new vectors to the deflation subspaces:
Ul ← [Ul Q′

l] andUr ← [Ur Q′
r]

}

Second phase: Solve remaining systems with deflated restartedBiCGStab
(1) for i = n1 + 1, . . . , ns do
(2) δ = rtol
(3) repeat
(4) Setx̃i0 = xi0 + UrH

−1(U†
l (b− Axi0))

(5) SolveAxi = bi with x̃i0 as initial guess usingBiCGStabto tolerancemax(tol, δ)
(6) Setδ = δ · rtol, xi0 = xi

(7) until converged to tolerancetol

Figure 6.Incremental eigBiCGalgorithm
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5. NUMERICAL EXPERIMENTS

We test a MATLAB implementation ofeigBiCG and Incremental eigBiCGwith matrices from

various applications. All computations are performed in double precision on a Linux workstation

with quad core Intel Xeon W3530 processors at 2.80GHZ with 8MB cache and 6GB of memory.

The right-hand sides are random vectors generated using thefunctionrand() in MATLAB.

5.1. Test Matrices

We use the following test matrices in our numerical experiments:

• Discretized partial differential operator:The matrix used in this test corresponds to the five-

point discretization of the operator

L(u) = − ∂2u

∂x∂x
− ∂2u

∂y∂y
+ β(

∂u

∂x
+

∂u

∂y
) (10)

on the unit square with homogeneous Dirichlet conditions onthe boundary. First order

derivatives are discretized by central differences. The discretization grid size ish = 1/(l + 1)

which yields a matrix of sizen = l2. The matrix, which we scale byh2, is real, nonsymmetric

with a positive definite symmetric part (A+A†

2 > 0). We useβ = 1 and l = 50 which gives

a matrix sizen = 2, 500. The matrix is generated using the SPARSKIT software [54] and is

labeled asPD in our tests.

• Examples from Sparse Matrix Collection:We use two examples from the University of Florida

Sparse Matrix Collection [55]. The first is the matrixlight in tissuedescribing light transport

in soft tissue. This matrix is complex nonsymmetric with sizen = 29, 282. The second is the

matrix Orsreg 1 from oil reservoir simulation. It is real, nonsymmetric indefinite matrix of

sizen = 2, 205.

• Examples from Lattice QCD:Lattice QCD methods [56, 57] study the theory of the strong

nuclear force (Quantum Chromodynamcis or QCD) between quarks and gluons [58, 59]

as defined on a discrete space-time grid. Lattice calculations require the solution of linear

systemsAxi = bi for many right-hand sides [60, 61, 62], where A is a large, sparse,

nonsymmetric matrix called theDirac operator. The matrixA depends on the quark mass

parametermq and the background gauge field. In our tests we use Wilson discretization for

quarks in which case the Dirac operator has the form

A = (mq + 4)I − 1

2
D, (11)

where I is a unit matrix andD is a matrix that depends on the gauge field. In addition, we

use aneven-oddpreconditioner, which is equivalent to first coloring the sites of the lattice as

even-odd and then solving the Schur complement only on the even sites:

((mq + 4)2Iee −
1

4
DeoDoe)xe = (mq + 4)be +

1

2
Deobo. (12)

The subscriptsee, eo, oerefer to even-even, even-odd and odd-even lattice blocks respectively.

Gauge fields were generated using the Wilson plaquette action and sea quark effects were
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ignored. We use two examples corresponding to the parameters given in TableI. The values

of the mass parametermq were chosen such that quarks have very small mass in which case

the system is nearly ill conditioned.

Table I. Parameters for the test QCD matrices

Matrix Lattice Size Gauge Coupling mq

QCD–49K 8 × 8 × 8 × 8 5.5 −1.25

QCD-249K 12 × 12 × 12 × 12 5.8 −0.95

5.2. Stopping Criteria for linear systems

In some of our numerical experiments, where we study the behavior of eigBiCGalone, we solve the

linear system to a tolerancetol which is close to machine double precision. For these tests,we stop

eigBiCGbased on the criterion||r(i)|| < tol(||A||est ∗ ||x(i)||+ ||b||), wherer(i), x(i) are theBiCG

residual and approximate solution at thei step, and||A||est is an estimate of the norm ofA obtained

inexpensively from the Lanczos iteration. For our tests with Incremental eigBiCGwe converge to

higher tolerancestol and therefore we use the simpler criterion||r(i)|| < tol||b||.

5.3. Benchmark algorithms

The quality of the eigenvector approximations fromeigBiCG depends on the size of the search

space and on how well it maintains biorthogonality against previousBiCG residuals. To explore

these effects, we compare the eigenvalues computed byeigBiCGwith three benchmark algorithms:

• UnrestartedBi-Lanczos: All the residuals generated while solving the linear system are used to

compute the approximate eigenspace. Comparing with this algorithm should show the effect

of using a small size subspace. However, loss of biorthogonality is present.

• BiorthogonalizedBi-Lanczos: This is the same asunrestarted Bi-Lanczosbut with explicit

biorthogonalization of theBi-Lanczosvectors. This should be the ideal algorithm since it is

not affected by limited search space size or by loss of biorthogonality.

• biortho-eigBiCG: This is identical toeigBiCGwith the exception that theBiCG vectors are

explicitly biorthogonalized (twice) against all previously seen Lanczos vectors. In this case,

only the limited subspace size should have an effect on the computed eigenvalues.

5.4. Results witheigBiCG

We first demonstrate the properties ofeigBiCGby exploring the following issues. (1) the accuracy

of the computed eigenvalues in comparison to the benchmark algorithms. (2) the effect of

biorthogonality loss on the computed eigenvalues. (3) provide some guidance on choosing the

subspace size,m, and the number of eigenvectors to compute,k.

5.4.1. Comparing with benchmark algorithms.In the following tests, we solve the linear system

to tol = 10−12 using eigBiCG with k = 10,m = 40. Updating the eigenvectors stops after

biorthogonality is lost tobtol = 10−4.
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• PD matrix: The linear system in this case converges in172 iterations. We observe that both

eigBiCGand the benchmark methods computed 10 Ritz values that were practically identical.

Moreover, the norms of the residuals of the Ritz vectors,||Aq − λq||/||q||, were all within

10−6 relative difference between methods. The only exception was the smallest eigenvalue,

for which different methods showed residual norms with10−14 absolute difference. TableII

shows seven of the computed Ritz values and their residual norms (for only one method as

they do not differ in the first 6 digits). Note that the smallest eigenvalue has converged to

about the same accuracy as the the linear system.

Table II. Seven smallest Ritz value and their residual normsfor PD matrix.

RitzVal 7.78e-03 1.91e-02 3.05e-02 3.80e-02 4.94e-02 6.44e-02 6.83e-02
ResNorm 1.11e-10 3.40e-08 3.98e-05 1.97e-06 1.21e-04 2.57e-03 4.03e-03

• light in tissue matrix:In this case, the linear system converges in436 iterations.All methods

computed the same ten smallest eigenvalues with agreement in at least 6 relative digits. Such

good agreement is surprising given thateigBiCG used a subspace of sizem = 40, while

unrestarted Lanczos computed the same eigenvalues using a subspace of size436.

• Orsreg1 matrix:This matrix is highly indefinite with several eigenvalues close to zero, and all

methods, including a fully biorthogonal Bi-Lanczos, failed to approximate any eigenvalues.

• QCD–49K matrix:The linear system in this case converges in353 iterations.eigBiCGfound

the same Ritz values as the other methods with at least 6 relative digits of accuracy, except for

a single spurious eigenvalue.The same (3rd smallest) spurious eigenvalue was produced also

by thebiortho-eigBiCGmethod, but not by the unrestartedBi-Lanczos. This implies that this

is an artifact of the limited window size and not of the loss ofbiorthogonality.In Figure7, we

show the residuals for the eigenvalues computed with different algorithms.

• QCD–249K matrix:In this case,eigBiCG(10,40)converges to the linear system in698

iterations. A similar behavior was observed as in theQCD–49Kcase. The six eigenvalues

with smallest magnitude agree in 6 relative digits between all methods, while one spurious

eigenvalue (the 5th) is produced by botheigBiCGandbiortho-eigBiCG. The 7th through the

10th eigenvalues had larger discrepancies. See Figure7 for comparison of the eigenvalue

residual norms computed by different methods.

The above observations, concurring with our experiments onseveral other matrices, suggest that

eigBiCG is able to compute approximations to a few smallest eigenvalues that are as accurate as

unrestartedBi-Lanczos, in spite of the limited size of the subspace used. On the other hand, the

limited size may cause an occasional spurious interior eigenvalue, as evidenced by the fact that

this appears only fromeigBiCGandbiortho-eigBiCG, but not from unrestarted or biorthogonalized

Bi-Lanczos. The failure of all benchmark algorithms on matrixOrsreg1shows the limitation of the

underlyingBiCG method for indefinite matrices rather thaneigBiCG.

Figure8 shows the convergence history of theeigBiCG for the five smallest eigenvalues of the

matrix light in tissue. Although not shown, the eigenvalue convergence history ofthe unrestarted

Bi-Lanczosis identical. The right part of the figure plots1− ‖W (m)†V (m)‖ as a measure of the loss

of biorthogonality between left and right basis vectors. Asexpected, this increases as the smallest

eigenvalue converges.
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Figure 7. Comparing eigenvalue residual norms obtained with eigBiCGand benchmark algorithms for the
QCD–49K(left) andQCD–249K(right) matrices.
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Figure 8.eigBiCG(10,40)on the lightin tissue matrix. Left: convergence history of the five smallest
eigenvalues. Right: Loss of biorthogonality betweenV (m), W (m).

5.4.2. Choosingm andk for eigBiCG. Beyond the conditionm > 2k, the parametersm, k should

be chosen to minimize the computational cost and approximate well as many eigenvalues as

possible. As we discussed earlier,eigBiCGis stopped when the linear system converges so interior

eigenvalues are not expected to be as accurate as the smallest one. Therefore, choosingk large in

order to approximate more eigenvalues has diminishing returns while increasing computational cost

asO(k2). On the other hand, the2k vectors should encapsulate the information of the wholeV (m)

subspace at restart, so choosingk too small deteriorates eigenvalue convergence. In our experiments

we have observed that values ofk between 10 and 15 yield the best results. Given a reasonable

choice fork, we have observed that the accuracy of the eigenvectors is not very sensitive to the

value ofm, so there is no reason to increasem too much. A typical choice such as2k + 10 or

2k + 20 was found to be sufficient. An exploration of the effect of various choices ofm, k for the

QCD matrices is shown in Figures9 and10. These results are typical of other matrices as well. A

further fine-tuning ofm, k is also problem dependent, based on the conditioning of the matrix (as

deflation benefits may be limited) and the number of right-hand sides.



EXTENDING EIGCG TO NONSYMMETRIC SYSTEMS 17

4 6 8 10 12 14 16 18
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

k

E
ig

en
va

lu
e 

R
es

id
ua

l N
or

m

 

 

e
1

e
2

e
3

e
4

20 25 30 35 40 45 50 55 60
10

−5

10
−4

10
−3

10
−2

10
−1

m

E
ig

en
va

lu
e 

R
es

id
ua

l N
or

m

 

 

e
1

e
2

e
3

e
4

Figure 9. QCD–49K matrix: Residual norms of 4 smallest eigenvalues. Left: fromeigBiCG(k,40)as a
function ofk. Right: fromeigBiCG(10,m)as a function ofm.
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Figure 10. QCD–249K matrix: Residual norms of 4 smallest eigenvalues. Left: fromeigBiCG(k,40)as a
function ofk. Right: fromeigBiCG(15,m)as a function ofm.

5.5. Experiments withIncremental eigBiCG

We generated 21 random right-hand sidesbi. The first 20 systems are solved usingeigBiCGand

the 21st system is solved usinginit-BiCGStabthat is deflated by the accumulated approximate

eigenspace. The 21st system is also solved using undeflatedBiCGStabfor comparison.

In Figure11, we show the convergence of the residual norm of every third linear system in phase

one and for the 21st system (phase two) for matriceslight in tissue andPD. We usetol = 10−10,

m = 40, k = 10, andbtol = 10−4. We observe faster convergence as we solve more systems and

deflate with more and better quality eigenvectors. During the first phase, i.e. solving the first 20

systems usingeigBiCG, the residual norm drops faster up to a certain value and thenconvergence

slows down. As we discussed earlier, when the linear system residual converges to a tolerance

comparable to the accuracy of the eigenvectors, the iteration “sees” again the eigenvectors and

deflation effects cease. As more systems are solved, the eigenvectors improve incrementally, and

thus the slow down occurs at lower tolerances. If we restart and deflate again, we obtain faster

convergence as we see for the 21st system withinit-BiCGStab.

In Figure12, we show the number of matrix-vector multiplications used to reach convergence

for the 21 systems solved. We also show results for undeflatedBiCG and BiCGStab, which are

respectively 5 and 2.5 times slower than our method.

In Figure13, we compare the speedup obtained for solving the 21st systemwith init-BiCGStab

when deflating with different numbers of approximate eigenvectors. For these problems, a modest

number of eigenvectors provide the most part of speedup. In general, this would depend on the
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distribution and clustering of the eigenvalues. In the results shown above,init-BiCGStabwas

restarted only once when the system converged tortol = 10−8.
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Figure 11. Convergence of some of the linear systems solved using eigBiCGandinit−BiCGStabfor the
matrixPD(left) andlight in tissue(right). The first 20 systems are solved usingeigBiCG(40,10), and the

21st system is solved usinginit-BiCGStabdeflated with 200 eigenvectors.
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Figure 12. Reduction of the number of matrix-vector multiplications as we solve more systems for the
matrix PD(left) and light in tissue(right). For comparison, we also show the number of matrix-vector

multiplications using standardBiCG andBiCGStab.

We next show results for the QCD matrices. For these tests we usedm = 40, k = 15, tol =

10−10, andbtol = 10−4. init-BiCGStabwas only restarted once when the linear system converged

to a tolerance of10−8. In Figure14, we compareBiCGStabto init-BiCGStabwhere the number

of deflated eigenvectors is obtained from different numbersof right hand sides. Overall, just a few

eigenvectors yield a speedup of two or more. To illustrate the improvement of the eigenvectors as we

solve more systems, we show in Figure15 the residual norm for the best 50 eigenvalues computed

and how this improves over time.

We conclude this subsection by observing that in all our previous experiments, a single restart

of the deflatedinit-BiCGStabgave the best convergence. Therefore, as long as the vectorscan be

stored, the computational cost of applying the deflation projector is negligible (in QCD problems

one matrix-vector operation costs about the same as an application of a projector with 300 vectors).
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Figure 13. Effect of increasing the number of eigenvectors deflated on the number of iterations used by
init-BiCGStabfor the matricesPD(left) andlight in tissue(right). The plot shows that a small number of

eigenvectors was enough to give the bulk of speedup.
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Figure 14. Convergence of undeflatedBiCGStabversusinit−BiCGStabdeflated with the eigenvectors
obtained after solving a different number of systems, for the matricesQCD − 49K(left) and QCD −

249K(right). A small number of eigenvectors is enough to give most of the speedup.
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Figure 15. Improvement of the accuracy of the best 50 eigenvalues computed with Incremental
eigBiCG(15,40) as more systems are solved for the matricesQCD − 49K(left) andQCD − 249K(right).
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5.6. Comparing with GMRes–DR/GMRes–Proj

TheGMRes-DR(m,k)algorithm [17] solves a nonsymmetric linear system using restartedGMRes

and simultaneously computesk approximate eigenvectors. LikeeigBiCG, it uses a subspace of

maximum sizem which is restarted to updatek approximations to the desired eigenvectors. Unlike

eigBiCG, however, it explicitly orthogonalizes future iterates tothesek eigenvector approximations,

thus improving also the convergence of the restartedGMRes(m). In theory, the advantages of

eigBiCGare that (a) the biorthogonality of the whole space is implicit, (b) it uses not only thick

but also locally optimal restarting to update thek eigenvectors, (c) the underlying Krylov method

is unrestarted, and (d) produces both left and right eigenvectors. The advantage ofGMRes-DR(m,k)

is that it is equivalent to the IRA eigensolver [27]. In practice, the most important difference is the

performance of the underlying methods (GMRes(m), BiCG ) on a particular problem.

For systems with multiple right-hand sides, the computed eigenvectors from the first system are

used to deflateRestarted GMResfor the following systems. Because it is expensive to deflate

thesek vectors at every step ofGMRes-DR(m,k), they are used in theGMRes-Projmethod [38].

In GMRes-Proj, cycles ofGMRes(m′) are alternated with a minimum residual projection over these

k eigenvectors. To maintain the same memory cost, usuallym′ = m− k. Therefore,GMRes-Proj

applies deflation only periodically, like our restartedinit-BiCGStab. The difference is thatGMRes-

Proj applies the projection everym′ steps and thus the total number of projections depends on

the convergence rate of the problem, whileinit-BiCGStabis restarted a constant number of times,

tol/rtol. Moreover, all eigenspace information comes from one run ofGMRes-DR(m,k), while

Incremental eigBiCGbuilds the eigenspace by accumulating vectors fromn1 right-hand sides.

A thorough comparison betweenIncremental eigBiCGand GMRes–DR/GMRes-Projrequires

experimentation on a large parametric space, with different objectives (time, memory, iterations),

and application problems. This is beyond the scope of this paper. Instead, we provide a sample

experiment that shows that our method is competitive to a state-of-the-art method for solving

systems with multiple right-hand sides. We use the two QCD matrices from our previous

experiments and report also timings because the methods have different costs per iteration.

We solve linear systems for 100 random right-hand sides to||r|| < 10−10||b||. After solving the

first system withGMRes–DR(80,60), we obtain 60 (approximate) eigenvectors which we deflate at

every cycle ofGMRes(20)-Proj(60)for the next 99 systems. ForIncremental eigBiCG, we solve the

first 5 systems usingeigBiCG(12,40)accumulating 60 left and right eigenvectors. These are then

used to deflateinit-BiCGStabwithout restarting for the rest 95 systems. To match the memory used

by Incremental eigBiCG, we also compare againstGMRes–DR(140,120)followed byGMRes(20)–

Proj(120). The large subspace makes the latter method more expensive per step but it should have

better deflation properties.

In Figure16, we compare the residual norms of the best 60 eigenvectors computed by each of

the three methods. We mention that the eigenvalues of the QCDmatrices are symmetrically located

around 0 which does not favorBi-Lanczos. As an exact eigensolver with a large subspace (80 or 140

vectors)GMRes-DRproduces better residual norms thanIncremental eigBiCG.

Figure17 shows the cost for solving each of the 100 systems forQCD–49K. For the first system

the number of iterations is similar for all methods, butBiCG requires two matrix-vector products

per iteration. For subsequent deflated systems,BiCGStabrequired only a few more products than
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Figure 16. Residual norms of the lowest 60 eigenvalues of theQCD matrices computed using GMRes–
DR(60,80), GMRes–DR(120,140), and Incremental eigBiCG(12,40) for 5 right-hand sides.

the GMRES–Projvariants. The right part of the figure shows that the inexpensive deflation and

iteration step ofinit-BiCGStabmake it faster thanGMRES–Proj, especially when a large number of

right-hand sides need to be solved. The only exception is theshort incremental phase whereBiCG

is used which converges slower thanBiCGStab.
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Figure 17. Solving 100 right-hand sides using GMRES–DR(m,k) and Incremental eigBiCG(nev,m) for the
QCD–49K matrix. The first system is solved with GMRES–DR(m,k) and the subsequent 99 systems are
solved using GMRES(m-k)–Proj(k) in which k eigenvectors are deflated. For Incremental eigBiCG(nev,m),
the first 5 systems are solved with eigBiCG(nev,m) and the subsequent 95 systems with init-BiCGStab with
5*nev eigenvectors deflated. On the left, we show the number of matrix-vector products in both cases. On

the right we show the solution time. For this problem, Incremental eigBiCG is faster than GMRES–DR.

Figure18 shows similar results for the matrixQCD–249K. init-BiCGStabtook about 50% more

matrix-vector products thanGMRes-DR(although the number of iterations was smaller) but all

methods achieved solutions in similar times.

We note that the parameter choices forIncremental eigBiCGwere not the best ones identified in

previous sections because we wanted all methods to use either the same number of deflation vectors

or the same memory. With the best parameters, the number of matrix-vector products ofIncremental

eigBiCGis less than that ofGMRES–Projfor QCD–49Kand about the same forQCD–249K(see

Figure14) and thus we expect our method to be quite faster.
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Figure 18. Solving 100 right-hand sides using GMRES–DR(m,k) and Incremental eigBiCG(nev,m) for the
QCD–249K matrix. The procedure and parameters are the same as in Figure17. On the right we show the

solution time. For this problem, Incremental eigBiCG is equally fast to GMRES–DR.

6. CONCLUSIONS

We have extended theeigCGalgorithm for solving linear systems with multiple right-hand sides to

the nonsymmetric case. The resulting algorithm,eigBiCG, approximates a few smallest magnitude

eigenvalues and their corresponding left and right eigenvectors while a linear system is solved with

BiCG. The algorithm uses only a small size window of theBiCG residuals without affecting the

convergence of the linear system and without restartingBiCG. TheeigBiCGalgorithm was tested

on matrices from different applications. For nonsymmetric, non-defective matrices with a positive

definite symmetric part,eigBiCGwas able to compute eigenvalues almost as accurately as those

computed with unrestarted and even explicitly biorthogonalizedBi-Lanczosalgorithms.

For systems with multiple right-hand sides, we have given analgorithm that incrementally

improves the number and accuracy of the eigenvalues computed witheigBiCGwhile solving the first

few systems. The computed eigenvectors are then used to deflate BiCGStabnot at every step, but

only initially at the right-hand side. Repeating this deflation once or twice by restartingBiCGStab

was always sufficient. In our experiments our deflated methodachieved speedups of a factor of two

or more. We also showed that the method is competitive to a state-of-the-art method for multiple

right-hand sides, theGMRes-DR/GMRes-Proj.

Further improvements of the algorithms that are also relevant for the SPD case could be

investigated in the future. Examples include, how to implement selective biorthogonalization to

reduce the effect of biorthogonality loss ineigBiCG, how to reduce the number of accumulated

vectors inIncremental eigBiCGby restarting the bases, or what the effect of deflation is on the

accuracy of the solution of the linear system.
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