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Abstract. We present extensions to Hierarchical Probing, a method developed in [13] to reduce
the variance of the Monte Carlo estimation of the trace or the diagonal of the inverse of a large, sparse
matrix. In that context, probing is a method to determine the largest in magnitude elements of the
matrix inverse and then annihilate their contributions to the variance by solving linear systems with
appropriate probing vectors. It typically involves coloring the graph of An, since this matches the
sparsity structure of a polynomial approximation to A−1. This is equivalent to distance-n coloring
of A, i.e., determining which nodes are connected to each other at distance ≤ n. For matrices that
display a Green’s function decay, n is small, which reduces the number of linear systems to be solved.

Our Hierarchical Probing method was developed for matrices with a lattice structure, where
distance-n coloring and the generation of probing vectors can be performed far more efficiently and
in a way so that earlier vectors are subsets of vectors generated later in the process, meaning that it
is simple to continue probing if additional accuracy is needed. However this method worked only on
lattices with dimension lengths that were powers of two. In this paper we extend the method to work
on lattices of arbitrary dimension lengths which is theoretically more challenging. Additionally, we
expand the idea to a multilevel, hierarchical probing heuristic for matrices with any undirected graph
structure that matches the performance of classical probing but with tractable memory requirements.
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1. Introduction and Preliminaries.

1.1. Introduction. One important but computationally difficult problem in nu-
merical linear algebra is the estimation of the trace or the diagonal of a function f(A)
of a large sparse matrix, A. In this paper we focus on f(A) = A−1. This has applica-
tions in many areas, including Statistics [10, 12], Network Analysis [6], and Quantum
Chromodynamics [5]. In addition, we limit our discussion to matrices with symmetric
structure, although a generalization can be devised as in [2]. Initially, approaches
to this problem were statistical in nature [10, 1] and did not take advantage of any
knowledge of the structure of the matrix. If such knowledge can be obtained, some
methods have been developed to take advantage of it, leading to better estimations
[14, 3, 13]. We are interested in computing the trace of A−1 but the same techniques
are used to estimate the diagonal.

An attempt to exploit less regularly ordered structure is behind the idea of probing
[14]. Probing recovers the diagonal elements of a matrix by finding a coloring of its
associated graph. Coloring an undirected graph involves assigning a color to each
vertex in such a way that no two connected vertices share a color. When the rows
and columns of a matrix are permuted so that all nodes that share the same color are
adjacent, a series of diagonal blocks will appear along the diagonal, since nodes that
share a color have no connection. An example of this is shown on the left graphic of
Fig. 1. Given a coloring for a symmetric matrix A, with c total colors, we generate a
probing vector for each color m = 1, . . . , c by setting its i-th element to 1 if the i-th
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node of the graph of A is assigned the m-th color,

xmi =

{
1, if color(i) = m

0, otherwise.
(1)

We can use the probing vectors to recover the diagonal and trace of the matrix by
c matrix vector multiplications, diag(A) =

∑c
m=1 x

m � Axm where � denotes the
element-wise product, and Tr(A) =

∑c
m=1 x

mTAxm.
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span(H3) ⊂ span(H4)

Fig. 1: Probing examples. Left, on a sparse matrix. Right, when approximating
A−1 ≈ pn(A), the probing vectors for n = n1 may not be probing vectors for n > n1.

Unfortunately, A−1 is normally dense, and coloring its associated graph requires
a unique color for every node. To facilitate probing, we must induce sparsity structure
forA−1 by sparsification. For example, we could drop the smallest magnitude elements
of A−1, and use probing on the resulting matrix. However, this is impractical.

Tang and Saad [14] introduce the idea of probing the non-zero structure of a
matrix polynomial pn(A) of degree n, such that pn(A) ≈ f(A), where f(A) is some
matrix function of A. While this could be any function that is well approximated by a
matrix polynomial, they focus on the analysis of f(A) = A−1. For this case they use
the Neumann approximation pn(A) = M−1

∑n
j=0(M−1N)j , where A = M −N , and

M = diag(A), to identify a degree n for which the approximation is sufficient. Because
the nonzero structure of pn(A) is a subset of the nonzero structure of pn+1(A), we can
simply color the graph of An and generate the corresponding probing vectors, xm.
Notice that coloring An is equivalent to producing a distance-n coloring of the graph
of A. The approximation is then diag(A−1) ≈

∑c
m=1 x

m � A−1xm, where A−1xm

is solved approximately through an iterative method. This sparsification idea works
when the non-zeros introduced in higher degree polynomials reduce in magnitude.
This is observed in many problems, for example certain PDEs where the elements
A−1i,j decay exponentially with the graph distance between nodes i and j [4].

Probing as described above has two main drawbacks. First, finding a distance-n
coloring of A is difficult for higher distances of n. Some efficient algorithms exist for
distances of n = 1, n = 2 such as those designed for Jacobian and Hessian computa-
tions [8, 7]. The algorithm of [8] even targets matrices with regular structures, such
as 2D lattices, in a process similar to our own algorithm. However, these methods
do not extend to arbitrary distances. Unfortunately, for many matrices low distance
colorings are not sufficient to reduce sufficiently the variance of the trace estimator.

Second, when the estimate produced by probing for a particular n is not suffi-
ciently accurate, higher degrees need to be tried. However, it is unlikely that the
probing vectors of pn(A) will be spanned by those created for pk(A), k > n, see for
example the right part of Fig. 1. Therefore, all previous work for solving linear sys-
tems with the n probing vectors will have to be discarded and k linear systems must
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be solved for a different set of probing vectors. These problems are a bottleneck for
large matrices.

1.2. Hierarchical Probing. Our goal is to create probing vectors without ex-
plicitly computing An and in such a way that the subspace of probing vectors for An

contains the probing vectors for lower powers of n, as in the right part of Fig. 1. We
term such vectors hierarchical probing vectors. The main building block needed to
create such vectors is a hierarchical coloring. This is a series of colorings for succes-
sive powers of n, such that two nodes that previously had different colors at An must
never later share a color at higher values of n. Fig. 2 shows an example of both a
hierarchical and a non-hierarchical coloring.

Fig. 2: Hierarchical vs non-hierarchical coloring. In the example at the top we have
two color groups which at distance-2 split cleanly so that none of the nodes originally
placed in group 1 later share a color with nodes that were in group 2. In the example
at the bottom, some nodes from group 1 and group 2 share a color in group 2 after
the distance-2 coloring. Although a valid coloring, it is no longer hierarchical.

Our previous work in [13] provided an efficient solution to this problem of creating
hierarchical probing vectors when the structure of A is a toroidal lattice (i.e., a lattice
of which each dimension is a torus). Such matrices occur in Lattice Quantum Chro-
modynamics (LQCD) and also in some finite difference applications. On lattices, it
is not necessary to compute An to find a distance-n coloring since this can be derived
implicitly from the positions of nodes in the lattice. For distance n=1 and n=2 this
was also observed for 2D lattices in [8]. However, extending their results to higher
dimensions and larger n proves quite difficult. More importantly, the optimal coloring
for a certain distance may not yield nested colorings for larger distances. Taking ad-
vantage of the regularity of lattices, our algorithm in [13] produced such a hierarchical
coloring for d-dimensional lattices when the length of each dimension was a power of
two. This property of the lengths allowed us to split each lattice into 2d conformal
sublattices, where points in different sublattices are all at least distance-2 away from
each other. Therefore, if all points in a sublattice are assigned the same color, we
obtain a valid distance-1 coloring of the original lattice. The process is repeated re-
cursively on each sublattice with nodes in different sublattices never sharing the same
color at subsequent levels. Thus, at level i the number of colors is 2di, guaranteeing
at least a distance-2i coloring. In addition, between levels i and i + 1, we give the
nodes of each sublattice an appropriate intermediate coloring in case we want to stop
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with less than 2d(i+1) colors.
The hierarchical coloring could be used with (1) to produce the corresponding

probing vectors. However, this creates the problem shown in the right part of Fig. 1.
Although the subspaces of H3 and H4 are nested, the individual basis vectors are not.
Thus, despite having computed A−1H3 when probed with H3, to probe with H4 we
need to solve two additional systems, A−1H4(:, 3 : 4), not one. The solution is to
consider nested bases of these subspaces. For example adding the vector [0 0 1 -1]T in
H3 would yield a basis for span(H4). The structure of our coloring algorithm allows
for an efficient generation of a hierarchical basis using appropriate permutations of
columns and rows of the Hadamard matrix. Then a trace computation starts with the
probing vectors from the distance-1 coloring, continues with the additional probing
vectors required to complete the distance-2 coloring, and so on until the required
accuracy on the trace is achieved. We term our algorithm Hierarchical Probing (HP),

Our HP algorithm provided speedups of one order of magnitude in trace compu-
tations in LQCD, but it was limited to lattices whose dimensions had power of two
lengths; a requirement for both coloring and the generation of the Hadamard basis.

In this paper we first extend the original HP algorithm and the associated theory
to sublattices of arbitrary dimensions, as long as the lengths of the dimensions share
some common prime factors. Second, we extend these ideas to general sparse graphs
by performing coloring on a sequence of hierarchically smaller graphs, obtained by
aggregating neighboring nodes and merging distance-2 neighborhoods at each level.

To ensure a hierarchical basis, our methods produce more colors than the optimal
coloring at every level. As a side benefit, these additional vectors reduce the error
further than the optimal coloring for the same distance. Our experiments show that,
in both cases, the variance reduction for our trace estimation method is close to
classical probing but with significant savings in memory and computational time.

2. Hierarchical Probing on Lattices. After introducing the notation used for
lattices and sublattices, we present the HP method for general lattices.

2.1. Introduction to Lattice Notation. Formally, a lattice is a discrete ad-
ditive subgroup of Rn. Intuitively, it is a collection of points, such that adding the
location of any points together, gives the coordinates of another valid point, and there
is a minimum distance between the closest two points. An example of a d-dimensional
lattice would be the Cartesian product of the integers, which is the canonical d-
dimensional regular grid. A finite lattice is defined similarly, only on a finite group.
Intuitively, a finite lattice is a regular d-dimensional grid of which each dimension is
a torus.

Let each of the d dimensions of the lattice have length di. Let Zn denote the
multiplicative group of integers modulo n and define ZD = Zd1 × · · · ×Zdd . Similarly
to vector spaces, one can write down the basis for a finite lattice. We focus on regular
toroidal grids, so we say the lattice is generated by the basis I as

L(I) =

{
d∑
i=1

xi ∗ ei, ei ∈ I, xi ∈ Zdi

}
=
{
Ix, x ∈ ZD

}
, (2)

where I is the d×d identity matrix and ei is the i-th column of I. The multiplication
(∗) and all arithmetic in the i-th dimension are performed mod di. This requirement
enforces a minimum distance between two points, in contrast to a vector space.

Lattices may contain closed sublattices. We are interested in the sublattices of
L(I) because we will need to determine which sublattices of L(I) a point lies in. Let
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b ∈ Z that divides all di, i = 1, . . . , d. We define the sublattice L(bI) as the lattice
that uses b ∗ ei as the generating basis. Thus, L(bI) describes 1

bd
of the points of L(I)

with spacing b. We can extend the above definition to the more general concept of an
affine sublattice as,

L(bI)c =

{
d∑
i=1

xi ∗ b ∗ ei + c, ei ∈ I,x, c ∈ ZD
}

=
{
bx+c, x, c ∈ ZD

}
. (3)

Clearly L(bI) is recovered when the offset vector c is zero. We emphasize again that
all coordinate computations in the i-th dimension are performed mod di.

We can use these to decompose L(I) into a union of affine sublattices. For a given
sublattice spacing b, any point in L(I) lies in one of bd affine sublattices L(bI)c. These
sublattices can be said to span L(I). An example of this can be seen in Fig. 3, where
the 6x6 lattice is spanned by 32 affine sublattices of spacing 3.

0,5

0,4

0,3

0,2

0,1

0,0

1,5

1,4

1,3

1,2

1,1

1,0

2,5

2,4

2,3

2,2

2,1

2,0

3,5

3,4

3,3

3,2

3,1

3,0

4,5

4,4

4,3

4,2

4,1

4,0

5,5

5,4

5,3

5,2

5,1

5,0

(a) Sublattices with offsets(
0
0

)
,

(
2
1

)
,

(
1
2

)
0,5

0,4

0,3

0,2

0,1

0,0

1,5

1,4

1,3

1,2

1,1

1,0

2,5

2,4

2,3

2,2

2,1

2,0

3,5

3,4

3,3

3,2

3,1

3,0

4,5

4,4

4,3

4,2

4,1

4,0

5,5

5,4

5,3

5,2

5,1

5,0

(b) Sublattices with offsets(
1
0

)
,

(
0
1

)
,

(
2
2

)
0,5

0,4

0,3

0,2

0,1

0,0

1,5

1,4

1,3

1,2

1,1

1,0

2,5

2,4

2,3

2,2

2,1

2,0

3,5

3,4

3,3

3,2

3,1

3,0

4,5

4,4

4,3

4,2

4,1

4,0

5,5

5,4

5,3

5,2

5,1

5,0

(c) Sublattices with offsets(
2
0

)
,

(
1
1

)
,

(
0
2

)

Fig. 3: The decomposition of a 6x6 lattice into 32 sublattices L(3I)c0
.

More formally, given b ∈ Z that divides all di, the following sublattices span L(I):

L(bI)ci = L(bI)+ci, with c0 =


0
0
...
0

 , c1 =


1
0
...
0

 , . . . , cbd−1 =


b− 1
b− 1

...
b− 1

 . (4)

As there are b distinct options for each of the d elements of an offset c, there are bd

distinct lattice bases that span L(I). Based on the b-radix representation of integers,
we can find a one to one function that maps the integers 0 ≤ i ≤ bd − 1 to each
offset vector c, allowing each c to be associated with a unique sublattice number.
The function that maps the offset vector c to the sublattice number i is

i =

d∑
j=1

cjb
j−1. (5)

Its inverse function that maps i to a particular offset c is computed by Algorithm 1.
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This gives the following general equation for the i-th affine sublattice basis

L(bI)ci = L(bI) +


b rd−1

b0 c
...

b r1
bd−2 c
b i
bd−1 c

 . (6)

Algorithm 1 c = ConvertIndexToOffset(i, b, d)
% Find the affine offset c, given its integer reference number i
% Input: i: integer lattice reference
% Output: The offset vector c

1: for m = d→ 1 do
2: c(m)← b i

bm−1 c
3: rm ← i(mod bm−1)
4: i← rm
5: end for

return c

2.2. Overview of the Algorithm. Our approach is to split the lattice into its
spanning bd sublattices for a particular b and give each sublattice a different color,
i.e., all the nodes in a sublattice take the color of that sublattice. In the example of
Fig. 3 each of the nine sublattices receives a unique color using (5), color 0 for all
four nodes of L(3I)(0

0

), color 3 for the four nodes of L(3I)(0
1

), . . ., and color 8 for

L(3I)(2
2

). We show that this is a valid distance-(b− 1) coloring for the nodes in each

sublattice and because each sublattice takes a different color it is a valid distance-
(b − 1) coloring for the initial lattice. This idea is then applied recursively on each
sublattice L(bI)ci , for a possibly different b. Thus we obtain a series of progressively
higher distance colorings which are naturally hierarchical (as in the example in Fig. 2).
Before the completion of each recursive level, we give also an intermediate b-coloring
of the lattice. For example in Fig. 3 the lattice is 3-colored (red, blue, green) which
respects the hierarchy since all later sublattices involve nodes of the same color.

We organize our presentation for lattices as follows. In Section 2.3 we show how
to determine which sublattice a point lies in which will determine its color at each
recursion level. In Section 2.4 we show how to assign colors to sublattices and prove
its correctness. In Section 2.5, we provide an algorithm for coloring lattices that have
dimensions of equal lengths, i.e., lattices that split into the same number of sublattices
at every level. In Section 2.6 we extend the algorithm to cover the case of lattices
that have dimensions of unequal lengths. Generating the probing vectors from the
colorings of these two cases is described in Sections 2.7 and 2.8. For readability, all
proofs in this Section 2 are given in the Appendix.

2.3. Finding Sublattice Membership and Building the Hierarchy. Be-
cause we plan to assign colors based on sublattice membership, we need to determine
which sublattice a point lies in at a given level of the recursive algorithm.

Consider a lattice point with coordinates x in the regular lattice L(I) and b ∈ Z
that divides all di. From (4) L(I) is spanned by the sublattices L(bI)ci so x belongs
in one of these sublattices, say in L(bI)c, with coordinates x′. This means that
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x = bx′ + c or xi = x′i ∗ b + ci, i = 1, . . . , d, with xi, x
′
i, ci ∈ Zdi , 0 ≤ ci ≤ (b − 1).

Therefore, we can compute the offset vector c = (ci) as ci = xi mod b. The offset c
determines through (5) which sublattice the point lies in.

Let us work out an example in Fig. 3 with b = 3. The top left sublattice in (a),
consists of the points (0, 0),(0, 3),(3, 0),(3, 3) ≡ (0, 0) (mod 3). From (5), i = 0 ∗ b1 +
0∗b0 = 0, indicating that all these points are in the 0-th sublattice. Alternatively, the
points (2, 1),(5, 1),(2, 4),(5, 4) ≡ (2, 1) (mod 3). Since i = 1 ∗ 3 + 2 = 5, these points
are in the 5-th sublattice. Finally, points (1, 2),(1, 5),(4, 5),(4, 2) ≡ (1, 2) (mod 3),
which means these points are in the 7-th sublattice (i = 2 ∗ 3 + 1 = 7).

We now discuss what b to use for splitting the sublattices in the hierarchy. We
remind the reader that di, i = 1, . . . , d are the lengths of each lattice dimension. Let
Fi = factor(di) be the multisets of integer factors from the prime factorization of di.
Then define the list of common factors (where the intersection allows for a factor to
appear multiple times) as

F = sort

(
d⋂
i=1

Fi

)
. (7)

In the example of Fig. 3, F1 = F2 = {2, 3}, and so F = {2, 3}. More interestingly, for
a lattice of dimensions 60× 140, F1 = {2, 2, 3, 5}, F2 = {2, 2, 5, 7}, and F = {2, 2, 5}.

We use the list of common factors F to split the lattice L(I) into a hierarchy of
spanning sublattices. We start with the smallest b = F(1) and obtain the sublattices
in (4). We start with the smallest member of F because this will split the lattice into
a smaller number of sublattices, which means we will have a smaller number of colors
or equivalently probing vectors. This in turn means fewer calls to the iterative solver
when estimating diag(A−1). This allows us to examine the accuracy of the estimation
at earlier stopping points and, if sufficient, avoid using the higher distance colorings.

After we have selected a b ∈ F and split our lattice, we continue recursively
by splitting every sublattice into its own set of spanning sublattices based on the
next common factor F(2). The process continues until all common factors have been
exhausted. Using the fact that for any point p in a lattice, its sublattice offset after a
split is (p mod b), Algorithm 2 computes the sublattice offset vectors of p for all levels.
Because of the equivalence between offsets and indices, Algorithm 2 returns only the
index of the offsets through (5). Note that after splitting L(I) with b = F(1), the
L(bI)ci have common factors F(2 : end), and all have the same size with dimensions
di/b. The coordinates of p in its sublattice are bpb c.

Algorithm 2 [i(1), . . . , i(f)] = SublatticeIndicesOfPoint(p,F)
% Determine which sublattice a point lies in at each splitting level
% Input: p lattice point coordinates
% Input: F the common primme factors F(1) ≤ · · · ≤ F(f)
% Output: i(m) the index corresponding to offset cm,m = 1, . . . , f of the m-th split

1: for m = 1→ size(F) do % At each level use splitting spacing b = F(m)
2: cm ← p(mod F(m)) % determine p’s affine offset (i.e., sublattice) at level m
3: i(m) ← Convert cm to index through (5)
4: p← bp/F(m)c % point coordinates in this sublattice
5: end for

return i(m) for all m
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2.4. Coloring sublattices. The Manhattan distance between any two points
p1,p2 ∈ L(bI)c is ‖p1 − p2‖1. The minimum distance of these points is b, the
spacing of the sublattice. More formally, from (3), there exist x1,x2 ∈ ZD, such
that p1 = bx1 + c,p2 = bx2 + c, and, if p1,p2 are distinct points, ‖p1 − p2‖1 =
b‖x1 − x2‖1 ≥ b > 0. Thus, we may assign the same color in all points in L(bI)c and
still have a valid distance b− 1 coloring of the points within L(bI)c.

Next we need to study the effect of coloring across sublattices. The minimum
distance between points in two different sublattices is determined by the distance
of their offsets. Using (3) again, if p1 ∈ L(bI)ci and p2 ∈ L(bI)cj , ‖p1 − p2‖1 =
‖b(x1 − x2) + ci − cj‖1 ≥ ‖ci − cj‖1, since we can pick x1 = x2. For example, points
[0, . . . , 0]T ∈ L(bI)c0 and [1, 0, . . . , 0]T ∈ L(bI)c1 are distance 1 apart. Therefore, if
the nodes in L(bI)c0 and in L(bI)c1 are all assigned the same color, we cannot achieve
a valid distance-1 coloring on the entire L(I). Thus, we need to decide what color to
give to each sublattice.

Since the minimum distance between L(bI)ci and L(bI)cj is ‖ci−cj‖1, the problem
of coloring the sublattices is equivalent to coloring the lattice,

C = {p mod b, p ∈ L(I)} , (8)

whose points are the bd offset vectors ci in (4). Note that C can be used to tile
the original lattice as seen in Fig. 4. Different coloring strategies of C achieve dif-
ferent distances between ci, cj with the same color, and hence between the points of
L(bI)ci ,L(bI)cj . More formally we have the following.

The tile C
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Fig. 4: In the same 2-D example as in Fig. 3 we show the lattice points in their natural
ordering. The circled nodes constitute the C lattice of offsets, which is redrawn on the
left with the offset numbers from (5). Note how C tiles the entire lattice and that its
coloring reflects the coloring of each sublatice L(bI)c as in Fig. 3. Since b = 3, each
line of colors is the same as the previous line, shifted by 1 mod 3.

Lemma 2.1. Assume that each p ∈ L(I) is assigned a color, color(p), and
that all points in each L(bI)c are assigned the same color, i.e., ∀pi,pj ∈ L(bI)c,
color(pi) = color(pj). Then color(p mod b) = color(p).

To take advantage of the b spacing of the points within each L(bI)c, one obvious
strategy is to assign every ci in C (equivalently each sublattice) a unique color. This
guarantees a distance b− 1 coloring for the entire lattice L(I). In the context of our
recursive splitting algorithm, the first split with b1 ∈ F uses bd1 colors, and achieves
b1 − 1 distance coloring. At the second recursive level with b2 ∈ F, each L(b1I)c is
split into bd2 sublattices, each with a unique color, for a total of (b1b2)d colors. Points
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in L(b2I)c are at least b2 hops apart, but these hops are edges in the L(b1I)c lattice.
Thus the minimum distance achieved by this coloring at the second level is b1b2 − 1.
A simple inductive argument shows the following.

Lemma 2.2. If at every level of the recursive splitting algorithm each sublattice
is assigned a unique color, then at level m we have used (b1 · · · bm)d colors and have
achieved a distance b1 · · · bm − 1 coloring.

Lemma 2.2 provides the main strategy of our algorithm which at the completion of
each recursive level increases the coloring distance exponentially, so probing with the
corresponding vectors should be very effective. However, the number of colors (and
thus of probing vectors) increases rapidly too; by a factor of bdm over the previous
level. This is not an issue that harms the effectiveness of the algorithm, but it does
make it difficult to frequently monitor the quality of the produced trace estimation
because there is substantial computation needed between levels. Additionally, we
cannot properly evaluate its progress at intermediate numbers of colors because after
level m − 1, probing cannot fully annihilate elements of distance up to b1 · · · bm − 1
until all (b1 · · · bm)d colors have been used.

In other words, the off-diagonal blocks of Fig. 1 would not be fully removed.
Since, it may not be affordable to go to the next level, it would be desirable to also
have one or more intermediate evaluation points within a level where smaller distance
colorings complete. The mechanism of this is explained next and an example is shown
in Fig. 5.

Such an intermediate coloring should be hierarchical with respect to the next level
m. However, at level m each node in C (equivalently each sublattice) gets a different
color, so any valid coloring in C will necessarily be hierarchical to the coloring at the
m-level. In fact, even a non-valid coloring will be hierarchical too. For example, a
red-black coloring of C is not a valid distance-1 coloring for any odd b since its toroidal
property links nodes with the same color. However, we will see experimentally that
the errors from ignoring these connections can be significant. In [13] we showed that
three colors can provide a valid distance-1 coloring of any toroidal lattice. However,
when b 6= 3, each color subset does not have the same number of nodes, which is
an additional constraint we would like to impose because it facilitates the generation
of probing vectors on-demand (see Section 2.7). Thus, since b is prime, we can only
consider colorings with b, or b2, . . . , or bd−1 colors.

We are not aware of a method that produces optimal distance colorings of C for
any b and d. For small values of b, d we have identified heuristics that using b colors
produce a valid distance O(b1/d) coloring of C. For practical problems as in LQCD,
d ≤ 4 and b ≤ 7, so the effective distance achieved is not better than distance 1.
Besides, an optimal coloring is not necessary as the nodes in the same colors will
be hierarchically colored too so that nearby permuted nodes eventually have large
distances. Therefore, we focus our attention on the following simpler method as our
only intermediate point between two recursive levels.

Consider the strategy color(c) =
∑d
i=1 c(i) mod b which colors C with b colors

and ensures that each color appears the same number of times. Similarly on the
lattice, if p ∈ L(I), with p mod b = c, define its color:

color(p) =

d∑
i=1

p(i) mod b. (9)

Because of Lemma 2.1, we have color(p) = color(c). Then we have the following.
Lemma 2.3. The strategy (9) is a valid distance-1 coloring of L(I).
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Fig. 5: Recursive and intermediate colorings of a 2D lattice of size 35 × 35.
The recursive algorithm of Lemma 2.2 gives each sublattice a unique color and
achieves distance-{2, 8, 26, 80, 242} colorings only at the completion of each level,
i.e., with {9, 81, 729, 6561, 59049} colors. Since the number of colors between
levels grows exponentially, to allow for more meaningful reporting points, we
use (9) to color the tile with 3 colors before each recursive level completes.
This produces also an intermediate coloring per recursive level. Then, each
of the 10 colorings achieves distance-{1, 2, 3, 8, 9, 16, 27, 80, 81, 242} coloring with
{3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049} colors respectively.

In the context of the recursive algorithm, assume that we have completed level m
and points of the same color form the conformal lattice L(m). From Lemma 2.2 we
know that these points are at distance at least b1 · · · bm from each other in the original
lattice. This distance corresponds to distance 1 in L(m). Now we apply strategy (9)
before the completion of level m+1. From Lemma 2.3 we know that this intermediate
coloring guarantees that nodes of L(m) of the same color are at least at distance two
in L(m). Then, we have shown the following in terms of the original lattice.

Corollary 2.4. After the intermediate coloring with strategy (9) between m
and m+ 1 recursive levels, we have used (b1 · · · bm)dbm+1 colors and have achieved a
distance b1 · · · bm2− 1 coloring in L(I).

The coloring strategy (9) has an efficient recursive implementation. Note that
the colors in the i-th (d − 1)-dimensional slice of C are the colors of the (i − 1)-th
(d − 1)-dimensional slice shifted by 1 mod b. This can be seen in Fig. 4 for d = 2.
Since the 0-th slice is the same as the coloring of C in d− 1 dimensions, we can build
the colorings for all dimensions in the following recursive manner.

Let cd,b be the array1 of all bd colors of the corresponding d-dimensional C in
natural ordering. This C has b (d − 1)-dimensional slices each corresponding to the
(d−1)-dimensional lattice of offsets. Let cd−1,b be the array of the bd−1 colors of these
(d− 1)-dimensional lattices. Then, cd,b is a concatenation of b shifted cd−1,b arrays,

cd,b = {cd−1,b, cd−1,b + 1 mod p, . . . , cd−1,b + (b− 1) mod p} . (10)

Each shift applies to all the elements of the array cd−1,b. In Fig. 4, for example, c1,3 =

1The notation of this array is not to be confused with the notation of offsets c which are in bold.
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{0, 1, 2} are the colors of a one dimensional lattice, but also the first row of the two
dimensional C. The colors of C are then c2,3 = {{0, 1, 2}, {0, 1, 2}+1 mod 3, {0, 1, 2}+
2 mod 3} = {0, 1, 2, 1, 2, 0, 2, 0, 1}.

Algorithm 3 implements this recursive coloring of C starting with c0,b = 0. Based
on this coloring it generates the permutation, Perm, that reorders sublattices of the
same color together. For example the nine sublattices in Fig. 3 we be ordered first
the red ones corresponding to offsets 0, 5, and 7, then the blue ones corresponding to
offsets 1, 3, and 8, and finally the green sublattices with offsets 2, 4, and 6.

Since the same number of sublattices share each of the b colors, we are able to
index the location of the sublattices in the following way. The first sublattice of
color i is assigned to the ibd−1 location, and the index to the next available free
spot for this color stored in ColorIndex is incremented by one. We can then easily
recursively process the sublattices in these locations and in that order. Algorithm 3
incurs negligible computational cost, even for very large lattices, while it enables the
additional intermediate step which allows a more frequent monitoring of the trace
estimation. This low cost is an advantage over other potential colorings that could
be used to define different intermediate steps.

Algorithm 3 Perm(0, . . . , bd − 1) = GenOffsetPermutation(b, d)
% Generate the b-coloring permutation of C which reorders the sublattices (offsets)
% Input: prime factor b, lattice dimension d
% Output: Perm, the b-color permutation of the bd sublattices

1: % Generate the coloring of the tile row by row using (10)
2: c0,b ← {0}
3: for j = 1→ d do
4: cj,b ← {cj−1,b, cj−1,b + 1 mod b, ..., cj−1,b + b− 1 mod b}
5: end for
6: % Initialize index showing where the next sublattice of color i should go
7: for i = 0→ b− 1 do
8: ColorIndex(i) ← i ∗ bd−1
9: end for

10: for i = 0→ bd − 1 do
11: Color ← cd,b(i) % Lookup the color of sublattice i in array cd,b
12: Perm(i)← ColorIndex(Color) % The new location of sublattice i
13: ColorIndex(Color) ← ColorIndex(Color) +1
14: end for

return Perm

We now have a method that at each level m recursively splits a lattice into
F(m)d sublattices, giving each a different color. But before this level m completes,
we have an intermediate coloring that groups together F(m)d−1 sublattices. The
method provides the guarantees of Lemma 2.2 and Corollary 2.4. Next, we describe
the global hierarchical permutation and in particular how to find the location in
this permutation of an arbitrary node. This will be used to efficiently generate the
hierarchical probing vectors.

2.5. Hierarchical Permutations of Lattices with Dimensions of Equal
Length. The final permutation can be obtained recursively by applying the coloring
permutation from level m on the permuted index from level m − 1. This ordering
ensures that the closer the nodes are geometrically, the farther they are ordered in the



12 Laeuchli and Stathopoulos

permutation. Orderings of lower levels provide no additional information, since nodes
never move closer together in subsequent levels, so need not be stored. Moreover, we
can avoid the above recursion by determining directly the final location of the node.

Consider the example in Fig. 3. At level 0, the 3-coloring of the lattice permutes
the colors in three groups as shown below on the left(here we show the three coloring
first to illustrate a more interesting split, although since the shared factors are 2 and
3, normally the algorithm would start with the smaller factor 2).
Level 0, after 3-coloring

color 0: 0 3 8 11 13 16 18 21 26 29 31 34

color 1: 1 4 6 9 14 17 19 22 24 27 32 35

color 2: 2 5 7 10 12 15 20 23 25 28 30 33

Level 1, after splitting to 32 sublattices

offsets 0,5,7: 0 3 18 21 8 11 26 29 13 16 31 34

offsets 1,3,8: 1 4 19 22 6 9 24 27 14 17 32 35

offsets 2,4,6: 2 5 20 23 7 10 25 28 12 15 30 33

At level 1, since b = 3, we split the top level lattice to 9 sublattices. Three of those
lattices (offsets 0, 5, 7) contain only the red nodes from the intermediate coloring and
need to be ordered first. Notice how the actual permutation of the red nodes at level
0 is not needed as it is present in the ordering of the sublattices by Algorithm 3.

Algorithm 4 shows we can construct the final hierarchical permutation. Given
the coordinates of a node, p, Algorithm 2 generates the indices [i(1), . . . , i(f)] of the
sublattices the p lies in at each level. Algorithm 3 permutes these to [̂i(1), . . . , î(f)] =
Perm([i(1), . . . , i(f)]). Because the permutation preserves the hierarchy, the location
of the node p would be determined by all the nodes that belong to sublattices that
appear prior to its own sublattices in the final permutation. For example, there are
exactly î(1) sublattices preceding it at the first level, î(2) sublattices preceding it at
the second level, and so on. At every level m the size of each sublattice reduces by a
factor of F (m)d. Thus, given the lattice size L =

∏d
i=1 di, we have

Location(p) =

f∑
m=1

î(m) L∏m
l=1 F(l)d

. (11)

Algorithm 4 Location = HPpermutation(p, d,F)
% Compute the Hierarchical Probing permutation of a node p when d1 = · · · = dd
% Input: point coordinates p, lattice dimension d, common prime factors F
% Output: the location of p in the HP permutation

1: [i(1), . . . , i(f)] = SublatticeIndicesOfPoint(p,F) (Algorithm 2)

2: subLatticeSize =
∏d
i=1 di

3: Location = 0
4: for m = 1→ f do
5: Perm = GenOffsetPermutation(F(m), d) (Algorithm 3)
6: subLatticeSize = subLatticeSize/F(m)d

7: Location = Location + Perm(i(m))*subLatticeSize
8: end for

return Location

2.6. Hierarchical Permutations of Lattices with Dimensions of Unequal
Length. Algorithm 4 relies on having each lattice split into an equal number of
sublattices of the same dimensionality. However, it is possible that one dimension of
the lattice may be smaller than the others, leading to that dimension being exhausted
before the others. If the rest of the dimensions share factors, the algorithm can
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continue but in a lower dimensionality lattice that removes exhausted dimensions.
Let d̂(m) be the number of active dimensions at level m. For example, the lattice
6 × 6 × 2, has factors (2, 3), (2, 3), (2), so for the first level d̂(1) = 3, while for the

second level d̂(2) = 2, since at the second level all sublattices will be 2 dimensional.
Thus, d̂(m) can be computed simply by counting the number of common factors in
each dimension that has not been exhausted. Then, the new location of a node is
given by (12), 2

Location(p) =

f∑
m=1

î(m) L∏m
l=1 F(l)d̂(m)

. (12)

We can avoid computing and storing coloring permutations for lattices with re-
ducing dimensionality by reusing the previously computed permutations for C of a
higher dimensionality in (8), as long as the spacing b is the same. First, recall that
for a given C of dimensionality d and spacing b, the coloring cd,b in (10) is created
recursively. This means that the color of a particular node in C can be given in terms
of either a higher or a lower dimensional C plus a correctional offset as below,

cd,b(k) = cd−1,b(k mod bd−1) + b k

bd−1
c mod b, ∀k < bd, (13)

cd−1,b(k mod bd−1) = cd,b(k)− b k

bd−1
c mod b, ∀k < bd. (14)

Lemma 2.5. For any prime b, cd,b(ib) = cd−1,b(i), ∀i = 0, . . . , bd−1 − 1.
Lemma 2.6. For any prime b, cd,b(ib) = cd,b(ib+q)−q mod b, ∀i = 0, . . . , bd−1−

1,∀q = 0, . . . , b− 1.
Lemma 2.7. Let Permd be the permutation created by Algorithm 3 associated with

dimension d. Then, for any prime b, i = 0, . . . , bd−1, Permd(i) = bi/bc+cd,b(i)bd−1.
Theorem 2.8. For any 0 < m < d, Permm can be obtained directly as follows,

Permm(i) = bPermd(ib
d−m)/bd−mc, i = 0, . . . , bm − 1.

Based on Theorem 2.8, Algorithm 5 shows how to reuse previously generated
cd,b to compute permutations for lower dimensional lattices when the smaller lattice
dimensions are exhausted.

2.7. Generating Probing Vectors Quickly. After computing the hierarchical
probing permutation of a lattice we need to generate the probing vectors. As explained
in Section 1.2, the canonical probing vectors cannot be used as a hierarchical basis.
We need a different orthonormal basis that spans the same space but it is efficient to
compute. In [13], we introduce the following recursive method for generating probing
vectors for a colored lattice,

Z̃(1) = Fz(1), (15)

Z̃(i) =
[
Z̃(i−1) ⊗Fz(i)(:, 1), . . . , Z̃(i−1) ⊗Fz(i)(:, z(i))

]
, (16)

Z(i) = Z̃(i) ⊗ 1N/γi , where γi =

i∏
j=1

z(j). (17)

2It is worth noting that just as [13] interpreted this process as representing the node number in
binary and then permuting the digits, we can represent each node in mixed radix, where the radix
list is the color numbers used to color the sublattices at each level, and then permute these digits.
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Algorithm 5 Location = HPpermutation general(p, d, di,F)
% Compute the Hierarchical Probing permutation of a node p for general di
% Input: point coordinates p, lattice dimension d, common prime factors F
% Output: the location of p in the HP permutation

1: [i(1), . . . , i(f)] = SublatticeIndicesOfPoint(p,F) (Algorithm 2)

2: subLatticeSize =
∏d
i=1 di

3: Location = 0
4: d̂(1) = d % Number of active dimensions
5: d̄← []
6: for m = 1→ f do
7: d̂ =setActiveDims()
8: alreadyseen = false
9: for i = d : −1 : d̂ do

10: perm=getHash(b,d);
11: if perm = empty then
12: alreadyseen = true;
13: break
14: end if
15: end for
16: if alreadyseen==true then

17: for i = 1 : bd̂ do
18: newperm(i)=perm(ibd−d̂/bd−d̂)
19: end for
20: perm = newperm
21: else
22: Perm = GenOffsetPermutation(F(m), d) (Algorithm 3)
23: end if
24: setHash(b,d)=perm;
25: Perm = GenOffsetPermutation(F(m), d) (Algorithm 3)
26: subLatticeSize = subLatticeSize/F(m)d

27: Location = Location + Perm(i(m))*subLatticeSize
28: end for
29: %Make an array of the offsets c at each level m, where k = size(F).
30: d̄← []
31: for m = 1→ k do
32: if not lower dim version then %Check for lower dimensional version
33: c

′m ← Algorithm3(cm) % Use Algorithm 3 to reorder the lattices
34: else

c
′m =c

′m
d−1

35: end if
36: d̄m ← size( c

′m ) %Find active dimensions
37: end for
38: i ← []
39: for m = 1→ k do
40: im ← ConvertOffsetsToIndex(c

′m,F) %Use 5 to convert c
′m to an integer

41: end for
42: newLocation ← FindLocation(i,F,LatticeSize,d̄) % Use 12 for node ordering
43: return newLocation
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Here Fz(i) is the Fourier transform of the identity matrix Iz(i), z(i) is the number of
colors each sublattice is split into at level i, 1s is the vector of s ones, and ⊗ is the
Kronecker product. Essentially, these vectors build recursively a basis for the probing
vectors. At each level, we probe inside each color (i.e., sublattice) by smaller probing
vectors hierarchically, which are all assembled into a basis through the Kronecker
products. Instead of generating the whole matrix, however, we produce each probing
vector one at a time, hence requiring the same memory as the Hutchinson method.

To produce the k-th vector of the probing matrix, we first need to identify the
maximum level i needed such that γi−1 < k ≤ γi. Then at every lower recursive level
of (16) we only need two vectors; one vector from Z(i−1) and one from Fz(i). By
(16), the matrix Z(i) is divided into z(i) blocks, with each block forming a Kronecker
product with a different column of Fz(i). Since each block has z(i−1) columns, the k-

th vector is in block = b k
z(i−1)c, and thus we can generate directly the desired column

Fz(i)(:, block). This should be paired with the (k mod z(i−1)) vector of Z(i−1) which
we find recursively with the above procedure.3

When F(i) = 2, i = 1, . . . , k, the sublattices in the first k levels are red-black
colorable, and thus use only F2. Because F2 is equal to the Hadamard matrix H2,
all vectors in the first k levels can be created using real arithmetic, which yields
substantial savings over complex arithmetic. Moreover, we can use the fast bit-based
method we introduced in [13] for producing the required Hadamard vectors, leading
to an additional performance gain. This approach can be seen in Algorithm 6.

Algorithm 6 ProbingVector = GenerateProbingVector(k, z,N)
% Compute the k-th probing vector
% Input: k, the number of colors at each level z(i), the matrix size N
% Output: The probing vector

1: for j = size(z) downto 2 do % Compute indices of needed Fz(i) vectors
2: block(j) = bk/z(i− 1)c; k = k mod z(i− 1)
3: end for
4: block(1)← k;
5: % Find the initial 2-colorable sublattices, which can be probed quickly as in [13]
6: while z(j) == 2 do j ← j + 1; end while
7: fastLevels ← j − 1
8: ProbingVector ← [1]
9: ProbingVector ← FastHadamardMethod(1:fastLevels) % The Fast Hadamard

Method of [9]
10: % The rest of the levels are built through Fourier vectors
11: for j = fastLevels+1 → size(z) do
12: % Create Fourier vectors F
13: f ← 2 ∗ π/z(i)
14: w ← [0 : f : (2 ∗ π − f/2)] ∗

√
−1

15: Fz(i)(:, block)← exp(−w ⊗ block(j))
16: ProbingVector ← ProbingVector ⊗Fz(i)(block, :)
17: end for

return ProbingVector

3We note that this process can also be described in terms of radix conversion. Let the z(i)s be
taken as the radix list. If k is converted to this mixed radix form [11], the vectors of the Fourier
transforms Fz(i) needed at each level will be the digits of this representation.
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As mentioned before, we would like to terminate probing early if the results are
sufficiently accurate. Thus, we are interested in checking our results with the probing
vectors we have generated thus far. However, not every subset of probing vectors is
a valid intermediate coloring. Since Algorithm 6 is based on coloring strategy (9),
the first γi probing vectors in (17) correspond to what we termed as the intermediate
coloring between splitting levels i − 1 and i. However, there are other numbers k,
with γi−1 < k < γi, for which Z(:, 1 : k) are the probing vectors for a different valid
coloring, most importantly the one in Lemma 2.2 where each sublattice gets a unique
color. This is because the coloring is hierarchical, i.e., (9) is applied independently on
each sublattice. Let us return to the example in Fig. 3, where we first consider the
factor b = 3 and then b = 2. The figure shows the results after the 3-coloring and the
first level sublattice split.

Here we focus only on color 0:
Level 0, after 3-coloring

color 0: 0 3 8 11 13 16 18 21 26 29 31 34

Level 1, after splitting to 32 sublattices

offsets 0,5,7: 0 3 18 21 8 11 26 29 13 16 31 34

Level 1, after 2-coloring each sublattice we have a total of 2× 32 colors

original color 0 now contains 6 = 2× 3 colors 0 21 3 18 8 29 11 26 13 34 16 31

Notice therefore that by construction the first nine indices in our final permutation
(which is used to generate the probing vectors Z(:, 1 : 9)) correspond to the coloring
at level 1 where each lattice has a different color.

2.8. Probing Vectors For Hierarchical Coloring on General Graphs.
The above method for generating probing vectors assumes each color splits into the
same number of colors at a given level. This is the case with our methods in Section
2.4. With an arbitrary coloring method that does not assign the same number of
sublattices to each color (e.g., the 3-coloring method on a lattice with a length not
divisible by three), a different way to generate probing vectors is needed. A simple
but not as efficient solution is to create the required canonical probing vectors, and
then orthogonalize them against previous vectors in the sublattice as well as each
other with Gram-Schmidt. We introduce a more efficient and elegant method that
works with uneven color splits and thus generalizes probing to any arbitrary matrix
with hierarchical coloring. Although this situation does not arise in lattices, it may
in algorithms used for more general matrices, such as the heuristic that we introduce
later.

The method is described better through an example. Consider a graph with seven
nodes (each node could be generalized to be a subgraph). Suppose at level 0 the entire
graph is assigned three colors. After the corresponding permutation, the first color
contains nodes [1,2,3], the second color nodes [4,5], and the third color nodes [6,7].
To probe at level 0 we use the following three probing vectors(each probing vector is
a column vector of Z(1,0)), which is a variation of F3 in (15) and (17) to allow for
different number of nodes per color,

Z(1,0) =

F3(1, :)⊗ 13

F3(2, :)⊗ 12

F3(3, :)⊗ 12

 ∈ C7×3. (18)

The second index in Z(1,0) shows the level and the first shows the color block at the
previous level that is split (at level 0 there is only 1 block, the entire graph). Suppose
now that at the next level, 1, the first color splits into three colors and the others into
two. Clearly, the next level of probing vectors cannot be created by (16) because of
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uneven splitting. Each color block of the first level has to be probed independently.
Thus, we could probe the first block using F3 for the elements inside the first block
(with zeros everywhere else in the probing vector). Similarly for the last two blocks,
but using F2. These seven probing vectors, grouped as three blocks, are shown in
(19) —note that 0k = zeros(k, 1),F3(:, 1)

02

02

F3(:, 2)
02

02

F3(:, 3)
02

02

 ,
 03

F2(:, 1)
02

 03

F2(:, 2)
02

 ,
 03

02

F2(:, 1)

 03

02

F2(:, 2)

 . (19)

The problem is that using seven vectors would be wasting the solutions of linear
systems with the three probing vectors (18) in the first step.

The key to remedying this problem is to note that the three first vectors of the
new color blocks,

I =

F3(:, 1) 03 03

02 F2(:, 1) 02

02 02 F2(:, 1)

 =

13 03 03

02 12 02

02 02 12


are spanned by the vectors of Z(1,0), since F3 is a basis of C3. More formally, if
a ∈ C3×3, from (18) and basic properties of the Kronecker product we have that the
following matrix equation

Z(1,0)a =

F3(1, :)a⊗ 13

F3(2, :)a⊗ 12

F3(3, :)a⊗ 12

 = I,

is equivalent to F3a = I3, which has a unique solution a = ifft(I3), i.e., the inverse
Fourier transform of the identity. Therefore, if we saved P = A−1Z(1,0), we can
recover the probing result for the vectors in I as A−1I = Pa. Thus, we only need
to apply A−1 on the remaining four probing vectors, exactly as in our HP method
on the lattice. Finally, if each node represents a subgraph, each color block in (19)
involves Kronecker products of the rows of its Fourier matrix with columns of ones,
each sized to the cardinality of the subgraph. Thus, each block has the same form as
(18) and the idea can be applied recursively.

To generalize we need the following definitions. First, assume a hierarchical col-
oring at levels i = 0, 1, . . ., and let li be the number of colors at level i, with the con-
vention l−1 = 1. The nodes belonging to the same color at level i are called together
a “block” at the next level i + 1. There are li−1 blocks at the i-th level. Let s(j, i)

be the number of colors the j-th block splits into at level i. Thus,
∑li−1

j=1 s(j, i) = li.
For each color in block j, let n(j, i, k), k = 1, . . . , s(j, i) be the number of nodes in

that color. Thus,
∑s(j,i)
k=1 n(j, i, k) is the number of nodes in the j-th block. For each

j = 1, . . . , li−1 block, define the Fourier transform Fs(j,i) = fft(Is(j,i)), and Z(j,i) the
set of probing vectors as

Z(j,i) =


0

Fm(1, :)⊗ 1n(j,i,1)
...

Fm(m, :)⊗ 1n(j,i,m)

0

 , where m = s(j, i). (20)
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The 0 zero matrices have m columns and rows that overlap with all other blocks. At
level 0, there is only one block (l−1 = 1, with s(1, 0) colors), so the 0 matrices are
empty. In the previous example with 7 nodes, the single block at level 0 was denoted
as Z(1,0) and (19) had three blocks Z(1,1), Z(2,1), Z(3,1) with 3,2,2 vectors respectively.
Define also as Z(i) = [Z(1,i) . . .Z(li−1,i)] all the probing vectors at level i.

Assume that the results of the inversions at level i − 1 have been saved Pi−1 =
A−1Z(j,i−1) for all blocks j = 1, . . . , li−2. At the i-th level, probing with the first
vector of each block can be determined as follows:

a = ifft(Ili−1
), (21)

A−1Z(j,i)(:, 1) = Pi−1a(:, j), j = 1, . . . , li−1, (22)

or equivalently note that

Pi−1a = ifft(PHi−1)T . (23)

So we can pick the appropriate columns of Pi−1a, which we have previously used to
probe with as our solutions while systems for the remaining li−li−1 probing vectors in
Z(i) are solved explicitly. At the end of level i, we have inversions for all the probing
vectors Z(i) = [Z(1,i) . . .Z(li−1,i)]. The process continues recursively as described
in Algorithm 7. We emphasize that our new method fuses the generation of probing
vectors and the solution of linear systems needed for the trace computation. However,
Algorithm 7 depicts only the generation of the vectors.

Our method requires storage for Pi−1 at level i − 1. To compute Pi at the next
level, Algorithm 7 first permutes the implicitly computed vectors Pi−1a in their new
positions and then solves the linear systems for the remaining Pi vectors. Because of
the tree structure, the total storage is limax−1 < minj s(j, limax−1), which is always
less than half of the final number of probing vectors at level limax.

Computationally, at level i, because we have created a set of probing vectors
that allows us to reuse all our previous work, so we have avoided the solution of li−1
additional solutions of systems of equations. We do however require an additional
li−1 inverse FFTs in (23), or a O(Nli−1 log li−1) cost. Moreover, this is more elegant
and less expensive than a brute-force Gram-Schmidt which costs O(Nl2i−1) at level
i. Finally we remind the reader that this method works for hierarchical colorings on
arbitrary graphs.

3. Hierarchical Probing for Symmetric Matrices with General Graph
Structure. The hierarchical coloring algorithms of the previous sections take advan-
tage of a-priori information about the distances between nodes of a lattice. Clearly,
this information is unavailable for arbitrary matrices. Classical probing obtains the
distances between nodes directly by computing successive powers of the adjacency
matrix, a memory and often computationally intensive operation. To avoid this and
to ensure hierarchical colorings we propose a multi-level approach where, at each
level, neighboring nodes and their neighborhoods are merged and the smaller graph
is colored. Distances between merged nodes shrink as the graph becomes smaller.
This ensures that nodes that are further away on the original graph are eventually
forced to be in different colors in a hierarchical manner, since their merged nodes will
eventually become close. The color of a node in relation to the fine level graph is
determined by its colors at each level.

A key component to such an algorithm is the merging (or aggregation) strategy.
Consider the 2-dimensional lattice in Fig. 6 and assume that at every level we only
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Algorithm 7 GenerateAndPerformProbingVector general(s, l, n, imax)
% Input: s(j, i): number of colors the j-th block splits into at the i-th level,
% n(j,i,k): the number of nodes in the color k subgraph of block j
% li−1: the number of colors at level i− 1, also the number of blocks at level i
% imax: maximum desired level
% Output: The probing vectors Z at level imax.

1: Z ← [ ]
2: Fs(1,0) ← fft(Is(1,0))
3: Build Z(1,0) using (20) and the coloring permutation % Level 0
4: P ← [ A−1Z(1,0)]
5: for i = 1→ imax do % Level i
6: P ← ifft(PH)T

7: newpos(1) = 1
8: for j = 2→ li−1 do % block j
9: newpos(j) = newpos(j − 1) + s(j − 1, i) % new positions of Pa at level i

10: end for
11: P (:, newpos) = P (:, 1 : li−1) % Permute to new positions
12: for j = 1→ li−1 do % block j
13: Fs(j,i) ← fft(Is(j,i))
14: Build Z(j,i) using (20) and the coloring permutation
15: for k = 2→ s(j, i) do % color k in block j
16: P (:, k)← A−1Z(j,i)(:, k)]
17: end for
18: end for
19: end for

merge nodes along the horizontal dimension. Regardless of whether we decide to
merge nearest neighbors or neighbors that are farther away, the two circled nodes
remain distance-1 apart at all levels. Even though these nodes should receive different
colorings at some level, using the merging strategy shown in Figure 6 ensures that
this never happens, and their strong link will not be eliminated by such a coloring.
On lattices, we could alternate merge directions to avoid this problem but there is no
such analog for arbitrary graphs.
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Fig. 6: 2-D multi-level lattices using a naive merging strategy only along the horizontal
dimension. After three merges the circled nodes still receive the same color, even
though they are only one hop away from each other.

Our solution is to provide appropriate ways to merge not only nodes but also
their neighborhoods, producing a coarse representation of the fine level graph. Let
Gi be the graph at level i. To produce the coarse graph at level i+ 1, we select a yet
unmerged node x ∈ Gi and one of its unmerged (distance-1) neighbors, y. If no such
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neighbor exists, x remains a node at the coarse graphGi+1 and keeps its neighborhood.
Otherwise, we merge x and y as one node in Gi+1 and set its neighborhood to the
union of the distance-2 neighborhoods of x and y. This guarantees that all nodes
that are distance-2 apart in Gi are neighbors in Gi+1 and thus at level i we have
eliminated distances at least up to 2i in the fine level graph. This is comparable to
our HP algorithm for lattices. The process repeats until there are no unmerged nodes
in Gi.

At each level, we apply a greedy coloring algorithm on Gi. The color given to a
node x ∈ Gi is associated with all the nodes that are merged into x at finer Gk, k < i,
and serves as a digit in a mixed-radix representation of the final color of each fine
level node, as in the original hierarchical coloring approach.

However, the color numbers this representation gives to the fine level nodes, al-
though unique, may have gaps. In other words, not all consecutive color numbers are
assigned to nodes and thus some nodes may have colors larger than N . The reason
is that the coloring at level i produces more colors than required for eliminating all
links up to distance-2i in G0. This is mainly because of the aggregate nature of the
coarse graphs but also because of the greedy algorithm used for coloring. To avoid this
issue, we simply examine the colors produced by the mixed-radix representation and
renumber them to remove any gaps, which also keeps the total number of colors no
more than N . We show an example of this later in Fig. 7. Finally, after the coloring
has been created, we can use the same probing vector generation of Algorithm 7.

Our new method is shown in Algorithm 8. We first color the current graph and
if every node has a different color, the algorithm terminates. Otherwise we continue
to generate a coarser version of the graph. We first obtain the neighborhood of each
node and check if it has an unmerged neighbor. If so, we merge those nodes and their
distance-2 neighborhoods (which includes the nearest neighbors). Finally we continue
the recursion on the resultant coarser graph. We note that although Algorithm 8 pro-
duces the distance-2 neighborhood of each node using breath first search (computing
A2), we could also have saved memory by computing the neighbourhood of each node
one at a time and then coloring, instead of computing A2 all at once.

Algorithm 8 Coloring = MultilevelColoring(A,c)
% Compute a Multilevel coloring of A
% Input: A,c the matrix to be colored, the coloring from the last level
% Output: The coloring at each level

1: newc← Color(A)
2: if max(newc) == size(A) then % If graph is dense, end recursion

return [newc, c]
3: end if
4: A2 ← A2 % Find the dist-2 adjacency matrix
5: Ac ← ∅ % Initialize coarser graph for next level
6: for v ∈ A and v unmerged do % For each yet unmerged node in the graph
7: w ← UnmergedNeighbor(v) % Find an unmerged neighbor of v in A
8: z = {v, w} ; Ac ← Ac ∪ z % Merge nodes and add to coarser graph
9: Neigh(Ac, z)← Neigh(A2, v) ∪Neigh(A2, w)

10: end for
return MultilevelColoring(Ac,[c,newc]) % Recursion on coarser grid

Fig. 7 shows an example of our algorithm producing a hierarchical coloring for a
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graph where Algorithm 5 cannot be used. At the fine level, the graph can be colored
using a red-black coloring. The algorithm then merges node 1 with 4 and their
distance-2 neighborhoods, thus linking the new node with nodes 2, 6 and 7. Next we
merge nodes 6 and 2, repeating the process. At this point the remaining nodes have
no more unmerged neighbors so this is the next level graph that the algorithm colors
(see Fig. 7(b)). This graph can be colored with 3 colors (shown as red, black, and blue
in the figure). To produce the hierarchical coloring for this second level we take the
color at each level and generate a mixed-radix integer representation (Fig. 7(c)). As
in our previous algorithms the first color applied should be the most significant digit
of our mixed-radix representation, which each subsequent level coloring becoming the
next most significant digit of the final color. As an example, node 6 has color 1 at
level 0 and color 2 at level 1 (since it is in the merged node labeled 2 in Fig. 7(b)).
In mixed-radix basis this is color number (1,2). Since the radix for level 1 was 3, the
fine level node 6 gets color 1 ∗ 3 + 2 = 5. Similarly, node 2 with radix representation
(0,2) takes 0 ∗ 3 + 2 = 2. The total list of numbers produced in this fashion are
(0, 0) = 0, (0, 2) = 2, (1, 0) = 3, (1, 1) = 4, (1, 2) = 5. Note that there is no mixed-
radix number (0,1) in this list, and thus the color 1 in the final list of colorings does
not occur, so the color list must be adjusted for gaps as described previously.
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(a) Coloring of the original
graph
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(b) Coloring after merging
(1,4), (2,6)
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(1, 1) (0, 2)

(1, 0)

(1, 1)
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(1, 2)

(c) Colors based on coloring at
both levels

Fig. 7: Multi-level coloring algorithm.

4. Performance Testing. We examine the performance of our HP algorithms
first for general lattices and then for several more general matrices.

For lattices of arbitrary sizes we examine the performance of Algorithm 5 in terms
of cost and effectiveness. First, we confirm that the increased cost of the algorithmic
extensions is not excessive. Second, we show that the probing vectors produced by
our algorithm provide better trace estimation than simply using a set of Hadamard
vectors after the original algorithm in [13] exhausts all factors of 2.

We ran Algorithm 5 on a set of lattices with sizes that are powers of 2 so that
our original HP algorithm can also be used. We forced Algorithm 5 to use the general
method and not to revert to the original binary method for factors of 2. The results
shown in Table 1 indicate that the increased computation over the original algorithm
is reasonable, given the short running times involved even for very large lattices. In
practice, many lattices only have a couple of factors that are not powers of 2 so the
timings in Table 1 represent a worst case scenario. At the same time, the algorithm is
embarrassingly parallel, since each lattice point can be reordered independently. Given
the low runtimes compared to the cost of solving the linear systems during probing,
we have not investigated this option. Finally, we observe that the dimensionality of
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Original Method Extended Method
Lattice Time(sec) Time(sec) Slowdown
84 0.002 0.005 2.5
164 0.027 0.069 2.6
324 0.330 1.082 3.8
40962 5.493 14.048 2.6
2563 4.782 15.413 3.2
644 5.290 19.561 3.7

Table 1: Table showing run times for Algorithm 5 applied to all nodes in the shown
lattices, compared to the original HP method. Results obtained from implementing
algorithm in C on an MacBook Pro i9 clocked at 2.9 GHz.

the lattice does not impact the performance of the algorithm.

Next, we examine the effectiveness of our algorithm on estimating the trace for a
model 2D lattice problem with each dimension of size 22325. Since this matrix is not
invertible, we shift it by adding in a term of 0.1I. We compare it with our multi-level
merge algorithm, as well as Hadamard. When using Hadamard we use our original
hierarchical probing method until the powers of two factors are exhausted. At this
point we begin using Hadamard vectors in their natural ordering inside each color
block, with zero support in other colors. Although these vectors continue to remove
diagonals from each block, they do not do this in a way that completely eliminates
certain distances. Still this is often an improvement to simply using random vectors
in each block.

As we can see in Fig. 8, the new algorithm does offer a significant performance
increase, providing a much better trace estimate than Hadamard. Note that the circles
for the Hadamard method start at color 48 since the two methods are identical until
that point. We also note some interesting results from our multi-level algorithm. This
2D lattice is a difficult case for the multi-level approach since Hierarchical Probing
knows a-priori all the connections at every distance, while the multi-level algorithm
must compute them. Despite this, our algorithm performs reasonably well, providing
acceptable results at every level. This is encouraging because it suggests that when
we proceed to general matrices, our algorithm may be effective.

We examine the effectiveness of our multi-level algorithm for arbitrary matrices
by comparing its accuracy versus classical probing [14] and versus statistical methods
[1]. The two test cases we have selected are the synthetic covariance matrix of [14]
and the synthetic uncertainty quantification matrix of [15]. To examine the cost we
report the memory usage of our method versus classical probing. Classical probing
needs to store two matrices, Ak and A2k, of the same size N and increasing density.
The alternative of using depth first search on A to produce the distance-k coloring
is computationally prohibitive for large k. Our method requires the storage of two
matrices, A and A2, at any level but memory between levels can be reused. As levels
increase, the size of these matrices decreases. However, since we merge distance-2
neighborhoods the density of these matrices increases. Finally, we can adjust the
implementation of our method to avoid storing A2 by using depth first search to find
the distance-2 neighborhoods and build Ac at a slightly larger cost. In this case, the
method needs both A and Ac. Thus, we compare the total memory usage of the three
methods using as a measure the total number of non-zero elements stored at any
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Fig. 9: Experiments on the covariance matrix of [14]. Left: Comparison of hierarchical
probing against classical probing and statistical approaches. Right: Comparing mem-
ory usage of classical probing, explicitly forming A2k, against two implementations of
our algorithm at each iteration (level k).

point during execution. Within a factor this also determines their relative runtime
performance.

We start by examining the covariance matrix of [14], using the same parameters
suggested in [14]. Classical probing works extremely well on this matrix so here we
hope simply to be close to probing in performance while being more memory efficient.
In the left graph of Fig. 9 we compare the variance of classical probing, our general
HP probing method, and the Hutchinson Monte Carlo method. For this test case
the performance of HP is similar to that of classical probing. In the right graph of
Fig. 9 we compare the memory usage of the three probing variants, observing that
both of HP variants require less memory than classical probing for the same level k
(iteration). Note that all algorithms annihilate connections of distance at least 2k.
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Fig. 10: Experiments on the uncertainty quantification matrix. (a)(b)(c): Variance
reduction with hierarchical probing, classical probing, and statistical methods for
different values of λ. (d): Memory usage of various methods at each level (iteration).

Finally, we examine the synthetic uncertainty quantification matrix of [15]. This
matrix is generated by the equation A(AtA+ λ2DtD)−1At and is of dimension 8000.

HereD is a finite-difference operator, and we take A to be a Gaussian kernel∝ e
−(x−y)

2γ2 .
We fix γ = .08 as in [15], and vary λ. Since this is a dense matrix, we need to create
a sparse pattern which we can use to create the probing vectors. While an optimal
solution is unclear, we have developed a heuristic which has yielded good results in
practice. We note two major features of the matrix as seen in Fig. 11. There is a
clear banded structure to the matrix, as well as a concentration of large values close
to the center. To capture both features of this structure, we drop all but a small
percent of the largest values of the matrix. This leaves a disconnect matrix, that we
cause to be connected by adding in a banded matrix. This structure can be seen in
Fig. 11(d). Here we obtain the central structure of the matrix by dropping all but
the smallest .1 percent of the matrix, and the banded structure by creating a matrix
with a bandwidth of 32. We would expect it to be difficult to outperform classical
probing on this type of matrix, so our goal is to remain competitive with classical
probing, while significantly reducing our memory usage. As can be seen in Fig. 10,
this is indeed the case. While we do not surpass the variance reduction achieved by
probing, we do remain competitive while achieving substantial memory reductions at
the higher hierarchical levels that are needed to surpass the statistical methods.

5. Conclusion. We have provided several extensions to the algorithm for hier-
archically coloring and probing lattices. By formalizing the use of sublattices in the
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Fig. 11: Structure and magnitude of the elements of the uncertainty quantification
matrix as λ increases. The sparsified matrix is close to a narrow banded matrix.

algorithm, we have made the algorithm easier to reason about. This allowed us to
improve its flexibility, enabling the algorithm to handle lattices with dimensions of
arbitrary sizes, as long as these sizes share common prime factors. These improve-
ments come at minimal computational cost, and retain the ease of parallelization that
was an attractive feature of the original algorithm. Moreover, we have introduced a
method for generating probing vectors regardless of whether the colors split evenly
in the hierarchy. This method applies to any color hierarchy produced from lattices
or for a general matrix. With this tool in hand, we have provided an algorithm for
producing such a hierarchical coloring for general graphs. Our tests show that our
method provides accuracy that is comparable to classical probing, while using far less
memory and thus operations.

6. Appendix.

Lemma 2.1

Proof. Since ∪cL(bI)c = L(I), p = bx + c. Then color(bx + c mod b) = color(c),
and since p, c ∈ L(bI)c, both have the same color.

Lemma 2.3

Proof. Let p1,p2 ∈ L(I), with ‖p1 − p2‖1 = 1. This means they share all but
one coordinate, say the i-th. If their connection is not due to the toroidal connection
on the boundary (wrap-around connection), their i-th coordinate will differ by one.
Thus, |p1(i)− p2(i)| mod b = 1, implying that color(p1) 6= color(p2). If both points
lie on a boundary and connect via the toroidal property, then |p1(i) − p2(i)| = (b −
1)−0 mod b 6≡ 0 mod b, and therefore color(p1) 6= color(p2). Since these are no other
cases possible, the result holds.

Lemma 2.5
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Proof. Making use of the definition of mod for positive integers

k mod b = k − bbk
b
c, (24)

we proceed by induction on d. For the base case, c1,b = {0 . . . b − 1}, and c2,b =
{c1,b, c1,b + 1 mod b, . . . , c1,b + b − 1 mod b}. Then by construction, every c2,b(ib) =
0 + i = c1,b(i). Assume that cd−1,b(ib) = cd−2,b(ib/b) = cd−2,b(i). Then,

cd,b(ib) = cd−1,b(ib mod bd−1) + b ib
bd−1 c mod b ( by 13)

= cd−2,b(
ib mod bd−1

b ) + b ib
bd−1 c mod b (by the I.H.)

= cd−2,b(
ib−b ib

bd−1 cb
d−1

b ) + b ib
bd−1 c mod b (by 24)

= cd−2,b(i mod bd−2) + b ib
bd−1 c mod b (by 24)

= cd−1,b(i) − b i
bd−2 c+ b ib

bd−1 c mod b (by 14)
= cd−1,b(i) − b i

bd−2 c+ b i
bd−2 c mod b

= cd−1,b(i).

Lemma 2.6
Proof. We proceed by induction on d. For the base case, by construction we

have c2,b(ib + q) mod b = c1,b(i) + q mod b. Then, c2,b(ib + q) − q mod b = (c1,b(i) +
q mod b − q) mod b = c1,b(i) mod b = c1,b(i) = c2,b(ib) (by Lemma 2.5). We now
assume cd−1,b(ib) = cd−1,b(ib+ q mod bd−1)− q mod b. Then,

cd,b(ib) = cd−1,b(ib mod bd−1) + b ib
bd−1 c mod b (by 13)

= cd−1,b(ib+ q mod bd−1)− q + b ib
bd−1 c mod b (by the I.H.)

= cd,b(ib+ q mod bd)− q mod b (by 14)
= cd,b(ib+ q)− q mod b. (since ib+ q < bd)

Lemma 2.7
Proof. Because of Lemma 2.6 when any b-tuplet of indices (bi, bi+1, . . . , bi+b−1),

is considered, the number of nodes in every color increases by 1. Since Algorithm 3
will send the b-th color to the bd−1-th section, the equation holds.

Theorem 2.8
Proof. Since i ≤ bm, we can apply Lemma 2.5 recursively,

cd,b(ib
d−m) = cd−1,b(ib

d−m−1) = cd−2,b(ib
d−m−2) = . . . = cm,b(i).

Using this and Lemma 2.7 we have⌊
Permd(ib

d−m)

bd−m

⌋
=

⌊
b ib

d−m

b c+ cd,b(ib
d−m)bd−1

bd−m

⌋
=

⌊
i

b
+ cm,b(i)b

m−1
⌋

= b i
b
c+ cm,b(i)b

m−1 = Permm(i).
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