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ABSTRACT

We present the design and the implementation of a kernel principal
component regression software that handles training datasets with
amillion or more observations. Kernel regressions are nonlinear and
interpretable models that have wide downstream applications, and
are shown to have a close connection to deep learning. Nevertheless,
the exact regression of large-scale kernel models using currently
available software has been notoriously difficult because it is both
compute and memory intensive and it requires extensive tuning of
hyperparameters.

While in computational science distributed computing and iter-
ative methods have been a mainstay of large scale software, they
have not been widely adopted in kernel learning. Our software
leverages existing high performance computing (HPC) techniques
and develops new ones that address cross-cutting constraints be-
tween HPC and learning algorithms. It integrates three major com-
ponents: (a) a state-of-the-art parallel eigenvalue iterative solver,
(b) a block matrix-vector multiplication routine that employs both
multi-threading and distributed memory parallelism and can be per-
formed on-the-fly under limited memory, and (c) a software pipeline
consisting of Python front-ends that control the HPC backbone and
the hyperparameter optimization through a boosting optimizer. We
perform feasibility studies by running the entire ImageNet dataset
and a large asset pricing dataset.
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1 INTRODUCTION

Kernel learning refers to a set of learning algorithms that map the
original features to a possibly infinite dimensional space and use
them to learn a model with tractable/convex objectives. For exam-
ple, kernel ridge and kernel principal component regression learn a
linear model in the feature map, whereas the kernel support vector
machine maximizes the margins of training data represented by
the feature map. Because kernel learning algorithms usually enjoy
sound theoretical properties, they had been extensively used in a
wide range of areas such as (medical) image recognition [9, 27, 43],
bioinformatics [26, 36], asset pricing [50], recommendation sys-
tems [18, 33], smart cities [55, 57], etc. Although in recent years
some major downstream “users” move to use deep-learning-based
models, applications that require interpretable models and robust
reproducibility (e.g., different “random seeds” will not result in
models with different performance) still heavily utilize kernel tech-
niques. In addition, it was discovered recently that a neural net
with infinite width is equivalent to kernel regression using the
so-called neural tangent kernel (NTK) [25, 38]. Therefore, kernel
techniques remain relevant for both specialized applications and a
better understanding of deep learning.

This work presents the design and implementation of a soft-
ware package that solves large-scale kernel principal component
regressions (KPCR). Kernel principal regression and kernel ridge
regression (KRR) are the two most widely used linear kernel mod-
els and they often deliver similar performance [13]. We choose
KPCR over KRR because the former is more interpretable, espe-
cially when the dimension of the kept kernel map is small but the
software and techniques developed here can be easily extended to
KRR, which would require only a switch to a linear solver instead
of an eigensolver.

Scaling up KPCR has been challenging for two reasons: (a) most
software uses dense eigenvalue solvers, requiring O(N?) running
time and O(N?) space, where N is the number of observations
(samples); (b) parallelization, when offered, is typically performed
across different problem instances rather than to allow for larger
problem sizes. However, there is strong interest in techniques and
software that handle datasets with a million or more samples, which
is at least an order of magnitude larger than what off-the-shelf
packages like scikit-learn are capable of. Such datasets are both
conceptually and practically important. First, many applications
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in finance, medicine, and vision have benchmarks with 500K to 3
million samples [52, 53]. For example, the (original) ImageNet has
1.2 million images [12] which, to our knowledge, cannot be studied
with current KRR/KPCR solvers. Second, recent investigation on
deep learning demands a scalable kernel learning solver to better
understand approximation error between NTK and different deep
artechiture [2, 38]. To address this scaling problem, a significant
stream of research has focused on reducing the time complexity of
the kernel matrix through approximations [14, 41, 51, 54, 56]. The
design of our software tool is independent of how the user provides
the matrix-vector multiplication and therefore it allows for use
of kernel approximations. In this paper, however, we address the
exact (non-approximated) kernel matrix as it is more general, more
computationally challenging, and still needed by practitioners as it
obviates the need to bound another source of error.

A software package that scales up the currently feasible problem
size by more than an order of magnitude must leverage multiple ex-
isting technologies. For example, iterative methods for eigenvalues
or linear systems can and have been used to bring the complexity
down to O(N?) [49] but without distributed computing, the target
problem sizes would still be infeasible. In addition, the software
should employ techniques that build and apply the kernel matrix
efficiently, include hyperparameter optimization in the pipeline,
and the eigensolver performance should be tuned for KPCR.

Our solution consists of the following components: (i) the use of
a state-of-the-art distributed-memory eigenvalue iterative solver
that computes k selected eigenpairs in O(kN?), (ii) the develop-
ment of high performance computing matrix-vector multiplication
routines that employ both multi-threading and distributed memory
parallelism, and, when needed, can work under limited memory by
rebuilding the kernel tile-by-tile on the fly, (iii) the development of
a software pipeline consisting of two interacting Python front-end
drivers, one handling the hyperparameter optimization and the
other the regression on an HPC back-end, ensuring a fault-tolerant
execution. The main contribution of the paper is the design of a
software tool using novel algorithmic integration rather than the
introduction of new algorithms.

We demonstrate the efficacy and efficiency of the software on
two million-scale downstream applications. First, we apply it on
2 million observations from empirical asset pricing, a notoriously
difficult ML problem with a low signal-to-noise ratio. The fast
execution of our method allows us to implement a boosted KPCR
which demonstrates superior performance [19]. Second, we run
KPCR on the entire Imagenet dataset, which to our knowledge is the
first time a linear kernel model is used to fit Imagenet. We run this
as a feasibility and stress test for our HPC software by computing
tens of thousands of eigenvectors. Although, because of O(N?)
complexity, we cannot expect scalability to sizes beyond 0(107),
our experiments demonstrate that we can enable the solution of a
variety of important problems with datasets of size O(10°> — 107).

2 PRELIMINARIES AND RELATED WORK

Kernel Regression. We consider the problem of fitting a real-
valued function using a total number of N data points {x;, yi}i<N,
in which x; € RF and y; € R. Let k(x;, X;) be a (positive semi-
definite) kernel function that intuitively describes (dis)-similarities
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between x; and x;. By Mercer’s theorem [42], there exists a fea-
ture map $(x) such that k(x;, x;) = ($(x;), ¢(x;)). Kernel regres-
sion models aim to find a linear relation y ~ (f, #(x)). Note that
k(-,-) is part of a model specification and ¢ does not need to be
computed explicitly. In addition, the dimension of ¢(x;) could
be infinite so regularization is needed. When we add a regular-
izer of A||f]|2, the model becomes kernel ridge regression (KRR),
and when we use a low rank matrix to approximate the Gram
matrix K € RV*N | where Kij = k(xi,xj), the model becomes
kernel principal component regression (KPCR). It was recently
shown that KRR and KPCR are mostly equivalent [13] but the latter
often is considered more interpretable because it has a smaller
number of learnable parameters. Examples of kernel functions
include the Gaussian kernel k(x;,x;) = exp(-y|x; — Xj||2), in-
ner product kernel k(x;,X;) = (X;,X;), and polynomial kernel
k(xi,xj) = ((xi,x5) + y)d. Neural tangent kernels (NTK) are a new
family of kernel functions discovered recently that approximate
neural nets at the width limit [25]. Computing NTK usually is more
resource hungry [38].

Kernel regression can also be used to solve classification prob-
lems using standard transformations and is found to be effective [4].
A drawback is that ¢ kernel models need to be fitted to solve a
classification with c classes.

Computational challenges. There are two major challenges.

1. Memory and computation. It takes ®(N?) space to store the
matrix K. Fitting the model requires us to solve a large least squares
system in the form Ka = y (obtained from the dual of the MSE
cost in ff). In KRR, K = K + AI, whereas in KPCR, K is a low-rank
approximation of K. A combination of the two is also possible. The
solutions can be obtained by direct methods e.g., inverting K or K,
or performing the SVD decomposition using the LAPACK library
[3]. The cost of any of these computations is O(N3) which makes
it prohibitive for massive datasets.

Iterative methods have been a central tool in large scale scientific
computing [5, 7] but until recently had not received much attention
in kernel learning. Based on matrix-vector multiplication, methods
such as Conjugate Gradient can solve the KRR problem iteratively
with complexity O(N?) [49], even for many different regulariza-
tion parameters A [16]. The Lanczos method computes k largest
eigenpairs to form a low rank approximation K = V.2 kaT with
complexity O(kN?). Besides interpretability, the benefit of the low
rank approach is that we can later solve a = VkZI;leT y for many
different y or even combine it with many different A.

Recently, some packages for kernel regression have included a
sequential version of the restarted Lanczos method (through the
ARPACK software [32]) or the Randomized SVD method [20]. See
for example [1, 10, 17, 31, 34, 39]. However, they cannot address
large scale problems that will not fit into the memory of a single
server or that may require a large number of compute nodes (or
GPUs) to reduce execution time. Moreover, the optimization of
the matrix vector multiplication is critical for performance but is
typically left to the user. Other approaches avoid the solution of the
entire kernel matrix by randomization, partition, gradient descent
methods, or fast multipole approximations [14, 41, 51, 54, 56] but
they need to bound the distance of the obtained solutions from those
of the original problem, and they may still pose great computational
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demands. Although, our software tool could be used in this case,
we focus on the exact kernel solution.

Our work takes a holistic approach to Kernel regression solvers,
optimizing both distributed matrix vector multiplication for a given
kernel and memory constraints, and the underlying iterative solver
for these problems. We employ the use of PRIMME, one of the
state-of-the-art parallel eigensolvers [45]. By adjusting block size,
basis size, and other parameters, PRIMME methods can be tuned to
converge nearly optimally and its MPI implementation can work
on distributed memory computers. Other high quality packages
include SLEPc [21] and Anasazi [6], but they are much bigger and
less agile, while not performing better than PRIMME [45].

2. Hyperparameter search and boosting. In practice, extensive hyper-
parameter search is crucial, e.g., finding the optimal y of the Gauss-
ian kernel. Search methods include discrete grid search, Bayesian
optimization, and learning curve based optimization [28]. When we
perform a search, the data is usually split into training and valida-
tion (or testing) sets, in which the training set is used to fit a function
with a specific hyperparameter set. The quality of the fitting is de-
termined by using the validation set to compute a score. Typical
scoring functions include MSE, classification error, and correlation
between validation and predicted outputs. Hereafter, we use T and
S to denote quantities related to the training and validation set,
respectively (e.g., Kt is the Gram matrix formed from the training
set). Hyperparameter search adds an extra dimension of complexity
to the computational cost of fitting a kernel model (i.e., thousands
of models may need to be fitted to find a reliable hyperparameter).
Different models can be fitted independently in parallel, and this
task based parallelism can be exploited in some packages such as
TensorFlow. However, we are not aware of a software package that
combines this with distributed memory, and parallel tasks, and this
is the second thrust of this work. In addition, models fitted from
different hyperparameters usually extract complementary signals.
A boosting method consolidating predictions from multiple models
usually further strengthens forecasting power and is also frequently
used in practice [29].

In the following, we describe our design and implementation of a
Machine Learning software pipeline that integrates hyperparameter
optimization with a high performance, parallel regression solver,
addressing the entire stack: kernel generation, matrix-vector, and
eigensolver optimization, and evaluation.

3 DRIVER WORKFLOW

The regression and the automatic machine learning are performed
by separate drivers, the regression and evaluation driver and the
hyperparameter optimization driver. Both are written in Python and
interact with each other as shown in Fig. 1. The hyperparameter
optimization driver applies Bayesian optimization and boosting
to find the best hyperparameters for the model. It is an iterative
method that considers the history of evaluation scores for past
choices of hyperparameters, decides which hyperparameters to
evaluate next, and passes them to the regression and evaluation
driver. The regression and evaluation driver trains the model for
the requested hyperparameters, evaluates their fitness score, and
returns those scores to the hyperparameter optimization driver
to continue the optimization. We can view the hyperparameter
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Figure 1: Driver architecture and interaction.

optimization driver as a “consumer” of the regression and evaluation
driver’s results and as an issuer of requests for more results. The
regression and evaluation driver coordinates the work requested by
assigning it to one or more parallel jobs. Decoupling the drivers into
two interacting but independent processes allows for a more flexible,
fault tolerant, and scalable design. Under such an architecture,
users can switch between different hyperparameter optimization
algorithms or different evaluation methods with little effort.

3.1 Hyperparameter optimization driver

The hyperparameter optimization driver is initialized with user-
defined configurations including Bayesian optimization parameters
(e.g. hyperparameter search space and convergence criteria), and
directory paths for storing results needed by the regression and
evaluation driver. For each hyperparameter optimization iteration,
the hyperparameter optimization driver first identifies the hyper-
parameters that need to be evaluated with Bayesian optimization
based on existing observations (past evaluation results from regres-
sion and evaluation driver). Then it creates a request file containing
the hyperparameters for which the regression and evaluation driver
will compute model solutions and waits for the results. When the
regression and evaluation driver finishes the evaluations and writes
them to disk, the hyperparameter optimization driver locates the
result files based on the request ID, adds the evaluation results to
the existing observations with the boosting method and updates
the Bayesian optimization.

The hyperparameter optimization driver only submits new re-
quests when a regression and evaluation driver is available, as indi-
cated by the existence of a READY file which contains the process
ID of the evaluation driver. After submitting a request, the hyper-
parameter optimization driver resets the status of the regression
and evaluation driver by deleting this file.
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3.2 Regression and evaluation driver

The regression and evaluation driver is initialized with the process
ID of the hyperparameter optimization driver and the paths to
the training and testing data. If the entire kernel matrix can fit in
available memory, the sample distances are computed and saved
to disk; the regression solver will be generating the kernel matrix
from the sample distances. Otherwise, and assuming the sample
data can fit in the memory of one node, the regression solver will be
performing the matrix-vector operations on the fly by regenerating
portions of the matrix from the sample data. At this point, the
regression and evaluation driver enters the request loop with the
hyperparameter optimization driver, indicating that it is ready to
compute a regression model by creating the READY file containing
its process ID.

When ready, the hyperparameter optimization driver responds
with a request file, containing a list of hyperparameters for each
regression model that needs to be solved. For each hyperparameter
in the request, the regression and evaluation solver (architecture
seen in Fig. 2) computes a model solution for each rank computed
by the SVD. It then computes a fitness score for each model solu-
tion. The regression and evaluation driver saves to disk the model
solution with the highest evaluation score and reports the location
of this information back to the hyperparmeter optimization driver
in a results file for the current request. Once the regression and
evaluation driver has computed the optimal model solutions for
all requested hyperparameters, it finalizes the results file, creates
a READY file, and awaits a new request from the hyperparmater
optimization driver.

3.3 Benefits of a two-driver workflow and fault
tolerance

It is natural to address a consumer-producer workflow with a de-
sign of separate drivers. The Bayesian optimization function can be
changed to different software in any language without affecting the
code of the numerical solvers and vice versa. For example, Bayesian
optimization can work with partial information and update it as
new results arrive. On the other hand, the regression and evalua-
tion driver can decide to launch separate parallel jobs to evaluate
different hyperparameters if the resources are available.

The hyperparameter optimization and regression and evaluation
drivers implement a checkpoint system for fault tolerance. While a
driver is waiting, it can periodically poll the OS with the process ID
of the other driver program. If it determines that the other driver
has terminated, it will save its current state and terminate as well. If
the hyperparameter optimization driver has converged, or if some
other error prevents it from continuing, it saves its state, creates a
terminator file and terminates itself. The regression and evaluation
driver will detect this file and follow its own shutdown procedure.
Any running regression and evaluation solvers will finalize their
results which can be consumed by the hyperparameter optimization
driver when the drivers are restarted at a later time. During a restart,
the regression and evaluation driver will check if there is a request
that was incompletely processed. If it finds an incomplete results
file for the last received request, it will solve the regressions for any
outstanding hyperparameters and finalize the results file before
creating the READY file.

Yu Chen, Lucca Skon, James R. McCombs, Zhenming Liu, and Andreas Stathopoulos

distances

Set blockMV
on the fly

Set block MV

In memory

Solve #classes

ol Sl ETE regressions
regression g
No More Yes
Return |« hyperparameters
- vl

Figure 2: Regression and evaluation solver. Pre-processing
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truncated SVD. Evaluation depends on whether the problem
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4 THE DESIGN OF THE KERNEL LEARNING
SOLVER

The software architecture we described earlier is generic and can
work with a variety of hyperparameter optimization and regression
software, both sequential and parallel. In this section we describe
what makes our package unique; the development of a high per-
formance, parallel code that solves the regression problem and
forms and evaluates its predictions. To perform at the extreme scale
required for large data sets, the code must support distributed mem-
ory parallelism. This is because a single high-end server (a) does not
have the memory to store dense matrix kernels of size more than a
million, and (b) even if the memory is available, the execution time
required on one node would be prohibitive. In addition, the code
should support multi-threading on each distributed node so that
many-core or GPU environments are utilized efficiently.

Our implementation uses the MPI+X paradigm, with heavy use of
optimized LAPACK and BLAS multithreaded libraries. This allows
easy transition from many-core to GPU architectures, especially
since our iterative eigensolver PRIMME provides a GPU interface
through MAGMA [47]. For this paper, OpenMP optimizations and
tuning have been performed for the target KNL architecture on
the Stampede2 supercomputer at TACC [44], funded by XSEDE
[48]. This choice was prompted at the start of this project when
KNLs provided much larger memory than the corresponding GPU
architectures. With KNLs being phased out and GPUs having sig-
nificantly larger memory, our work will soon be ported to newer
architectures. Nevertheless, the high computation/communication
ratio achievable on KNLs provides a stress test scenario for our
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implementation. The code is written to support both single preci-
sion and double precision arithmetic. Mixed precision support is
planned for the future.

There are three computational stages. The pre-processing stage
is where the training and testing data is read to create the training
and testing kernel matrices. The Truncated SVD stage uses the
eigenvalue package PRIMME to compute a low-rank eigenspace
that sufficiently approximates and regularizes the training kernel.
The third stage solves the regression problems with the low-rank
space and evaluates the score of its predictions.

4.1 Pre-processing

4.1.1  Matrix generated on-the-fly. With large scale data, the dis-
criminating factor is the number of features F. If the number of
features is small (say F < 10), the training data, x7, has low mem-
ory demands, O(NF) numbers, and can remain in the memory of
each node. The training kernel matrix, however, requires storage
of O(N?/p) numbers, where p is the number of nodes in the paral-
lel program. The matrix is used by the iterative solver in a matrix
times a block of vectors multiplication kernel (hereafter called block
matvec) with time complexity O(2bN?/p), where b is the size of
the block. Therefore, when the number of samples N is too large to
allow for storage of the entire matrix, or to do so we would need an
excessive number of nodes, we can instead keep the training set in
memory and recompute the matrix on the fly at every block matvec.
This increases the block matvec complexity to O(N2F/p+2bN?/p)
which for F <« b is a negligible increase. With this flexibility, the
code can run in much smaller processor allocations, e.g., in smaller
clusters that users may have available, and achieve higher utiliza-
tion. Moreover, it allows for multiple hyperparameter spaces to be
explored in parallel on different partitions of supercomputers.

For this case of on-the-fly generation of K, the pre-processing
is straightforward. Depending on the file system, all nodes read
the training data, or one node reads it to avoid disk contention and
broadcasts it to all other nodes.

4.1.2  Matrix generated and stored. When the number of features
is large (say 10* or 10°), regenerating the matrix on the fly at every
iteration becomes prohibitive. In this case the matrix must be cre-
ated in the pre-processing stage. We follow the usual distribution,
where node j is assigned the task to generate a set of matrix rows
with indices denoted I;. To compute its local part of the matrix,
node j would need to compute k(x7(I}), x7). However, because of
its large size, xT may not be stored in local memory. We perform
this in parallel with each node storing only two sections of the
data; its own x7(I;) and a communicated x7(I,). Specifically, a
pipelined ring communication starts by every node j sending its
data block to node j + 1 and receiving the data block from node
j — 1in a non-blocking fashion. At the same time it computes its
local k(xr(I}), x7(Ij) part of the matrix. When the new data block
arrives, the node forwards it to j + 1, posts another receive, and
computes k(x7(I;), x7(Ij-1). The algorithm continues for p steps,
at which point all data blocks have been seen and recorded. Since
communication time O(NF) is far smaller than computation time
O(N?F/p), we expect it to be completely overlapped.

There are two additional computational considerations. First,
for very large F, the matrix generation cost is much larger than
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the time to solve the problem with the eigensolver. Thus, it would
be useful if many more nodes were used to generate the matrix
than to solve it. However, this would create different row distribu-
tions between the two stages. Second, the regression driver issues
requests for the solution of multiple regression problems corre-
sponding to different hyperparameters (often in the order of 100s).
For each hyperparameter, a different kernel needs to be generated,
which becomes computationally infeasible. One solution would
be to transform the Kj ; element of the current hyperparameter
to the matrix element of the new hyperparameter, e.g., for the
Gaussian kernel Kl:);2 = exp(y2/y1 log KIY;) We have found this to
introduce too much floating point error, especially when storing
the kernel in single precision arithmetic. A second alternative is
the pre-processing step to store a copy of all distances ||x7; — x7 |
in memory from which we can compute a kernel for any hyper-
parameter. This, however, doubles the memory requirements and
does not address the problem of different number of nodes between
matrix generation and eigensolver.

Our approach is to let the pre-processing stage write all the pair-
wise distances [|xr; — xr; |2 to a file and not compute the kernel
matrix explicitly. A node can then read the file and broadcast the
rows to the all the nodes in a new partition so that they can compute
locally their kernel matrix. The approach has several benefits; (a)
it allows different node distributions and partitions between pre-
processing and solver; (b) does not introduce extra floating point
error in matrix creation; (c) the computation of the matrix from
distances takes less time than a matrix vector multiplication.

4.2 Truncated SVD

Applying a high performance iterative eigenvalue solver to com-
pute the Truncated SVD (TSVD) of the kernel is not a ground
breaking idea. Yet, most current ML packages use either a complete
SVD decomposition through LAPACK or, the most advanced ones,
have been using sequential Lanczos or Randomized SVD methods
[35]. PRIMME, as one of the state-of-the-art eigensolvers, has been
shown to scale well to massively parallel platforms and has been
used to find eigenpairs of (sparse) matrices of dimension more than
a billion [45]. It is therefore a natural choice to include as the TSVD
solver in our package.

Among the several methods available in PRIMME, we choose to
work with block GD+K. This method provides near optimal conver-
gence rate, much faster than randomized SVD and at least as fast as
LOBPCG, depending on basis size. Because our kernel matrices are
dense, any reduction in the number of iterations translates directly
to less computing time. The second key issue is the implementation
of an efficient and scalable block matvec. The presence of a block
matvec is critical to improve the per-node computational intensity
and to reduce communication latency during matvec. At the same
time, if the block is too large then convergence of the eigensolver
deteriorates. We study the choice of block size in section 5. Denote
the block matvec as KX where X is of size N X b.

4.2.1 Matrix generated on-the-fly. As discussed in the previous
paragraph the block sizes that are optimal for our problem are very
small (often much smaller than the number of eigenvalues required).
This implies that the block matvec cannot benefit from state-of-
the-art algorithms for matrix-matrix multiplication [11, 30]. For
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matrix-vector multiplication, the algorithm found in ScaLAPACK
[8] uses a 2D cyclic partitioning of the matrix elements and achieves
optimal weak scalability asymptotically. While such a choice of
matvec should be provided in the software tool, it is not sufficient
for a couple of reasons.

First, the last step of the 2D algorithm involves a global reduc-
tion which cannot be fully overlapped with computation. This may
not affect the asymptotic weak scalability of the method but for
smaller number of processors (a more practical regime for most
users) a fully overlapped communication might give better results.
Second, when the matrix is generated on-the-fly there is additional
computation allowing even a simple 1D algorithm to fully overlap
the communication and scale perfectly to larger numbers of proces-
sors. Therefore, we provide the alternative of a 1D approach that
overlaps communication with both generation of matrix elements
and their multiplication.

Each node is responsible for about N/p rows of K and stores
the corresponding rows of X. In this case, we have the flexibility
to generate the local matrix tile by tile, so that the tile fits in local
memory and its size depends on the performance of SGEMM (the
BLAS sequential matrix-matrix multiplication function).

Based on this 1D row distribution, a simple pipelined algorithm
multiplies the parts of X that have arrived to the node while com-
municating in a non-blocking fashion the parts of X that will be
needed next. We can perform the ring communication of the blocks
X (I,) while overlapping the computation with only the first tile
in the local set of rows. After the first tile has been computed, X is
resident in its entirety on each node, and the rest of the tiles can
be generated and multiplied without communication. With large
number of features F this is sufficient.

A more scalable approach is to perform the multiplication of
the local Ij rows in p groups of I1, ..., I;, columns, also through a
pipelined ring communication of the block vectors X (I1), ..., X (Ip).
The benefit is that we can overlap the entire generation of the matrix
section K (I}, Ir,) with communication.

It is relatively simple to model the performance of this algorithm,
say for single precision arithmetic. At each step, every processor
will eventually generate, regardless of tile size, a N/px N/p section,
multiply it with the Nb/p block of vectors, while communicating
Nb/p words. Generating the section takes O((N/p)?(3F + 15))
operations, where F is the number of features based on which the
distance is calculated and 15 is an average number of flops required
for computing the exponential. Assuming that this computation can
achieve a rate of go GFLOPs, the time to do this computation on a
node is O((N/p)?(3F +15)/go). Assuming SGEMM achieves a rate
of g GFLOPs, the time to compute the block matvec of this section on
anode is O(2(N/p)?b/g). In our experiments we observed g = 24o,
so we will use this relation in the model.

At the same time, we send O(bN/p) single precision numbers,
or O(32bN/p) bits, to the next numbered processor and receive an
equal amount from the previous one. Assuming that the network
allows this ring communication to proceed without contention (as
is the case on the fat tree topology of the Omni-Path network of
Stampede2) then the communication time required for this step
is O(32bN/(pw)), where w Gbps is the network bandwidth. The
ratio of compute time over communication time is then greater
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than one, i.e., communication fully overlapped, if

1)

Nw(3F+15 )
p< +1].

169\ b

Notice that increasing the block size b beyond the one that achieves
peak SGEMM performance and hides messaging overheads is re-
ducing the scalability of the algorithm. On the other hand, keeping
the block size too small reduces both SGEMM performance and
achieved network bandwidth. The situation is further complicated
by the increase in the actual number of matrix vector multiplica-
tions of the iterative solver. The SGEMM performance is studied in
section 5. As a rule of thumb, block size should not be much larger
than the smallest b for which communication is fully overlapped.
With respect to scalability for N = 10, for the worst case where
F = 0 and the ratio w/g < 1073, full overlapping of communication
should be achieved up to 62 nodes.

4.2.2 Matrix in memory. For smaller number of nodes, the 1D
method above continues to be competitive. For larger number of
processors, a 2D algorithms as the one in ScaLAPACK can be used.
The stored distances can be redistributed to the nodes in any desired
distribution, including the required 2D block cyclical partitioning.

4.2.3 Initial guesses across hyperparameters. A significant advan-
tage of PRIMME is that it can use multiple initial guesses to con-
verge faster to the required eigenspace [45]. Since PRIMME is called
repeatedly for a sequence of hyperparameters, the eigenvectors
computed from a previous K7 can be passed as initial guesses to
the K¥i*1. The quality of these guesses depends on the closeness
of y; to yi+1. Therefore, hyperparameters should be processed in a
sorted order. However, also the rank k; depends on each y;, with
smaller hyperparameters requiring a computation of much smaller
ranks. For this reason, we solve the corresponding eigenproblems
such that larger hyperparameters that require a larger rank k are
executed first. Thus, two successive kernel matrices will have the
smallest distance and the computed rank of the previous matrix will
always provide enough initial guesses for the following problem.
We have followed this technique with the Gaussian kernel, where
solving the kernels in order of decreasing y yields between 30-40%
speedup.

4.2.4 Choosing the rank of TSVD. Choosing the optimal rank k of
the eigenspace is a central problem in statistics and machine learn-
ing. The role of the eigenspace is to act as a regularizer to the noise
inherent in the data, which is typically unknown. Often, experts
would have some idea on a lower bound of the smallest eigenvalue
to be included in the eigenspace, e.g., o > J. Other times, they
would relate the o to the norm of ||K]||, e.g., § = ||K]|10~*. PRIMME
has an option for a user provided function that implements any
desired stopping criterion [45]. Our software implements the above
criteria based on a user provided 8. This functionality also allows us
to combine stopping PRIMME with the evaluation of a current low
rank space. If at a certain point during the iteration, k eigenpairs
have converged, we can evaluate them against a set of testing data
(see next subsection) and decide whether more eigenpairs need to
be computed. This functionality is currently under development
but it has been provisioned in the design of the software.
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4.3 Computing predictions and evaluations

Having obtained a low rank approximation of the training kernel
Ky ~ VZVT, we can solve the linear regression problems o =
VE~'WTY where Y is the single vector of training responses in
regression, while in classification Y has a number of columns equal
to the number of classes. As V and Y are distributed by rows, the
vTY involves one global reduction, while other computations are
performed in parallel. The predictions are formed as a matrix vector
multiplication with the testing kernel matrix y,,eqicr = Ksa. The
algorithm for this multiplication depends on the size of K. If the
number of rows of Kg is small, it can be distributed by columns
and the matvec performed as a set of inner products with a global
reduction. If the number of rows is large, we can use the same
algorithm as the block matvec with Kr.

Usually, the rank yielding the optimal evaluation is not known
and therefore we would like to check the predictions for many or
allranks i = 1,..., k. To avoid recomputing the low rank regression
for each i, we can update a'?) from the solution at the lower rank
ad) = o(i-1) 4 Ui_lViViTY. The computation involves only level-1
BLAS for regression and level-2 BLAS for classification, as well
as one synchronization point, but the time is constant for any
i=1,....k

Finally, ypyeqic; needs to be evaluated against the user provided
known responses for the testing data ys. Such responses could be
reserved at the start or could be part of a cross validation scheme.
We currently provide functions that compute the MSE and corre-
lation of ypreqic; With ys. For classification we provide a metric
that discretizes the real values in Yy egics to identify the class it
corresponds to and compares this with the classes in ys. We plan
to also implement the t-statistic and Sharpe metrics. Ultimately the
evaluation function depends on the specific problem and therefore
a user-defined function can be provided to do the evaluation.

5 EVALUATING PERFORMANCE
5.1 Matrix generated on the fly

When the matrix is generated on the fly during each matvec, we
have to decide on the size of the tile and on the block size which
determines not only the single node performance but also the per-
formance of the pipelined matvec algorithm.

Figure 3 studies performance trade offs on a single KNL node.
The top two subplots show the execution time and the TFLOPs
achieved for a variety of block and tile sizes. Different blocks are
plotted with different lines, and the block size is annotated at the
ends of the line. The red vertical bars depict the time or TFLOPs of
the tile generation, which is part of the matvec. Clearly, for small
block sizes, most of the time is spent generating the tile, while
large block sizes take more time but multiply more vectors and
thus amortize the tile generation. The subplot on the right shows
that the tile generation gets better performance for smaller tile
sizes, while the SGEMM performance prefers tile sizes around 512
to 1280. Performance peaks with block size 128. The third subplot
reports the matvec time per block vector multiplied. The best overall
performance occurs with tile sizes 768 to 1280 and block sizes 128
and 256 respectively. Given similar matvec times, a smaller block
should be preferred in order to reduce the overall runtime of the
eigensolver.
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Figure 3: Matvec efficiency as a function of tile size and block
size. The overlayed numerals indicate the block size, the red
bars indicate the overhead of the tile generation.

Using the previous information on what tile size to use, we
study next the parallel scalability of the pipelined on-the-fly algo-
rithm for a data set from the stock data with matrix size 1996975.
There are two features per data point (F = 2) and we test several
block sizes. We use 58 threads on each node of Stampede 2, be-
cause more threads (up to the 68 cores per node) perform very
inconsistently, increasing the overall runtime. Figure 4 shows only
speedups (T(1)/T(p)) from 16 to 128 nodes of KNL. Smaller num-
bers of nodes show linear or superlinear speedups. The results show
the best times out of 10 runs, as there were still considerable fluctu-
ations of the single-node SGEMM performance between runs. As
suggested by the model (1), we have linear scaling up to 64 nodes
for all block sizes, and it’s only for block sizes 16 and 32 that we
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Figure 4: Matvec speedup with N=1996975.

see a small reduction in efficiency at 128 nodes. We believe that
for many practical ML applications, 128 such powerful nodes is a
reasonable number of resources.

Based on the above, we report timings of the regression and
evaluation solver on the large stock data set in Table 1. For this data
we compute 150 eigenvalues of a matrix close to 2 million. We use
a large block size of 150, which reduces as eigenvalues converge.
We see that matvec takes the vast majority of the time, but the total
execution time is reasonable, allowing the solution of regression
problems for a series of hyperparameters y.

Stage Time
pre-processing | Read data once negligible
SVD # sing. values computed 150
Computation | # outer iterations 15
# single vector MVs 1304
Total time 204.2 sec
Matvec time 189.1 sec
Tile generation 31.8 sec
Ortho time 1.4 sec
AllReduce time 10.3 sec

Low rank Regress x = VkZ;leTy

regression Predict and evaluate x

and evaluation Total: 36.1 sec

Table 1: PRIMME execution statistics on 64 KNL nodes (4352
cores) for one of the data sets of the stock data with dimen-
sion 1996975, with y = 190, which yields a more difficult
eigenvalue problem, and with (variable) block size 150. The
matrix is generated on the fly with a tile size of 1280. Low
rank regression is performed incrementally per rank.

5.2 Matrix in memory

For the ImageNet dataset, the number of features (150528) and the
size of the matrix (1281167) make the regeneration of the matrix
from the training data prohibitive. Therefore, we use the methods
in the software that distributes the entire matrix over the nodes. A
minimum number of 128 Stampede2 nodes were necessary to store
the matrix. For each new hyperparameter in the optimization, the
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inter-distances between points are read from disc and the kernel
is recomputed. Next, we study the timings for each stage of this
process as shown in Table 2.

In the pre-processing stage, we first read the training and testing
data and distribute it over the nodes. Then, we run the pipelined tile
generation algorithm to compute the local part of the matrix, and
finally, write the local matrix of each node to the parallel file system.
Clearly, the time is dominated by the generation of the matrix,
while the corresponding communication is completely overlapped.
Reading the training data and writing the resulting matrix tiles
takes less than 10% of the pre-processing time. Because one node
reads from disk and redistributes, this I/O time is not scalable as
it is not reduced by using more nodes, but it is a cost that any
ML method must occur on this machine. However, this operation
trivially scales on hardware platforms where each node has a local
disk that can hold the desired partition for I/O.

Stage Time
Pre-processing | Read and distribute data 1439 sec
Pipelined tile generation 27050 sec
Communication overhead <3 sec
Write matrix tiles to PFS 410 sec
Total: 29305 sec
SVD # sing. values computed 19000
computation | # outer iterations 336
# single vector MVs 73863
Read matrix from PFS 404.4 sec
Total PRIMME time 2665.7 sec
Matvec time 1686.9 sec
Ortho time 652.8 sec
AllReduce time 416.8 sec

Low rank Regress VkZI;leTY and
regression evaluate per rank 9.25 sec

and evaluation | (size(Y,2)=1000)

Table 2: PRIMME execution statistics on 128 KNL nodes
(8704 cores) for the entire ImageNet of dimension 1281167,
with y = 107> and block size = 256. The number of classes
is 1000 so low rank regression solves Y with 1000 columns.
This is performed incrementally per rank. The evaluation
was stopped before rank 19000 was reached.

Once the kernel matrix has been generated, our optimization
pipeline executes a sequence of calls to PRIMME. The cost of the hy-
perparameter optimization part of the program is negligible. Using
the Gaussian kernel for the ImageNet data set gave the best results
for hyperparameters y ~ 107°. However, the very small spectral
decay of this kernel required the computation of a very large num-
ber of eigenpairs, as shown in Table 2. This number of eigenpairs is
one of the largest reported in the iterative eigenmethods literature,
and the only one we are aware of that works with a dense matrix
of size of more than a million. For comparison, the EigenExa code
is a Petascale dense eigensolver and was recently reported to have
diagonalized the first million size dense matrix on the K supercom-
puter in 3464 seconds using 663,552 cores and achieving 1.7 PFLOPs
[24]. Instead, by using an iterative method we can compute 1.5%
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of the spectrum in 2666 seconds, on 8704 cores of Stampede 2[44],
attaining around 100 TFLOPs for the entire PRIMME run.

More importantly, we do not expect regression problems to re-
quire the computation of so many eigenvalues. Machine learning
users would want to use a kernel that displays a fast spectral decay
for their problem, requiring just a small number of eigenvalues that
can be solved far more efficiently (as in Table 1). What the experi-
ment shows, however, is that our software enables this investigation
even in extreme cases in an efficient and robust way.

Looking closer at the timings of Table 2, we see that for every
eigenvalue problem 404.4 seconds are spent reading the distances
to create the kernel locally. Although this is a small part of this
problem, it would dominate the execution time for kernels that only
require 10-100 eigenpairs. In that case, it is advisable to increase
the number of nodes to allow a copy of the distances to be stored
in memory so that the matrix is recomputed for every new hyper-
parameter. The smaller memory footprint of the eigenvectors in
that case will moderate the increase in the number of nodes.

PRIMME timings show the computation of a single eigenproblem
to take less than an hour. This in itself is remarkable. Orthogonal-
ization takes about 25% of the total execution time. This is expected
as its complexity grows as O(k*N) where k is the number of eigen-
values. To contrast, orthogonalization for our stock data took less
than 0.5% of total time. Randomized methods that avoid orthogonal-
ization have been proposed [37] but their robust implementation
is still under investigation and the potential benefits are limited.
The AllReduce time, which is needed in orthogonalization and in
PRIMME inner products, took a 416.8 seconds which is reasonable
considering the 19,000 eigenvectors.

We also studied the weak scalability of our pipelined matvec
algorithm for this case where the matrix is not computed on the fly.
Since this involves less operations to overlap communication and
since the problem size is smaller than the stock data, scalability on
this problem is more challenging. We have tested weak scalability
in a way that extends also to the rectangular matvec used in the
evaluation step. We keep the local matrix stored on one of the 128
nodes constant (i.e., of size N/128 X N), replicate it on p nodes,
and multiply a matrix of size pN/128 x N by a vector of size N
distributed over p nodes. Figure 5 shows relatively flat timings with
the number of nodes. As before we notice fluctuations in the perfor-
mance of SGEMM. When computing the achieved SGEMM TFLOPs
for each run and normalizing the times for the same SGEMM per-
formance, the weak scalability becomes even flatter. This implies
that any performance issues are not due to the algorithm but to the
multithreaded MKL library on KNL.

The last stage is the low rank regression and evaluation for
each wanted rank. Notice that because there are 1000 classes in
ImageNet, regression has to solve 1000 linear systems per rank.
This is performed with level-2 BLAS and we update for each rank.
If all 19000 ranks were needed to be evaluated, this stage would take
more than 175000 seconds. However, by monitoring the accuracy
that each rank produces, we can stop the evaluations early when
evaluation scores cease to increase.
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Figure 5: Pipelined matvec weak scalability with N=1281167.

6 MODEL ACCURACY

To show the merit of developing software that combines a high
performance, large scale kernel regression optimization with a
boosting optimizer, we apply it on the equity return forecasting
problem and validate its effectiveness by comparing the obtained
accuracy with some widely used machine learning baselines. The
goal is not to compare computing performance but to show that
making kernel methods computationally feasible adds a competitive
tool to the arsenal of machine learning methods.

Universe 50 1000 3000
Train 35108 | 700253 | 2004030
Test 2848 56808 163652
Kernel | 4.6GB | 1.78TB | 14.6TB

Table 3: The training/testing datasets sample sizes and esti-
mated kernel memory footprint for different universes.

6.1 Methodology

In the equity return problem, we are usually interested in stocks
within a specific universe (e.g., SP500 or Russell3000) and denote
the number of stocks in the universe as n. We assume the equity
market proceeds in periods. Let y;; € R be the return of stock i
at the t-th period, and y; = (y1,,...,Yns) € R?. Our goal is to
forecast y; based on all information available up to period ¢ — 1.

In our experiments, we use seven years of equity data from the
US market. We use three consecutive years of data for training
and the following three months for testing. For each test year,
we examine three different universes. Each universe consists of
Top N stocks in trading volume (during the training period) with
n € {50,1000,3000}. Table 3 shows the sample sizes and estimated
kernel sizes of different universes. We retrain the model for each
test year and each universe. We use past 1-day returns and past
3-months dollar volume as features and next 1-day returns as the
response (i.e. each equity market period consists of one day). All
returns are the "log-transform" of all open-to-open returns. Our
baselines include linear regression ("Lasso" [46] and "Ridge" [23]),
GBRT [15], MLP [40] and LSTM [22]. We apply correlation as the
metric because it is more suitable than MSE in our setting.
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Universe 1000 3000
Year 2015 2016 2017 2018 2015 2016 2017 2018 2015 2016 2017 2018
Lasso 0.0168 | 0.0471 | 0.0307 | 0.0171 | 0.0161 | 0.0160 | 0.0336 | 0.0136 | 0.0186 | 0.0213 | 0.0133 | 0.0140
Ridge 0.0104 | 0.0471 | 0.0065 | 0.0301 | 0.0044 | 0.0156 | 0.0301 | 0.0006 | 0.0152 | 0.0152 | 0.0115 | 0.0111
GBRT 0.0576 | 0.0703 | 0.0476 | 0.0588 | 0.0261 | 0.0180 | 0.0432 | 0.0285 | 0.0194 | 0.0362 | 0.0162 | 0.0135
MLP 0.0311 | 0.0267 | 0.0185 | 0.0356 | 0.0190 | 0.0067 | 0.0179 | 0.0117 | 0.0175 | 0.0309 | 0.0154 | 0.0176
LSTM 0.0258 | 0.0371 | 0.0236 | 0.0493 | 0.0138 | 0.0037 | 0.0104 | 0.0155 | 0.0162 | 0.0147 | 0.0143 | 0.0152
KPCR 0.0563 | 0.0602 | 0.0565 | 0.0673 | 0.0344 | 0.0183 | 0.0055 | 0.0253 | 0.0169 | 0.0274 | 0.0175 | 0.0183

B-KPCR | 0.0929 | 0.0944 | 0.1035 | 0.1001 | 0.0356 | 0.0249 | 0.0069 | 0.0296 | 0.0231 | 0.0310 | 0.0218 | 0.0220

Table 4: A summary of accuracy results for equity return forecasting problem. Results are presented in testing correlations.
Bold numbers denote the highest accuracy for each year. B-KPCR denotes the KPCR with boosting method.

In addition, the equity return forecasting problem usually has
very small signal-to-noise. For example, a model for predicting
the next 1-day return can start profiting when its r? score is only
2 x 107 (i.e., 2 basis points). This means a boosting approach that
aggregates forecasts from multiple models is needed.

6.2 Results

Table 4 shows the accuracy results of three universes. Firstly, linear
regressions perform worst among benchmarks as expected. Sec-
ondly, deep learning models also do not achieve the best accuracy
despite being more powerful than linear models. This is because,
compared to other methods, deep learning models have complex
structures with many more hyperparameters to tune (e.g. layer
number of the model, the type and parameters of each layer, etc),
while each hyperparameter is expensive to evaluate (re-train the
model and test the accuracy on the dataset). Finally, KPCR con-
sistently outperforms all other models on most datasets, and the
boosting method is able to dramatically improve the accuracy of
KPCR. This highlights the importance of our efficient KPCR solver
because many KPCR instances with different hyperparameters need
to be solved for the boosting method.

7 CONCLUSION AND FUTURE DIRECTIONS

There is an important set of downstream applications that depend
on the solution of the Kernel Principal Component Regression
for datasets of size more than a million observations. Yet, current
software packages cannot scale to this size.

In this work, we designed and implemented a software solution
that includes a front-end pipeline that handles the hyperparameter
optimization and check-pointing, and a high performance back-
bone based on an efficient block matrix-vector multiplication and
a state-of-the-art eigensolver. All algorithms are implemented to
achieve high single-node performance and to overlap as much com-
munication as possible. The software can run even when the matrix
cannot be stored in its entirety.

As a feasibility study we were able to apply KPCR for the first
time on the entire ImageNet dataset with an adverse kernel that
stress-tested the eigensolver capabilities. Experiments on an even
larger asset pricing dataset showed that with proper hyperparame-
ter optimization KPCR outperforms other models.

Our short term plans are to port the code on a variety of modern
multi-core and GPU architectures and to optimize for performance.

Based on these, functionality will be extended to include Kernel
Ridge regression and to automate the selection of parameters such
as rank and the Ridge parameter. Finally, a general user-interface
needs to be developed before our GitHub code is released to the
community.
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