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Abstract

The ever increasing memory demands of many scien-
tific applications and the complexity of today’s shared
computational resources still require the occasional use
of virtual memory, network memory, or even out-of-core
implementations, with well known drawbacks in perfor-
mance and usability. In [19], we introduced a basic
framework for a runtime, user-level library,MM LIB , in
which DRAM is treated as a dynamic size cache for large
memory objects residing on local disk. Application devel-
opers can specify and access these objects throughMM-
LIB , enabling their application to execute optimally un-
der variable memory availability, using as much DRAM
as fluctuating memory levels will allow.

In this paper, we first extendMM LIB from a proof
of concept to a usable, robust, and flexible library. We
present a general framework that enables fully customiz-
able, memory malleability in a wide variety of scientific
applications, and provide several necessary enhance-
ments to its environment sensing capabilities. Second,
we introduce a remote memory capability, based on MPI
communication of cached memory blocks between ‘com-
pute nodes’ and designated memory servers. The in-
creasing speed of interconnection networks makes a re-
mote memory approach attractive, especially at the large
granularity present in large scientific applications.

We show experimental results from three important
scientific applications that require the generalMM LIB

framework. Their memory-adaptive versions perform
nearly optimally under constant memory pressure and
execute harmoniously with other applications competing

∗Work supported by the National Science Foundation (ITR/ACS-
0082094, ITR/AP-0112727, ITR/ACI-0312980, CAREER/CCF-
0346867) a DOE computational sciences graduate fellowship,and
the College of William and Mary. Part of this work was performed
using SciClone cluster at the College of William and Mary which were
enabled by grants from Sun Microsystems, the NSF, and Virginia’s
Commonwealth Technology Research Fund.

†Department of Computer Science, College of
William and Mary, Williamsburg, Virginia 23187-8795,
(cyue/andreas/dsn@cs.wm.edu).

‡National Center for Computational Sciences, Oak Ridge National
Laboratory, Oak Ridge, TN (rmills@ornl.gov)

for memory, without thrashing the memory system. We
observe execution time improvements of factors between
three and five over relying solely on the virtual memory
system. With remote memory employed, these factors are
even larger and significantly better than other, system-
level remote memory implementations.

1 Introduction

Commoditization of memory chips has enabled un-
precedented increases in the memory available on today’s
computers and at rapidly decreasing costs. Manufactur-
ing and marketing factors, however, keep the costs dis-
proportionally high for larger memory chips. Therefore,
although many shared computational resource pools or
even large scale MPPs boast a large aggregate memory,
only a small amount (relative to the high demands of
many scientific applications) is available on individual
processors. Moreover, available memory may vary tem-
porally under multiprogramming. Sharing memory re-
sources accross processors is a difficult problem, particu-
larly when applications cannot reserve sufficient memory
for sufficiently long times. These realities pose tremen-
dous problems in many memory demanding scientific ap-
plications.

To quantify the magnitude of the problem, we use a
simple motivating example. We ran a parallel multigrid
code to compute a three-dimensional potential field on
four SMPs that our department maintains as a resource
pool for computationally demanding jobs. Each SMP has
1 GB of memory. Since our code needed 860 MB per
processor, we could run it using only one processor per
node. While our code was running other users could run
small jobs without interference. When a user attempted
to launch Matlab to compute the QR decomposition of a
large matrix on one of the processors in an SMP, the time
per iteration in our multigrid code jumped from 14 to 472
seconds as virtual memory system thrased. Most virtual
memory systems would cause thrashing in this case, be-
cause their page replacement policies are not well suited
for this type of scientific application.
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Memory pressure can also be encountered on dedi-
cated or space-shared COWs and MPPs. An important
class of scientific applications runs a large number of se-
quential or low parallel degree jobs to explore a range of
parameters. Typically, larger numbers of processors en-
able higher throughput computing. However, when mem-
ory is insufficient for individual jobs, such applications
grind to a halt under virtual memory. On some MPPs,
with small or no local disks, virtual memory is not ade-
quate or even possible. Utilizing more processors per job
to exploit larger aggregate memory may not be possible
either, because the jobs are sequential or of limited paral-
lel scalability. Application scientists often address these
issues by implementing specialized out-of-core codes,
and utilizing the parallel file systems that many MPPs
employ. Besides the double performance penalty (data
read from diskandpropagated through the interconnec-
tion network), such codes often lack flexibility, perform-
ing I/O even for data sets that could fit in memory.

Scenarios such as the above are one of the reasons for
using batch schedulers, resource matchmakers, process
migration and several other techniques that warrant that
each application will have enough memory to run with-
out thrashing throughout its lifetime. These methods are
not without problems. They may incur high waiting times
for jobs, or high runtime migration overheads whenever
there is resource contention. On certain platforms, such
as shared-memory multiprocessors, some of these meth-
ods are not even applicable, as users may reserve more
memory than their memory-per-CPU share [9]. A simi-
lar situation can occur if applications are allowed to use
network RAM (NRAM) or other remote memory mecha-
nisms [29]. Moreover, most remote memory research has
been at the system level which incurs unacceptably high
latencies for page replacement [17].

The problem is equally hard at the sequential level.
Page replacement policies of virtual memory systems
usually target applications such as transaction process-
ing that do not share the same memory access patterns as
most scientific applications. In addition, high seek times
during thrashing cannot be amortized by prefetching, as
it is unreasonable to expect the virtual memory system to
predict the locality and pattern of block accesses on disk.
On the other hand, compiler or user-provided hints would
require modifications to the system.

To tame these problems we have developed a run-
time library, MMLIB (Memory Malleability library), that
controls explicitly the DRAM allocations of specified
large objects during the runtime of an application, thus
enabling it to execute optimally under variable mem-
ory availability. MMLIB allows applications to use cus-
tomized, application-specific memory management poli-
cies, running entirely at user-level. To achieve portabil-
ity and performance, MMLIB blocks specified memory

objects intopanelsand manages them through memory
mapping. This provides programmers with a familiar in-
terface that has no explicit I/O and can exploit the same
common abstractions used to optimize code for mem-
ory hierarchies. Moreover, the advantages of running
applications fully in-core are maintained, when enough
memory is available. The library is designed for portabil-
ity across operating systems and implemented in a non-
intrusive manner.

In [19], we gave a proof of concept of MMLIB based
on a simplified framework, and developed a parameter-
free algorithm to accurately ascertain memory shortage
and availability strictly at user-level. In this paper, we
first provide a general framework that enables memory
malleability in a variety of scientific applications, and en-
hance MMLIB ’s sensing capabilities to require no user
input. Second, we introduce remote memory capability
into MMLIB , based on MPI communication of panels
between compute nodes and designated memory servers.
Besides performance improvements on clusters with high
speed networks, our flexible, user-level design enables a
host of options such as multiple memory servers, and dy-
namic migration of panels between servers.

We see several benefits in this library-based approach
for memory malleability. Injecting memory malleabil-
ity into scientific applications allows them to run un-
der memory pressure with degraded but acceptable ef-
ficiency, under a wider variety of execution conditions.
Efficient memory adaptive applications can benefit both
high-level batch schedulers, by letting them harness cy-
cles from busy machines with idle memory, and operating
system schedulers, by avoiding thrashing and thus secur-
ing continuous service to jobs. Also, as we show in this
paper, the transparent design enables the library to im-
plement remote memory when local disks are small or
slower than fetching data from the network. MMLIB is
an optimization tool for DRAM accesses at the low level
of the memory hierarchy (disk/network), but it can co-
exist with and complement optimization tools for higher
levels (memory/cache), enabling a unified approach to lo-
cality optimization in block-structured codes.

We present experimental results from three important
scientific applications that we linked with MMLIB . Be-
sides their importance for scientific computing, these ap-
plications stress different aspects of MMLIB and moti-
vate the runtime optimizations presented in this work.

2 Related work

An attractive feature of multiprogrammed clusters of
workstations has been pointed out in a quantitative study
by Acharya and Setia [3]. They show that, on average,
more than half of the memory of the clusters is available
for intervals between 5 and 30 minutes, with shorter in-
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tervals for larger memory requests. The study did not
investigate mechanisms and policies for exploiting idle
memory or the impact of fluctuations of idle memory on
application performance.

Batch schedulers for privately owned networks of
workstations and grids, such as Condor-G [13] and the
GrADS scheduling framework [10], use admission con-
trol schemes which schedule a job only on nodes with
enough memory. This avoids thrashing at the cost of re-
duced utilization of memory and potentially higher job
waiting times. Other coarse-grain approaches for avoid-
ing thrashing include checkpointing and migration of
jobs. However, such approaches are not generally aware
of the performance characteristics or the execution state
of the program [28].

Chang et.al. [8] have presented a user-level mecha-
nism for constraining the resident set sizes of user pro-
grams within a fixed range of available memory. They
assume that the program has an a-priori knowledge of
lower and upper bounds of the required memory range.
This work does not consider dynamic changes to memory
availability, nor does it address the problem of customiz-
ing the memory allocation and replacement policy to the
memory access pattern of the application—both central
issues in our research.

An approach that addresses a dynamically changing
environment for general applications has been developed
by Brown and Mowry [7] that integrates compiler anal-
ysis, operating system support, and a runtime layer to
enable memory-intensive applications to effectively use
paged virtual memory. The runtime layer makes the
appropriate memory allocation decisions by processing
hints on the predicted memory usage that the compiler
inserted. Although the approach has shown some good
results, it requires modifications to the operating system.
In addition, applications with complex memory-access
patterns can cause significant difficulties in identifying
appropriate release points.

Barve and Vitter [6] presented a theoretical frame-
work for estimating the optimal performance that algo-
rithms could achieve if they adapted to varying amounts
of available memory. They did not discuss implemen-
tation details or how system adaptivity can be achieved.
Pang et al. [25] presented a sorting algorithm that dy-
namically splits and merges the resident buffer to adapt
to changes in the memory available to the DBMS. This is
a simulation-based study that does not discuss any details
of the adaptation interface.

Remote memory servers have been employed in mul-
ticomputers [15] for jobs that exceed the available mem-
ory per processor. The advent of high-throughput com-
puting on shared computational resources has motivated
the design of NRAM systems for clusters of worksta-
tions [17, 4, 5, 12, 24]. Real implementations of NRAM

and memory servers [5, 15, 11, 29] extend the operating
system paging algorithms and provide support for con-
sistency and fault tolerance at the page level. Though
performance improvements have been reported over disk-
based virtual memory systems, the page level fine granu-
larity still incurs significant overheads, and thrashing can
still occur. Moreover, such implementations require sub-
stantial changes to the operating system.

At the user-level, Nieplocha et al. [21] have developed
the Global Arrays Toolkit that implements a distributed
shared memory access to certain, user-specified arrays.
Its design philosophy is different from ours, however, as
many processes require access to the shared array, and at
various levels of granularity. Koussih et al. [16] describe
a user-level, remote memory management system called
Dodo. Based on a Condor-like philosophy, Dodo harvests
unused memory from idle workstations. It provides allo-
cation and management of fine-grained remote memory
objects, as well as user-defined replacement policies, but
it does not include adaptation mechanisms for dynami-
cally varying RAM, and cannot apply to local disks, or to
remote memory servers that are not idle.

In [23], Nikolopoulos presented an adaptive schedul-
ing scheme for alleviating memory pressure on multipro-
grammed COWs, while co-ordinating the scheduling of
the communicating threads of parallel jobs. That scheme
required modifications to the operating system. In [22],
he suggested the use of dynamic memory mapping for
controlling the resident set of a program within a range
of available physical memory. The algorithm operated at
page-level granularity. In [20], two of the authors fol-
lowed an application-level approach that avoided thrash-
ing of an eigenvalue solver, by having the node under
memory pressure recede its computation during that most
computationally intensive phase, hopefully speeding the
completion of competing jobs.

3 User-level adaptation

Application-level approaches are sometimes received
with caution because of increased developer involvement.
However, to exploit higher memory hierarchies, develop-
ers of scientific applications already block the accesses
to the data or use libraries where such careful blocking
is provided. Blocking for memory access is at a much
larger granularity and thus complementary to cache ac-
cess. Based on this, our approach in [19] considered the
largest data object partitioned intoP blocks, which in
out-of-core literature are often calledpanels, and oper-
ated as follows:

for i = 1:P
Get panelppattern(i) from lower level memory
Work with ppattern(i)
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Most scientific applications consist of code segments that
can be described in this familiar to developers format. As
long as the “get panel” encapsulates the memory manage-
ment functionality, no code restructuring is ever needed.

On a dedicated workstation one can easily select be-
tween an in-core or an out-of-core algorithm and data
structure according to the size of the problem. On a non-
dedicated system though, the algorithm should adapt to
memory variability, running as fast as an in-core algo-
rithm if there is enough memory to store its entire data
set, or utilizing the available memory to cache as many
panels as possible. Based on memory mapped I/O, we
provided a framework and supporting library for modi-
fying codes for memory adaptivity that are portable to
many applications and operating systems. Memory map-
ping has several advantages over conventional I/O be-
cause it avoids write-outs to swap space of read-only pan-
els, integrates data access from memory and disk, allows
for fine tuning of the panel size to hide disk latencies and
facilitates an implementation of various cache replace-
ment policies.

To get a new panel, the application calls a function
from our library that also controls the number of panels
kept in-core. At this point, the function has three choices:
it can increase or decrease the number of in-core panels if
additional, or respectively less, memory is available; or it
can sustain the number of in-core panels if no change in
memory availability is detected. The policy for selecting
panels to evict is user defined as only the application has
full knowledge of the access pattern.

Critical to this functionality is that our library be able
to detect memory shortage and availability. However, the
amount of total available memory is a global system in-
formation that few systems provide, and even then, it is
expensive and with no consistent semantics. In [19], we
developed an algorithm which relies only on measure-
ments of the program’s resident set size (RSS), a widely
portable and local information. Memory shortage is in-
ferred from a decrease in a program’s RSS that occurs
without any unmapping on the part of the program. Mem-
ory surplus is detected using a “probing” approach in
which the availability of a quantity of memory is deter-
mined by attepmting to use it and seeing if it can be main-
tained in the resident set. The algorithm is parameter-
free, expecting only an estimate of the memory require-
ments of the program, excluding the managed panels. We
call the size of this non-managed memory,static mem-
ory (sRSS). The algorithm detects memory availability,
by probing the system at dynamically selected time inter-
vals, attempting to increase memory usage one panel at a
time. For the effectiveness of this algorithm in identify-
ing the available memory, the reader is referred to [19].

3.1 A general framework

The above simplified framework is limited to a class
of applications with repeated, exhaustive passes through
one, read-only object. We have developed a more com-
prehensive framework that captures characteristics from
a much larger class of applications. Scientific applica-
tions often work on many large memory objects at a time,
with various access patterns for each object, sometimes
working persistently on one panel, while other panels are
only partially accessed, or even modified. This extended
framework of applications is shown in Figure 1.

Figure 1 depicts only one computation phase, which is
repeated several times during the lifetime of the program.
A computation phase denotes a thematic beginning and
end of some computation, e.g., one iteration of the CG
method or the two innermost of three nested loops. In this
phase, a small number of memory objects are accessed
(e.g., the matrix and the preconditioner in the CG algo-
rithm), as their sheer size limits their number. In contrast
to the previous simplified framework, we do not assume
a sequential pass through all the panels of an object, al-
though this is often the case in practice. In this context, a
full sweep denotes a completion of the phase.

For each iteration of the computation phase, certain
panels from certain memory objects need to be fetched,
worked upon, and possibly written back. The itera-
tion space in the current computation phase, the objects
needed for the current iteration, and the access patterns
for panels depend on the algorithm and can be described
by the programmer. Finally, our new framework allows
memory objects to fluctuate in size between different
computation phases.

We have extended MMLIB to implement this general
framework, hiding all bookkeeping and adaptation deci-
sions from the user. The user interface that enables this
transparency and a detailed discussion of the technical is-
sues involved are described in detail in [18]. An outline
of the main functions and some implementation details
are given in Appendix A.

3.2 Estimating static memory size

Our memory adaptation algorithm in [19] assumes
that the program has an accurate estimate of the size of its
static memory, i.e., memory not associated with managed
objects. This is needed for calculating how much of the
RSS belongs to the mapped objects. However, this size
may not be easily computed or even available to the pro-
gram if large enough static memory is allocated within
linked, third party libraries. Moreover, for some pro-
grams the static memory may fluctuate between sweeps
of the computation phase. A more serious problem arises
when the static memory is not accessed during the com-
putation phase. Under memory pressure, most operating
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systems consider the static memory least recently used
and slowly swap it out of DRAM. This causes a false
detection of memory shortage, and the unmapping of as
many panels as the size of the swapped static memory.

An elegant solution to this problem relies on a sys-
tem call namedmincore() for most Unix systems and
VirtualQuery() for Windows. The call allows a
process to obtain information about which pages from a
certain memory segment are resident in core. Because
MM LIB can only ascertain residency of its MMS ob-
jects, it usesmincore() to compute the actual resident
size of the MMS panels, which is exactly what our algo-
rithm needs. Obviously, the use of this technique at ev-
ery get panel is prohibitive because of the overhead
associated with checking the pages of all mapped panels.
We follow a more feasible, yet equally effective strategy.
We measure the residency of all panels (mRSS) in the
beginning of a new computational phase, and derive an
accurate estimate of the static memory: sRSS= RSS−
mRSS, with RSS obtained from the system. As long as
no memory shortage is detected, we use sRSS during the
computation phase. Otherwise, we recompute mRSS and
sRSS to make sure we do not unnecessarily unmap pan-
els. Since unmapping is not a frequent occurrence the
overallmincore overhead is tiny, especially compared
to the slow down the code experiences when unmapping
is required.

3.2.1 A most-missing eviction policy

One of the design goals of MMLIB is to preempt the vir-
tual memory system paging policy by holding the RSS of
the application below the level at which the system will
begin to swap out our pages. Under increasing mem-
ory pressure, the paging algorithm of the system could
be antagonistic by paging out data that MMLIB tries to
keep resident, thus causing unnecessary additional mem-
ory shortage. In this case, it may be beneficial to “con-
cede defeat” and limit our losses by evicting those pan-
els that have had most of their pages swapped out, rather
than evicting according to our policy, say MRU. The ra-
tionale is that if the OS has evicted LRU pages, these
will have to be reloaded either way, so we might as well
evict the corresponding panels. Evicting MRU panels
may make things worse because we will have to load the
swapped out LRU pages as well as the MRU panels that
we evicted.

Themincore functionality we described above facil-
itates the implementation of this “most missing” policy.
This policy is not at odds with the user specified policy
because it is only applied when memory shortage is de-
tected, which is when the antagonism with the system
policy can occur. Under constant or increasing memory
availability the user policy is in effect. Preliminary re-
sults in section 5 show clear advantages with this policy.

4 Remote memory extension

Despite a dramatic increase in disk storage capacities,
improvements in disk latencies have lagged significantly
behind those of interconnection networks. Hence, remote
virtual memory has often been suggested [17]. The argu-
ment is strengthened by work in [3, 2, 16] showing that
there is significant benefit to harvesting the ample idle
memory in computing clusters for data-intensive applica-
tions. The argument is imposing on MPPs, where parallel
I/O must pass also through the interconnection network.

The general MMLIB framework in Figure 1 lends it-
self naturally to a remote memory extension. The key
modification is that instead of memory mapping a new
panel from the corresponding file on disk, we allocate
space for it and request it from a remote memory server.
This server stores and keeps track of unmapped panels
in its memory, while handling the mapping requests. In
implementing this extension we had to address several
design issues.

First, we chose MPI for the communication between
processors, because it is a widely portable interface that
users are also familiar with. Also, because MMLIB

works entirely at user-level, we need the user to be able
to designate which processors will play the role of remote
memory servers. This is deliberately unlike the Dodo or
Condor systems that try to scavenge idle memory and cy-
cles in COWs. The long experience of some of the au-
thors in scientific programming suggests that users are
empowered, not burdened by exercising this control. The
downside of using MPI is that the user must compile and
run sequential programs with MPI. All other MPI set up
and communications are handled internally in MMLIB .
For parallel programs there is no additional burden to the
user. In the future, and if experience deems it necessary, a
more transparent communication mechanism can be im-
plemented with minimal change to MMLIB . Neverthe-
less, our implementation is practically transparent, and it
has provided a valuable proof of concept for this func-
tionality.

Second, because each panel is associated with a par-
ticular remote server, the executing process knows where
to request it from. This allows the panels of one mem-
ory object to be kept on a number of servers. At the same
time each server may be storing and handling panels from
many objects, and possibly from many processors. Be-
cause of the large granularity, there is only a small num-
ber of panels, so the additional bookkeeping is trivial.
This flexible design, which is reminiscent of home-based
shared virtual memory research [14], enables a load bal-
ancing act between servers, that can migrate panels com-
pletely independently from the execution nodes. As long
as the server pointer of each unmapped panel is updated
in the corresponding MMS object, execution nodes know
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where to direct their next request. An exploration of the
many possibilities that arise from this design is beyond
the scope of this paper.

Third, the memory that will hold a remotely fetched
panel does not have to be allocated with named mem-
ory mapping. Named memory mapping was important in
the original MMLIB as it was used to read a panel im-
plicitly from a disk file, and because of that file it could
avoid writing to the swap device under memory pressure.
With remote memory, the existence of a file image for
each panel is not required. We have explored the ques-
tion of which allocation mechanism amongmalloc(),
namedmmap(), and anonymousmmap() provides the
most benefits in performance and flexibility. Our exper-
imental testbed and results, shown in the following sec-
tion, yield anonymousmmap() as the best choice. In
principle, memory mapping should be preferred because
it permits the use ofmincore() by MMLIB to compute
the static memory size, and thus provide accurate sensing
measurements for adaptation. On some operating sys-
temsmalloc() is not implemented on top ofmmap(),
and thus does not permit the use ofmincore().

An outline of the remote memory algorithm fol-
lows. Initially, the memory server(s) load all the (ini-
tially unmapped) panels of all objects of the applica-
tion into their memory. When a working process issues
a get panel(mms,p), and the panel is not in mem-
ory (mapped), MMLIB sends a request to the appropriate
server holding panel p of the objectmms. If no panel is
to be unmapped, MMLIB allocates the appropriate mem-
ory space and issues anMPI Recv. If a panel, q, is to
be unmapped, MMLIB figures out the server to send it
to, and initiates anMPI Send. When the send returns,
this space of q can be reused to store the incoming panel
p, so MMLIB simply issues anMPI Recv. We should
point out that if an object is designated as read-only, its
panels need not be sent to the memory server when un-
mapped, provided that the server keeps all panels in its
memory. Finally, the MMLIB framework retains all of its
adaptivity to external memory pressure when our remote
memory implementation is used in place of disk I/O.

5 Experiments

First we describe three applications that we modified
to use MMLIB ; their special characteristics require our
extended framework and optimizations and cannot be im-
plemented using the simple framework of [19]. Sec-
ond, we present experiments with these applications un-
der constant and variable memory pressure. Third, we
explore experimentally the question posed in the previous
section about the most appropriate allocation mechanism
for remote memory. Finally we demonstrate the power of
remote memory in MMLIB using the CG application.

5.1 The applications

The first application is the conjugate gradient (CG)
linear system solver provided inSPARSKIT [26]. Each
iteration of CG requires one sparse matrix-vector mul-
tiplication and a few inner products and vector updates.
Our only MMS object is the coefficient matrix, as it poses
the bulk of the memory demands of the program, and is
broken into 40 panels. CG also has a sizable amount of
static memory for six work vectors. For MMLIB to work,
this size must be known. In [19], we hard coded the size
of this static memory. Here, we let MMLIB detect it dy-
namically.

The second application is a modified Gram-Schmidt
(MGS) orthogonalization procedure. A memory de-
manding application of MGS stems from materials sci-
ence, where Krylov eigensolvers are used to find about
500–2000 eigenvectors for an eigenvalue problem of di-
mension on the order of one million [27]. Our code sim-
ulates a Krylov eigensolver except that it generates the
recurrence vector at random, not through matrix vector
multiplication. This vector is orthogonalized against pre-
viously generated vectors and then appended to them.
Only these vectors need to be managed by MMLIB . In
our experiment, we use one panel per vector for a total
of 30 vectors, each of 3,500,000 doubles (80 MB total).
This test is possible only through our new MMLIB , as
the size of the MMS object varies at runtime, and multi-
ple panels are active simulateneously.

The third application is an implementation of the Ising
model, which is used to model magnetism in ferromag-
netic material, liquid-gas transition, and other similar
physical processes. Considering a two-dimensional lat-
tice of atoms, each of which has a spin of either up or
down, the code runs a Monte-Carlo simulation to gener-
ate a series of configurations that represent thermal equi-
librium. The memory accesses are based on a simple 5-
point stencil computation. For each iteration the code
sweeps the lattice and tests whether to flip the spin of
each lattice site. The flip is accepted, if it causes a neg-
ative potential energy change,∆E. Otherwise, the spin
flips with a probability equal toexp −∆E

kT
, wherek is the

Boltzman constant andT the ambient temperature. The
higher theT , the more spins are flipped. In computa-
tional terms,T determines the frequency of writes to the
lattice sites at every iteration. The memory-adaptive ver-
sion partitions the lattice row-wise into 40 panels. To
calculate the energy change at panel boundaries, the code
needs the last row of the above neighboring panel and
the first row of the below neighboring panel. The new
MM LIB framework is needed for panel write backs with
variable frequency, and multiple active panels.

In all three applications the panel replacement policy
is MRU, but there is also use of persistent (MGS) and
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neighboring (Ising) panels.

5.2 Adaptation results

Figure 2 includes one graph per application, each
showing the performance of three versions of that ap-
plication under constant memory pressure. Each point
in the charts shows the execution time of one version
of the application when run against a dummy job that
occupies a fixed amount of physical memory, using the
mlock() system call to pin its pages in-core. For each
application we test a conventional in-core version (blue
top curve), a memory-adaptive version using MMLIB

(red lower curve), and an ideal version (green lowest
curve) in which the application fixes the number of pan-
els cached at an optimal value provided by an oracle. The
charts show the performance degradation of the appli-
cations under increasing levels of memory pressure. In
all three applications, the memory-adaptive implementa-
tion performs consistently and significantly better than
the conventional in-core implementation. Additionally,
the performance of the adaptive code is very close to the
ideal-case performance, without any advance knowledge
of memory availability and static memory size, and re-
gardless of the number of active panels (whether read-
only or read/write).

The litmus test for MMLIB is when multiple instances
of applications employing the library are able to coexist
on a machine without thrashing the memory system. Fig-
ure 3 shows the resident set size (RSS) over time for two
instances of the memory adaptive Ising code running si-
multaneously on a Sun Ultra 5 node. After the job that
starts first has completed at least one sweep through the
lattice, the second job starts. Both jobs have 150 MB
requirements, but memory pressure varies temporally.
The circles in the curves denote the beginning of lattice
sweeps. Distances between consecutive circles along a
curve indicate the time of each sweep.

The results show that the two adaptive codes run to-
gether harmoniously without constantly evicting each
other from memory and the jobs reach an equilibrium
where system memory utilization is high and throughput
is sustained without thrashing. The system does not allow
more than about 170 MB for all jobs, and it tends to fa-
vor the application that starts first. A similar phenomenon
was observed in Linux. We emphasize that the intricacies
of the memory allocation policy of the OS are orthogonal
to the policies of MMLIB . MM LIB allows jobs to uti-
lize as efficiently as possible the available memory, not
to claim more memory than what is given to each appli-
cation by the OS.

Figure 4 shows the benefits of our proposed “most-
missing” eviction policy. After external memory pressure
starts, the job that uses strictly the MRU policy has highly

variable performance initially because the evicted MRU
panels usually do not coincide with the system evicted
pages. The most missing policy is much better during
that phase. After the algorithm adapts to the available
memory the most missing policy reverts automatically to
MRU.

Because all three of the applications we have tested
employ memory access patterns for which MRU replace-
ment is appropriate (and are thus very poorly served by
the LRU-like algorithms employed by virtual memory
systems), one might wonder if all of the performance
gains provided by MMLIB are attributable to the MRU
replacement that it enables. To test this notion, we ran
the MMLIB -enabled CG under memory pressure and in-
structed MMLIB to use LRU replacement. Figure 5 com-
pares the performance of CG using the wrong (LRU) re-
placement policy with the CG correctly employing MRU.
The version using LRU replacement performs signifi-
cantly worse, requiring roughly twice the amount of time
required by the MRU version to perform one iteration.
However, when compared to the performance of in-core
CG under memory pressure, the code using the wrong re-
placement policy still performs iterations in roughly half
the time of in-core CG at lower levels of memory pres-
sure, and at higher levels performs even better. As dis-
cussed in the designing goals of MMLIB , the benefits in
this case come strictly from the large granularity of panel
access, as opposed to the page-level granularity of the
virtual memory system, and from avoiding thrashing.

5.3 Remote memory results

The remote memory experiments are conducted on the
SciClone cluster [1] at William & Mary. All programs
are linked with the MPICHGM package and the com-
munications are routed via a Myrinet 1280 switch. We
use dual-cpu Sun Ultra 60 workstations at 360MHz with
512MB memory, running Solaris 9.

5.3.1 Microbenchmark results

These experiments help us understand the effect of var-
ious allocation schemes (malloc, named mmap, anony-
mous mmap) on the MPIRecv performance, under
various levels of memory pressure. Figure 6 shows
three graphs corresponding to the three methods for
allocating the receiving block of the MPIRecv call.
Each graph contains six curves plotting the perceived
MPI Recv bandwidth for six different total ‘buffers’ that
the MPI Recv tries to fill by receiving ‘Block Size’ bytes
at a time. This microbenchmark simulates an MMLIB

process that uses remote memory to bring each one of
the panels (of ‘Block Size’ each) of a memory object (of
‘buffer’ size). On the same node with the receiving pro-
cess, there is a competing process reading a 300MB file
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from the local disk. The larger the total ‘buffer’ size, the
more severe the memory pressure on the node. The re-
mote memory server process is always ready to send the
requested data.

The top chart suggests that named mapping is the
worst choice for allocating MPIRecv buffers, especially
under heavy memory pressure, which is exactly when
MM LIB is needed. In fact when the receiving block is
small, performance is bad even without memory pressure
(e.g., all curves for block size of 256 KB). With large
block sizes bandwidth increases but only when the total
‘buffer’ does not cause memory pressure (e.g., the 20MB
‘buffer’ curve). A reason for this is that receiving a re-
mote panel causes a write-out to its backing store on the
local disk, even though the two may be identical.

For both the middle and bottom charts, all six curves
are very similar, suggesting that allocation using anony-
mous mmap() or malloc() is not very sensitive to memory
pressure. The MPIRecv bandwidth performance of us-
ing malloc() for memory allocation is better than that of
using anonymous mmap(). As no other processes were
using the network during the experiments, the perceived
differences in bandwidth must be due to different mech-
anisms of Solaris 9 for copying memory from system to
user space.

Although these microbenchmarks suggest malloc() as
the allocator of choice for implementing remote memory,
experiments with the CG application favor anonymous
mapping, with malloc() demonstrating unpredictable be-
havior.

5.3.2 CG application results

To demonstrate the remote memory capability of MM-
LIB , we performed two sets of experiments with the CG
application on the same computing platform as in mi-
crobenchmark experiments.

In the first set, the MMLIB enabled CG application
runs on one local node. It works on a 200MB matrix,
which is equally partitioned into 20 panels. We create
various levels of memory pressure on the local node by
running in addition the in-core CG application (without
MM LIB ) with 300MB, 150MB, and 100MB memory re-
quirements. The experimental results are shown in Ta-
ble 1. There are two rows of data for each of the three
memory allocation methods. In the first row, we run the
MM LIB CG without remote memory; in the second row,
we run MMLIB CG with remote memory capability.

First, we see that under named mmap(), performance
for remote mode is inferior to local mode, while under
anonymous mmap() mode and malloc(), remote mode is
obviously superior to local mode, especially when mem-
ory pressure is severe. The results also confirm the mi-
crobenchmark observations that named mmap() is the
wrong choice for remote memory.

In contrast to the microbenchmark results, however,
remote mode performance is better under anonymous
mmap() than under malloc(). There are two reasons for
this. The most important reason is that on Solaris 9 mal-
loc() extends the data segment by calling brk(), rather
than by calling mmap(). Because MMLIB issues a se-
ries of malloc() and free() calls, especially when there is
heavy memory pressure, the unmapped panels may not
be readily available for use by the system. This causes
the runtime scheduler to think that there is not enough
memory and thus to allocate less resources to the execut-
ing process. In our experiments on the dual cpu Suns,
we noticed that the Solaris scheduler gave less than 25%
cpu time to the application in malloc() mode, while it
gave close to 50% cpu time to the one in anonymous
mmap() mode. Interestingly, the local MMLIB imple-
mentation without remote memory demonstrates even a
worse behavior, suggesting that, on Solaris, the use of
malloced segments should be avoided for highly dynamic
I/O cases. The second reason is that themincore()
system call does not work on memory segments allocated
by malloc(). Therefore, MMLIB cannot obtain accurate
estimates of the static memory to adapt to memory vari-
abilities.

In the second set of the experiments, we let two MM-
LIB CG applications run against each other to measure
the performance advantages of using remote memory
over local disk in a completely dynamic setting. Both
MM LIB CG applications use anonymous mmap() to al-
locate memory and work on different matrices of equal
size. Each matrix is equally partitioned into 10MB pan-
els. The experimental results are shown in Table 2. When
remote memory instead of local disk is used, the total
wall-clock time of the two MMLIB CG applications is
always reduced. Especially when the overall memory
pressure is severe such as the 300MB matrix and 250MB
matrix cases (the overall memory requirement for data is
600MB and 500MB), the wall-clock time reduction can
be 22.4% and 28.7% respectively.

We emphasize that these improvements areon topof
the improvements provided by the local disk MMLIB

over the simple use of virtual memory. Considering also
the improvements from Figure 2, our remote memory li-
brary improves local virtual memory performance by a
factor of between four and seven. This compares favor-
ably with factors of two or three reported in other remote
memory research [16].

6 Conclusions

We presented a general framework and supporting li-
brary that allows scientific applications to automatically
manage their memory requirements at runtime, thus ex-
ecuting optimally under variable memory availability.
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The library is highly transparent, requiring minimal code
modifications and only at a large granularity level.

This paper extends our previous simplified framework
and adaptation algorithm for memory malleability with
the following key functionalities: (a) multiple and simul-
taneous read/write memory objects, active panels, and ac-
cess patterns, (b) automatic and accurate estimation of
the size of the non-managed memory, and (c) application
level remote memory capability.

We showed how each of the new functionalities (a)
and (b) were necessary in implementing three common
scientific applications, and how (c) has signigicant per-
formance advantages over system-level remote memory.
Moreover, the remote memory functionality has opened a
host of new possibilities for load and memory balancing
in COWs and MPPs, that will be explored in future re-
search. Our experimental results with MMLIB , have con-
firmed its adaptivity and near optimality in performance.

Appendix A

Core interface and functionality

To be managed by MMLIB , a given data-set must be
broken into a user-specified number of panels for which a
backing store is created on disk, accessed through mem-
ory mapping. The size of the panel is usually determined
as a large multiple of the block size that is optimal for
cache efficiency so that it also amortizes I/O seek times.
In case of memory contention, a large number of pan-
els can fine tune more accurately the exact level of avail-
able memory but incur higher bookkeeping and I/O over-
heads. Because of diminishing returns beyond a 5-10%
accurate prediction of available memory, and because our
goal is to match the performance of unmanaged in-core
methods when running without memory contention, we
suggest that about 10-40 panels be used per object.

MMS mmlib new mmstruct(type, *filename, P)
Each data-set and its panels are associated with an
MMS object, which handles all necessary bookkeep-
ing and through which all accesses to the data oc-
curs. The above function constructs an MMS object
of a given MMLIB type. Type examples include MM-
LIB TYPE MATDENSE for a dense two dimensional ar-
ray, or MMLIB TYPE VECTOR for a one dimensional
array. The filename specifies the name of the backing
store, and P is the number of the panels into which the
data is broken.

void mmlib set update queue(void (*func) (MMReg,
MMS, int))
An MMS object is associated with a distinct priority
queue. This queue orders the panels according to the
eviction policy chosen by the user for that object. When
more than one objects are active simultaneously, the

choice of panel eviction must consider not only the intra-
but also the inter-object priorities. For this reason, MM-
LIB maintains a global registry of all MMS objects (MM-
Reg), using this instead to make its adaptation decisions.
When a given amount of space must be freed, the MMLIB

eviction function evicts panels according to their ordering
in the queue until enough space has been freed. The pri-
ority queue is updated each time that mmlibget panel()
is called, inserting the newly accessed panel in the proper
place. mmlibsetupdatequeue() allows the user to spec-
ify the function that should be called to perform this up-
date and maintain any other data structures that may be
required to implement the eviction policy, such as queues
local to each MMS object. MMLIB defaults to Most Re-
cently Used (MRU) replacement, as this is suited to the
cyclic the access patterns of many scientific applications.

We should note that to provide maximum flexibility,
MM LIB also provides an interface for the user to specify
the function that performs panel evictions. The preferred
method for specifying an eviction policy is to use mm-
lib setupdatequeue() when possible, however.

void *mmlib get panel(MMS mms, p)
This function is the basic building block of the library. It
returns a pointer to the beginning of panel p, hiding the
rest of the bookkeeping. If the panel is already mapped, it
returns its address and updates the global and correspond-
ing local queues. If the panel is not mapped, it checks for
memory shortage or surplus, consults the eviction policy
and adjusts the number of panels in the queues accord-
ingly.

void mmlib releasepanel(MMS mms, p )
Some applications work on many memory objects si-
multaneously, but not all objects have the same life-
time. In particular, certain panels may persist through-
out the mapping and unmapping of other panels of the
same or different objects. For example, assume we need
to compute the interaction of a panelXm with panels
Xi, i = 1,m − 1. It would be a performance disaster
if, based on the MRU policy, we decided to unmap this
panel because it was recently accessed. In this case, the
user needs to “lock” this panel as persistent, until all rel-
evant computation is completed. In MMLIB , the pointer
returned bymmlib get panel remains valid until the
mmlib release panel is called. The release does
not evict the panel; it merely unlocks it so that it can be
evicted if deemed necessary.
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Identify memory objectsM1, M2, . . . , Mk

needed during this phase
for i = [ Iteration Space for all Objects ]

for j= [ all Objects needed for iteration i ]
panelID = accessPattern(Mj , i)
Get panel or portion of panel (panelID)

endfor
Work on required panels or subpanels
for j= [ all Objects needed for iteration i ]

panelID = accessPattern(Mj , i)
if panel panelID was modified

Write Back(panelID)
if panel panelID not needed persistently

Release(panelID)
endfor

endfor

Figure 1. Extended framework modeling the memory access nee ds of a wide variety of scientific
applications
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Figure 2. Performance under constant memory pressure.The left chart shows the average time per
iteration of CG with a 70 MB matrix, which requires a total of 8 1 MB of RAM including memory for
the work vectors. The middle chart shows the time to orthogon alize via modified Gram-Schmidt
the last 10 vectors of a 30 vector set. Approximately 80 MB are required to store all 30 vectors.
The right chart shows the time required for an Ising code to sw eep through a 70 MB lattice. All
experiments were conducted on a Linux 2.4.22-xfs system wit h 128 MB of RAM, some of which
is shared with the video subsystem.
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Wall-clock time for MMLIB CG running against in-core CG
`

`
`

`
`

`
`

`
`

`
`

mode
memory pressure

300MB 150MB 100MB Without Pressure

named mmap() local 388.097 326.642 309.365 285.135
named mmap() remote 484.34 472.831 371.277 289.617
anonymous mmap() local 541.005 367.357 317.726 294.406
anonymous mmap() remote 379.114 360.516 317.756 293.213
malloc() local 1325.485 1023.782 1059.640 1050.507
malloc() remote 534.229 504.043 475.662 462.117

Table 1. This table shows the wall-clock time for MM LIB CG running against in-core CG. The
MM LIB CG has six modes corresponding to the six rows in the table. MM LIB CG works on
200MB matrix on local node. Memory pressure is created by in- core CG running on local node.
Without Pressure means in-core CG is not running.

Wall-clock time for MMLIB CG running against MMLIB CG
`

`
`

`
`

`
`

`
`

`
`

processes
matrix size

300MB 250MB 200MB 150MB 100MB

cg1 local 1496.700 1116.355 413.500 265.929 181.252
cg2 local 1015.495 755.859 638.448 266.697 185.796
Total local 2512.195 1872.214 1051.948 532.626 367.048
cg1 remote 1139.011 815.240 415.056 266.049 158.954
cg2 remote 809.446 519.031 603.588 252.822 157.289
Total remote 1948.457 1334.271 1018.644 518.871 316.243
Remote time reduction over local 22.4% 28.7% 3.16% 2.58% 13.8%

Table 2. This table shows the wall-clock time for MM LIB CG running against MM LIB CG. Both
MM LIB CG applications use anonymous mmap() to allocate memory. Th e first three rows show
the results when local disk is used by both MM LIB CG applications. The following three rows
show the results when remote memory is used by both MM LIB CG applications. The last row
shows the total wall-clock time reduction for remote over lo cal mode.
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