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ITERATIVE VALIDATION OF EIGENSOLVERS: A SCHEME FOR IMPROVING
THE RELIABILITY OF HERMITIAN EIGENVALUE SOLVERS ∗

JAMES R. MCCOMBS† AND ANDREAS STATHOPOULOS†

Abstract. Iterative eigenvalue solvers for large, sparse matrices may miss some of the required eigenvalues that
are of high algebraic multiplicity or tightly clustered. Block methods, locking,a-posteriorivalidation, or simply
increasing the required accuracy are often used to avoid missing or to detect a missed eigenvalue, but each has
its own shortcomings in robustness or performance. To resolvethese shortcomings, we have developed a post-
processing algorithm,iterative validation of eigensolvers(IVE), that combines the advantages of each technique.
IVE detects numerically multiple eigenvalues among the approximate eigenvalues returned by a given solver, adjusts
the block size accordingly, then calls the given solver using locking to compute a new approximation in the subspace
orthogonal to the current approximate eigenvectors. This process is repeated until no additional missed eigenvalues
can be identified. IVE is general and can be applied as a wrapper to any Rayleigh-Ritz-based, hermitian eigensolver.
Our experiments show that IVE is very effective in computing missed eigenvalues even with eigensolvers that lack
locking or block capabilities, although such capabilitiesmay further enhance robustness. By focusing on robustness
in a post-processing stage, IVE allows the user to decouple the notion of robustness from that of performance when
choosing the block size or the convergence tolerance.

1. Introduction. Sparse, iterative eigenvalue solvers are effective at computing the ex-
tremal eigenvalues of large, hermitian matrices or matrices represented as functions [17, 7,
28, 27]. However, iterative methods may miss some of the desired eigenvalues if these are of
high algebraic multiplicity or are tightly clustered. Moreover, certain initial guesses, eigen-
value distributions, and preconditioning can cause eigenvalues to converge out of the expected
order, and thus to be missed. Some techniques have been developed to detect missed eigen-
values or attempt to avoid missing them all together, but a robust and automated process that
combines the advantages of each technique has yet to be investigated.

A few a-posterioritechniques have been used to deal with missed eigenpairs. Sylvester’s
matrix inertia [11] is one technique that can be used to determine how many eigenvalues of a
Hermitian matrix exist within a particular interval. Although this technique has enabled the
development of robust eigenvalue software [13], it requires theLDLT factorization of the ma-
trix, which can be prohibitively expensive for large, sparse matrices, or even impossible if the
matrix is represented as a function. In such cases, practitioners may call the solver again with
a random initial guess to obtain an additional eigenvector in the orthogonal complement of
the current set of converged approximations. Assuming the smallest eigenvalues are sought,
the new approximate eigenvalue converges towards a missed eigenvalue if it is smaller than
the largest previously obtained eigenvalue.

Locking and block iterations are two techniques that attempt to reduce the number of
eigenvalues missedduring the iterative process. Locking [4, 31, 18] is performed by freezing
converged eigenvector approximations (locked vectors), and keeping current and future vec-
tors in the search space orthogonal to them. Because locked vectors do not participate in the
Rayleigh-Ritz minimization they remain unchanged, and thesearch space can approximate
other eigenpairs without duplicating the locked ones. Alternatively, solvers may be imple-
mented in a non-locking way, [19, 33], where converged eigenvectors keep participating in
the search space, thereby improving their accuracy. Regardless of implementation, locking
a set of a-priori known eigenvectors,X, can be performed outside a solver by providing the
matrix (I −XXT)A(I −XXT).
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Locking can be effective in obtaining more than one eigenvector belonging to a multiple
eigenvalue, especially with Krylov methods which otherwise can obtain only one such eigen-
vector in exact arithmetic. It is also used with many preconditioned or non-Krylov solvers
[4, 29], as it allows for a smaller active search space which reduces Rayleigh Ritz and restart-
ing costs. Whether locking delivers the purported robustness depends significantly on the
implementation details, and typically the most robust implementation may not be the most
efficient.

Block iterative methods [27, 3, 26, 37, 25, 36, 13] that extend the subspace byk vectors
per iteration, wherek is the block size, are a more robust alternative to locking. Assume the
single-vector Lanczos process converges to an eigenvalue with algebraic multiplicityk. Then,
with appropriate initial guesses, the block Lanczos methodwith block sizek will find all k
eigenvectors of that eigenvalue [24]. Although not guaranteed in general, this property is ob-
served in other methods as well. Block methods can also result in better cache utilization and
improved performance if a fine-tuned implementation is available. However, block methods
are not without drawbacks. Excessively large block sizes can increase the number of matrix-
vector multiplications and result in more frequent restarts, thereby slowing convergence.

Locking and blocking can be combined to improve the robustness of iterative eigen-
solvers [5, 10, 2, 20]. Still, the resulting robustness depends on the problem solved and the
parameters chosen by the user. What makes this choice difficult is the conflicting require-
ments between robustness and performance. A lower than required convergence threshold is
less likely to miss eigenvalues but it takes more time. Moreover, the choice of a block size
that optimizes simultaneously cache performance, convergence, and robustness is not possi-
ble to know a-priori. Our approach in this paper is to let the user choose the most efficient
parameters as default, and to provide a post-processing technique that corrects any robustness
shortcomings, and only when these are needed. This way, we decouple the issue of robustness
from that of performance (cache or convergence).

Our goal is not to provide another hermitian eigensolver, but to develop a robust detection
algorithm that uses any given solver in a methodical way to identify whether the requirements
posed by the user have been met by the solver. Borrowing a termfrom Software Engineering,
we call our algorithmiterative validation of eigensolvers(IVE), as it does not verify whether
the approximations are correct, but rather adjusts the solver to find the correct approxima-
tions. IVE works in conjunction with any Rayleigh-Ritz-based hermitian eigenvalue solver.
The IVE algorithm accepts as input and locks the converged eigenvector approximations.
Locking can be performed implicitly in IVE, if not provided by the solver. If a block solver
is available, IVE adjusts the block size based on the largestnumerical multiplicity found, and
calls the solver again so that any missed eigenvalues in the orthogonal complement of the
locked vectors can be computed. Any missed eigenvalues detected by IVE are locked out and
the process is repeated until no additional missed eigenvalues are computed. Although the
structure of the IVE algorithm is general, we only apply it tohermitian eigenproblems where
the monotonic convergence of eigenvalues facilitates a robust detection of missed eigenval-
ues.

We have used our IVE to wrap several well known eigensolvers.The solvers may dif-
fer substantially in their ability to use locking or blocking efficiently and robustly, but they
invariably miss eigenvalues. Our results show that IVE restores robustness in several patho-
logically hard cases. Moreover, running the solver throughdefault parameters followed by a
certain IVE configuration improves performance, thus demonstrating the desired decoupling
of performance and robustness.

In Section 2, we discuss why eigensolvers miss eigenvalues,and the available techniques
for increasing robustness. In Section 3, we describe in detail the IVE algorithm. In Section 4,
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we present results using IVE on a variety of solvers. Throughout the paper we assume that we
seek the lowestneveigenvalues̃λi and eigenvectors ˜xi , i = 1, . . . ,nevof a sparse, hermitian
matrixA.

2. Reasons behind missing eigenvalues and current approaches. A large arsenal of
sparse hermitian eigenvalue solvers is available, some based on Krylov methods, others on
nonlinear optimization, preconditioning, and a host of other underlying principles [32]. Most
of these methods employ the Rayleigh-Ritz (RR) minimization to extract their approxima-
tions from a search space. The eigenvalue and eigenvector approximations are called Ritz
values and Ritz vectors, respectively. For hermitian eigenproblems, the Ritz values minimize
the Rayleigh-quotient over the search space, thus leading to a monotonic convergence toward
the required eigenvalues.

Despite their individual strengths, solvers can miss some of the required extreme eigen-
values. The reasons, which are often interrelated, are: (a)the presence of multiple or highly
clustered eigenvalues, (b) the out-of-order convergence of some eigenvalues, (c) a starting
vector that is deficient in certain required eigenvector components.

It is well known that in exact arithmetic Krylov methods cannot compute more than one
eigenvector belonging to a multiple eigenvalue. Krylov methods produce the next vector in
the search space asr = p(A)v0, wherev0 is the starting vector andp(A) is the characteristic
polynomial of the Lanczos tridiagonal matrix [27]. If a multiple eigenvalueλi and one of its
corresponding eigenvectors have already been found, thenp(λi) = 0 andr contains no com-
ponents in the kernel: Null(A−λi I). In practice, floating-point arithmetic introduces noise
toward these directions allowing their eventual computation. To allow the solver enough
time to amplify the missing eigencomponents, a low convergence tolerance must be required.
Otherwise, a more interior eigenpair may converge first as one of thenevsmallest ones. In-
terestingly, non-Krylov methods often encounter similar problems with multiple eigenvalues.

Clustered eigenvalues present similar difficulties as multiple ones. This is not surprising
because, until the solver has resolved an eigenvalue to an error that is smaller than its dis-
tance from a nearby eigenvalue, it views both eigenvalues asmultiple and could miss one if
larger tolerances are specified. The slow convergence of solvers toward clustered eigenvalues
exacerbates the problem.

More generally, eigenvalues are missed when an interior eigenvalue converges before
the solver has identified the existence of an outer one. In Krylov methods this is not the
expected order of convergence, causing robustness problems to solvers that are based on the
assumption that thenevsmallest eigenvalues will be found first. The assumption, although
usually true, does not hold in general. As shown recently [16], eigenvalue distributions exist
for which Krylov methods converge to the eigenvalues in the middle of the spectrum first,
and to the extreme ones last. In practice, smaller order reversals may be observed, which can
cause eigenvalues to be missed.

The out of order convergence is more frequently observed with non-Krylov methods that
use preconditioning or solve approximately a correction equation to speed up convergence
[7, 29, 23]. For example, consider a matrixA, whose absolute smallest eigenvalues are re-
quired, and the Generalized Davidson method using a preconditioner M ≈ A−1. BecauseM
andA do not share the same eigenvectors, the convergence benefitsfrom M are not neces-
sarily greater for eigenvalues closest to zero, thus yielding an arbitrary convergence order.
Davidson-type methods also use various targeting schemes [33], i.e., which Ritz vector is
improved at every step, directly affecting the order in which eigenvalues converge. In floating
point arithmetic, targeting effects are observed even without preconditioning [22, 35]. Fi-
nally, whether the implementation of the solver or the eigenvalue distribution of the matrix
could lead to misconvergence depends also on the initial guess.
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2.1. Current approaches. To increase confidence in the computed eigenpairs, practi-
tioners typically ask for more accuracy than needed. Although beneficial in many cases, in
general we may not know the accuracy that is sufficient for resolving multiple eigenvalues
or avoiding out of order convergence. Also, this approach may be unnecessarily expensive,
especially when a very low tolerance is used to find a large number of eigenvalues of which
only a few would have been missed with a larger tolerance. Finally, the problem with higher
multiplicities in Krylov methods persists.

Another common strategy is to compute more eigenpairs than required. This works if
the reversals in the order of convergence are localized, e.g., the tenth smallest eigenvalue
converges before the ninth, but not before the second. In general, we do not know how
many more eigenpairs to compute, so the strategy can be unnecessarily expensive. Most
importantly, it still may not find multiple or clustered eigenpairs.

Deflation of converged eigenpairs is commonly used in many eigensolvers so that more
eigenpairs can be obtained without repeating the already computed ones. Locking is the
preferred form of deflation because of its numerical stability [27, 4]. When an eigenvector
converges, it is extracted from the search space and all current and future vectors of the search
space are kept orthogonal to that (locked) vector. Locked vectors are inactive otherwise, they
do not participate in the RR (as future Ritz vectors should not have any components in them),
and therefore they are not modified further. Computationally, the smaller active search space
reduces the costs of the RR and restarting phases of eigensolvers; more so when a large
number of eigenpairs are sought. This is one of the reasons that locking is preferred to non-
locking implementations for subspace iteration and Jacobi-Davidson type methods [5, 29].

Locking provides also a more reliable means of computing theinvariant spaces of mul-
tiple eigenvalues, especially with Krylov methods. Assumethat a subsetX of the invariant
subspace associated withλ has been computed and locked. This is equivalent to calling the
solver with the deflated operator(I −XXT)A(I −XXT), which has all the eigenvalues associ-
ated withX equal to zero. Unlike the polynomial deflationp(A)v0 in Krylov methods which
removes all the invariant subspace ofλ from the vector iterates, locking removes only the
computed part of Null(A−λI). More eigenvectors ofλ can then be obtained. This deflation
behavior is not restricted only to Krylov methods. Finally,locking also speeds up the con-
vergence to any missed, single eigenvalues which are amidstother converged ones. In the
deflated operator such eigenvalues are better isolated and therefore are easier to find. How-
ever, even with locking, misconvergence can still occur if some tightly clustered or multiple
eigenpairs converge out of order. Moreover, not all solversimplement locking, and when they
do, their implementation details and thus robustness may vary. For example, locking can be
implemented transparently to the solver if we use the deflated operator in the matrix-vector
multiplication, but the solver must return the converged eigenpairs before they are locked.
Alternatively, some solvers implement locking as part of the orthogonalization phase. We
discuss these issues further in the next section.

Block methods are usually more effective in computing multiple eigenvalues. As long as
thek initial guesses in the block contain sufficient components in the direction of the eigen-
vectors associated with the multiple eigenvalue, then block Krylov methods are guaranteed
to find at leastk of the multiple values [24]. Moreover, more uniform convergence of the
block vectors is observed, reducing the likelihood of out-of-order misconvergence. Blocking
is known to improve robustness in all iterative methods, butthe effects are more emphasized
in Krylov methods [12]. Block methods also improve cache performance with largerk [8],
seemingly offering a panacea to all problems.

Despite the better cache utilization, robustness comes at acost in execution time. Al-
though the number of iterations decreases, the overall number of matrix-vector operations
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(and thus flops) performed is usually higher than their single-vector counterparts [14]. Espe-
cially with spectra that are easily computed, block methodstend to require close tok times
more matrix-vector operations than single-vector methods, completely canceling any caching
benefits. Additionally, the number of iterations may also increase ifk is too large relative to
the maximum basis size. This would cause very frequent restarts impairing the convergence
of most methods; this is apparent in some experiments later in this paper. Whenk equals the
maximum basis size, the solver reverts to subspace iteration, losing the subspace acceleration
[32]. In general, an optimal choice fork must ensure appropriate cache utilization, robust-
ness, and the smallest possible increase in flops. Except forcaching which depends on the
architecture, none of the other variables are known ahead oftime. In particular, thek needed
to detect all the required eigenvectors is not known, and even if it were, it could conflict with
the optimal choice for cache performance and convergence. Finally, unlike locking, blocking
can be used only if implemented by the available solver.

We conclude our discussion, with the importance of the initial guess. In all the aforemen-
tioned techniques, a critical assumption is that the initial vector has sufficient components in
the desired directions. In lack of better information, a random vector is typically the best
initial guess. Yet, as the iterative process progresses, certain required directions may be di-
minished or removed as in the case of Krylov methods and multiple eigenvalues. A possibility
is to insert a random vector in the search space or in the block, replacing an eigenpair that con-
verges. This can be performed trivially in (Jacobi)-Davidson or subspace iteration methods,
but techniques have also been proposed for the implicitly restarted Lanczos method [31, 30].
Still, the newly introduced directions may not be amplified fast enough to prevent out of order
convergence of an interior eigenpair which was almost converged before the insertion of the
random vector. A drastic solution would be to dispense with the whole search space after
an eigenpair converges and restart the solver anew with a random guess. A related approach
that does not completely rid of the search space is suggestedin a yet unpublished report [21].
Based on our discussion on locking, a newly rebuilt search space would offer the best possible
robustness. However, it would also be very slow, especiallyif no eigenvalues were going to
be missed.

A recurring theme is the dichotomy between robustness and performance. To achieve
robustness, solvers would have to make extreme choices on parameters such as block size
and tolerance that would impair performance. In the following section we present our post-
processing approach to validating the parameters of a givensolver that are required to achieve
robustness.

3. Iterative validation of eigensolvers. We propose a new algorithm which we callit-
erative validation of eigensolvers(IVE). IVE is implemented as a wrapper around any exist-
ing sparse, iterative, hermitian eigensolver that utilizes the Rayleigh-Ritz (RR) minimization
procedure. IVE automates the process of computing eigenvalues missed by the solver, by
combining as many of the techniques mentioned in Section 2.1as the solver implements.
In other words, IVE is not a solver, nor does it compute eigenvalues. IVE merely identi-
fies difficulties in the computed spectrum, and sets locked vectors, initial guesses, and block
size appropriately so that the chosen eigensolver may compute any missed eigenvalues on
its own. In this sense, it is similar to the validation process of a software engineering cycle,
where a software is modified appropriately (different solver parameters) to meet the customer
requirements (which eigenpairs to find), rather than verifying whether the software meets the
specifications (produces converged eigenpairs). Therefore, the measures of performance and
robustness achieved by IVE can only be in reference to the underlying solver. Also, by being
a post-processing algorithm, IVE may be switched off if no validation is needed.

The enabling property for IVE is that the Ritz values of RR-based hermitian eigensolvers
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converge monotonically, if their Ritz vectors are retainedin the search space during restarts
or truncations. Once a Ritz value becomes smaller than a converged eigenvalue, we are sure
that a previously undetected eigenvalue exists. Although Newton eigensolver schemes can be
derived without RR, most current algorithms and software incorporate it, so our assumption
is not restrictive in practice.

Assume the solver has returned an initial set ofnevconverged Ritz pairs(λi ,xi), where
λi ≤ λi+1, i = 1, . . . ,nev− 1. The IVE algorithm analyzes the convergedλi and the norms
of their residuals,r i = Axi −λixi , to determine an appropriate block size. IVE then calls the
solver with new initial guesses, using the convergedX = {xi} as locked vectors, in an attempt
to find any missed eigenvalues. An eigenvalue is a missed eigenvalue if it is smaller than the
largest locked eigenvalueλnev. If it is, then its eigenvector replaces the locked eigenvector
xnev in the set of locked vectors. The IVE algorithm then repeats an analysis of the block size
and proceeds as before. IVE works also with solvers that do not provide locking or blocking.
First, we discuss some issues on locking and how to choose a block size. Then we present the
IVE algorithm, describing how it chooses initial guesses and how many additional eigenpairs
it finds.

3.1. Locking variants. One way to compute eigenvectors orthogonal to the setX is for
the solver to provide a mechanism to lock (orthogonalize against) a set of externally provided
vectors [20, 1]. This feature is a relatively simple extension to the orthogonalization proce-
dure that most solvers employ. It is also numerically stablebecause the orthogonalization
procedure should guarantee that no components ofX appear in the search space. In this case,
IVE simply passesX to the solver. Note that a solver that locks against an externally provided
X, does not have to implement locking internally for the eigenpairs it computes.

When a solver does not provide the above external locking feature, an alternative is to
provide all the convergedX together with a random vector as initial guesses to the solver
and ask for a few more eigenpairs. This works with many solvers such as (Jacobi-)Davidson,
subspace iteration, or methods whereX can be provided as part of the initial block, but it does
not work with Lanczos algorithms. In addition, the solver must accommodate a large enough
search space, and allX eigenvectors have to be re-checked and possibly modified.

A third alternative is to use explicit deflation, by calling the solver not with the matrixA,
but with a function that implements the action of the operator:

(I −XXT)(A−σI).(3.1)

The preconditioner may be deflated in a similar way as shown in[28]. The shiftσ plays
an important role. Ifσ = 0 and the smallest eigenvalues ofA are positive, the eigenvalues
of (3.1) associated withX are zero and thus they are still the smallest. In exact arithmetic
this is equivalent to the external locking above, and noX components should appear in the
search space. In floating point, however, when new vectors are orthogonalized against the
search space inside any solver, they may lose their orthogonality againstX. As X is not
available within the solver, orthogonality cannot be recovered through reorthogonalization.
Thus, components ofX will start to emerge in the RR, and their “zero” eigenvalues will be
re-computed.

The role ofσ is to shift the spectrum so that zero is far from the smallest eigenvalues;
ideally in the middle or at the other end of the spectrum. Then, the X components that
emerge in the search space will be in the unwanted part of the spectrum and they will not
be chosen by RR (purged internally [18]). When explicit locking is necessary, we have used
σ = ‖A‖F/

√
n as a lower bound to the largest eigenvalue of positive spectra, where‖A‖F is

the Frobenious norm andn the dimension ofA. Other shifts can also be used, if estimates of
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FIG. 3.1. Sample distribution of converged Ritz values and their associated error intervals. The max-
imum algebraic numerical multiplicity in this example is four because a point of maximum overlap, indi-
cated by the dashed vertical line, crosses four error intervals. The rest of the eigenvalues have multiplicities
λ1(1),λ2(4),λ3(4),λ4(4),λ5(4),λ6(3),λ7(2),λ8(2),λ9(3).

λn are known [27]. This technique yields significant autonomy to IVE, not depending on the
locking features of the solver.

3.2. Determining block sizes. Assume that a block eigensolver is available. Our the-
oretical premise is that a block size equal to the largest multiplicity should be sufficient to
resolve any problems. The IVE algorithm selects such a blocksize based on the largest “nu-
merical multiplicity” observed in the converged Ritz pairs.

Let δi be an error bound and[λi −δi ,λi ] the error interval corresponding to the Ritz value
λi . Because the matrix is hermitian,λ̃i ≤ λi . Depending on the eigenvalue distribution and
on the size of the user-specified tolerance, the error intervals associated with the Ritz values
may overlap. Two Ritz values whose error intervals overlap are numerically multiple. It is
possible for three or more Ritz values to be numerically multiple, but this requires a more
general definition. The Ritz values{λi , i ∈ {i1, i2, . . . , ik}}, arenumerically multipleif and
only if [λi −δi ,λi ] overlaps with[λ j −δ j ,λ j ] for all i, j ∈ {i1, i2, . . . , ik}.

Sharp bounds on theδi are well-known, when the approximations are computed through
the RR procedure [24]. Let̃λ be the single eigenvalue closest to a Ritz valueλ, and letr be
the residual corresponding toλ. The following inequality holds:

|λ̃−λ| ≤ δ = min



‖r‖2,
‖r‖2

2

min
(

|λ̃i −λ|, λ̃i 6= λ̃
)



 .(3.2)

Near convergence (which is the case in IVE), the upper boundδ in (3.2) can be accurately
estimated by substituting the Ritz value closest toλ for λ̃i .

Let thealgebraic numerical multiplicity, mi , of a Ritz valueλi be defined as the size of
the largest set of Ritz values that includeλi and are numerically multiple. A robust choice
for block size can be the maximummi taken over all Ritz values. The rationale is that other
required eigenvalues may have been missed that have the samemultiplicity. Although this
works well for smallmi , for largemi it is highly uncommon that the eigenvalue with the
maximummi is still missing half of its actual multiplicity, making this a pessimistic choice.
In addition, the block size should not become too large relative to the maximum size of the
search space, depending on the solver. For example, for LOBPCG [15] the block size must
be a third of the basis size; Lanczos and Davidson solvers work better when the block size is
much smaller than the basis size. Because of these external to IVE factors, or because some
information about the problem may be known (multiplicity orcluster size), the user may put
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ALGORITHM: MaxAlgNumMult(λ, r, nev)
1. Computeδi the error estimate from (3.2) corresponding toλi .
2. MaxAlgNumMult = 0
3. lowerBound(i) = λi −δi , i = 1, . . . ,nev

Let pi be the number of overlapping intervals at endpointλi −δi

4. for i = 1,nev
5. pi = 0
6. for j = 1,nev
7. if (lowerBound(i) ≥ lowerBound(j) and lowerBound(i) ≤ λ j )
8. pi = pi +1
9. end
10. MaxAlgNumMult =max(MaxAlgNumMult, pi)
11. end

FIG. 3.2. Algorithm for computing the maximum algebraic numerical multiplicity among a set of Ritz values
corresponding to the smallest eigenvalues of a Hermitian matrix.

a maximum cap on the block size. We emphasize that a cap based on the underlying solver
and its maximum basis size does not reduce robustness, because for larger block sizes that
solver’s own robustness and convergence would deteriorate. Also, blocking is just one of the
robustness techniques that IVE employs.

Computing the maximum algebraic numerical multiplicity isequivalent to finding a
“point of maximum overlap”, i.e., a point that has the largest number of error intervals over-
lapping it. It can be shown that there will always be a point ofmaximum overlap at one
of the endpoints of the intervals [6]. Figure 3.1 shows an example distribution of Ritz val-
ues and their associated error intervals. Figure 3.2 gives an algorithm,MaxAlgNumMult, for
computing the maximummi in O(nev2). Interestingly, thepi in the algorithm do not cor-
respond to themi for all i, yet the maximummi is computed correctly. A more efficient,
O(nevlog2nev) time algorithm exists, but its implementation is involved.Moreover, asnev
is usuallyO(1000) � n, the execution time of our algorithm is negligible even compared to
a matrix-vector product, obviating the use of the lower complexity algorithm. To our knowl-
edge, this is the first algorithm to find the maximum multiplicity in a set of approximate
eigenpairs.

3.3. The IVE algorithm. The IVE algorithm given in Figure 3.3 first computes the
residual norms of the converged Ritz vectors (step 4). This step is not required if the eigen-
solver returns this information. Then, IVE determines the maximum algebraic numerical
multiplicity using MaxAlgNumMult(step 5). In step 6, if the solver implements a block
method, the block size is chosen so that it does not increase beyond the maximum value
maxBlockSize. Below that value, it is set at the maximum of the current maximum mi , the
block size chosen by the user to compute the initial set of converged Ritz values, and two.
A block size of at least two is used to force a block method whenno numerically multiple
eigenvalues have been detected. If the initial run of the solver used a block size ofk, there
is no incentive to use anything else for validation. Still, the user can overwrite it by passing
initialBlockSize= 1. In step 7, the initial guesses,X0, are chosen. In the first IVE itera-
tion, X0 is a set of all random initial guesses. In subsequent IVE iterations,X0 includes also
any unconverged Ritz vectors that are known to be missed during the previous IVE iteration
(see below). As we discussed in Section 2.1 it is always important to include some random
guesses.

In step 8, the eigensolver is called with the initial guessesX0 and locked vectorsX to
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ALGORITHM: [X, λ] = IVE(A, X, λ, resNorms, initialBlockSize, maxBasisSize)
Let X andλ be the converged Ritz vectors and Ritz values.
Let initialBlockSize be the block size used to computeX.
Let maxBlockSize be the maximum block size allowed
1. numNew = 1
2. Xmissed= [ ], Xunconverged= [ ]
3. repeat
4. resNorms = ComputeResNorms(A, X, λ)
5. newMult = MaxAlgNumMult(λ, resNorms)
6. if (solver implements block)

blockSize =min(maxBlockSize,max(newMult, initialBlockSize, 2))
else

blockSize = 1
7. X0 = [Xmissed, rand(blockSize -size(Xunconverged))]
8. Compute[Xnew,λnew,Xunconverged,λunconverged] by calling the solver:

if (solver implements external locking)
Solver(A, numNew,X0, X)

else
Solver((I −XXT)(A−σI), numNew,X0)

9. [X,λ] = InsertionSort(Xnew, λnew, numNew,X, λ, resNorms)
l0. numMissedUnconv = NumMissedValues(λ, λunconverged, blockSize-numNew)
11. Xmissed= Xunconverged(:,1:numMissedUnconv)
12. numNew =max(1, numMissedUnconv)
13. until (X did not changedand numMissedUnconv= 0 )

FIG. 3.3. IVE algorithm for computing missed eigenpairs. IVE is a wrapper around an existing Hermitian,
Rayleigh-Ritz based eigensolver.

find numNewmore eigenpairs. Depending on the solver, external or explicit locking can be
performed. Note that the IVE algorithm assumes that the chosen solver returns not only the
numNewconverged Ritz values inλnew, but also the remainingblockSize−numNewuncon-
verged Ritz values inλunconverged. Solvers that do not return the unconverged Ritz pairs by
default can be easily modified to do so. Otherwise, we can setnumMissedUnconv= 0.

In step 9, an insertion sort (see Figure 3.4 for details) is called to insert any converged,
missed eigenpairs inλnew andXnew into λ andX, respectively. For every missed Ritz value
inserted into theλ array, the largestλnev in the array and the corresponding vector inX
are removed. If enough storage is available, those removed converged eigenvectors can still
remain in the locked array to avoid possible recomputation.We choose not to take advantage
of this feature in our experiments. If none of the recently converged Ritz values were missed,
then the IVE algorithm will terminate at step 13.

Step 10 calls the algorithmNumMissedValuesin Figure 3.5 to determine how many of
the unconverged Ritz values inλunconvergedare missed values. A Ritz value inλunconvergedis
considered missed if it is smaller thanλnev. Because of monotonic convergence, these Ritz
values will only continue to decrease and approach missed eigenvalues. Therefore, it is wise
to use the corresponding unconverged Ritz vectors inXunconvergedas initial guesses (step 11).
These can significantly reduce validation time when many eigenvalues are missed, because
they enable the solver to avoid repeating convergence through random guesses.

Finally, step 12 sets the new number of Ritz values the solvermust compute. Clearly, we
should continue and find thenumMissedUnconvmissed ones that step 10 may have identified.
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ALGORITHM: [X, λ] = InsertionSort(Xnew, λnew, numNew,X, λ, resNorms,nev)
1. for i = 1 :numNew
2. j = nev
3. while ( j > 0 and λ( j) > λnew(i)), j = j −1; end
4. if j == nev, break;
5. X = [X(:,1 : j), Xnew(:, i), X(:, j +1 : nev−1)]
6. λ = [λ(1 : j), λ(i), λ( j +1 : nev−1)]
7. rnew≡ the residual with respect to(Xnew(i), λ(i))
8. resNorms= [resNorms(1 : j), rnew, resNorms( j +1 : nev−1)]
9. end

FIG. 3.4. Insertion sort algorithm for identifying and inserting missed eigenvalues intoλ. Handling of bound-
ary cases is not shown. In actual implementations, the eigenvalues are inserted first, and the eigenvectors are
inserted only at the end to avoid unnecessary memory copying.

ALGORITHM: NumMissedValues(λ,nev, λunconverged, numUconv)
1. NumMissedValues = 0
2. for i = 1, numUconv
3. j = nev
4. while

(

j > 0 and λ( j) < λunconverged(i)
)

, j = j −1 ; end
5. if j == nev, break ;
6. λ = [λ(1 : j), λunconverged(i), λ( j +1 : nev−1)]
7. NumMissedValues = NumMissedValues + 1
8. end

FIG. 3.5. Algorithm for computing the number of unconverged Ritz values that have been skipped. The
corresponding Ritz vectors will be used as initial guesses at the next IVE iteration.

If numMissedUnconv= 0, we have no indication that more eigenvalues may be missing, so it
would be wasteful to find more than one additional eigenvalue. The IVE algorithm terminates
in step 13 if no missed eigenvalues (converged or unconverged) were discovered, or continues
with the next IVE iteration.

We present an example in Figure 3.6 to illustrate the steps taken by the iterative validation
algorithm. Suppose we seek thenev= 8 smallest eigenvalues of a symmetric matrix. In steps
4-6 the residual norms are computed and the maximum algebraic numerical multiplicity is
determined to be 3. All random initial guesses are selected in step 7 because it is still the first
iteration. In step 8 the solver is called and returnsnumNew= 1 converged Ritz value inλnew,
and two other Ritz values inλunconverged, because the block size is three. Next,InsertionSort
is called in step 9 to determine ifλnew is a missed eigenvalue. It is, so it is inserted into its
proper position and the largest element inλ is discarded. In steps 10-12,NumMissedValues
determines that one of theλunconvergedwas converging towards a missed eigenvalue. The
corresponding missed vector is placed inXmissedto be used as an initial guess in the next IVE
iteration, and numNew is set to 1 to indicate that an additional eigenvalue has been skipped.
At the next IVE iteration, steps 4-7 determine the algebraicnumerical multiplicity to be 4,
set the block size accordingly, and assignXmissedand three random vectors as initial guesses.
The IVE iterations continue until no more missed eigenvalues are detected.

4. Experimental evaluation. Our primary goal is to show that IVE restores robustness
in any hermitian eigensolver, even for pathological cases with large multiplicities, or tightly
clustered eigenvalues. The importance of increased confidence in the computed results, some-
times at any cost, cannot be overstated. Of particular interest are cases of eigensolvers that fail
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Steps 4−6

newMult = 3
]X  =  [

0

Locked

blockSize = 3

Step 7

λ unconvergedλnew

numNew = 1 2 = blockSize − numNewLocked

Step 8

λ new unconverged Discardedλ

Step 9

Locked

]  =  [Xmissed

numNew = 1

numMissedUnconv = 1

Steps 10−12

0

newMult = 4
]
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X  =  [
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of largest alg. num. mult.

Converged Converged, missedKey

Unconverged, not missed

Unconverged, missed

Random initial 

newMult = 3
blockSize = 3
numNew = 1

Converged pair vector

Locked

FIG. 3.6.Example validation problem.

to find all the required eigenvalues, regardless of the initial choice of parameters, yet guided
by IVE, they succeed. A secondary goal is to demonstrate how IVE can decouple robustness
from performance, so that solvers are run with default settings for best performance and any
missed eigenpairs are obtained later in a shorter IVE cycle.

4.1. Eigensolvers used in the evaluation. We have used five different eigensolvers
from three eigensolver packages. The first is IRBL, the Implicitly Restarted Block Lanczos
method [2, 1], which uses implicit restarting combined withLeja shifts to improve conver-
gence of the standard Lanczos method. IRBL is a block method and implements both external
and internal locking. For our tests, we have added three lines of code in IRBL to allow it to
return all Ritz pairs in the block, not only the converged ones. IRBL is implemented in
MATLAB, and therefore it is used mainly to demonstrate the IVE benefits on robustness and
convergence; not on timings.

The second symmetric solver is the function dsaupd from the popular software package
ARPACK [19]. Henceforth, we will refer to the particular eigensolver as ARPACK. ARPACK
is based also on implicit restarting, but unlike IRBL, it uses the Ritz values as the restarting
shifts. ARPACK is a single vector method and does not implement external or internal lock-
ing. Thus, in a sense, it represents a worst case scenario, asIVE cannot employ all of its
techniques. In particular, IVE is restricted to usingblockSize= 1, numMissedUnconv= 0,
and thusnumNew= 1, and locking must be implemented explicitly in IVE. No modifications
were made to the ARPACK code which is implemented in Fortran 77.

The remaining three solvers come from PRIMME, a software package that we have de-
veloped in C, and which is freely available [20]. PRIMME, or PReconditioned Iterative Mul-
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N = 30000; clusters = 30; multiplicity = 8; DeltaCluster = 1e-8;
D = zeros(N,1); Ones = ones(multiplicity,1);
D(1:multiplicity) = eps*Ones; value = 1.e-6;
for i = 1:clusters-1

D(i*multiplicity+1:(i+1)*multiplicity) = value*Ones;
value = value+DeltaCluster;

end
% The rest well separated and equidistant
row = clusters*multiplicity+1; separation = (1-1e-3)/(N-row);
D(row:N) = 1e-3+ (row-1:N-1)*separation;
A = spdiags(D,0,N,N);

FIG. 4.1.The Matlab code that generates the diagonal matrix DIAG.

tiMethod Eigensolver, is based on a Davidson-type main iteration, but it implements various
techniques such as blocking, external and internal locking, CG-type restarting, and adaptive
inner-outer iterations, that allow it to transform to any current eigenvalue method. We choose
three methods for their popularity and efficiency.

The first is the Generalized Davidson method with CG-restarting, or GD+k [34]. We use
it with block and locking enabled. Its main characteristic is the near optimal convergence in
terms of matrix-vector products for smallnev. But this also means that there is little room for
convergence improvement through larger block sizes.

The second method is the JDQMR variant of the Jacobi-Davidson method [32, 29]. It is
used with block and locking options enabled, although the correction equation corresponding
to each block vector is solved independently. JDQMR adaptively stops the inner iteration for
each correction equation, yielding convergence near that of GD+k, but the per-iteration cost
of JDQMR is much less expensive.

The third method is LOBPCG-W, which is a variant of the increasingly popular LOBPCG
method [15], and it differs from it in the following two ways:First, LOBPCG-W maintains an
orthogonal search space to guarantee numerical stability of the process. Second, LOBPCG-
W uses a window approach, i.e., the blockSize is allowed to besmaller thannev, and as
eigenvalues are found in the block they are locked out, and the window progresses until all
nevpairs have been found.

4.2. Experimental setup and environment. We perform experiments on three matri-
ces, each highlighting a different aspect of the IVE capabilities. The first matrix, BCSSTK16
from the Harwel-Boeing collection [9], has an eigenvalue with unusually high multiplicity.
The second matrix, DIAG, is diagonal and is constructed as shown in Figure 4.1 to have a
large number of clusters of multiple eigenvalues. The thirdmatrix, LAPLACE, comes from
the usual 7-point discretization of the 3-D Laplacian operator on the uniform grid 30×30×30
with Dirichlet boundary conditions, and it has several eigenvalues with small multiplicity.

Although, we make an effort to use similar parameters for allmethods (tolerance, basis
and block sizes, etc.), the reader should not focus on comparisons across methods. Different
implementations make such comparison difficult, but most importantly, IVE improvements
can only be understood in reference to the same method.

We perform experiments with two or three different tolerances, which is the only variable
from Section 2.1 that IVE does not vary. For IRBL, we request that the 2-norm of the residual
is less thanτλmax. For ARPACK, we provide the toleranceτ to the method. For all PRIMME
solvers we request that the 2-norm of the residual is less than τ‖A‖F . If ε = 2.2204−16 is the
machine precision, we consider three cases;τ = ε, τ =

√
ε, and a largeτ that is just small

enough to differentiate between wanted and unwanted eigenvalues. For these tolerances and
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Table 4.1A: IRBL/BCSSTK16 Initial runs
τ

k ε ε1/2 2.023e-5
1 57, 162390 28, 15728 21, 5514
2 68, 211526 32, 17616 23, 7706
3 74, 265125 32, 17844 23, 7665
4 73, 298884 32, 13748 24, 7168
5 74, 283880 32, 489830 24, 20700
6 74, 272868 38, 11340 20, 5562
7 74, 287693 29, 9541 21, 9723
8 74, 318568 32, 9560 19, 4896
9 74, 363123 36, 11007 23, 5121
10 74, 398170 32, 12890 20, 4470
15 74, 541230 39, 12600 22, 4875
20 74, 679760 56, 9140 37, 4560
74 74, 118696 74, 114848 74, 8362

Table 4.1B: IRBL/BCSSTK16 IVE runs
τ

mxk ε ε1/2 2.023e-5
1 72992 6921 5828
2 97292 7821 6028
3 76223 9229 4286
4 59392 7721 3628
5 53892 6621 4528
6 41756 6745 3680
7 64478 6981 4244
8 40988 6937 3968
9 52166 7546 4484
10 58092 6121 4528

Best total MV for Initial + IVE run
203378 21849 9142

k,mxk 1, 8 1, 10 1, 4
TABLE 4.1

IRBL on matrix BCSSTK16. Table A shows results for computingthe 74 smallest eigenvalues. For each
block size (k) and tolerance (τλmax) we report (nevFound, MV), where nevFound is how many of the 74 computed
eigenvalues are the required ones, and MV the number of matrix-vector multiplications. We underline the case that
provided the initial set of vectors for the later IVE run. Table B shows the IVE results. For all maximum block sizes
(mxk) and tolerances, IVE recovers all the 74 required eigenvalues, so we only report the number of MV performed
during validation alone. The bottom of Table B shows the total MV required (initial run plus IVE) considering the
fastest IVE run. The initial block k and the best mxk are also provided.

for a variety of block sizes, we first perform an initial run ofa solver, and record the number
of desired eigenvalues it was able to find and its performance. Then, using the approxima-
tions produced by a certain initial run, we let IVE guide the solver under various values for
maxBlockSize, and record the total number of desired eigenvalues found and the correspond-
ing performance. For each method and matrix, results appearin one table.

IRBL experiments are run under MATLAB 6 on a Sun MicrosystemsUltra 60 worksta-
tion. All other experiments are run on a PowerMac G5, with 1 GBof memory, 512 KB of L2
cache, 1 GHz memory bus, and two 2 GHz PowerPC processors, of which only one is used.
ARPACK is compiled with g77 and -O optimization, while PRIMME solvers are compiled
with gcc version 4.0.0, and -O optimization. All codes are linked with the Mac optimized
VecLib library that includes LAPACK and BLAS.

4.3. Results with matrix BCSSTK16. The dimension of the matrix is 4884, and we
seek the 74 smallest eigenvalues which are all 1.0. The next largest eigenvalue isO(1e6), and
the largest one is 4.5e-9. This matrix is useful for showing the behavior of solvers and IVE
in the presence of an exact, high multiplicity.

First, we test IRBL in Table 4.1. In Table 4.1A we perform several initial runs with
block sizesk, each using a maximum basis size ofm= kb100/kc, a maximum degree of the
dampening polynomial equal to the dimension of the matrix, and a size of the dampening
interval of m/2. For the smallest tolerance, IRBL finds all needed eigenvalues withk > 4.
The best performance is withk = 74, but we assume we do not know the multiplicity a priori.
For the larger tolerances, IRBL cannot produce the invariant space of the multiple eigenvalue
without k = 74.

Table 4.1B shows the performance of various IVE runs, each for a different maximum
block size (mxk) and starting after the underlined initial run in Table 4.1Awas performed. IVE
helps IRBL find all 74 required eigenvalues for all tolerances τ andmxk. Because, IRBL is a
method that benefits in general from larger block sizes, it isadvisable to allow larger values
of mxk. Indeed, the number of matrix-vector operations taken by the initial run followed by
the IVE(mxk= 10) is comparable to or significantly smaller than the most robust initial run
for τ = ε,τ =2e-5. For certain moderate values ofmxk, performance of IRBL-IVE improves
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Table 4.2A: GD+k/BCSSTK16 Initial runs
τ

k ε ε1/2 1e-6
1 37, 15097, 93 20, 5469, 37 13, 3232, 25
2 39, 16994, 97 24, 6883, 42 16, 4059, 27
3 41, 19591, 113 25, 7593, 46 17, 4510, 30
4 45, 20247, 121 27, 7700, 48 19, 4652, 30
5 49, 22214, 135 28, 7974, 50 20, 4968, 33
6 44, 28814, 168 27, 10640, 67 19, 6046, 40
7 54, 23754, 149 30, 8834, 56 22, 5451, 37
8 51, 25012, 155 29, 9761, 63 21, 5884, 39
9 48, 35213, 225 28, 12922, 85 21, 7476, 53
10 74, 40940, 305 37, 9557, 72 27, 6167, 47
15 74, 37138, 370 36, 8134, 83 32, 5181, 49
20 74, 31794, 362 42, 9027, 104 26, 5018, 60
30 73, 24647, 364 42, 7249, 102 30, 4609, 71
40 74, 26451, 497 42, 7111, 135 42, 4473, 87
50 74, 20936, 458 55, 7089, 165 52, 4789, 111
74 74, 19058, 600 73, 6946, 220 71, 4575, 153

Table 4.2B: GD+k/BCSSTK16 IVE runs
τ

mxk ε ε1/2 1e-6
1 9572, 82 5943, 45 4274, 33
2 9464, 77 6070, 42 4564, 32
3 8679, 69 6028, 41 4803, 33
4 9300, 77 6284, 45 4784, 34
5 9585, 78 6256, 47 5056, 38
6 9555, 78 5980, 45 5060, 36
7 11044, 95 6547, 49 4973, 38
8 15584, 152 6944, 52 4802, 35

Best total MV/times for Initial + IVE run
28270, 182 11497, 78 7796, 57

k,mxk 3, 3 1, 3 1, 2

TABLE 4.2
GD+k on matrix BCSSTK16. Table A shows results for computingthe 74 smallest eigenvalues. For each block

size (k) and tolerance (τ‖A‖F ) we report (nevFound, MV, time), where nevFound is how many of the 74 computed
eigenvalues are the required ones, MV the number of matrix-vector multiplications, and time is in seconds. We
underline the case that provided the initial set of vectors for the later IVE run. Table B shows the IVE results. For
all maximum block sizes (mxk) and tolerances, IVE recovers all the 74 required eigenvalues, so we only report the
number of MV and time taken during validation alone. The bottom of Table B shows the total MV and time required
(initial run plus IVE), considering the fastest IVE run. Theinitial block k and the best mxk are also provided. IVE is
required for robustness (

√
ε and 1e-6), and can improve time (ε).

further. Therefore, users are free to tune their code for performance without worrying about
its robustness.

Table 4.2 shows similar results for the GD+k method. The maximum basis size used for
both initial and IVE runs was 30 fork < 10 and 6k for k≥ 10. The GD+k method requires a
larger block size to find the desired invariant space, however, at a great cost in performance.
It is thus more effective to select a block size for its caching performance in the initial run
(e.g.,k = 3 in τ = ε case), and then let IVE resolve the multiplicity with a similar block size.
For theτ = ε case, this strategy improves performance often by a factor of two or three over
just using GD+k with a sufficiently large block. For the larger tolerance cases, IVE is the
only way to compute the required eigenvalues.

Table 4.3 shows the results with the JDQMR method. The maximum basis sizes used
were as in the GD+k method. Despite its efficiency, JDQMR has trouble identifying high
multiplicities even with large block sizes. For inner-outer methods, such as JDQMR, this
is not surprising as they focus mostly on improving particular eigenvectors, and thus are
prone to misconvergence. Also, large block sizes are usually not beneficial. For all three
tolerances, IVE restores robustness to JDQMR, and for a relatively low cost. Note, the best
times observed would not increase substantially if a largermxkwere used.

Table 4.4 shows results with LOBPCG-W. This method requiresthat the maximum basis
size is 3k. LOBPCG is inherently a block method that should benefit fromlargerk. Although,
the initial run of the method finds more required eigenvalueswith smallk than other methods
do, a few ones are always missed, even withk = 74. A surprising exception is thek = 1 in the
τ = ε case, which finds all of them, but such behavior is not expected in general. IVE guided
LOBPCG-W finds all eigenvalues, and at very competitive times.

Table 4.5 shows results with ARPACK, for three different tolerances. ARPACK, as clas-
sical Krylov method without locking, can only identify a fewof the eigenvectors in the mul-
tiplicity. As with the experiments in LOBPCG-W and JDQMR, decreasing the convergence
tolerance does not solve the problem. Yet, with the guidanceof the simplified IVE, ARPACK
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Table 4.3A: JDQMR/BCSSTK16 Initial runs
τ

k ε ε1/2 1e-6
1 37, 18116, 38 21, 7345, 16 12, 4233, 10
2 38, 20625, 44 22, 8089, 18 14, 4957, 12
3 38, 21991, 47 23, 8684, 20 15, 5347, 13
4 39, 24272, 52 24, 9431, 22 17, 6009, 15
5 40, 26171, 57 26, 10437, 25 18, 6744, 17
6 41, 25733, 56 26, 10282, 24 18, 6370, 16
7 42, 29610, 64 27, 11450, 28 20, 7760, 21
8 41, 27342, 59 28, 11423, 27 19, 7347, 19
9 43, 30933, 68 27, 11109, 27 19, 6898, 18
10 47, 37911, 85 30, 12470, 32 21, 8082, 23
15 47, 37919, 93 30, 11769, 36 23, 7434, 24
20 48, 30928, 81 32, 11106, 36 24, 8393, 32
30 49, 31587, 95 35, 11626, 47 28, 7076, 32
40 53, 29998, 104 40, 10522, 52 37, 8164, 43
50 70, 43311, 163 48, 10829, 61 43, 7212, 41
74 71, 35835, 181 62, 11150, 84 61, 9407, 83

Table 4.3B: JDQMR/BCSSTK16 IVE runs
τ

mxk ε ε1/2 1e-6
1 11522, 29 6886, 20 5029, 19
2 12592, 33 8034, 23 6136, 22
3 13362, 33 8656, 23 6179, 20
4 13927, 34 8196, 24 6381, 20
5 15783, 37 8921, 25 6765, 20
6 16415, 40 8684, 25 7047, 21
7 14493, 34 8546, 22 7135, 21
8 16882, 39 8449, 24 7908, 22

Best total MV/times for Initial + IVE run
29638, 67 14231, 38 9269, 29

k,mxk 1, 1 1, 1 1, 1

TABLE 4.3
JDQMR on matrix BCSSTK16. Similarly to Table 4.2, Table A shows results for initial runs and Table B for

various IVE runs, including the best performance obtained.IVE is required for robustness. Block sizes larger than
one do not increase execution time significantly.

Table 4.4A:LOBPCG-W/BCSSTK16 Initial runs
τ

k ε ε1/2 1e-6
1 74,450005,1848 60, 76687, 323 44,34279,156
2 62, 85413, 370 45, 29439, 148 32, 14384,75
3 62, 68730, 325 43, 23491, 120 30, 10998,61
4 65, 65387, 336 42, 19570, 105 28, 9467, 54
5 66, 58429, 319 39, 16659, 97 27, 8763, 51
6 67, 59416, 354 39, 16738, 104 27, 7996, 49
7 68, 53514, 330 41, 15692, 105 27, 8057, 52
8 67, 51463, 337 39, 13773, 92 27, 7440, 50
9 67, 46950, 310 39, 13534, 98 27, 7396, 54
10 69, 49260, 336 37, 11749, 80 27, 6590, 45
15 68, 39809, 322 38, 9898, 82 28, 5999, 50
20 68, 36599, 344 39, 9277, 91 30, 5678, 54
30 68, 34169, 401 43, 8277, 95 31, 4916, 58
40 72, 31679, 454 44, 7875, 118 41, 5074, 78
50 72, 38744, 655 52, 7845, 132 48, 5139, 87
74 73, 31654, 704 69, 7908, 169 64, 5240,116

Table 4.4B:LOBPCG-W/BCSSTK16 IVE runs
τ

mxk ε ε1/2 1e-6
1 5799, 30 6225, 32 4554, 24
2 7938, 46 5774, 31 4656, 25
3 12846, 86 5580, 31 4412, 24
4 9800, 68 6052, 37 4692, 28
5 10998, 81 6025, 36 4641, 27
6 11442, 90 6272, 41 4540, 29
7 7496, 60 6020, 41 4704, 31
8 7586, 62 6704, 48 5256, 36

Best total MV/times for Initial + IVE run
52749, 340 25150, 136 11002, 69

k,mxk 9, 1 4, 3 10, 3

TABLE 4.4
LOBPCG-W on matrix BCSSTK16. Similarly to Table 4.2, Table Ashows results for initial runs and Table

B for various IVE runs, including the best performance obtained. IVE is required for robustness, and beyond the
optimal block size, time does not increase significantly.

can solve the problem with no difficulties.
For BCSSTK16 and for all methods tested, a maximum block size(mxk) of one was

sufficient for robustness in IVE, showing the synergetic effects of the rest of its features such
as locking, computing more eigenpairs, and systematicallyintroducing random guesses. As
we show next, largermxkmay be needed in other cases.

4.4. Results with matrix DIAG. We seek the lowest eight 8 eigenvalues which are
equal to machine precision. Despite the lower multiplicity, most eigensolvers misconverge to
some of the eigenvalues in the second nearby cluster.

Results from GD+k tests appear in Table 4.6. Forτ = ε, the method misses a few eigen-
values if the block size is less than three, which is a typicalblock size for GD+k. With the
largerτ, GD+k finds a dimension of the required invariant subspace equal to the block size.
This is a typical case, where the block size must be increasedfor robustness in a code whose
performance deteriorates with larger block sizes. IVE avoids this trade-off, thus decoupling
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Table 4.5 ARPACK/BCSSTK16
Initial runs IVE run

τ evals MV Time evals Total MV Total time
1e-16 29 4435 86 74 20567 259
1e-8 6 1240 20 74 18233 226
1e-7 5 1150 18 74 16974 211

TABLE 4.5
ARPACK on matrix BCSSTK16. This is not a block method, so we only vary the toleranceτ. We report

(nevFound, MV, time) for the initial run of ARPACK, and the total (nevFound, MV, time) taken by both initial and the
subsequent IVE runs. The robustness gains are significant.

Table 4.6A: GD+k/DIAG Initial runs
τ

k ε 5ε1/2

1 5, 6777, 178.1 1, 567, 14.9
2 6, 13118, 305.4 2, 564, 11.6
3 8, 203927, 5127.2 3, 1267, 28.7
4 8, 24124, 521.0 4, 1548, 31.1
5 8, 48110, 1147.3 5, 2230, 50.1
6 8, 43310, 1056.9 6, 2401, 55.1
7 8, 86573, 2142.4 7, 4376, 105.0
8 8, 88696, 2264.9 8, 7008, 168.1

Table 4.6B: GD+k/DIAG IVE runs
τ

mxk ε 5ε1/2

1 8, 3858, 89.1 4, 598, 13.2
2 8, 7184, 162.0 6, 976, 19.5
3 8, 8337, 159.6 8, 1480, 29.1
4 8, 34628, 770.1 8, 2216, 44.6
5 8, 47253, 1014.4 8, 2300, 39.9
6 8, 508381, 11340.8 8, 3159, 59.2
7 8, >600K 13384.4 8, 3827, 76.9
8 8, >600K 16084.9 8, 3532, 78.5

Best total MV/times for Initial + IVE run
10635, 267.2 2044, 40.7

k,mxk 1, 1 2, 3
TABLE 4.6

GD+k on matrix DIAG. Table A shows results for computing the 8smallest eigenvalues, and Table B shows
the subsequent IVE results. We follow the same format as in previous tables, reporting (nevFound, MV, time) for the
initial as well as the IVE runs. A higher block size is needed in caseτ = 5

√
ε to find all the desired eigenvalues.

Although GD+k does not benefit from large block size in general, performance improves through an efficient initial
run followed by a robust IVE run.

performance and robustness. By choosing anmxksuch as 2 or 3, which is reasonable for low
tolerances in GD+k (and not depending on the particular problem), IVE helps GD+k find all
required eigenvalues and much faster than any initial run byGD+k. As expected, a slightly
larger block may be needed for larger tolerances, but its exact value does not significantly
affect performance. Note that forτ = 5ε1/2, IVE must be allowed to set a block size larger
than one to recover robustness.

In Table 4.7 we show results from JDQMR on the DIAG matrix. As with GD+k, IVE
can recover robustness for JDQMR if it is allowed to use a larger block size. Moreover,mxk
does not have to match the multiplicity sought (as is necessary in the initial runs), because the
synergy of the many IVE features compensates for smaller block sizes. For this solver, IVE
execution times are relatively insensitive tomxk, matching the best performance of the initial
runs and with the added robustness.

In Table 4.8, LOBPCG-W finds all the required eigenvalues forτ = ε and for allk, except
for k = 2 for which IVE recovers the missing eigenvalue for a relatively small additional cost.
Surprisingly, forτ = 5ε1/2 LOBPCG-W cannot identify the full invariant subspace in the
initial run, regardless of block size. When IVE is allowed to increase the block size above
three, all eigenvalues are found.

Finally, in Table 4.9, we show the results from ARPACK on the DIAG matrix and for
three different tolerances. Through a combination of locking, restarting and finding more
eigenvalues IVE is able to recover all needed eigenvalues, except whenτ = 1e−7 which is
close to the first intercluster gap. As with the rest of the methods, a slightly larger block size
would have resolved the problems.

Up to now, we have seen test cases where keepingmxk= 1 achieved both the required
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Table 4.7A: JDQMR/DIAG Initial runs
τ

k ε 5ε1/2

1 5, 7412, 21.5 1, 776, 4.5
2 6, 9382, 29.1 2, 765, 4.2
3 7, 12230, 38.5 3, 1453, 6.9
4 8, 12998, 38.8 4, 1650, 7.6
5 8, 14537, 47.7 5, 1401, 6.3
6 8, 16583, 52.7 6, 1648, 7.4
7 8, 17990, 61.4 7, 2822, 12.7
8 8, 11402, 36.7 8, 3908, 17.4

Table 4.7B: JDQMR/DIAG IVE runs
τ

mxk ε 5ε1/2

1 8, 4471, 13.6 1, 406, 2.3
2 8, 7967, 25.6 1, 1462, 8.4
3 8, 11723, 33.8 6, 1855, 8.4
4 8, 18817, 57.2 8, 3229, 15.2
5 8, 25618, 77.9 6, 2597, 11.0
6 8, 33243, 99.8 8, 3950, 18.4
7 8, 35727, 108.7 8, 4431, 19.6
8 8, 39984, 118.1 8, 3592, 17.8

Best total MV/times for Initial + IVE run
11883, 35.1 4005, 19.7

k,mxk 1, 1 1, 4
TABLE 4.7

JDQMR on matrix DIAG. Initial and IVE runs are shown similarly to Table 4.6. Typically, JDQMR is used
with block size of one, although a larger one does not affect it significantly Except for the larger block sizes inτ = ε,
a combination of initial and IVE runs matches the performance of the most robust JDQMR, but without a priori
knowledge of optimal block.

Table 4.8A: LOBPCG-W/DIAG Initial runs
τ

k ε 5ε1/2

1 8, 166099, 1416.6 1, 836, 7.3
2 7, 192388, 1948.3 2, 1370, 13.1
3 8, 432877, 4949.2 3, 1419, 16.6
4 8, 196039, 2542.5 3, 1367, 16.7
5 8, 189875, 2548.1 3, 1360, 16.5
6 8, 187032, 2807.7 4, 2686, 40.0
7 8, 230628, 3955.3 5, 2961, 48.7
8 8, 120816, 2053.3 4, 2072, 31.8

Table 4.8B: LOBPCG-W/DIAG IVE runs
τ

mxk ε 5ε1/2

1 8, 8714, 69.5 6, 829, 8.1
2 8, 23982, 268.3 5, 654, 7.8
3 8, 62862, 841.4 7, 3897, 59.1
4 8, 89604, 1296.8 8, 4040, 53.7
5 8, 144105, 2092.0 8, 7688, 125.3
6 8, 94350, 11915.2 8, 8089, 116.5
7 8, >600K, 13285.9 8, 8230, 119.8
8 8, >600K, 14419.4 8, 8302, 121.1

Best total MV/times for Initial + IVE run
201102, 2017.8 5407, 70.4

k,mxk 2, 1 4, 4
TABLE 4.8

LOBPCG-W on matrix DIAG. Initial and IVE runs are shown similarly to Table 4.6. Forτ = ε, LOBPCG-W
is robust for most block sizes, but the IVE does not add substantial overhead. Forτ = 5

√
ε, IVE is the only way to

obtain the required eigenvalues. Requiring the smallerτ = ε instead would be unnecessarily more expensive.

robustness and the minimum time; cases where a largermxkwas required for performance;
and cases where a largermxkwas required for robustness. But the optimum choice ofmxk
does not depend on the problem but mainly on the solver and theaccuracy needed. For ex-
ample, given a Krylov solver with basis sizem, it makes no sense in terms of convergence
to setmxk> m/3, with values less thanm/5 being more reasonable. In the above IVE tests
and for all solvers, the maximum multiplicity was larger than m/5, hence the observed de-
crease in performance with largermxk. Other solvers with larger basis sizes could behave
differently. Nevertheless, IVE restores robustness even with very modest block sizes, and
therefore users can decouple the choices of parameters thatare needed for convergence and
cache performance from the parameters needed for robustness on a particular problem.

4.5. Results with a Laplacian matrix. The LAPLACE matrix is closer to a real world
problem. We seek the 19 algebraically smallest eigenvalues, many of which come in multiple
pairs. In particular the 18th and 19th eigenvalues are a multiple pair. We give results only for
τ =1e-9, and formxk= 1,2 as IVE will not go beyond the maximum observed multiplicity.
Table 4.10 shows the results of the GD method, which is identical to GD+k but without the
CG-type restarting. An initial block size of 1 misses one eigenvalue, which is easily restored
by IVE and in shorter time than to run an initial block size of 2. Table 4.11 for GD+k shows
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Table 4.9 ARPACK/DIAG
Initial runs IVE run

τ evals MV Time evals Total MV Total time
1e-16 5 305990 5004 8 309889 5092
1e-8 5 27678 443 8 30885 515
1e-7 2 4167 68 2 4256 70

TABLE 4.9
ARPACK on matrix DIAG. As in Table 4.5, IVE is able to achieve the required robustness on the DIAG matrix

for the two smallest tolerances, and with minimal additional overhead. The need of a larger block size is evident for
such pathological cases, and for large tolerances (τ =1e-7).

Table 4.10A: GD/LAPLACE Initial runs
k τ = 1e-9
1 18, 10812, 116.9
2 19, 37497, 391.8

Table 4.1B: GD/LAPLACE IVE runs
mxk τ = 1e-9
1 3944, 49.9
2 22186, 254.9

Best total MV/times for Initial + IVE run
14756, 166.8

k,mxk 1, 1
TABLE 4.10

GD on matrix LAPLACE. Table A shows results for computing the19 smallest eigenvalues, and Table B shows
the subsequent IVE results. We follow the format of Table 4.2, testing only one tolerance, and not reporting the
nevFound in IVE, which finds all eigenvalues. We test block sizes up to the maximum multiplicity of two. IVE restores
robustness, and improves time in all cases.

that even when the method does not miss an eigenvalue, the validation step is not expensive
relatively. Table 4.12 shows similar results with JDQMR, where IVE restores robustness
in better or similar time as the most robust initial run. Finally Table 4.13 demonstrates the
robustness of IVE with ARPACK, even with only a few IVE features enabled.

5. Conclusions. Hermitian, iterative eigenvalue solvers cannot guarantee, without fac-
torizing the matrix, that the eigenvalues they compute are the required ones. Eigenvalues that
are tightly clustered or of high algebraic multiplicity canbe missed by any type of eigen-
solver. There are many techniques to alleviate this: ask formore than the required eigenpairs,
and to better than sufficient accuracy, or use a block size larger than the maximum multi-
plicity sought. Choosing these parameters, however, requires a-priori knowledge about the
problem, and increasing them beyond a certain value slows convergence and reduces cache
performance. Alternatively, locking converged eigenvectors, and restarting the solver with
new random vectors improves robustness, also at the cost of convergence. Typically, robust
choices lead to unnecessarily slow codes especially for theeasier parts of the required spec-
trum.

Our a posterioriIterative Validation of Eigensolvers is essentially a wrapper around any
given eigensolver that automates all the above choices of techniques, except for accuracy, to
provide robustness when this is needed. Relying on the synergy of these techniques, IVE
keeps calling the solver to find additional eigenpairs, until no missed eigenvalues can be
identified. IVE works both with single-vector and block solvers, requiring no changes to the
solver.

There are two key ideas in IVE. The first is the repeated Rayleigh Ritz minimization
in the space orthogonal to all converged eigenvectors, eachtime starting with at least one
random initial guess. The second is an automatic way to increase the block size based on
the largest multiplicity computed thus far, hence increasing the chances of finding missed
eigenvalues of similar multiplicity.

Both key ideas can be very expensive during the initial run ofany eigensolver, but as
an a posteriori technique they focus only on the problematicpart of the spectrum, and only
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Table 4.11A: GD+k/LAPLACE Initial runs
k τ = 1e-9
1 19, 5062, 62.7
2 19, 7852, 86.4

Table 4.11B: GD+k/LAPLACE IVE runs
mxk τ = 1e-9
1 654, 8.6
2 1180, 14.9

TABLE 4.11
GD+k on matrix LAPLACE. Similarly to Table 4.10, Table A shows results for initial runs and Table B for

various IVE runs. Best performance is not included because the initial run does not miss eigenvalues. Yet, the
additional IVE expense is not significant.

Table 4.12A: JDQMR/LAPLACE Initial runs
k τ = 1e-9
1 18, 5360, 18.7
2 19, 7144, 25.0

Table 4.12B: JDQMR/LAPLACE IVE runs
mxk τ = 1e-9
1 1213, 4.7
2 2779, 11.2

Best total MV/times for Initial + IVE run
6573, 23.4

k,mxk 1, 1
TABLE 4.12

JDQMR on matrix LAPLACE. Similarly to Table 4.10, Table A shows results for initial runs and Table B for
various IVE runs, including the best performance obtained.Robustness is restored for a smaller or comparable cost.

if needed. Moreover, the ability to resolve multiple or clustered eigenvalues during a post
processing phase, frees the user to employ in the solver the block size that gives the best
cache performance, and the tolerance required by the problem. Even when the block size
is limited to modest values in IVE, the synergetic effects ofthe rest of the techniques can
deliver the desired robustness. Our experiments support both the robustness of IVE on some
very hard problems, and its ability to decouple robustness from performance choices.

As future work, we plan to investigate the applicability andeffectiveness of IVE for
interior eigenvalues, and for non-hermitian eigenproblems. The major obstacle is that the
Rayleigh-Ritz procedure does not provide monotonic convergence toward interior eigenval-
ues. Thus, the existence of a Ritz value that is closer to a value σ than any previously
computed eigenvalue is does not imply that an eigenvalue wasmissed. A harmonic-Ritz
procedure, which may provide a solution to this problem, unfortunately does not extend to
non-hermitian problems.
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