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ITERATIVE VALIDATION OF EIGENSOLVERS: A SCHEME FOR IMPROVING
THE RELIABILITY OF HERMITIAN EIGENVALUE SOLVERS*
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Abstract. Iterative eigenvalue solvers for large, sparse matrices may some of the required eigenvalues that
are of high algebraic multiplicity or tightly clustered. Blo methods, lockinga-posteriorivalidation, or simply
increasing the required accuracy are often used to avoidngiss to detect a missed eigenvalue, but each has
its own shortcomings in robustness or performance. To redbkse shortcomings, we have developed a post-
processing algorithmiterative validation of eigensolvei@VE), that combines the advantages of each technique.
IVE detects numerically multiple eigenvalues among the apprate eigenvalues returned by a given solver, adjusts
the block size accordingly, then calls the given solvergificking to compute a new approximation in the subspace
orthogonal to the current approximate eigenvectors. Thisgss is repeated until no additional missed eigenvalues
can be identified. IVE is general and can be applied as a wrappay Rayleigh-Ritz-based, hermitian eigensolver.
Our experiments show that IVE is very effective in computingsaéseigenvalues even with eigensolvers that lack
locking or block capabilities, although such capabilitieay further enhance robustness. By focusing on robustness
in a post-processing stage, IVE allows the user to decobhpladtion of robustness from that of performance when
choosing the block size or the convergence tolerance.

1. Introduction. Sparse, iterative eigenvalue solvers are effective at atingpthe ex-
tremal eigenvalues of large, hermitian matrices or mariepresented as functions [17, 7,
28, 27]. However, iterative methods may miss some of theeldgigenvalues if these are of
high algebraic multiplicity or are tightly clustered. Moreer, certain initial guesses, eigen-
value distributions, and preconditioning can cause eiglei®s to converge out of the expected
order, and thus to be missed. Some techniques have beeopkeddb detect missed eigen-
values or attempt to avoid missing them all together, bubasband automated process that
combines the advantages of each technique has yet to bégated.

A few a-posterioritechniques have been used to deal with missed eigenpalvesgyr's
matrix inertia [11] is one technique that can be used to deter how many eigenvalues of a
Hermitian matrix exist within a particular interval. Althgh this technique has enabled the
development of robust eigenvalue software [13], it requiteLDLT factorization of the ma-
trix, which can be prohibitively expensive for large, sgansatrices, or even impossible if the
matrix is represented as a function. In such cases, praw@its may call the solver again with
a random initial guess to obtain an additional eigenvectdghé orthogonal complement of
the current set of converged approximations. Assumingriedisst eigenvalues are sought,
the new approximate eigenvalue converges towards a miggeavalue if it is smaller than
the largest previously obtained eigenvalue.

Locking and block iterations are two techniques that attetmpeduce the number of
eigenvalues misseatliring the iterative process. Locking [4, 31, 18] is performed l®efting
converged eigenvector approximations (locked vectors) keeping current and future vec-
tors in the search space orthogonal to them. Because lo@atdrs do not participate in the
Rayleigh-Ritz minimization they remain unchanged, andsia@rch space can approximate
other eigenpairs without duplicating the locked ones. mlgively, solvers may be imple-
mented in a non-locking way, [19, 33], where converged aigetors keep participating in
the search space, thereby improving their accuracy. Risgardf implementation, locking
a set of a-priori known eigenvector®, can be performed outside a solver by providing the
matrix (I —XXT)A(l —XXT).
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the National Science Foundation (EIA-9977030) and Sun déigstems (SAR EDU00-03-793).
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Locking can be effective in obtaining more than one eigetordmelonging to a multiple
eigenvalue, especially with Krylov methods which othemwésan obtain only one such eigen-
vector in exact arithmetic. It is also used with many predtmaed or non-Krylov solvers
[4, 29], as it allows for a smaller active search space wheduces Rayleigh Ritz and restart-
ing costs. Whether locking delivers the purported robustrepends significantly on the
implementation details, and typically the most robust ienpéntation may not be the most
efficient.

Block iterative methods [27, 3, 26, 37, 25, 36, 13] that edtthre subspace byvectors
per iteration, wherd is the block size, are a more robust alternative to lockingsulne the
single-vector Lanczos process converges to an eigenvétli@lgebraic multiplicityk. Then,
with appropriate initial guesses, the block Lanczos methitld block sizek will find all k
eigenvectors of that eigenvalue [24]. Although not guaradtin general, this property is ob-
served in other methods as well. Block methods can alsotiedugtter cache utilization and
improved performance if a fine-tuned implementation islatédé. However, block methods
are not without drawbacks. Excessively large block sizesmerease the number of matrix-
vector multiplications and result in more frequent restattereby slowing convergence.

Locking and blocking can be combined to improve the robusstref iterative eigen-
solvers [5, 10, 2, 20]. Still, the resulting robustness aejgeon the problem solved and the
parameters chosen by the user. What makes this choice dificthle conflicting require-
ments between robustness and performance. A lower thairedaquonvergence threshold is
less likely to miss eigenvalues but it takes more time. Meegathe choice of a block size
that optimizes simultaneously cache performance, corvery and robustness is not possi-
ble to know a-priori. Our approach in this paper is to let tseruchoose the most efficient
parameters as default, and to provide a post-processihgitpe that corrects any robustness
shortcomings, and only when these are needed. This way, eeeidke the issue of robustness
from that of performance (cache or convergence).

Our goal is not to provide another hermitian eigensolvertddevelop a robust detection
algorithm that uses any given solver in a methodical wayeatifly whether the requirements
posed by the user have been met by the solver. Borrowing aftermSoftware Engineering,
we call our algorithmiterative validation of eigensolve($VE), as it does not verify whether
the approximations are correct, but rather adjusts theesddvfind the correct approxima-
tions. IVE works in conjunction with any Rayleigh-Ritz-legshermitian eigenvalue solver.
The IVE algorithm accepts as input and locks the converggdneector approximations.
Locking can be performed implicitly in IVE, if not provided/lthe solver. If a block solver
is available, IVE adjusts the block size based on the largasterical multiplicity found, and
calls the solver again so that any missed eigenvalues inrthegopnal complement of the
locked vectors can be computed. Any missed eigenvaluestddtby IVE are locked out and
the process is repeated until no additional missed eigeesare computed. Although the
structure of the IVE algorithm is general, we only apply itrmitian eigenproblems where
the monotonic convergence of eigenvalues facilitates astotbetection of missed eigenval-
ues.

We have used our IVE to wrap several well known eigensolvéhe solvers may dif-
fer substantially in their ability to use locking or blockirfficiently and robustly, but they
invariably miss eigenvalues. Our results show that IVEaest robustness in several patho-
logically hard cases. Moreover, running the solver throdgfault parameters followed by a
certain IVE configuration improves performance, thus destrating the desired decoupling
of performance and robustness.

In Section 2, we discuss why eigensolvers miss eigenvaduneisthe available technigues
for increasing robustness. In Section 3, we describe irilde&l VE algorithm. In Section 4,
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we present results using IVE on a variety of solvers. Througthe paper we assume that we
seek the lowesteveigenvalued\; and eigenvectors;,”i = 1,...,nevof a sparse, hermitian
matrix A.

2. Reasons behind missing eigenvalues and current approaches. A large arsenal of
sparse hermitian eigenvalue solvers is available, somedbas Krylov methods, others on
nonlinear optimization, preconditioning, and a host ofeothnderlying principles [32]. Most
of these methods employ the Rayleigh-Ritz (RR) minimizatio extract their approxima-
tions from a search space. The eigenvalue and eigenveqtooxamations are called Ritz
values and Ritz vectors, respectively. For hermitian gigelnlems, the Ritz values minimize
the Rayleigh-quotient over the search space, thus leadiagtonotonic convergence toward
the required eigenvalues.

Despite their individual strengths, solvers can miss sohtkerequired extreme eigen-
values. The reasons, which are often interrelated, arehég)resence of multiple or highly
clustered eigenvalues, (b) the out-of-order convergefic®me eigenvalues, (c) a starting
vector that is deficient in certain required eigenvector gonents.

It is well known that in exact arithmetic Krylov methods cabhcompute more than one
eigenvector belonging to a multiple eigenvalue. Krylov noets produce the next vector in
the search space as= p(A)vo, wherevy is the starting vector and(A) is the characteristic
polynomial of the Lanczos tridiagonal matrix [27]. If a niple eigenvalué\; and one of its
corresponding eigenvectors have already been found,pgfieh= 0 andr contains no com-
ponents in the kernel: Ny — A;l). In practice, floating-point arithmetic introduces noise
toward these directions allowing their eventual compatati To allow the solver enough
time to amplify the missing eigencomponents, a low conuezgdolerance must be required.
Otherwise, a more interior eigenpair may converge first &afnhenevsmallest ones. In-
terestingly, non-Krylov methods often encounter similatppems with multiple eigenvalues.

Clustered eigenvalues present similar difficulties asiplelbnes. This is not surprising
because, until the solver has resolved an eigenvalue torantkat is smaller than its dis-
tance from a nearby eigenvalue, it views both eigenvalugsaple and could miss one if
larger tolerances are specified. The slow convergencewdrsaioward clustered eigenvalues
exacerbates the problem.

More generally, eigenvalues are missed when an interieneue converges before
the solver has identified the existence of an outer one. Idorgnethods this is not the
expected order of convergence, causing robustness prsitesolvers that are based on the
assumption that theevsmallest eigenvalues will be found first. The assumptictimoaigh
usually true, does not hold in general. As shown recently, [diGenvalue distributions exist
for which Krylov methods converge to the eigenvalues in thédfe of the spectrum first,
and to the extreme ones last. In practice, smaller ordergalgemay be observed, which can
cause eigenvalues to be missed.

The out of order convergence is more frequently observed ngh-Krylov methods that
use preconditioning or solve approximately a correctionagign to speed up convergence
[7, 29, 23]. For example, consider a matAxwhose absolute smallest eigenvalues are re-
quired, and the Generalized Davidson method using a prétommet M ~ A~1. Becausev
andA do not share the same eigenvectors, the convergence bdr@fitd! are not neces-
sarily greater for eigenvalues closest to zero, thus yigldin arbitrary convergence order.
Davidson-type methods also use various targeting sche®®sile., which Ritz vector is
improved at every step, directly affecting the order in vilréagenvalues converge. In floating
point arithmetic, targeting effects are observed evenauitipreconditioning [22, 35]. Fi-
nally, whether the implementation of the solver or the eigdure distribution of the matrix
could lead to misconvergence depends also on the initi@ggue
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2.1. Current approaches. To increase confidence in the computed eigenpairs, practi-
tioners typically ask for more accuracy than needed. Algiobeneficial in many cases, in
general we may not know the accuracy that is sufficient foolvérsg multiple eigenvalues
or avoiding out of order convergence. Also, this approacl beaunnecessarily expensive,
especially when a very low tolerance is used to find a largebaurof eigenvalues of which
only a few would have been missed with a larger toleranceallyirthe problem with higher
multiplicities in Krylov methods persists.

Another common strategy is to compute more eigenpairs te@uined. This works if
the reversals in the order of convergence are localized, the tenth smallest eigenvalue
converges before the ninth, but not before the second. lergerwe do not know how
many more eigenpairs to compute, so the strategy can be ess@dy expensive. Most
importantly, it still may not find multiple or clustered eiygairs.

Deflation of converged eigenpairs is commonly used in maggreiolvers so that more
eigenpairs can be obtained without repeating the alreadyputed ones. Locking is the
preferred form of deflation because of its numerical stibj7, 4]. When an eigenvector
converges, it is extracted from the search space and afiraind future vectors of the search
space are kept orthogonal to that (locked) vector. Locketbve are inactive otherwise, they
do not participate in the RR (as future Ritz vectors shoulchage any components in them),
and therefore they are not modified further. Computatigntiie smaller active search space
reduces the costs of the RR and restarting phases of eigensomore so when a large
number of eigenpairs are sought. This is one of the reasamdoitking is preferred to non-
locking implementations for subspace iteration and JaBabiidson type methods [5, 29].

Locking provides also a more reliable means of computingrit@riant spaces of mul-
tiple eigenvalues, especially with Krylov methods. Assuimeg a subseX of the invariant
subspace associated witthas been computed and locked. This is equivalent to caliag t
solver with the deflated operat@r— XXT)A(l1 —XXT), which has all the eigenvalues associ-
ated withX equal to zero. Unlike the polynomial deflatiggA)vp in Krylov methods which
removes all the invariant subspaceXofrom the vector iterates, locking removes only the
computed part of Nu{lA— Al). More eigenvectors of can then be obtained. This deflation
behavior is not restricted only to Krylov methods. Finalbgking also speeds up the con-
vergence to any missed, single eigenvalues which are awtidst converged ones. In the
deflated operator such eigenvalues are better isolatechanefare are easier to find. How-
ever, even with locking, misconvergence can still occupifs tightly clustered or multiple
eigenpairs converge out of order. Moreover, not all solimpement locking, and when they
do, their implementation details and thus robustness mgy ¥@r example, locking can be
implemented transparently to the solver if we use the deflaperator in the matrix-vector
multiplication, but the solver must return the convergegeapairs before they are locked.
Alternatively, some solvers implement locking as part & trthogonalization phase. We
discuss these issues further in the next section.

Block methods are usually more effective in computing mlgteigenvalues. As long as
thek initial guesses in the block contain sufficient componemthé direction of the eigen-
vectors associated with the multiple eigenvalue, thenkbirylov methods are guaranteed
to find at leask of the multiple values [24]. Moreover, more uniform conwenge of the
block vectors is observed, reducing the likelihood of olabxer misconvergence. Blocking
is known to improve robustness in all iterative methods tbeteffects are more emphasized
in Krylov methods [12]. Block methods also improve cachefgranance with largek [8],
seemingly offering a panacea to all problems.

Despite the better cache utilization, robustness comesastain execution time. Al-
though the number of iterations decreases, the overall aummbmatrix-vector operations
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(and thus flops) performed is usually higher than their singlctor counterparts [14]. Espe-
cially with spectra that are easily computed, block methtedsl to require close th times
more matrix-vector operations than single-vector methodsipletely canceling any caching
benefits. Additionally, the number of iterations may alsaréase ik is too large relative to
the maximum basis size. This would cause very frequentrtestapairing the convergence
of most methods; this is apparent in some experiments lathis paper. Whek equals the
maximum basis size, the solver reverts to subspace itaradising the subspace acceleration
[32]. In general, an optimal choice féarmust ensure appropriate cache utilization, robust-
ness, and the smallest possible increase in flops. Exceptaétiing which depends on the
architecture, none of the other variables are known ahetithef In particular, thé needed
to detect all the required eigenvectors is not known, and évewere, it could conflict with
the optimal choice for cache performance and convergengally; unlike locking, blocking
can be used only if implemented by the available solver.

We conclude our discussion, with the importance of thedhgfuess. In all the aforemen-
tioned techniques, a critical assumption is that the inigator has sufficient components in
the desired directions. In lack of better information, ad@m vector is typically the best
initial guess. Yet, as the iterative process progressemiaggequired directions may be di-
minished or removed as in the case of Krylov methods and pheitigenvalues. A possibility
is to insert a random vector in the search space or in the pleplacing an eigenpair that con-
verges. This can be performed trivially in (Jacobi)-Daeid®r subspace iteration methods,
but techniques have also been proposed for the impliciitareed Lanczos method [31, 30].
Still, the newly introduced directions may not be amplifiadtfenough to prevent out of order
convergence of an interior eigenpair which was almost cgyacbefore the insertion of the
random vector. A drastic solution would be to dispense whith whole search space after
an eigenpair converges and restart the solver anew withdmnaiguess. A related approach
that does not completely rid of the search space is suggwstegkt unpublished report [21].
Based on our discussion on locking, a newly rebuilt searabespvould offer the best possible
robustness. However, it would also be very slow, especifalip eigenvalues were going to
be missed.

A recurring theme is the dichotomy between robustness arfdrpgance. To achieve
robustness, solvers would have to make extreme choicesrampters such as block size
and tolerance that would impair performance. In the follayvsection we present our post-
processing approach to validating the parameters of a givler that are required to achieve
robustness.

3. Iterative validation of eigensolvers. We propose a new algorithm which we ciall
erative validation of eigensolve($VE). IVE is implemented as a wrapper around any exist-
ing sparse, iterative, hermitian eigensolver that utilitee Rayleigh-Ritz (RR) minimization
procedure. IVE automates the process of computing eigeesahissed by the solver, by
combining as many of the techniques mentioned in Sectiora2.the solver implements.
In other words, IVE is not a solver, nor does it compute eigames. IVE merely identi-
fies difficulties in the computed spectrum, and sets locketbvs, initial guesses, and block
size appropriately so that the chosen eigensolver may ctangny missed eigenvalues on
its own. In this sense, it is similar to the validation prace$ a software engineering cycle,
where a software is modified appropriately (different soparameters) to meet the customer
requirements (which eigenpairs to find), rather than verifyvhether the software meets the
specifications (produces converged eigenpairs). Thergfioe measures of performance and
robustness achieved by IVE can only be in reference to thenyidg solver. Also, by being
a post-processing algorithm, IVE may be switched off if ntidation is needed.

The enabling property for IVE is that the Ritz values of RRsdxhhermitian eigensolvers
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converge monotonically, if their Ritz vectors are retaiimethe search space during restarts
or truncations. Once a Ritz value becomes smaller than secges eigenvalue, we are sure
that a previously undetected eigenvalue exists. Althouglvtidn eigensolver schemes can be
derived without RR, most current algorithms and softwao®iporate it, So our assumption
is not restrictive in practice.

Assume the solver has returned an initial seh@fconverged Ritz pair§\;,x;), where
A <A1, i =1,...,nev—1. The IVE algorithm analyzes the converggdand the norms
of their residualstj = A% — AjX;, to determine an appropriate block size. IVE then calls the
solver with new initial guesses, using the convered {x } as locked vectors, in an attempt
to find any missed eigenvalues. An eigenvalue is a missed\&gee if it is smaller than the
largest locked eigenvaluge,. If it is, then its eigenvector replaces the locked eigettwec
Xnevin the set of locked vectors. The IVE algorithm then repeataralysis of the block size
and proceeds as before. IVE works also with solvers that dpnavide locking or blocking.
First, we discuss some issues on locking and how to choosek size. Then we present the
IVE algorithm, describing how it chooses initial guessed how many additional eigenpairs
it finds.

3.1. Locking variants. One way to compute eigenvectors orthogonal to th&dstfor
the solver to provide a mechanism to lock (orthogonalizéregjpa set of externally provided
vectors [20, 1]. This feature is a relatively simple extengio the orthogonalization proce-
dure that most solvers employ. It is also numerically stdi@leause the orthogonalization
procedure should guarantee that no componentsagpear in the search space. In this case,
IVE simply passeX to the solver. Note that a solver that locks against an ealigrprovided
X, does not have to implement locking internally for the ejugdrs it computes.

When a solver does not provide the above external lockingifeatin alternative is to
provide all the converge together with a random vector as initial guesses to the solve
and ask for a few more eigenpairs. This works with many selgach as (Jacobi-)Davidson,
subspace iteration, or methods whirean be provided as part of the initial block, but it does
not work with Lanczos algorithms. In addition, the solvershaccommodate a large enough
search space, and dleigenvectors have to be re-checked and possibly modified.

A third alternative is to use explicit deflation, by callifgetsolver not with the matriA,
but with a function that implements the action of the opatato

(3.1) (1 =XXT)(A—oal).

The preconditioner may be deflated in a similar way as show@28h The shifto plays
an important role. lio = 0 and the smallest eigenvalues/fre positive, the eigenvalues
of (3.1) associated witlX are zero and thus they are still the smallest. In exact agétiem
this is equivalent to the external locking above, andXhcomponents should appear in the
search space. In floating point, however, when new vecte®@dhogonalized against the
search space inside any solver, they may lose their orttadigpmgainstX. As X is not
available within the solver, orthogonality cannot be remed through reorthogonalization.
Thus, components of will start to emerge in the RR, and their “zero” eigenvaluék e
re-computed.

The role ofo is to shift the spectrum so that zero is far from the smallegtreralues;
ideally in the middle or at the other end of the spectrum. Thha X components that
emerge in the search space will be in the unwanted part ofgbetraim and they will not
be chosen by RR (purged internally [18]). When explicit loxkis necessary, we have used
o = ||A||r/+/n as a lower bound to the largest eigenvalue of positive spestere|| Al is
the Frobenious norm andthe dimension oA. Other shifts can also be used, if estimates of
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FiGc. 3.1. Sample distribution of converged Ritz values and their @ssed error intervals. The max-
imum algebraic numerical multiplicity in this example isufobecause a point of maximum overlap, indi-
cated by the dashed vertical line, crosses four error irdésv The rest of the eigenvalues have multiplicities
A1(1),A2(4),A3(4). Aa(4). As(4).A6(3), A7(2), A8 (2). Ao(3).

An are known [27]. This technique yields significant autonomIME, not depending on the
locking features of the solver.

3.2. Determining block sizes. Assume that a block eigensolver is available. Our the-
oretical premise is that a block size equal to the largestiptigity should be sufficient to
resolve any problems. The IVE algorithm selects such a bdixek based on the largest “nu-
merical multiplicity” observed in the converged Ritz pairs

Let & be an error bound ar{dlj — &, Ai] the error interval corresponding to the Ritz value
Ai. Because the matrix is hermitiak;, < A;. Depending on the eigenvalue distribution and
on the size of the user-specified tolerance, the error iakeassociated with the Ritz values
may overlap. Two Ritz values whose error intervals overlagpnamerically multiple It is
possible for three or more Ritz values to be numerically ipldt but this requires a more
general definition. The Ritz valudg\,i € {i1,iz,...,ik}}, arenumerically multipleif and
only if [Aj — &;,A;] overlaps withiA; — 6;,A;] for all i, j € {iq,i2,...,ik}.

Sharp bounds on th are well-known, when the approximations are computed tjrou
the RR procedure [24]. Let be the single eigenvalue closest to a Ritz valyand letr be
the residual corresponding o The following inequality holds:

~ 2
(3.2) A—A<5=min | ]z — Iz
min(|)\i AL A ;A)\)

Near convergence (which is the case in IVE), the upper bduind(3.2) can be accurately
estimated by substituting the Ritz value closesk for A;.

Let thealgebraic numerical multiplicitym;, of a Ritz valueA; be defined as the size of
the largest set of Ritz values that includleand are numerically multiple. A robust choice
for block size can be the maximum taken over all Ritz values. The rationale is that other
required eigenvalues may have been missed that have thersattigicity. Although this
works well for smallm;, for largem it is highly uncommon that the eigenvalue with the
maximummy is still missing half of its actual multiplicity, making thia pessimistic choice.
In addition, the block size should not become too large ikddb the maximum size of the
search space, depending on the solver. For example, for CGBRS5] the block size must
be a third of the basis size; Lanczos and Davidson solverk better when the block size is
much smaller than the basis size. Because of these exterhéttfactors, or because some
information about the problem may be known (multiplicityabuster size), the user may put
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ALGORITHM: MaxAlgNumMult(A, r, ney
1. Computey the error estimate from (3.2) corresponding\to
2. MaxAlgNumMult=0

3. lowerBound() =Aj—&;, i=1,...,nev
Let p; be the number of overlapping intervals at endpaijnt &;
4. fori=1nev
5. pi=0
6. for j =1, nev
7 if (lowerBound{) > lowerBound() and lowerBound{) < A;)
8. pi=p+1
9. end
10. MaxAlgNumMult =max(MaxAlgNumMult, p;)
11. end

FIG. 3.2. Algorithm for computing the maximum algebraic numericaltiplicity among a set of Ritz values
corresponding to the smallest eigenvalues of a Hermitiatrimna

a maximum cap on the block size. We emphasize that a cap bagkeé anderlying solver
and its maximum basis size does not reduce robustness,deefradarger block sizes that
solver’s own robustness and convergence would deteriotdde, blocking is just one of the
robustness techniques that IVE employs.

Computing the maximum algebraic numerical multiplicitydquivalent to finding a
“point of maximum overlap”, i.e., a point that has the latgasmber of error intervals over-
lapping it. It can be shown that there will always be a pointr@Eximum overlap at one
of the endpoints of the intervals [6]. Figure 3.1 shows am#a distribution of Ritz val-
ues and their associated error intervals. Figure 3.2 ginedgorithm,MaxAlgNumMult for
computing the maximunm; in O(neV?). Interestingly, thep; in the algorithm do not cor-
respond to tham for all i, yet the maximumm; is computed correctly. A more efficient,
O(nevog, ney) time algorithm exists, but its implementation is involvddoreover, anev
is usuallyO(1000 « n, the execution time of our algorithm is negligible even camgual to
a matrix-vector product, obviating the use of the lower ctaxity algorithm. To our knowl-
edge, this is the first algorithm to find the maximum multijiidn a set of approximate
eigenpairs.

3.3. The IVE algorithm. The IVE algorithm given in Figure 3.3 first computes the
residual norms of the converged Ritz vectors (step 4). Ties s not required if the eigen-
solver returns this information. Then, IVE determines thaximum algebraic numerical
multiplicity using MaxAlgNumMult(step 5). In step 6, if the solver implements a block
method, the block size is chosen so that it does not increagend the maximum value
maxBlockSize Below that value, it is set at the maximum of the current mmxn my, the
block size chosen by the user to compute the initial set ofeged Ritz values, and two.
A block size of at least two is used to force a block method whemumerically multiple
eigenvalues have been detected. If the initial run of theesalsed a block size d&f, there
is no incentive to use anything else for validation. Stfik uiser can overwrite it by passing
initialBlockSize= 1. In step 7, the initial guesseXy, are chosen. In the first IVE itera-
tion, Xg is a set of all random initial guesses. In subsequent IVE&iins, Xy includes also
any unconverged Ritz vectors that are known to be missedgltine previous IVE iteration
(see below). As we discussed in Section 2.1 it is always itapoto include some random
guesses.

In step 8, the eigensolver is called with the initial guessgsnd locked vectorX to
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ALGORITHM: [X, A] = IVE(A, X, A, resNorms, initialBlockSize, maxBasisSize)
Let X andA be the converged Ritz vectors and Ritz values.
Let initialBlockSize be the block size used to compXte
Let maxBlockSize be the maximum block size allowed
1. numNew=1
2 xmissed: [ ], xunconverged: [ }
3. repeat
4, resNorms = ComputeResNormsK, A)
5 newMult = MaxAlgNumMultd, resNorms)
6 if (solver implements block)
blockSize =min(maxBlockSizemax(newMult, initialBlockSize, 2))
ese
blockSize = 1
Xo = [Xmissed rand(blockSize -size(Xunconverged)]
8. ComputeXnew Anews XunconvergedAunconverged DY calling the solver:
if (solver implements external locking)
Solver@, numNew,Xp, X)
else
Solver(l — XXT)(A—al), numNew,Xo)
9. [X,A] = InsertionSortknew Anews NUMNew,X, A, resNorms)
0. numMissedUnconv = NumMissedValugshunconverged DIOCkSize-numNew)
11. Xmissed= Xunconverged:,1:numMissedUnconv)
12. numNew =max(1, numMissedUnconv)
13. until (X did not change@nd humMissedUnconw= 0 )

~

FiG. 3.3. IVE algorithm for computing missed eigenpairs. IVE is a wraparound an existing Hermitian,
Rayleigh-Ritz based eigensolver.

find numNewmore eigenpairs. Depending on the solver, external or @xjdicking can be
performed. Note that the IVE algorithm assumes that thearnsslver returns not only the
numNewconverged Ritz values iRnen, but also the remaininglockSize-numNewuncon-
verged Ritz values ilynconverged SoIvers that do not return the unconverged Ritz pairs by
default can be easily modified to do so. Otherwise, we canwseiMissedUncons 0.

In step 9, an insertion sort (see Figure 3.4 for details) ieddo insert any converged,
missed eigenpairs iNpew and Xnew into A and X, respectively. For every missed Ritz value
inserted into the\ array, the largeshney in the array and the corresponding vectorXn
are removed. If enough storage is available, those remawekbeged eigenvectors can still
remain in the locked array to avoid possible recomputatida.choose not to take advantage
of this feature in our experiments. If none of the recentlywarged Ritz values were missed,
then the IVE algorithm will terminate at step 13.

Step 10 calls the algorithihumMissedValuem Figure 3.5 to determine how many of
the unconverged Ritz values Nynconverged@re missed values. A Ritz value MinconvergediS
considered missed if it is smaller thape,. Because of monotonic convergence, these Ritz
values will only continue to decrease and approach misggphealues. Therefore, it is wise
to use the corresponding unconverged Ritz vectod§igonverged@s initial guesses (step 11).
These can significantly reduce validation time when mangraiglues are missed, because
they enable the solver to avoid repeating convergenceghrcandom guesses.

Finally, step 12 sets the new number of Ritz values the sohest compute. Clearly, we
should continue and find tmimMissedUncommissed ones that step 10 may have identified.
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ALGORITHM: [X, A] = InsertionSort&new, Anews NUMNew,X, A, resNormsney)
for i = 1 :numNew
] =nev
while (j >0and A(j) > Anew(i)), i =]—1; end
if j == ney break;
X =[X(21:7), Xnew(s 1), X(iy j+1 :nev—1)]
A=[A1:]),A(i),A(j+1:nev—1)]
r'new= the residual with respect {&new(i), A(i))
resNorms= [resNormsl : j), rpew, resNormsj + 1 : nev— 1))
end

CoNoO~WDE

FIG. 3.4.Insertion sort algorithm for identifying and inserting reéd eigenvalues into. Handling of bound-
ary cases is not shown. In actual implementations, the e&aas are inserted first, and the eigenvectors are
inserted only at the end to avoid unnecessary memory copying

ALGORITHM: NumMissedValues(, ney, Aynconverged NUMUCONV)
1. NumMissedValues =0

2. fori=1, numUconv

3 j =nev

4. while (j >0and A(j) < Aunconvergedi)), j =j—1; end
5. if j ==ney break ;

6 A= [A(1:]), Aunconvergedi), A(j +1 :nev—1)]

7 NumMissedValues = NumMissedValues + 1

8. end

FiG. 3.5. Algorithm for computing the number of unconverged Ritz emlthat have been skipped. The
corresponding Ritz vectors will be used as initial guessebeanext IVE iteration.

If numMissedUncor 0, we have no indication that more eigenvalues may be missinij
would be wasteful to find more than one additional eigenvalire IVE algorithm terminates
in step 13 if no missed eigenvalues (converged or unconsiemgere discovered, or continues
with the next IVE iteration.

We present an example in Figure 3.6 to illustrate the stéqesthy the iterative validation
algorithm. Suppose we seek thev= 8 smallest eigenvalues of a symmetric matrix. In steps
4-6 the residual norms are computed and the maximum algebuanerical multiplicity is
determined to be 3. All random initial guesses are selecistep 7 because it is still the first
iteration. In step 8 the solver is called and retutnsiNew= 1 converged Ritz value iRpew,
and two other Ritz values iNynconverged D€Cause the block size is three. NérgertionSort
is called in step 9 to determine Af,ew iS @ missed eigenvalue. It is, so it is inserted into its
proper position and the largest elemeniiis discarded. In steps 10-18umMissedValues
determines that one of thenconvergedWas converging towards a missed eigenvalue. The
corresponding missed vector is placeXjpsseqto be used as an initial guess in the next IVE
iteration, and numNew is set to 1 to indicate that an addiieigenvalue has been skipped.
At the next IVE iteration, steps 4-7 determine the algebraimerical multiplicity to be 4,
set the block size accordingly, and assiyissegand three random vectors as initial guesses.
The IVE iterations continue until no more missed eigenvake detected.

4. Experimental evaluation. Our primary goal is to show that IVE restores robustness
in any hermitian eigensolver, even for pathological casiéls large multiplicities, or tightly
clustered eigenvalues. The importance of increased cawida the computed results, some-
times at any cost, cannot be overstated. Of particularést@re cases of eigensolvers that fail
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Steps 4-6
Locked newMult = 3

—— blockSize = 3
©eJeol X I Jolo numNew = 1

Key (O Converged & Converged, missed @ Random initial
@ Converged pair @ Unconverged, missed vector
of largest alg. num. mult. () Unconverged, not missed
Step 7
Locked newMult = 3
0000000 %= 000 blockSize = 3
Step 8
Locked numNew = | 2 = blockSize — numNew
!—‘—‘
©@Jol X I JOI0) (%new A unconverged
Step 9

e e@ =

O O . . . @ O O A\ new A unconverged Discarded

Steps 10—12
Locked numNew = 1
Steps 4-7
Locked newMult = 4
——— Xo= DO OO :
©elel X X X JO blockSize = 4

FIG. 3.6.Example validation problem.

to find all the required eigenvalues, regardless of thedinithoice of parameters, yet guided
by IVE, they succeed. A secondary goal is to demonstrate W@&\chn decouple robustness
from performance, so that solvers are run with defaultrsgstfor best performance and any
missed eigenpairs are obtained later in a shorter IVE cycle.

4.1. Eigensolvers used in the evaluation. We have used five different eigensolvers
from three eigensolver packages. The first is IRBL, the laih}i Restarted Block Lanczos
method [2, 1], which uses implicit restarting combined wliija shifts to improve conver-
gence of the standard Lanczos method. IRBL is a block methddhaplements both external
and internal locking. For our tests, we have added thres liieode in IRBL to allow it to
return all Ritz pairs in the block, not only the converged ©néRBL is implemented in
MATLAB, and therefore it is used mainly to demonstrate th& IMenefits on robustness and
convergence; not on timings.

The second symmetric solver is the function dsaupd from dpeilar software package
ARPACK [19]. Henceforth, we will refer to the particular eigsolver as ARPACK. ARPACK
is based also on implicit restarting, but unlike IRBL, it sgbe Ritz values as the restarting
shifts. ARPACK is a single vector method and does not implgragternal or internal lock-
ing. Thus, in a sense, it represents a worst case scenardEasannot employ all of its
techniques. In particular, IVE is restricted to usinigckSize= 1, numMissedUncony 0,
and thusmumNew= 1, and locking must be implemented explicitly in IVE. No migchtions
were made to the ARPACK code which is implemented in Fortfan 7

The remaining three solvers come from PRIMME, a softwar&age that we have de-
veloped in C, and which is freely available [20]. PRIMME, dR€tonditioned Iterative Mul-
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N = 30000; clusters = 30; multiplicity = 8; DeltaC uster = le-8;
D = zeros(N,1); Ones = ones(multiplicity,1);
D(l:multiplicity) = eps*Ones; value = 1.e-6;
for i = l:clusters-1

Dii*multiplicity+1l: (i+1)*multiplicity) = val ue*(nes;

val ue = val ue+Del taCl uster;
end
% The rest wel| separated and equi di stant
row = clusters*nmul tiplicity+l;, separation = (1-1e-3)/(Nrow);
D(row. N) = le-3+ (row 1:N1)*separation;
A = spdiags(D,0,NN);

FiG. 4.1.The Matlab code that generates the diagonal matrix DIAG.

tiMethod Eigensolver, is based on a Davidson-type maiafi@n, but it implements various
techniques such as blocking, external and internal logkd@-type restarting, and adaptive
inner-outer iterations, that allow it to transform to anyremt eigenvalue method. We choose
three methods for their popularity and efficiency.

The first is the Generalized Davidson method with CG-rasgror GD+k [34]. We use
it with block and locking enabled. Its main characterissittie near optimal convergence in
terms of matrix-vector products for smakv But this also means that there is little room for
convergence improvement through larger block sizes.

The second method is the JDQMR variant of the Jacobi-Dawidsethod [32, 29]. It is
used with block and locking options enabled, although thieection equation corresponding
to each block vector is solved independently. JDQMR adatistops the inner iteration for
each correction equation, yielding convergence near th@Do-k, but the per-iteration cost
of IDQMR is much less expensive.

The third method is LOBPCG-W, which is a variant of the insiagly popular LOBPCG
method [15], and it differs from it in the following two wayBirst, LOBPCG-W maintains an
orthogonal search space to guarantee numerical stakiliheqrocess. Second, LOBPCG-
W uses a window approach, i.e., the blockSize is allowed tsrballer thanney and as
eigenvalues are found in the block they are locked out, aadvihdow progresses until all
nevpairs have been found.

4.2. Experimental setup and environment. We perform experiments on three matri-
ces, each highlighting a different aspect of the IVE cajii@sl The first matrix, BCSSTK16
from the Harwel-Boeing collection [9], has an eigenvalu¢ghwinusually high multiplicity.
The second matrix, DIAG, is diagonal and is constructed asvshin Figure 4.1 to have a
large number of clusters of multiple eigenvalues. The thatrix, LAPLACE, comes from
the usual 7-point discretization of the 3-D Laplacian opmran the uniform grid 36 30x 30
with Dirichlet boundary conditions, and it has several aiggues with small multiplicity.

Although, we make an effort to use similar parameters fomadthods (tolerance, basis
and block sizes, etc.), the reader should not focus on casgperacross methods. Different
implementations make such comparison difficult, but mogtartantly, IVE improvements
can only be understood in reference to the same method.

We perform experiments with two or three different toleresiavhich is the only variable
from Section 2.1 that IVE does not vary. For IRBL, we requkat the 2-norm of the residual
is less tharnmAmax For ARPACK, we provide the tolerancdo the method. For all PRIMME
solvers we request that the 2-norm of the residual is lessthal|. If € = 2.2204 16 is the
machine precision, we consider three cases;e, T = /€, and a large that is just small
enough to differentiate between wanted and unwanted eafyggs. For these tolerances and
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Table 4.1B: IRBL/BCSSTK16 IVE runs

Table 4.1A: IRBL/BCSSTK16 Initial runs

T
T
1/2

mxk € € 2.023e-5
k 3 g1/2 2.023e-5

1 72992 6921 5828
1 57,162390 | 28,15728 21,5514

2 97292 7821 6028
2 68, 211526 | 32,17616 23,7706

3 76223 9229 4286
3 74,265125| 32,17844 23, 7665

4 59392 7721 3628
4 73,298884 | 32,13748 24,7168 5 53892 6621 4528
5 74,283880| 32,489830| 24,20700

6 41756 6745 3680
6 74,272868 | 38,11340 20, 5562

7 64478 6981 4244
7 74,287693 | 29,9541 21,9723

8 40988 6937 3968
8 74, 318568 | 32,9560 19, 4896

9 52166 7546 4484
9 74,363123 | 36, 11007 23,5121 10 58092 6121 4528
10 74,398170| 32,12890 20, 4470
;g ;3 2‘7%%28 gg éiggo gg jggg Best total MV for Initial + IVE run
74 || 74,118696 | 74,114848| 74,8362 || | H 20133;378 ‘ 21849 ‘ 9142

1,10 1,4

TABLE 4.1

IRBL on matrix BCSSTK16. Table A shows results for computirg74 smallest eigenvalues. For each
block size (k) and tolerance&Xmay) we report (nevFound, MV), where nevFound is how many of dheofmputed
eigenvalues are the required ones, and MV the number of xae#dtor multiplications. We underline the case that
provided the initial set of vectors for the later IVE run. TalB shows the IVE results. For all maximum block sizes
(mxk) and tolerances, IVE recovers all the 74 required eigéres, so we only report the number of MV performed
during validation alone. The bottom of Table B shows thel e required (initial run plus IVE) considering the
fastest IVE run. The initial block k and the best mxk are alewiged.

for a variety of block sizes, we first perform an initial runab§olver, and record the number
of desired eigenvalues it was able to find and its performaiiben, using the approxima-
tions produced by a certain initial run, we let IVE guide tlodver under various values for
maxBlockSize, and record the total number of desired egjers found and the correspond-
ing performance. For each method and matrix, results appeee table.

IRBL experiments are run under MATLAB 6 on a Sun Microsystesitsa 60 worksta-
tion. All other experiments are run on a PowerMac G5, with 1@sBiemory, 512 KB of L2
cache, 1 GHz memory bus, and two 2 GHz PowerPC processorsidf wnly one is used.
ARPACK is compiled with g77 and -O optimization, while PRIMBVsolvers are compiled
with gcc version 4.0.0, and -O optimization. All codes arkdid with the Mac optimized
VecLib library that includes LAPACK and BLAS.

4.3. Results with matrix BCSSTK 16. The dimension of the matrix is 4884, and we
seek the 74 smallest eigenvalues which are all 1.0. The améadt eigenvalue 9(1e6), and
the largest one is 4.5e-9. This matrix is useful for showhmg hehavior of solvers and IVE
in the presence of an exact, high multiplicity.

First, we test IRBL in Table 4.1. In Table 4.1A we perform gebenitial runs with
block sizex, each using a maximum basis sizenof= k| 100/k|, a maximum degree of the
dampening polynomial equal to the dimension of the matnird a size of the dampening
interval of m/2. For the smallest tolerance, IRBL finds all needed eige&alvithk > 4.
The best performance is with= 74, but we assume we do not know the multiplicity a priori.
For the larger tolerances, IRBL cannot produce the invaspace of the multiple eigenvalue
withoutk = 74.

Table 4.1B shows the performance of various IVE runs, each ftifferent maximum
block size (nxK and starting after the underlined initial run in Table 4\as performed. IVE
helps IRBL find all 74 required eigenvalues for all tolerasicandmxk Because, IRBL is a
method that benefits in general from larger block sizes,atl@sable to allow larger values
of mxk Indeed, the number of matrix-vector operations taken byirhial run followed by
the IVE(mxk= 10) is comparable to or significantly smaller than the mobusb initial run
for T =€,T =2e-5. For certain moderate valuesnokk performance of IRBL-IVE improves
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Table 4.2A: GD+k/BCSSTK16 Initial runs
T

K € €12 1e-6 Table 4.2B: GD+k/BCSSTK16 IVE runs
1 37,15097,93 | 20,5469,37 | 13,3232, 25 T
2 39,16994, 97 | 24,6883,42 | 16,4059,27 || mxk € €12 le-6
3 41,19591, 113| 25, 7593, 46 17, 4510, 30 1 9572, 82 5943, 45 | 4274, 33
4 45, 20247, 121| 27,7700, 48 19, 4652, 30 2 9464, 77 6070, 42 | 4564, 32
5 49, 22214, 135| 28,7974,50 | 20,4968, 33 3 8679, 69 6028, 41 | 4803, 33
6 44,28814,168| 27,10640,67| 19,6046, 40 4 9300, 77 6284, 45 | 4784,34
7 54, 23754, 149| 30, 8834, 56 22,5451, 37 5 9585, 78 6256, 47 | 5056, 38
8 51, 25012, 155| 29, 9761, 63 21, 5884, 39 6 9555, 78 5980, 45 | 5060, 36
9 48, 35213, 225| 28,12922,85| 21, 7476, 53 7 11044,95 | 6547,49 | 4973, 38
10 74, 40940, 305| 37,9557,72 | 27,6167,47 8 15584, 152 | 6944, 52 | 4802, 35
15 74,37138,370| 36,8134,83 | 32,5181, 49
20 74,31794,362| 42,9027,104| 26,5018, 60 Best total MV/times for Initial + IVE run
30 73,24647,364| 42,7249,102| 30, 4609, 71 28270,182 (11497,78 | 7796,57
40 74,26451,497| 42,7111,135| 42,4473, 87 k,mxk H 3,3 ‘ 1,3 ‘ 1,2
50 74,20936, 458| 55,7089, 165| 52,4789, 111
74 74,19058, 600| 73,6946,220| 71,4575, 153

TABLE 4.2

GD+k on matrix BCSSTK16. Table A shows results for computiag4 smallest eigenvalues. For each block
size (k) and tolerancer|A||r) we report (nevFound, MV, time), where nevFound is how métlyeo74 computed
eigenvalues are the required ones, MV the number of maégtev multiplications, and time is in seconds. We
underline the case that provided the initial set of vectorstfie later IVE run. Table B shows the IVE results. For
all maximum block sizes (mxKk) and tolerances, IVE recovitti@ 74 required eigenvalues, so we only report the
number of MV and time taken during validation alone. Thediatof Table B shows the total MV and time required
(initial run plus IVE), considering the fastest IVE run. Tin&ial block k and the best mxk are also provided. IVE is
required for robustness(e and 1e-6), and can improve time) (

further. Therefore, users are free to tune their code fdiopmance without worrying about
its robustness.

Table 4.2 shows similar results for the GD+k method. The maxn basis size used for
both initial and IVE runs was 30 fd¢ < 10 and & for k > 10. The GD+k method requires a
larger block size to find the desired invariant space, howeie great cost in performance.
It is thus more effective to select a block size for its caghperformance in the initial run
(e.g.,.k=3int =€ case), and then let IVE resolve the multiplicity with a sianiblock size.
For thet = € case, this strategy improves performance often by a fa¢tiovaor three over
just using GD+k with a sufficiently large block. For the lardgelerance cases, IVE is the
only way to compute the required eigenvalues.

Table 4.3 shows the results with the IDOMR method. The maxirhasis sizes used
were as in the GD+k method. Despite its efficiency, JIDQMR haghbie identifying high
multiplicities even with large block sizes. For inner-auteethods, such as JDQMR, this
is not surprising as they focus mostly on improving particigigenvectors, and thus are
prone to misconvergence. Also, large block sizes are ysnall beneficial. For all three
tolerances, IVE restores robustness to JDQMR, and for &velalow cost. Note, the best
times observed would not increase substantially if a langdtrwere used.

Table 4.4 shows results with LOBPCG-W. This method requtiasthe maximum basis
sizeis k. LOBPCG is inherently a block method that should benefit ftargerk. Although,
the initial run of the method finds more required eigenvaluitls smallk than other methods
do, a few ones are always missed, even kith74. A surprising exception is thHe= 1 in the
T = € case, which finds all of them, but such behavior is not exgkictgeneral. IVE guided
LOBPCG-W finds all eigenvalues, and at very competitive ime

Table 4.5 shows results with ARPACK, for three differenetainces. ARPACK, as clas-
sical Krylov method without locking, can only identify a feaf the eigenvectors in the mul-
tiplicity. As with the experiments in LOBPCG-W and JDQMR cdeasing the convergence
tolerance does not solve the problem. Yet, with the guidahtiee simplified IVE, ARPACK
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Table 4.3A: JIDQMR/BCSSTK16 Initial runs
T
K < £172 166 Table 4.3B: JDQMR/BCSSTK16 IVE runs
1 37,18116,38 | 21,7345,16 12,4233, 10 T
2 38,20625, 44 | 22,8089,18 | 14,4957,12| | mxk € €12 le-6
3 38,21991,47 | 23,8684,20 | 15,5347,13| [ 1 11522,29| 6886,20 | 5029, 19
4 39,24272,52 | 24,9431,22 | 17,6009,15| | 2 12592,33 | 8034,23 | 6136,22
5 40,26171,57 | 26,10437,25| 18,6744,17|| 3 13362,33| 8656,23 | 6179, 20
6 41,25733,56 | 26,10282,24| 18,6370, 16 4 13927,34 | 8196,24 | 6381, 20
7 42,29610,64 | 27,11450,28| 20,7760,21|| 5 15783,37 | 8921,25 | 6765, 20
8 41,27342,59 | 28,11423,27| 19,7347,19| | 6 16415,40 | 8684,25 | 7047,21
9 43,30933,68 | 27,11109,27| 19,6898,18| | 7 14493,34 | 8546,22 | 7135,21
10 || 47,37911,85 | 30,12470,32| 21,8082,23| | 8 16882,39 | 8449,24 | 7908, 22
15 47,37919,93 | 30,11769, 36| 23,7434,24
20 48, 30928, 81 32,11106, 36| 24,8393, 32 Best total MV/times for Initial + IVE run
30 || 49,31587,95 | 35,11626,47| 28,7076, 32 29638, 67 | 14231,38] 9269, 29
40 || 53,29998,104| 40,10522,52| 37,8164,43| | kmxk H 1,1 ‘ 1,1 ‘ 1,1
50 || 70,43311,163| 48,10829, 61| 43,7212,41
74 || 71,35835,181| 62,11150,84| 61,9407, 83
TABLE 4.3

JDQMR on matrix BCSSTK16. Similarly to Table 4.2, Table Ansh@sults for initial runs and Table B for
various IVE runs, including the best performance obtain& is required for robustness. Block sizes larger than
one do not increase execution time significantly.

Table 4.4A:LOBPCG-W/BCSSTK16 Initial runs
T
Kk € £1/2 1e-6 Table 4.4B:1LoBPCG-W/BCSSTK16 IVE runs
1 []74,450005,1848| 60, 76687, 323 [44,34279,156 T
2 62, 85413, 370 | 45, 29439, 148 | 32, 14384,75 mxk € gl/2 le-6
3 62, 68730, 325 | 43, 23491, 120 | 30, 10998,61 1 5799,30 | 6225,32 | 4554,24
4 65, 65387, 336 | 42, 19570, 105| 28, 9467, 54 2 7938,46 | 5774,31 | 4656, 25
5 66, 58429, 319 | 39, 16659, 97 | 27, 8763, 51 3 12846,86 | 5580,31 | 4412,24
6 67,59416, 354 | 39, 16738, 104 | 27, 7996, 49 4 9800, 68 | 6052,37 | 4692, 28
7 68, 53514, 330 | 41, 15692, 105 | 27, 8057, 52 5 10998,81 | 6025,36 | 4641, 27
8 67,51463, 337 | 39, 13773,92 | 27,7440, 50 6 11442,90 | 6272,41 | 4540, 29
9 67, 46950, 310 | 39, 13534, 98 | 27, 7396, 54 7 7496,60 | 6020,41 | 4704, 31
10 || 69, 49260, 336 | 37,11749,80 | 27, 6590, 45 8 7586,62 | 6704,48 | 5256, 36
15 || 68, 39809, 322 | 38, 9898, 82 28,5999, 50
20 || 68, 36599, 344 | 39,9277, 91 30, 5678, 54 Best total MV/times for Initial + IVE run
30 || 68, 34169, 401 | 43, 8277, 95 31, 4916, 58 52749, 340 (25150, 136 [11002, 69
40 || 72, 31679, 454 | 44,7875,118 | 41,5074,78 | |k,mxk H 9,1 ‘ 4,3 10, 3
50 || 72, 38744, 655 | 52, 7845, 132 | 48,5139, 87
74 || 73, 31654, 704 | 69, 7908, 169 |64, 5240,116
TABLE 4.4

LOBPCG-W on matrix BCSSTK16. Similarly to Table 4.2, Tabkhéws results for initial runs and Table
B for various IVE runs, including the best performance ofmtai. IVE is required for robustness, and beyond the
optimal block size, time does not increase significantly.

can solve the problem with no difficulties.

For BCSSTK16 and for all methods tested, a maximum block @iz of one was
sufficient for robustness in IVE, showing the synergetieef of the rest of its features such
as locking, computing more eigenpairs, and systematidatitgducing random guesses. As
we show next, largemxkmay be needed in other cases.

4.4. Results with matrix DIAG. We seek the lowest eight 8 eigenvalues which are
equal to machine precision. Despite the lower multipligityst eigensolvers misconverge to
some of the eigenvalues in the second nearby cluster.

Results from GD+k tests appear in Table 4.6. Fer¢, the method misses a few eigen-
values if the block size is less than three, which is a typitatk size for GD+k. With the
largert, GD+k finds a dimension of the required invariant subspacele the block size.
This is a typical case, where the block size must be increfasedbustness in a code whose
performance deteriorates with larger block sizes. IVE @vahis trade-off, thus decoupling
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subsequent IVE runs. The robustness gains are significant.

Table 4.5 ARPACK/BCSSTK16
Initial runs IVE run
T evals MV  Time | evals Total MV  Total time
le-16 29 4435 86 74 20567 259
le-8 6 1240 20 74 18233 226
le-7 5 1150 18 74 16974 211
TABLE 4.5

This is not a block method, so Wevany the tolerancer. We report
(nevFound, MV, time) for the initial run of ARPACK, and th&atgnevFound, MV, time) taken by both initial and the

Table 4.6B: GD+k/DIAG IVE runs
T
Table 4.6A: GD+k/DIAG Initial runs mxk € 5el/2
T 1 8, 3858, 89.1 4,598, 13.2
k € 5¢1/2 2 8,7184, 162.0 6,976,19.5
1 5,6777,178.1 1,567, 14.9 3 8, 8337, 159.6 8, 1480, 29.1
2 6, 13118, 305.4 2,564,11.6 4 8,34628,770.1 | 8,2216,44.6
3 8, 203927,5127.2| 3, 1267, 28.7 5 8, 47253, 1014.4 | 8, 2300, 39.9
4 8, 24124,521.0 4,1548,31.1 6 8, 508381, 11340.8 8, 3159, 59.2
5 8, 48110, 1147.3 | 5,2230,50.1 7 8, >600K 13384.4 | 8, 3827,76.9
6 8, 43310, 1056.9 | 6,2401,55.1 8 8, >600K 16084.9 | 8, 3532,78.5
7 8,86573,2142.4 | 7,4376, 105.0
8 8, 88696, 2264.9 | 8, 7008, 168.1 Best total MV/times for Initial + IVE run
10635, 267.2 2044, 40.7
k,mxk H 1,1 2,3
TABLE 4.6

GD+k on matrix DIAG. Table A shows results for computing then@llest eigenvalues, and Table B shows
the subsequent IVE results. We follow the same format asiriqurs tables, reporting (nevFound, MV, time) for the
initial as well as the IVE runs. A higher block size is neededadsetr = 5./¢ to find all the desired eigenvalues.
Although GD+k does not benefit from large block size in geln@erformance improves through an efficient initial
run followed by a robust IVE run.

performance and robustness. By choosingaisuch as 2 or 3, which is reasonable for low
tolerances in GD+k (and not depending on the particularlprof IVE helps GD+k find all
required eigenvalues and much faster than any initial ru@byk. As expected, a slightly
larger block may be needed for larger tolerances, but itstexaue does not significantly
affect performance. Note that for= 5¢1/2, IVE must be allowed to set a block size larger
than one to recover robustness.

In Table 4.7 we show results from JDOMR on the DIAG matrix. AswmGD+k, IVE
can recover robustness for JDQMR if it is allowed to use aglabdock size. Moreovemxk
does not have to match the multiplicity sought (as is necgssahe initial runs), because the
synergy of the many IVE features compensates for smallekidizes. For this solver, IVE
execution times are relatively insensitiventock matching the best performance of the initial
runs and with the added robustness.

In Table 4.8, LOBPCG-W finds all the required eigenvalued fere and for allk, except
for k= 2 for which IVE recovers the missing eigenvalue for a relthnsmall additional cost.
Surprisingly, fort = 5¢1/2 LOBPCG-W cannot identify the full invariant subspace in the
initial run, regardless of block size. When IVE is allowed merease the block size above
three, all eigenvalues are found.

Finally, in Table 4.9, we show the results from ARPACK on thiA®G matrix and for
three different tolerances. Through a combination of logkirestarting and finding more
eigenvalues IVE is able to recover all needed eigenvaluespe whernt = le— 7 which is
close to the first intercluster gap. As with the rest of thehuds, a slightly larger block size
would have resolved the problems.

Up to now, we have seen test cases where keapixig= 1 achieved both the required
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Table 4.7B: JIDQMR/DIAG IVE runs
T
Table 4.7A: JIDQMR/DIAG Initial runs mxk € 5el/2
T 1 8,4471,13.6 1, 406, 2.3
k € 5el/2 2 8, 7967, 25.6 1,1462,8.4
1 5,7412,215 | 1,776,45 3 8,11723,33.8 | 6,1855,8.4
2 6,9382,29.1 | 2,765,4.2 4 8,18817,57.2 | 8,3229,15.2
3 7,12230, 38.5| 3,1453,6.9 5 8,25618,77.9 | 6,2597,11.0
4 8,12998, 38.8| 4, 1650, 7.6 6 8,33243,99.8 | 8,3950,18.4
5 8,14537,47.7| 5, 1401, 6.3 7 8, 35727,108.7| 8, 4431, 19.6
6 8,16583,52.7| 6,1648,7.4 8 8, 39984, 118.1| 8,3592,17.8
7 8,17990, 61.4| 7,2822,12.7
8 8,11402,36.7| 8,3908,17.4 Best total MV/times for Initial + IVE run
11883, 35.1 4005, 19.7
k,mxk 1,1 1,4
TABLE 4.7

JDQMR on matrix DIAG. Initial and IVE runs are shown similatb Table 4.6. Typically, JDQMR is used
with block size of one, although a larger one does not affesignificantly Except for the larger block sizestie- €,
a combination of initial and IVE runs matches the performau the most robust JDQMR, but without a priori
knowledge of optimal block.

Table 4.8B: LOBPCG-W/DIAG IVE runs
T
Table 4.8A: LOBPCG-W/DIAG Initial runs mxk € 5el/2
T 1 8,8714,69.5 6,829,8.1
k € 5¢1/2 2 8, 23982, 268.3 5,654,7.8
1 8, 166099, 1416.6| 1,836, 7.3 3 8, 62862, 841.4 7,3897,59.1
2 7,192388,1948.3| 2,1370,13.1 4 8,89604, 1296.8 | 8, 4040, 53.7
3 8,432877,4949.2| 3,1419,16.6 5 8, 144105, 2092.0| 8, 7688, 125.3
4 8, 196039, 2542.5 3,1367,16.7 6 8, 94350, 11915.2| 8, 8089, 116.5
5 8, 189875, 2548.1| 3, 1360, 16.5 7 8,>600K, 13285.9| 8, 8230, 119.8
6 8, 187032, 2807.7| 4, 2686, 40.0 8 8,>600K, 14419.4| 8,8302,121.1
7 8, 230628, 3955.3| 5, 2961, 48.7
8 8, 120816, 2053.3| 4,2072,31.8 Best total MV/times for Initial + IVE run
201102, 2017.8 5407, 70.4
k,mxk H 2,1 4,4
TABLE 4.8

LOBPCG-W on matrix DIAG. Initial and IVE runs are shown samly to Table 4.6. Fort = ¢, LOBPCG-W
is robust for most block sizes, but the IVE does not add sotistaverhead. For = 5./¢, IVE is the only way to
obtain the required eigenvalues. Requiring the smallere instead would be unnecessarily more expensive.

robustness and the minimum time; cases where a lang&mwas required for performance;
and cases where a largeixkwas required for robustness. But the optimum choicengk
does not depend on the problem but mainly on the solver anddbigracy needed. For ex-
ample, given a Krylov solver with basis sine it makes no sense in terms of convergence
to setmxk> m/3, with values less tham/5 being more reasonable. In the above IVE tests
and for all solvers, the maximum multiplicity was largerha/5, hence the observed de-
crease in performance with largerxk Other solvers with larger basis sizes could behave
differently. Nevertheless, IVE restores robustness evigh very modest block sizes, and
therefore users can decouple the choices of parameterarthateded for convergence and
cache performance from the parameters needed for robasinesparticular problem.

45. Resultswith a Laplacian matrix. The LAPLACE matrix is closer to a real world
problem. We seek the 19 algebraically smallest eigenvainary of which come in multiple
pairs. In particular the 18th and 19th eigenvalues are aipteifpair. We give results only for
T =1e-9, and fomxk= 1,2 as IVE will not go beyond the maximum observed multiplicity
Table 4.10 shows the results of the GD method, which is idehto GD+k but without the
CG-type restarting. An initial block size of 1 misses oneseigalue, which is easily restored
by IVE and in shorter time than to run an initial block size offable 4.11 for GD+k shows
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Table 4.9 ARPACK/DIAG
Initial runs IVE run
T evals MV Time | evals Total MV  Total time
le-16 5 305990 5004 8 309889 5092
le-8 5 27678 443 8 30885 515
le-7 2 4167 68 2 4256 70
TABLE 4.9

ARPACK on matrix DIAG. As in Table 4.5, IVE is able to achiderequired robustness on the DIAG matrix
for the two smallest tolerances, and with minimal additiomzerhead. The need of a larger block size is evident for
such pathological cases, and for large tolerances-(e-7).

Table 4.1B: GD/LAPLACE IVE runs

mxk T=1e-9
Table 4.10A: GD/LAPLACE Initial runs 1 3944, 49.9
k 1=1e-9 2 22186, 254.9
1 18,10812, 116.9
2 19, 37497, 391.8 Best total MV/times for Initial + IVE run

14756, 166.8
k,mxk ‘ 1,1
TABLE 4.10

GD on matrix LAPLACE. Table A shows results for computingltiemallest eigenvalues, and Table B shows
the subsequent IVE results. We follow the format of Tabletés2ing only one tolerance, and not reporting the
nevFound in IVE, which finds all eigenvalues. We test blassiip to the maximum multiplicity of two. IVE restores
robustness, and improves time in all cases.

that even when the method does not miss an eigenvalue, tidatiah step is not expensive
relatively. Table 4.12 shows similar results with JDQMR,end IVE restores robustness
in better or similar time as the most robust initial run. Hiyndable 4.13 demonstrates the
robustness of IVE with ARPACK, even with only a few IVE featgrenabled.

5. Conclusions. Hermitian, iterative eigenvalue solvers cannot guarangébout fac-
torizing the matrix, that the eigenvalues they computelzead¢quired ones. Eigenvalues that
are tightly clustered or of high algebraic multiplicity che missed by any type of eigen-
solver. There are many techniques to alleviate this: askfie than the required eigenpairs,
and to better than sufficient accuracy, or use a block sizgtahan the maximum multi-
plicity sought. Choosing these parameters, however, resja-priori knowledge about the
problem, and increasing them beyond a certain value slowgetgence and reduces cache
performance. Alternatively, locking converged eigengext and restarting the solver with
new random vectors improves robustness, also at the cosheérgence. Typically, robust
choices lead to unnecessarily slow codes especially foedlseer parts of the required spec-
trum.

Our a posteriorilterative Validation of Eigensolvers is essentially a wraparound any
given eigensolver that automates all the above choicexbhiques, except for accuracy, to
provide robustness when this is needed. Relying on the gyrarthese techniques, IVE
keeps calling the solver to find additional eigenpairs, lumi missed eigenvalues can be
identified. IVE works both with single-vector and block sals, requiring no changes to the
solver.

There are two key ideas in IVE. The first is the repeated Ralgl®itz minimization
in the space orthogonal to all converged eigenvectors, tahstarting with at least one
random initial guess. The second is an automatic way to @serehe block size based on
the largest multiplicity computed thus far, hence incregdhe chances of finding missed
eigenvalues of similar multiplicity.

Both key ideas can be very expensive during the initial ruarof eigensolver, but as
an a posteriori technique they focus only on the problengit of the spectrum, and only
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Table 4.11A: GD+k/LAPLACE Initial runs Table 4.11B: GD+k/LAPLACE IVE runs
k T=1e-9 mxk T=1e-9
1 19, 5062, 62.7 1 654, 8.6
2 19, 7852, 86.4 2 1180, 14.9
TABLE 4.11

GD+k on matrix LAPLACE. Similarly to Table 4.10, Table A skawsults for initial runs and Table B for
various IVE runs. Best performance is not included becabsseiritial run does not miss eigenvalues. Yet, the
additional IVE expense is not significant.

Table 4.12B: JIDQMR/LAPLACE IVE runs
mxk T=1e-9
Table 4.12A: JIDQMR/LAPLACE Initial runs| | 1 1213,4.7
k 1=1e-9 2 2779,11.2
1 18, 5360, 18.7
2 19, 7144, 25.0 Best total MV/times for Initial + IVE run
6573, 23.4
k,mxk 1,1
TABLE 4.12

JDQMR on matrix LAPLACE. Similarly to Table 4.10, Table Awhaesults for initial runs and Table B for
various IVE runs, including the best performance obtairfRobustness is restored for a smaller or comparable cost.

if needed. Moreover, the ability to resolve multiple or ¢kred eigenvalues during a post
processing phase, frees the user to employ in the solverltick bize that gives the best
cache performance, and the tolerance required by the pnobleven when the block size
is limited to modest values in IVE, the synergetic effectshaf rest of the techniques can
deliver the desired robustness. Our experiments supptirithe robustness of IVE on some
very hard problems, and its ability to decouple robustness performance choices.

As future work, we plan to investigate the applicability agffectiveness of IVE for
interior eigenvalues, and for non-hermitian eigenprolslerfiihe major obstacle is that the
Rayleigh-Ritz procedure does not provide monotonic cayemce toward interior eigenval-
ues. Thus, the existence of a Ritz value that is closer to @evalthan any previously
computed eigenvalue is does not imply that an eigenvaluemiiased. A harmonic-Ritz
procedure, which may provide a solution to this problempuhately does not extend to
non-hermitian problems.
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