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NEARLY OPTIMAL PRECONDITIONED METHODS FOR HERMITIAN
EIGENPROBLEMS UNDER LIMITED MEMORY. PART I: SEEKING ONE

EIGENVALUE ∗

ANDREAS STATHOPOULOS†

Abstract. Large, sparse, Hermitian eigenvalue problems are still some ofthe most computationally challenging
tasks. Despite the need for a robust, nearly optimal preconditioned iterative method that can operate under severe
memory limitations, no such method has surfaced as a clear winner. In this research we approach the eigenproblem
from the nonlinear perspective that helps us develop two nearly optimal methods. The first extends the recent
Jacobi-Davidson-Conjugate-Gradient (JDCG) method to JDQMR, improving robustness and efficiency. The second
method, Generalized-Davidson+1 (GD+1), utilizes the locally optimal Conjugate Gradient recurrence as a restarting
technique to achieve almost optimal convergence. We describeboth methods within a unifying framework, and
provide theoretical justification for their near optimality. A choice between the most efficient of the two can be
made at runtime. Our extensive experiments confirm the robustness, the near optimality, and the efficiency of our
multimethod over other state-of-the-art methods.

1. Introduction. The numerical solution of large, sparse, Hermitian and realsymmetric
eigenvalue problems is central to many applications in science and engineering. It is also one
of the most time consuming tasks. Recently, electronic structure calculations, with eigen-
problems at their core, have displaced Quantum Chromodynamics as the top supercomputer
cycle user. The symmetric eigenvalue problem seems deceptively simple to solve, given well
conditioned eigenvalues and a wealth of theoretical knowledge. Yet, these advantages have
enabled researchers to push modeling accuracy to unprecedented levels, routinely solving for
a few extreme eigenvalues of matrices of size more than a million, while an order of a billion
has also been tried [48].

The sheer size of these problems can only be addressed by iterative methods. At the
same time, the size imposes limits on the memory available tothese methods. Moreover,
preconditioning becomes imperative to reduce the total number of iterations. While many
eigenvalue iterative methods have been proposed, there is little consensus on which method
is the best and in what situations. The unrestarted Lanczos method is known to be optimal
for solving Hermitian eigenvalue problems but, unlike the Conjugate Gradient (CG) method
for linear systems, it requires unlimited storage of its iteration vectors. With preconditioning,
or under limited storage, the question of optimality remains open. Furthermore, there is a
noticeable scarcity of high quality, general purpose software for preconditioned eigensolvers.
In this research we seek an optimal, or nearly optimal, method that can utilize preconditioning
and that can be implemented in a robust software that is also flexible.

In the particular case of seeking one eigenpair, if the eigenvalue were known, solving
a linear system using CG to obtain the corresponding eigenvector would yield the optimal
Lanczos convergence. In practice both the eigenvalue and the eigenvector are unknown, so the
appropriate way to approach this problem is through the resulting slight nonlinearity, which
then helps us to identify practical and near optimal methods. Currently, the best methods
follow this approach, adopting either the Newton point of view or the nonlinear Conjugate
Gradients (NLCG) point of view.

In the first part of this paper we argue that regardless of the approach (Newton or NLCG),
the underlying iterative method should be the Generalized Davidson method. In the second
part, we examine the optimality from the Newton point of view, and identify a truncated
Newton version followed by JDCG [46] as within a small factorof optimal. In fact, we argue
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that this factor is less than three and usually much less thantwo. We then extend JDCG to
JDQMR by adapting the quasi-minimal residual (QMR) insteadof CG, that allows for better
stopping criteria of the inner iteration, for indefinite preconditioners, interior eigenvalues and
improved robustness. In the third part of the paper, we studythe NLCG point of view and,
in particular, the related locally optimal CG recurrence. The approach can be used for short
recurrences (as in LOBPCG [32]) or for restarting the subspace accelerated GD+1 [44, 68].
We show why local optimality of the Ritz value extends also tothe Ritz vector, and we provide
new intuition on the performance of GD+1 by relating it to thelimited memory quasi-Newton
methods (such as L-BFGS) [45]. In the fourth part, we presentone of the most extensive set
of experiments in the literature, comparing our methods with state-of-the-art methods.

Our conclusion to be drawn from our experiments is that both GD+1 and JDQMR always
solve a given problem, regardless of the difficulty, and one of the two is always the fastest
method. Over all the methods tested, GD+1 typically yields the smallest number of iterations,
often matching the optimal convergence. The cheaper inner iteration of JDQMR benefits
cases where the preconditioner and the matrix-vector operations are inexpensive. As this
expense can be measured at runtime, an implementation basedon the common GD driver can
switch dynamically between GD+1 and JDQMR to make the most effective use of these two
nearly optimal methods.

We note that this is not a review paper, although substantialamount of review material
is used to identify, build, and provide new intuition on the various components of the desired
method. To keep the paper tractable both in size and readability, we focus on finding only
one eigenpair. The additional problems of deflation, locking, correction equation projectors,
blocking, and subspace acceleration which are relevant when a large number of eigenvalues
are required will be addressed in a separate paper.

2. The Generalized-Davidson as an outer iteration model.There is a plethora of
iterative methods for large, sparse, symmetric eigenvalueproblems. Invariably, these are
Krylov or Krylov-like subspace methods that approximate the required eigenvectors from a
subspace that usually grows in size as it is iteratively updated. The methods host a variety
of differentiating features, of which two are the defining features for our research: We need
methods that can utilize arbitrary preconditioners and that can operate on a limited memory
space.

Shift-and-invert is probably the most well studied and powerful preconditioning ap-
proach [52], which when coupled with a Lanczos-type method can produce robust, industrial
strength methods [27]. In this research we assume that an exact factorization for shift-and-
invert is not possible because of the size of the problem. In such cases, approximations to
(A−ηI)−1 are often used as preconditioners to linear solvers for the Inverse Iteration (IN-
VIT), Rayleigh Quotient Iteration (RQI) or the (Jacobi-) Davidson methods [52, 71, 43, 60].
Although the accuracy of the term “eigenvalue preconditioning” for this approach has re-
ceived some scrutiny [15, 31], the resulting methods improve convergence similarly to the
corresponding preconditioned linear system solvers. Moreover, there are many established
and tunable ways to produce such preconditioners [56]. Someapplications may use differ-
ent types of preconditioners, including polynomial transformations, frequency filtering or
smoothing, or other techniques that do not correspond to approximately solving a linear sys-
tem [55, 67].

The Generalized Davidson (GD) method was one of the first methods to cater to such an
arbitrary selection of preconditioners [43]. Extending the original Davidson’s method [11],
at every iteration GD applies a user defined function on the residual of the sought eigenpair
to “precondition” it — or to enrich it in the required directions. The vector is then used to en-
large the search space from which a new approximation is obtained through the Rayleigh-Ritz
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ALGORITHM 2.1. The Generalized Davidson algorithm for one eigenpair
(1) start withv0 starting vector
(2) t(0) = v0, m= 0, nmv= 0
(3) while nmv< max nummatvecs
(5) Orthonormalizet(m) againstvi , i = 1, . . . ,m
(6) m= m+1; nmv= nmv+1; vm = t(m−1); wm = Avm

(7) Hi,m = vT
i wm for i = 1, . . . ,m

(8) compute eigendecomposition H= SΘST with θ1 ≤ θ2 ≤ . . . ≤ θm

(9) u(m) = Vs1; θ(m) = θ1; w(m) = Ws1
(10) r (m) = w(m) −θ(m)u(m)

(11) if ‖r (m)‖ ≤ tol, return θ(m),u(m)

(12) if m≥ mmax then
(13) H = 0
(14) for i = 2, . . . ,mmin

(15) vi = Vsi ; wi = Wsi ; Hii = θi

(16) end for
(17) v1 = u(m); w1 = w(m); H11 = θ(m); m= mmin

(18) end if
(19) Precondition the residualt(m) = Prec(r (m))
(20) end while

procedure [52]. When the search space exhausts the availablememory, the method restarts
with the best approximations of the required eigenvectors and possibly with additional infor-
mation to improve convergence. Algorithm 2.1 depicts a version of the basic GD algorithm
for finding one, smallest eigenpair(λ1,x1) of a real symmetric matrix,A.

Despite many efforts over two decades, the theory behind theconvergence of the GD
algorithm is still not well understood [43, 10, 69, 60]. For some recent, promising results see
[49, 50, 34, 47]. One of the early unsettling issues with the GD had been the stagnation of the
method if an accurate enough approximation to(A−θ(m)I)−1, whereθ(m) is the Ritz value,
is used as a preconditioner. An elegant resolution to this problem has been given by Sleijpen
et al. with the Jacobi-Davidson (JD) method [60]. Instead ofinverting(A−ηI), they showed
that the appropriate form for this preconditioning should be an approximate solution to the
correction equation:

(I −u(m)u(m)T)(A−ηI)(I −u(m)u(m)T)t(m) = −r (m) = θ(m)u(m) −Au(m),(2.1)

whereη is a shift close to the wanted eigenvalue. Thus, by working orthogonally to the
Ritz vectoru(m), JD avoids stagnation. Among many known properties for thiscorrection
equation, one that is relevant to this paper is that if eq. (2.1) is solved accurately, the new
vectoru(m) + t(m) is collinear to the iterate produced by Inverse Iteration [41, 60, 58, 15, 73].
In addition, if η = θ(m), the method is equivalent to RQI with subspace accelerationof all
previous iterates. The true flexibility of GD and JD, however, is that they converge even when
eq. (2.1) is solved approximately through an iterative method such as CG. A preconditioner
K can also be used as long as it is inverted orthogonally to the space ofQ = u(m). To this
effect, the pseudoinverse of such a preconditioner can be written as:

(

(I −QQT)K(I −QQT)
)+

= (I −K−1Q(QTK−1Q)−1QT)K−1(I −QQT)(2.2)

= K−1(I −Q(QTK−1Q)−1QTK−1)(I −QQT).(2.3)
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Moreover, CG can be implemented efficiently with only one projection withQ per iteration.
See [17, 60, 3] for details.

Algorithm 2.1 is identical to the JD algorithm as provided in[3], except for step (19)
which is handled specially in JD. In this sense, we can view JDas a subcase of GD. Practi-
tioners, however, usually refer to GD as asingleapplication of the available preconditioner
K−1 to the residual. In that case, preconditioning orthogonally to u(m), using equations (2.2–
2.3) is usually called Olsen’s method [48] (or JD with no inner iterations), and it involves two
operations withK−1 which can be very expensive. In practice,K does not often approximate
(A−θ(m)I), butA, and even when it does it is rarely accurate enough to requireor even benefit
from the JD projections, and thus GD is widely used in many applications [73, 2]. Exceptions
exist for “non-standard” cases and when there is an inner iterative method as discussed in [61]
and more extensively in [47]. In the remaining of this paper,we will use GD to refer to the
method that preconditions the residual without Olsen’s method.

Generality is an additional reason for considering GD as ourbasic iterative framework.
Algorithm 2.1 is strikingly similar to an Arnoldi method with flexible preconditioner, making
GD a chameleon method. Without preconditioning, GD is equivalent to Arnoldi, albeit with
an expensive implementation, that facilitates not only thetesting of software correctness, but
also a common platform for comparison between methods, abstracting from the implementa-
tion details. For example, the restarted, unpreconditioned GD is mathematically equivalent to
implicitly restarted Lanczos (IRL) and Thick Restarted Lanczos [63, 38, 42, 70, 74]. A block
GD implementation is also possible [39, 65, 23], yielding the equivalents of block Lanczos
[52] and subspace iteration [9] (without preconditioning), or preconditioned subspace itera-
tion [3]. In addition, combining a block GD with our earlier GD+k restarting scheme [68],
which we study closer in Section 4.3, allows an equivalent and stable implementation of
the LOBPCG method [32]. Needless to say, with an appropriatesolution to the correction
equation, the algorithm is identical to many variants of RQI, INVIT, JD and the more re-
cent JDCG of Notay that we study closely in the following section [46]. Beyond emulating
the above methods, GD can enhance them with block, subspace acceleration, while working
under given memory constraints.

Often the choice of algorithm and its parameters depends on the particular problem
solved. The above discussion supports the argument that if there is to be one general purpose
method that allows for arbitrary preconditioning and converges near optimally for a given
problem, that algorithm must follow the GD template. The rest of the paper presents argu-
ments why the tuning of the GD parameters, a dreaded task by practitioners, can be almost
fully automated in the symmetric case.

3. The Newton view. Central to our discussion is the slight nonlinearity of the eigen-
value problem, i.e., both eigenvectors and eigenvalues areunknown. If the required eigen-
valueλ1 were known, the problem would degenerate to a symmetric linear system of equa-
tions(A−λ1I)x1 = 0. This singular system can be solved optimally with CG or some other
three-term recurrence method, provided that our initial guessx0 is not defective in the direc-
tion of x1, i.e., x0 = x1 + y with x1 ⊥ y ∈ Range(A− λ1I). A Krylov solver approximates
the correctiony from the subspaceK ((A− λ1I),(A− λ1I)y). BecauseK ((A− λ1I),(A−
λ1I)y) ⊆ Range(A− λ1I), the solver will converge tox1 with rate determined by the con-
dition number of the deflated system:λmax/λ2. The optimality of CG implies that this is
the ultimate convergence rate that any Krylov eigensolver can reach for finding the small-
est eigenvalue [31, 33]. Note that unrestarted Lanczos achieves this rate, because the space
that includesy yields also the eigenvalueλ1. Equivalently, but more stably, we could solve
eq. (2.1) fort = y with η = λ1, obtaining the same optimal rate and converging in one outer
JD step. Because we use symmetric QMR, we call this benchmarkQMRopt. In general,
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before reaching that rate, an eigensolver would also have tofind λ1.
This nonlinearity can be resolved by applying the Newton method on the Grassmann

manifold (to enforce normalization of the eigenvectors), which is equivalent both to RQI and
to the Jacobi-Davidson method with no subspace acceleration and with accurate solution of
the correction equation [59, 73, 15, 57]. Convergence of theouter iterations is known to be
ultimately cubic when the initial guess is sufficiently close to x1 [52]. In the absence of a
good initial guess, truncated Newton methods or a subspace method such as Lanczos or GD
must be used to ensure global convergence.

It has long been noticed that using iterative methods to solve the linear equation in
RQI and INVIT beyond some level of accuracy does not decreasethe number of outer it-
erations, while increasing the overall number of matrix vector multiplications which typi-
cally correlates to the computational cost of the method. Interestingly, solving the linear
equation approximately through a constant number of inner iterations has been shown to be
equivalent to truncated (inexact) Newton methods [58]. However, the equivalence does not
hold if the linear system in RQI is solved inexactly to a certain accuracy. Analysis of the
stopping criteria for these inner-outer methods has been the focus of considerable research
[53, 36, 21, 37, 62, 26, 25]. Because the solution vector for RQI and INVIT grows in norm
the closer it is to the actual eigenvector, all proposed techniques test the convergence of the
linear system relative to the norm of the solution vector. This norm can be monitored during
the inner iteration.

The JD method is a better representative of inexact Newton minimization methods, be-
cause these apply the pseudoinverse of the Hessian to the gradient of the function. This is
equivalent to solving eq. 2.1, through a certain number of inner iterations, or to a specified
accuracy. Hence various stopping criteria for truncated Newton methods have been used in
JD [60, 13]. Still, the objective is the convergence of the eigenvector, not of the linear system.
Recently, an analysis for the interplay of inner-outer iterations was given by Notay [46]. No-
tay provided theoretical and experimental arguments why his method, JDCG, provides nearly
optimal convergence.

3.1. The JDCG approach. To simplify the notation we denote the projected operators
as:

Aη,u(m) = (I −u(m)u(m)T)(A−ηI)(I −u(m)u(m)T)(3.1)

Ku(m) = (I −u(m)u(m)T)K(I −u(m)u(m)T).(3.2)

Assume that a Krylov iterative method (e.g., CG) is used to solve eq. (2.1) and that no
Rayleigh Ritz is performed in the outer JD step, so the methodis similar to the unaccelerated
Newton method [58]. The latter assumption facilitates an inexpensive way to monitor the
eigenvalue convergence inside the linear solver, while being a worst case scenario for the
subspace accelerated JD. At thek−th inner iteration, the linear system residual is:

gk = r (m) +Aη,u(m) tk,(3.3)

wheretk is the current approximate solution to the correction equation. If the linear solver
were stopped at thek−th step, the corrected eigenvector, its Rayleigh quotient,and its residual
would be:

u(m+1)
k = (u(m) + tk)/‖u(m) + tk‖(3.4)

θ(m+1)
k = u(m+1)T

k Au(m+1)
k(3.5)

r (m+1)
k = Au(m+1)

k −θ(m+1)
k u(m+1)

k .(3.6)
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Note that althoughgk → 0, ask→ ∞, the eigenresidualr (m+1)
k converges not to zero but to the

eigenvalue residual of the next INVIT iterate:r (m+1)
∞ . Notay showed that‖gk‖ and‖r (m+1)

k ‖
converge at similar rates up to the point where‖r (m+1)

k ‖ approaches‖r (m+1)
∞ ‖. Beyond this

point, there is no benefit in continuing the inner linear solver and this is the main idea behind
JDCG. Notay also developed an inexpensive way to express thenorm of the eigenresidual

‖r (m+1)
k ‖ as a function of the linear system residual‖gk‖ when CG is the inner solver. When

the linear system residual starts to converge at a faster rate than the corresponding eigenvalue
residual, the inner iteration is stopped.

Notay showed that for extremal eigenvalues JDCG demonstrates the same convergence
as a periodically restarted CG method. Because the number ofrestarts is small, corresponding
to the number of Newton steps rather than to the size of the search space, JDCG achieves near
optimality, converging within a small factor of optimal. Insection 5.2 we provide intuition
on how to quantify this small factor. Notay also showed that if the Ritz valueθ(m) is closer to
λ1 than toλ2, eq. (2.1) withη = θ(m) is positive definite and CG can be used safely. See [40]
for a similar result.

However, positive definiteness of the correction equation can be a limiting factor for
a general purpose eigenvalue solver based on JDCG. There areseveral reasons. First, when
good initial guesses are not available,θ(m) can be well inside the spectrum causing eq. (2.1) to
be indefinite. Second, eigensolvers of the GD/JD type can be easily modified to find interior
eigenvalues closer to a given shiftη. Regardless of the quality of the initial guess, JDCG
cannot be used in this case, and we have to rely on methods suchas MINRES or SYMMLQ
[51]. Third, and perhaps most importantly, the preconditioner K cannot be guaranteed to
be positive definite. Practitioners solving linear systemswould rarely choose an indefinite
preconditioner but for eigenvalue problems good approximations to the shifted matrix(A−
θ(m)I) arise naturally in many applications. Examples include strongly diagonal dominant
matrices, for which the Davidson method was originally developed [11], and discretizations
of PDEs with spectral or Fourier bases (see experiments in section 5.5). Unfortunately, neither
CG nor MINRES can utilize an indefinite preconditioner.

In the following section, we extend the JDCG ideas to the symmetric QMR of Freund and
Nachtigal [18, 19] which allows for both indefinite operatorand preconditioner. In addition,
the monotonic convergence of the linear system quasi-residual allows for more intuitive and
efficient stopping criteria than those used in JDCG.

3.2. The JDQMR method. In case of indefinite correction equation or preconditioner,
GMRES or BiCGSTAB have been suggested as robust inner solvers [3]. GMRES, how-
ever, requires either storage of its whole search space or frequent restarts that degrade its
convergence. BiCGSTAB on the other hand does have a short term recurrence, capable of
generating a large Krylov space implicitly, but it is oblivious to the symmetry of the matrix
and thus twice as expensive per step as CG. Although convergence may be also twice as fast
as that of BiCG [72] in the general case, for symmetric matrices this benefit may be smaller as
the squared polynomial of BiCGSTAB is clearly suboptimal tothe same degree polynomial
obtained through anoptimalmethod based on the Lanczos recurrence.

3.2.1. Symmetric QMR. The QMR method for non symmetric matrices uses the BiCG
[4] short-term recurrence but obtains the approximations by a quasi minimization of the resid-
ual over the available terms. Although there is no global optimality property, and the actual
residual norm is not minimized, convergence is much smoother than with BiCG. Freund et al.
noticed in [18] that when the matrix is symmetric, the simplification of the Lanczos process
gives rise to a symmetric version of BiCG that can be used withany symmetric, possibly in-
definite preconditioner. Based on this symmetric BiCG, theyproposed the symmetric QMR
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ALGORITHM 3.1. Symmetric QMR
Input: Aη,u(m) ,Ku(m) ,−r (m),maxiter
Output: tk
(1) t(m)

0 = 0,δ0 = 0, r0 = −r (m),d0 = K−1
u(m)r0

(2) ĝ0 = ‖r0‖,Θ0 = 0,ρ0 = rT
0 d0

(3) if (maxiter= 0), t0 = d0, return
(4) for k = 1, . . . ,maxiter
(5) w = Aη,u(m)dk−1

(6) σk−1 = dT
k−1w, if (σk−1 = 0), return

(7) αk−1 =
ρk−1
σk−1

(8) rk = rk−1−αk−1w
(9) Θk = ‖rk‖

ĝk−1
,ck = 1

√

1+Θ2
k

, ĝk = ĝk−1Θkck

(10) δk = (c2
kΘ2

k−1)δk−1 +(c2
kαk−1)dk−1

(11) tk = tk−1 +δk

(12) if (ĝk converged ORρk−1 = 0), return
(13) w = K−1

u(m)rk,ρk = rT
k w,βk = ρk

ρk−1

(14) dk = w+βkdk−1

(15) end for

(sQMR) algorithm. sQMR improves the functionality of MINRES, while keeping the same
computational requirements. sQMR and MINRES are equivalent without preconditioning.

Assume the correction equation with operatorAη,u(m) , preconditionerKu(m) and the right

hand side−r (m). As it is typical in the JD method, assume that the initial guess is zero.
Algorithm 3.1 shows the sQMR algorithm for solving the abovecorrection equation with
right preconditioning.

Similarly to CG, thedk are theAη,u(m) conjugate vectors that BiCG produces, andrk are
the BiCG residuals of the linear system at thek−th step. Hence ([4]):

dT
i Aη,u(m)dk = 0, ∀i = 0, . . . ,k−1(3.7)

dT
i rk = 0, ∀i = 0, . . . ,k−1.(3.8)

Note that the sQMR residual,gk, and its normgk = ‖gk‖ = ‖r (m) + Aη,u(m) tk‖ arenot com-
puted during the algorithm; only the norm from the quasi minimizationĝk. The actual norm
gk, although typically larger than ˆgk, it is bounded by:

gk ≤
√

k+1 ĝk.(3.9)

Without preconditioning,gk = ĝk, and depending on the preconditioner the above bound can
be sharp. The actual normgk could be computed at the expense of two additional vector
updates and one inner product, and by storing an extra vectorfor Aη,u(m)δk. However, as we
show in Section 3.4 this expense is not justified. In the following section, we consider only
the actual residual normgk.

Finally, note that we have used right preconditioning so that the normgk corresponds to
the original correction equation, not the preconditioned one (see [18]). This is desirable as we
want to relate the eigenvalue residual to the monotonicallydecreasing linear system residual.

3.2.2. Monitoring the eigenresidual in sQMR. Replacing CG with sQMR results in

a method which we call JDQMR. As with JDCG, we must provide expressions forθ(m+1)
k
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and‖r (m+1)
k ‖ of eqs. (3.4–3.6) that can be calculated through short recurrences in sQMR

and without additional matrix-vector, preconditioning, or vector operations. The difference
between the expressions for JDCG and JDQMR is strictly due tothe projection process. Simi-
larly to [46], we consider a simplified JD process where the Ritz vector is updated through eq.
(3.4) and not through a Rayleigh Ritz procedure in the whole search space. A subspace accel-

erated JDQMR would improve the Ritz value,θ(m+1)
k , but not necessarily the residual norm,

‖r (m+1)
k ‖. This simplification, therefore, constitutes a worst case scenario for the complete

JDQMR, and it also keeps the expressions inexpensive and tractable.
THEOREM 3.1. Consider Algorithm 3.1 applied to the correction equation (2.1), and

the definitions in (3.1–3.6). Subscripts denote the QMR iteration number and superscripts
the iteration number of the outer JD process. Based on the notation of the algorithm, define
the following scalars:

Bk = tT
k (A−ηI)u(m),(3.10)

Γk = tT
k (A−ηI)tk = tT

k Aη,u(m) tk,(3.11)

∆k = δT
k r (m) = −δT

k r0,(3.12)

Φk = δT
k (A−ηI)δk = δT

k Aη,u(m)δk,(3.13)

Ψk = tT
k−1(A−ηI)δk = tT

k−1Aη,u(m)δk,(3.14)

γk = c2
kΘ2

k−1, ξk = c2
kαk−1.(3.15)

Then, these expressions hold:

θ(m+1)
k = η+

(

θ(m) −η+2Bk +Γk

)

1+‖tk‖2(3.16)

‖r (m+1)
k ‖2 =

‖gk‖2

1+‖tk‖2 +
(θ(m) −η+Bk)

2

1+‖tk‖2 − (θ(m+1)
k −η)2,(3.17)

whereBk andΓk satisfy the following recurrences:

∆k = γk∆k−1−ξkρk−1(3.18)

Bk = Bk−1 +∆k(3.19)

Γk = Γk−1 +2Ψk +Φk(3.20)

Φk = γ2
kΦk−1 +ξ2

kσk−1(3.21)

Ψk = γkΨk−1 + γkΦk−1,(3.22)

with B0 = ∆0 = Γ0 = Φ0 = Ψ0 = 0.
Proof. From eqs. (3.4–3.5),θ(m) = u(m)TAu(m), ‖u(m)‖ = 1, the symmetry ofA, and the

fact thattT
k u(m) = 0, we obtain‖u(m) + tk‖2 = 1+‖tk‖2 and eq.(3.16):

θ(m+1)
k = (u(m) + tk)

TA(u(m) + tk)/(1+‖tk‖2)

= η+(θ(m)−η+2tT
k (A−ηI)u(m) + tT

k Aη,u(m) tk)/(1+‖tk‖2).

Becauser (m+1)
k ⊥ u(m+1)

k we derive eq.(3.17) as in eqs. (23–25) from [46]:

‖r (m+1)
k ‖2 = ‖(A−ηI)(u(m) + tk)‖2/(1+‖tk‖2)− (θ(m+1)

k −η)2

=
(

‖(I −u(m)u(m)T)(A−ηI)(u(m) + tk)‖2+
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‖u(m)u(m)T(A−ηI)(u(m) + tk)‖2
)

/(1+‖tk‖2)− (θ(m+1)
k −η)2

= (‖gk‖2 +(θ(m)−η+Bk)
2)/(1+‖tk‖2)− (θ(m+1)

k −η)2.

The recurrences are obtained through the vector update formulas in sQMR.

Bk = tT
k (A−ηI)u(m) = tT

k (A−θ(m)I)u(m) = tT
k r (m)

= (tk−1 +δk)
T r (m) = Bk−1 +∆k,

∆k = δT
k r (m) = (γkδk−1 +ξkdk−1)

T r (m) = γk∆k−1 +ξk(dT
k−1r (m)).

Notice thatr (m) = −r0 = −rk−1−Aη,u(m) t
bcg
k−1, whererk−1, t

bcg
k−1 are the residual and the solu-

tion that the BiCG process produces at thek−1 inner step. We know that the BiCG solution
tbcg
k−1 is a linear combination of the firstdi,i=0:k−2 BiCG vectors, and from eq. (3.7) we have

dT
k−1Aη,u(m) t

bcg
k−1 = 0. Thus, using the update formula ofdk−1 in sQMR and eq. (3.8), we

obtain eq. (3.18):

∆k = γk∆k−1−ξkdT
k−1rk−1 = γk∆k−1−ξk(rT

k−1K−1
u(m)rk−1 +βk−1dT

k−2rk−1)

= γk∆k−1−ξkrT
k−1K−1

u(m)rk−1 = γk∆k−1−ξkρk−1

The recurrence forΓk is decomposed as follows:

Γk = (tk−1 +δk)
TAη,u(m)(tk−1 +δk) = Γk−1 +2Ψk +Φk

We first considerΦk. Notice that from the sQMR algorithm thatδk is a linear combination of
thedi,i=0:k−1. Thereforeδi are also conjugate todi , i.e.,

δT
k−1Aη,u(m)dk−1 = 0.(3.23)

Then, we can derive eq. (3.21) as follows:

Φk = (γkδk−1 +ξkdk−1)
TAη,u(m)(γkδk−1 +ξkdk−1)

= γ2
kΦk−1 +ξ2

kdT
k−1Aη,u(m)dk−1 = γ2

kΦk−1 +ξ2
kσk−1.

Now, we considerΨk. We observe that the sQMR solution vectortk is a linear combination of
theδi,i=0:k vectors. Using the conjugacy ofδi with di in eq. (3.23), we havetT

k Aη,u(m)dk = 0.
Then eq. (3.22) is obtained as:

Ψk = tT
k−1Aη,u(m)(γkδk−1 +ξkdk−1) = γktT

k−1Aη,u(m)δk−1

= γktT
k−2Aη,u(m)δk−1 + γkδT

k−1Aη,u(m)δk−1 = γk(Ψk−1 +Φk−1).

Finally, it can be simply verified that fork = 0 the above scalar quantities have the value of
zero.

3.3. Stopping criteria. The above theorem provides the means to dynamically and in-
expensively monitor the eigenvector convergence inside the linear solver. It also characterizes
the convergence behavior of both the linear system and the eigenvalue residual. We first con-
sider the unpreconditioned case, where the sQMR is equivalent to MINRES, andgk = ĝk. To
simplify the discussion we introduce the following notation where non-boldface letters are
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used to denote the norms of the vectors with corresponding bold-face letters. Specifically,

r(m+1)
k = ‖r (m+1)

k ‖(3.24)

r(m+1)
∞ = ‖r∞‖ = ‖ lim

k→∞
r (m+1)

k ‖(3.25)

gk = ‖gk‖(3.26)

tk = ‖tk‖(3.27)

pk =
(θ(m)−η+Bk)

2

1+‖tk‖2 − (θ(m+1)
k −η)2.(3.28)

Equation (3.17) suggests that as the linear system is solved, gk → 0, r(m+1)
k → r(m+1)

∞ ,

andpk → (r(m+1)
∞ )2. Note thatpk could be negative initially, but converges to a positive limit

with rate similar to that ofgk. In addition, Notay showed for a similar equation for the CG

that pk is much smaller than(r(m+1)
k )2. Therefore,r(m+1)

k stays close togk until the proximity
of the limit. Notay proposed to stop the inner solver when convergence rates start to devi-

ate: gk/gk−1 < (r(m+1)
k /r(m+1)

k−1 )α′
, for some user definedα′, say 0.9. The lack of monotonic

convergence ofgk in CG complicates the above stopping criterion, and the practical JDCG
algorithm introduces several different tests and user defined parameters. The smooth conver-
gence of the JDQMR residuals allows for a much more accurate use of convergence rates.
Moreover, we show how to provide a set of almost parameter-free, adaptive stopping criteria.

First rewrite eq. (3.17) as

r(m+1)2
k =

g2
k

1+ t2
k

+ pk.(3.29)

We want to quantify how accurate an approximation of the INVIT iterate we should obtain,
or equivalently to identify anα, such that we stop when

r(m+1)
k ≤ α r(m+1)

∞ , with α > 1.(3.30)

Based on our discussion above, the results in [46], and the fact that in the domain of Newton
convergence (for the outer iteration),r(m+1)

∞ is much smaller thanr(m+1)
0 , we can assume that

pk ≈ r(m+1)2
∞ even for relatively smallk, and in particular fork close to the required stopping

point. Thus, we can turn condition (3.30) into a testable condition involving only gk and

r(m+1)
k :

r(m+1)2
k ≤ α2 pk = α2r(m+1)2

k −α2g2
k/(1+ t2

k ) ⇔

gk ≤ r(m+1)
k

√

α2−1
α2

√

1+ t2
k .(3.31)

Because the norm of the correction is typicallytk � 1, especially close to convergence, the
above condition is determined by the factor based onα. A first approach to obtaining this
factor is to observe that when the two termsg2

k/(1+ t2
k ) andpk in eq. (3.29) become equal,

r(m+1)
k is approximately within a factor of

√
2 from its limit. Thus, we could stop if the

linear system residual is smaller than 0.707
√

1+ t2
k of the eigenresidual. Our experiments,

however, have shown this not to be an effective factor. Indeed, a factor close to 0.99
√

1+ t2
k

has yielded consistently better results.
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To identify an appropriate factorα, we should first understand its effects on the global
convergence of the method. On exit from the inner iteration,the eigenvalue errors satisfy the
Bauer Fike bounds:

|θ(m+1)
k −λ1| ≤ r(m+1)

k(3.32)

|θ(m+1)
∞ −λ1| ≤ r(m+1)

∞ .(3.33)

We avoid using the tighter bounds of [52] becauseλ1 may not be sufficiently separated from

the spectrum relative tor(m+1)
k . After completing the following outer step, exact INVIT will

reduce the eigenvalue error by a factorf , i.e, f r(m+1)
∞ . Therefore, a small enough value ofα

— obviously smaller than 1/ f — is needed for the inexact INVIT to guarantee convergence.
An analysis of the bounds that such a value has to satisfy and some heuristics are presented

in [62] (see also [6]). Similarly, exact RQI will yield an eigenvalue errorf |θ(m+1)
∞ − λ1|2,

for some factorf . As Smit et al. derive in [62], quadratic convergence in inexact RQI is
maintained even for relatively large values ofα, especially during the later stages of the
iteration, as long as sufficiently small ones are used in the first few iterations.

In the first few outer iterations, the JDQMR may not have a goodestimate of the eigen-
value, suggesting the contrary, i.e., that the correction equation should not be solved accu-
rately at all. This presents no problem, because JDQMR is more flexible than INVIT/RQI,
in that even if no accuracy is required in the solution of the correction equation (zero inner
iterations) the subspace accelerated algorithm still converges as fast as Arnoldi or GD (with
preconditioning). The outer step, however, can be rather expensive compared with the recur-
rence based inner solver. For this reason, it is beneficial topostpone exiting from the QMR
as much as possible to achieve an outer convergence similar to that of the exact INVIT/RQI.

This implies thatr(m+1)
k andr(m+1)

∞ should be of the same order of magnitude, e.g., for INVIT
α < min(1/ f ,10). We have chosenα = 7, which yields the parameter 0.99 of the previous
paragraph. The choice ofα that gives an optimal total number of inner iterations, i.e., num-
ber of matrix-vector operations, is beyond the scope of thispaper and the focus of current
research. We note, however, that preliminary results with an RQI model based on equations
(3.29) and (3.31) have confirmed that when a constantα is to be used its value should be 8,
which is close to our experimental choice.

The criterion (3.31) can be complemented for the case where the convergence of the

linear system solver is very slow or experiences plateaus. In that case, we wantr(m+1)
k to be

even closer togk relative to the convergence rate ofgk and not only by a constant factor. We

demand, therefore, that the average convergence rate of theeigenresidual(r(m+1)
k /r0)

1/k =

(r(m+1)
k /g0)

1/k is no more (i.e., not slower) than the geometric average of the last two average
rates of the linear system, i.e., stop when,

√

gk

g0

gk−1

g0
<

r(m+1)
k

g0
⇔

gk < r(m+1)
k

√

gk/gk−1.(3.34)

Putting together inequalities (3.31) and (3.34) we obtain our first stopping criterion:

gk ≤ r(m+1)
k max

(

0.99
√

1+ t2
k ,

√

gk/gk−1

)

.(3.35)

As we discuss in section 5.2, despite the optimality of the above criteria, sQMR may
experience convergence plateaus in more than one outer JD iteration. During these plateaus
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it attempts to resolve certain eigencomponents that prevent convergence for the specific cor-
rection equation. Although this plateau would be built evenby our QMRopt benchmark,
repeating it every outer iteration would be wasteful; wasteful in a different sense than what

we have studied till now. Thegk andr(m+1)
k may still be close and the inner iteration may still

offer improvements to the correction, but to do so it needs components that it keeps rebuilding
for different correction equations at every outer step. Although not severe, this is sometimes
observed in problems with slow convergence. In such cases, we have found it beneficial to
stop whenr0 is reduced by a certain factor, say

r(m+1)
k < 0.1 r0.(3.36)

Note that this is very different from the traditionalgk < 0.1 g0, and that it should be used in

conjunction with the criteria that guarantee closeness ofgk andr(m+1)
k .

For extreme eigenvalues, the variational principle guarantees monotonic convergence of

the Ritz value at the outer step, but not of the approximationθ(m+1)
k during the execution of

QMR. We have found it beneficial, however, to stop QMR when

θ(m+1)
k > θ(m+1)

k−1 .(3.37)

If θ(m+1)
k increases, an eigenvalue was missed and the solver is tryingto retarget convergence

to the missed one. It is thus beneficial to exit the inner iteration and let the outer step improve
on the new Ritz value through the Rayleigh Ritz procedure, providing a better correction
equation during the next inner solution.

Finally, we should stop the inner iteration when the required tolerance has been achieved

(or the maximum number of iterations reached). Althoughgk < r(m+1)
k , except possibly for

a few initial steps, it is safer to check bothgk andr(m+1)
k < εinn. The threshold for the inner

iterations,εinn, could be the same as the user defined threshold,ε, for the eigenresiduals.

The r(m+1)
k , however, is the residual norm of the corrected Ritz vector,and not from the

outer Rayleigh Ritz method on the basisV that includes the correction. Thus the residual
norm computed by the outer method could be slightly larger thanε, causing the inner method
to be called again to provide a very small correction. This restarting could force QMR to
build again certain vector components, wasting some iterations. Therefore, we suggestεinn =
ε/2, while making sure that this is achievable within the machine’s precision,εmachine.
Estimating the norm ofA by the largest Ritz value seen thus far, we stop QMR if:

gk < εinn OR r(m+1)
k < εinn,(3.38)

with εinn = max(ε/2,εmachine‖A‖).(3.39)

3.4. The effect of quasi-minimization. With a preconditionerK, the BiCG residuals
rk in the Algorithm 3.1 areK−1-orthogonal, but unlike MINRES which implicitly considers
the orthogonal basisK−1/2rk, sQMR uses therk and thus the actual normgk of the sQMR
residual is bounded as shown in inequality (3.9). A natural question is whether the above
stopping criteria would be adversely affected by using the readily computed ˆgk instead ofgk.

The only quantity in Theorem 3.1 that is affected by replacing gk with ĝk is the eigen-

residual normr(m+1)
k . Neither the eigenvalue estimateθ(m+1)

k nor thepk term of eq. (3.29)
depends on the choice ofgk. Let gk = ckĝk, with 1≤ ck ≤

√
k+1. We do not consider the

possibility 0≤ ck < 1, because in the rare case that this occurs,ck would still be very close

to 1. Denote by ˆr(m+1)
k the eigenresidual norm approximation computed through eq.(3.29)
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usingĝk. We can expressr(m+1)
k as a function of the approximate ˆr(m+1)2

k as follows:

r(m+1)2
k =

g2
k

1+ t2
k

+ pk = c2
k

ĝ2
k

1+ t2
k

+ pk = c2
k(r̂

(m+1)2
k − pk)+ pk

= c2
k r̂(m+1)2

k − (c2
k −1)pk.(3.40)

Ideally, criterion (3.35) should check the ratio of the exact residualsgk/r(m+1)
k . Denoting

R= max(0.99
√

1+ t2
k ,

√

gk/gk−1) and using (3.40) we should check:

g2
k

r(m+1)2
k

=
c2

kĝ2
k

c2
k r̂(m+1)2

k − (c2
k −1)pk

=
ĝ2

k

r̂(m+1)2
k

1

1− (c2
k−1)

c2
k

pk

r̂
(m+1)2
k

< R2.

Equivalently, using our computed residual approximationswe should check:

ĝk < r̂(m+1)
k R

√

√

√

√1− (c2
k −1)

c2
k

pk

r̂(m+1)2
k

.(3.41)

In practice, becauseck is not known, we can only check:

ĝk < r̂(m+1)
k R.(3.42)

We have used the sameR in both ideal and practical tests, because ˆgk/ĝk−1 =(ck−1/ck)gk/gk−1≈
gk/gk−1 asck can change only slowly between successive steps.

When ˆr(m+1)
k is far from convergence,pk � r̂(m+1)2

k , and since(c2
k − 1)/ck2 < 1, the

factor multiplyingR in (3.41) is almost one, and the approximate criterion (3.42) is practically

equivalent to (3.41). Near convergence, ˆr(m+1)2
k → r(m+1)2

∞ ≈ pk, so a largeck could yield a
substantially small factor, thus invalidating the approximate criterion. Two issues prevent
this.

First, criterion (3.35) was derived from the condition thatr(m+1)2
k should not come closer

than α2 to pk. This gave rise to eqs. (3.30–3.31). Working backwards fromR we have
α2 = 1/(1−R2), so at any time before criterion (3.35) exits, it holds:

pk

r(m+1)
k

< 1−R2.(3.43)

Substitutingr(m+1)2
k for r̂(m+1)2

k from eq. (3.40), and using (3.43) we can boundpk

r̂
(m+1)
k

:

pk

r̂(m+1)
k

=
pkc2

k

r(m+1)
k + pk(c2

k −1)
<

c2
k(1−R2)

1+(1−R2)(c2
k −1)

.(3.44)

Then the factor multiplyingR in the ideal bound (3.41) is bounded from below:
√

√

√

√1− (c2
k −1)

c2
k

pk

r̂(m+1)2
k

>

√

1

1+(1−R2)(c2
k −1)

.(3.45)

The above factor is always very close to 1, so checking (3.42)instead of (3.41) is a good
approximation. For example, given thatR≥ 0.99, it requires an excess of 1000 sQMR iter-
ations, and ac1000 close to the bound (3.9) to require a stopping criterion of 0.95 instead of
the used 0.99.
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The second reason preventing a small factor (3.45) is that the term of 1−R2 = 1−
gk/gk−1 becomes increasingly small with slow linear system convergence. Thus, it compen-
sates for a possible increase in the termc2

k−1 that could result from a large number of sQMR
iterations, keeping the overall term 1+(1−R2)(c2

k −1) ≈ 1.
Finally, even if the factor (3.45) does become slightly lessthan one, the inner sQMR is

stopped a few iterations earlier than if the correct residual norms were used. This, in fact, may
be beneficial because no time is wasted overconverging the inner iteration when more outer
iterations are needed. On the contrary, using the upper bound

√
k+1 ĝk as the norm estimate

requires more iterations to satisfy the stopping criterion, and has consistently underperformed
theĝk choice in our experiments.

The use of the approximate ˆgk and ˆr(m+1)
k may also affect criterion (3.39). Convergence

may be signaled a few iterations earlier than it is actually achieved, which could cause an ad-
ditional correction equation to be solved through a few additional sQMR iterations. However,
this does not affect the overall convergence behavior of thealgorithm. Moreover, as without
preconditioning, the inner toleranceεinn can be chosen heuristically to reduce the number of

unnecessary iterations. For example, the norm ratio ˆck = r̂(m)
k /r(m) from the previous outer

iteration can be used to estimateck and converge toεinn = ĉkε. In our experiments the simple
criterion from eq. (3.39) was used and performed consistently well.

3.5. The JDQMR algorithm. Our stopping criteria and the recurrences of Theorem
3.1 can be implemented trivially into the sQMR Algorithm 3.1, which in turn is called at step
(19) of Algorithm 2.1. Algorithm 3.2 provides the additional lines required in Algorithm 3.1.
Except for the initializations, only line (12) is replaced.

The GD outer algorithm can be implemented with storage for 2mmax long vectors of size
N. If JDQMR is used, there is an additional requirement of 5 long vectors.

Excluding matvec and preconditioning operations, the expense of the outer GD Algo-
rithm 2.1 can be calculated as a function of flops. Following classic literature, each of the
steps takes: re-orthogonalizationO(8Nm+2N) (step 5), updating ofH O(2mN) (step 7), the
small eigenproblemO(4/3m3) (step 8), Ritz vector computationO(2Nm) (step 9), residual
computationO(2Nm+4N) (steps 9–10), norm computationO(2N) (step 11), and the restart-
ing cost isO(4Nmmaxmmin) (steps 12–19). Averaging overm = mmin. . .mmax and setting
µ= mmin/mmax, we have the average cost per step:

GDcost= O

(

7+4µ−7µ2

1−µ
Nmmax+

13+µ
1−µ

N+1/3m3
max

)

.

Typically, mmin = mmax/3, in which case: GDouter= 11.3Nmmax+ 20N + m3
max/3. These

are mostly BLAS level 2 and level 1 operations. Similarly, wecan obtain the cost for each
QMR step, including the JD projectors: QMRcost= 24N. However, these are strictly level 1
BLAS operations. The QMR part of JDQMR is about 15% more expensive than the CG part
of JDCG, but this is justified by the increased robustness andefficiency.

4. The Conjugate Gradients view.An alternative to Newton is the use of the nonlinear
Conjugate Gradient (NLCG) method to minimize the quadraticform of the Rayleigh quotient
on the unit ball. As with the Newton approach, the NLCG must beapplied on the Grassmann
(or Stiefel) manifold for this constrained minimization problem. The appropriate forms of the
constrained version for the NLCG and for the case of many required eigenvalues are given
in [15]. Researchers have been using similar type of recurrences quite successfully for many
decades; see Bradbury and Fletcher’s seminal work [8], a long list of references in [15], as
well as work in [20, 5].
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ALGORITHM 3.2. JDQMR additions to sQMR algorithm
(2.1)B0 = ∆0 = Γ0 = Φ0 = Ψ0 = 0
...
(12.0) γk = c2

kΘ2
k−1, ξk = c2

kαk−1, f = 1+‖tk‖2

(12.1) Ψk = γk(Ψk−1 +Φk−1)
(12.2) Φk = γ2

kΦk−1 +ξ2
kσk−1

(12.3) Γk = Γk−1 +2Ψk +Φk

(12.4) ∆k = γk∆k−1−ξkρk−1

(12.5) Bk = Bk−1 +∆k

(12.6) p=
(

θ(m) −η+2Bk +Γk

)

/ f

(12.7) θ(m+1)
k = η+ p

(12.8) pk = (θ(m)−η+Bk)
2/ f − p2

(12.9) r(m+1)
k =

√

g2
k/ f + pk

(12.10) if (ρk−1 = 0), return

(12.11) if (r(m+1)
k not real), r(m+1)

k =
√

g2
k/ f

(12.12) if ( gk ≤ r(m+1)
k max

(

0.99
√

f ,
√

gk/gk−1

)

OR (θ(m+1)
k > θ(m+1)

k−1 ) OR if desired (r(m+1)
k < 0.1r0)

OR ( gk < εinn ) OR ( r(m+1)
k < εinn ) )

then return the correctiontk.

NLCG methods build iterates within a Krylov space as they only utilize gradient infor-
mation. Therefore they cannot converge faster than unrestarted Lanczos or the optimal QMR
benchmark. NLCG, however, uses a three term recurrence to compute both eigenvalue and
eigenvector without storing all the intermediate iterates. Therefore, NLCG can often find one
eigenpair in less time than the Lanczos method despite a larger number of iterations.

Although the relations between NLCG, Newton and quasi Newton methods are well
documented [45], the question whether truncated Newton methods are more efficient than
NLCG (or quasi Newton) is problem dependent. In the extreme case of a linear unconstrained
problem the NLCG is equivalent to CG, and since only one Newton step is required in that
case, NLCG and truncated Newton are equivalent. For eigenvalue problems, the nonlinearity
is not severe and the above NLCG variants perform quite well.Given that JDQMR is a
truncated Newton method with a number of matrix-vector products within a small factor of
optimal, we would like to explore its relation to NLCG variants.

4.1. The locally optimal recurrence. Most NLCG approaches consider minimization
of the functional along a search direction which is usually conjugate to the previous search
direction with respect to some variation of the Hessian. Although not usually expressed like

this, the approximationu(m+1) at the(m+1)-th step belongs in the spaceL =
{

u(m−1),u(m), r (m)
}

,

wherer (m) = Au(m) −θ(m)u(m) is the residual ofu(m). It is natural to consider a method that
minimizes the Rayleigh quotient on the whole spaceL instead of only along one search di-
rection. The method:

u(m+1) = RayleighRitz
(

{u(m−1),u(m), r (m)}
)

, m> 1,(4.1)

was proposed by D’yakonov in 1983 [14], and was studied further under the name locally
optimal Conjugate Gradient (LOCG) in [30]. It is captivating in its simplicity, especially
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because it avoids the question of how to pick the search directions. Most importantly, the
method seems to consistently outperform other NLCG type methods.

Yet, for many years since its inception, LOCG was plagued by numerical instability
problems. Obviously, a converging vectoru(m) implies an increasingly linearly dependent
basis for the Rayleigh Ritz process. Orthogonalization of the basis was not considered, mainly
to keep recurrence costs low, but also because orthogonalizing two almost identical vectors
would result primarily in a noise vector. In that case, the effectiveness of the method can be
no worse than steepest descent. However, these problems do not arise until a good level of
convergence has already been achieved. An extension to thismethod for many eigenvalues,
and with a more stable recurrence (usingu(m) − τ(m)u(m−1), for some weightτ(m), instead of
u(m−1)) is the more recently proposed locally optimal block preconditioned CG (LOBPCG)
method [32].

4.2. The locally optimal restarting. Restarting Krylov and Krylov-like methods every
k iterations can have detrimental effects on their convergence, as the minimization of the
Rayleigh quotient occurs only over the lastk basis vectors. In the extreme case ofk = 1 the
method is simply the steepest descent. In linear systems of equations, CG has the remarkable
property of implicitly remembering all the visited directions. Although the Lanczos method
has the same memory, the Lanczos vectors must be revisited tocompute the eigenvector. For
symmetric problems, a larger subspace acceleration of steepest descent (largerk) yields better
convergence, although beyond a certain basis size orthogonalization and restarting costs start
to dominate.

Thick restarting [70] is a technique that improves convergence of restarted iterative meth-
ods by keeping more than the required Ritz vectors at restart(mmin > nev). The technique
harnesses the superlinear convergence of Lanczos as nearbyRitz vectors are improved, and
therefore are gradually deflated. It is theoretically equivalent to Implicit Restarting [63], and
it has proved particularly effective when more than one eigenvalue is required. Still, by itself,
thick restarting cannot capture the memory of directions that CG so well captures.

In [44], Murray, Davidson and Racine proposed to restart theDavidson method with
not only the required Ritz vector at the current step (u(mmax)), but also with the Ritz vector
at the previous step (u(mmax−1)). The motivation was to maintain the same three term space
L that CG uses to get its optimal approximation when solving a linear system of equations.
However, it was unclear what this linear system is, and without the obvious connection to
NLCG the method went relatively unnoticed for some years. Also, the suggested implemen-
tation was orthogonalization-heavy requiring even extra matrix-vector products. On the other
hand, the convergence improvements for Davidson, with or without preconditioning, were
impressive.

4.3. The GD+k method. In [68], we showed a theoretical justification of the connection
of the above restarting scheme, which we called GD+1, to CG. For completeness we mention
the following two pertinent results. Proofs and additionaldiscussion are given in [68, 64].

THEOREM 4.1. Let vectoru(0), with ‖u(0)‖ = 1, θ(0) = u(0)TAu(0), and η ∈ ℜ. Let
(θ( j),u( j)) be a Ritz pair obtained after j steps of the Lanczos method, with u(0) as a starting

vector. Letu(1)
j = u(0) + t j be the approximate eigenvector, wheret j is the correction obtained

by applying j steps of CG to the correction equation (2.1) (for m = 0). Then:

u(1)
j = u( j) ⇔ η = θ( j).

The theorem says that if we knew the Ritz valueθ( j) at any Lanczos step, we could construct
a (CG) three term recurrence to yield the corresponding Ritzvector. Intermediate vector
iterates would differ in general. This is similar to the relation between the iterates obtained
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ALGORITHM 4.1. Modifications of Algorithm 2.1 for GD+k restarting
(7.1) sold

i = si , i = 1, . . . ,m
(12.1) Orthogonalize sold

i , i = 1, . . . ,k among themselves
and against si , i = 1, . . . ,mmin

(12.2) Compute Hsub= soldTHsold

(12.3) Set s= [s1, . . . ,smmin,s
old
1 , . . . ,sold

k ]
(14) for i = 2, . . . ,mmin+k
(17.1) H(mmin+1 : mmin+k,mmin+1 : mmin+k) = Hsub

(17.2) m= mmin+k

by the optimal QMR process (η = λ) and the Ritz vectors of the unrestarted Lanczos. The
effectiveness of the GD+1 restarting technique is attributed to the fact that the Lanczos Ritz
vectors approximate the CG iterates asθ( j) converges. For the smallest eigenvalueλ1 we
have:

LEMMA 4.2. Let γ = λ2−λ1 the gap between the two smallest eigenvalues. If|θ(0) −
λ1| < δ, for δ < γ/2, then the distance between the Lanczos Ritz vectors and the approximate
eigenvectors produced by CG on eq. (2.1) is bounded by:

‖u( j) −u(1)
j ‖

‖u(1)
j ‖

≤ |θ( j)−η|
γ−2δ

.

If we were to restart GD at themmax step, the Ritz value at the(mmax+ 1) step would be
minimum over onlyu(mmax) andr (mmax). If we also keptu(mmax−1), the three vector subspace
would be similar to the three term CG recurrence subspace that yields the exactu(mmax+1). In
fact, the lemma suggests that the distance between the unrestarted and the GD+1 Ritz vectors
at the(mmax+1) step is bounded by O(|θ(mmax−1)−θ(mmax+1)|). This justifies a stronger local
optimality of the GD+1, not only with respect to the Rayleighquotient as in LOCG, but also
to the Ritz vectors.

In [68], we extended GD+1 to GD+k and combined it with thick restarting. By GD(mmin,mmax)+k
we denote the GD method with basis sizemmax, where at restart we retainmmin smallest Ritz
vectors from stepmmaxand in additionk smallest Ritz vectors from stepmmax−1. The special
case GD(1,3)+1 is mathematically equivalent to LOCG (and ingeneral a block GD(k,3k)+k
with block sizek is equivalent to LOBPCG). We also provided an implementation that re-
quires no additional orthogonalization of long vectors andno extra matrix-vector products,
by working exclusively with the Rayleigh Ritz coefficients.The modifications required to
the GD Algorithm 2.1 are shown in Algorithm 4.1. The expense in terms of flops of steps
(12.1–12.3) isO(mmaxk2) and thus insignificant for large problems. The only additional ex-
pense over GD is that we have to restart with a basis size ofmmin + k (step 14). Because
convergence improves significantly, even withk = 1, a much smallermmin can be used than
regular GD, and thus GD+1 can be less expensive per step than GD.

We emphasize that the GD+k stability stems from the orthogonality of the basisV. Typi-
cally, the small coefficient vectorss1 andsold

1 will be very close. Orthogonalizingsold
1 against

s1 will produce a vector that may not lie exactly in the span ofsold
1 , but it will be orthogonal

to s1. This orthogonality is bequeathed toVs(asVTV = I ), which becomes a stable basis for
the LOCG recurrence. In contrast, the LOBPCG method considers the vectorV(s1− sold

1 )
(with VTV 6= I ) which is not exactly orthogonal toVs1, and so the Rayleigh Ritz procedure
gives rise to a generalized eigenvalue problem, with inferior stability properties. The dangers
of a non-orthogonal basis in LOBPCG have been pointed out in [28].
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4.4. Global optimality and subspace acceleration.Despite the local optimality of
GD+1, from both the Ritz value and Ritz vector viewpoints, there is no theoretical result
showing that GD(1,3)+1 (or equivalently LOCG) is within a small factor of optimal QMR.
Extensive numerical experiments in [68, 64, 32] and in this paper suggest that this is true
for the majority of cases. The above theory can provide some intuition for this. Because the
eigenvalue error in symmetric problems converges as the square of the residual norm, the Ritz
value quickly approximates the eigenvalue and therefore the LOCG recurrence approximates
well the optimal CG method (i.e., solving eq. (2.1) withη = λ1). Interestingly, even when the
Ritz value nearly stagnates over many steps, Lemma 4.2 suggests that the LOCG recurrence
can effectively built a space similar to the unrestarted Lanczos. When the algorithm realizes
that it was targeting the wrong eigenvalue, the global optimality of the algorithm is lost. This
is similar to terminating the inner iteration of the JDQMR toupdate the shift in the correction
equation. Unlike JDQMR, however, each step of GD+1 involvesthe most current Ritz value,
which may explain its faster observed convergence.

Yet, for some spectrum distributions or adversely chosen initial guesses, the Ritz value
may vary substantially, often locked temporarily on various interior eigenvalues. The re-
sult is several breaks in the global optimality of LOCG, similarly to many outer steps of
a JDQMR (or RQI) algorithm. For such cases subspace acceleration and thicker restarting
can improve convergence dramatically. The GD(mmin,mmax)+1 method takes advantage of
the global optimality when this is present, and when not, it maintains the subspace conver-
gence of the restarted GD/Lanczos for required and nearby eigenvalues. This in turn makes
the Ritz value converge faster, thus expediting the return to benefiting from the LOCG re-
currence. See also [50] for the effects of subspace acceleration on classic GD. Finally, al-
though GD(mmin,mmax)+1 is a stable implementation, convergence of the coefficient vectors
s1 andsold

1 in Algorithm 4.1 yields a basisV which, although orthogonal, may not fully corre-
spond to the ideal three term space of the LOCG recurrence. Without subspace acceleration,
GD(1,3)+1 or LOBPCG revert back to steepest descent in thesecases.

There is an interesting analog from the nonlinear viewpoint. NLCG is close to optimal
when the nonlinearity of the problem is not severe. When it is,e.g., when the minimization
function gets trapped in various saddle points (interior eigenvalues), quasi-Newton methods
almost always converge faster than NLCG [24]. These methodsuse the vector iterates to
construct incrementally an approximation to the Hessian. Aless expensive, but equally ef-
fective in terms of convergence, alternative is to use only the last few vector iterates as in
the popular L-BFGS method, which is a limited memory versionof the Broyden, Fletcher,
Goldfarb, and Shanno method [45]. In the context of eigenvalue problems, implementing
L-BFGS is similar to the subspace acceleration of the restarted GD+1 method; the only dif-
ference being the minimization occurring over lines instead of the whole subspace in GD.
At one extreme, L-BFGS with memory 1 (in addition to the current iterate) is equivalent
to NLCG and similar to GD(1,3)+1, while at the other extreme unlimited memory BFGS is
similar to unrestarted GD (or Arnoldi). In the case of a strictly convex, quadratic objective
function the equivalence extends between certain forms of L-BFGS, NLCG and the usual CG
[35]. Similar connections between quasi Newton methods anditerative methods for linear
systems have been studied. For example, the Broyden method for linear systems gives rise to
the EN method which is equivalent to GMRES [16]. In conclusion, we expect the subspace
accelerated GD(mmin,mmax)+1 to be more robust and more effective than simple recurrences
(such as LOBPCG).

5. Experiments. Our first goal in the experiments is to verify that JDQMR and GD+1
are indeed within a small factor of the optimal method QMRopt. QMRopt refers to the
JDQMR method where the exact eigenvalue is given as shift. Thus, one JDQMR outer step,
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with QMR solving eq. (2.1) resolves the smallest eigenpair.Our second goal is to show the
robustness and consistency of the JDQMR and GD+1 algorithmsin a variety of situations,
including also interior eigenvalue problems. Third, we provide extensive comparisons with
JDCG, JDQR, ARPACK, LOBPCG, JDBSYM, and various versions ofShift-Invert Lanczos,
with and without preconditioning. Fourth, as JDQMR and GD+1arise as the methods of
choice, we assess their relative merits. This helps a dynamic choice between the two methods,
as they both share the same implementation, leading to an overall nearly optimal method.

5.1. Tests and environment.Most of the algorithms used in our experiments are im-
plemented in Matlab. Our JDQMR/GD+1 code implements Algorithms 2.1-3.2 relatively
closely, by modifying the JDCG code of [46], which in turn is amodification of the code
in [17]. To compare with ARPACK we use the Matlab built-in function eigs(), and for
LOBPCG we use Revision: 4.0, Beta 4, with the modification that eig(A,B) is used instead
of eig(A,B,’chol’), for numerical stability. We also provide a set of experiments with
three packages written in C: our PRIMME multimethod packagethat implements also GD+1
and JDQMR1, BLOPEX which is a LOBPCG implementation [29], and JDBSYM, ablock
Jacobi Davidson implementation [22].

In all experiments we seek only one, smallest algebraic eigenpair. For GD based methods
(GD+1, JDCG, JDQMR, JDQR) we usemmin = 6 andmmax = 18. With eigs() we select a
basis size of 36 so that it requires the same storage as GD+1. LOBPCG requires storage
for 6 vectors. The SI-eigs, implements the shift-invert Lanczos by calling QMR to perform
the inversions at each step of eigs(). A shift very close to the eigenvalue ensures that only a
few outer eigs steps are needed. Because for LOBPCG we have found it far more stable to
scale the matrix first, we always useA = A/‖A‖F , where‖A‖F is the Frobenious norm of the
matrix. Then we iterate all methods until the residual norm falls below 10−15. The tolerance
for eigs() is also set to 10−15. All methods start with the same random initial guess. When
there is a preconditioner, this is always the Matlab function cholinc(A+sI,1e-3), except
for NASASRB for which the threshold is1e-5. The shifts is chosen for each matrix so
that the incomplete Choleski factorization can be carried out stably. Experiments are run in
Matlab 7 (R14SP3) on an Apple G5 with 1 GB of memory and two 2GHzprocessors, each
with 512 MB L2 cache. For the C experiments we do not scale the matrix, but converge until
the residual norm falls below‖A‖F10−15. Experiments are run on the same Apple G5, using
the gcc-4.0.0 compiler with -O flags, but without optimized BLAS/LAPACK libraries.

One of our goals is to provide experiments that can be confirmed independently by other
researchers, but are also representative of various classes of problems. Thus, we have se-
lected thirteen different matrix problems available in thefollowing repositories: Matrix Mar-
ket, University of Florida, and the FEAP collection. Two of these matrices (LUNDA and
NASASRB) stem from eigenvalue computations, while the resthave spectra that present var-
ious levels of difficulty to iterative methods and the preconditioner. In addition, we have
selected three matrices from eigenvalue applications, twofrom vibrational analysis of molec-
ular structures [75], and the usual five point Laplacian operator on the unit cube. A larger
five point Laplacian is used for the C experiments. Our test problems cover the range from
easy to difficult, from small to relatively large, and from sparse to relatively dense. Table 5.1
shows the name, sizes, and source for each matrix.

5.2. Nearly optimal convergence.First, we present results from matrices 1138BUS
and NASASRB, as they are quite representative and demonstrate both the near optimality and
robustness of GD+1 and JDQMR. Figures 5.1 and 5.2 show, for 1138BUS and NASASRB

1Available athttp//www.cs.wm.edu/∼andreas/software
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TABLE 5.1
The matrices used in the experiments. Most matrices come from Matrix Market (MM) [7], the University

of Florida matrix repository (UF) maintained by Tim Davis [12], and the FEAP collection by Mark Adams [1].
SPARSKIT (SKIT) [54] was used to generate a 5-point finite difference Laplacian on the unit 3-dimensional cube
with Dirichlet conditions. nd3kf and or56f are difficult eigenvalue problems from [75].

No Matrix N NNZ Source
1. 1138BUS 1138 4054 MM
2. BCSSTK09 1083 18437 MM
3. LUNDA 147 2449 MM
4. 494BUS 494 1666 MM
5. 685BUS 685 3249 MM
6. BCSSTK16 4884 290378 MM
7. cfd1 70656 1825580 UF
8. finan512 74752 596992 UF

No Matrix N NNZ Source
9. nd3kf 9000 3279690 Yang
10. or56f 9000 2890150 Yang
11. Fillet13K A 13572 632146 FEAP
12. ConeA 22032 1433068 FEAP
13. Plate33KA0 39366 914116 FEAP
14. Wing22KA 22266 923922 FEAP
15. Laplacian3d 27000 189000 SKIT
16. NASASRB 54870 2677324 MM
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FIG. 5.1.Residual convergence history for various methods without preconditioning for matrix 1138BUS (see
Table 5.1). (∗) and (◦) designate the residual norms at outer steps of JDQMR and JDCG respectively. JDQMR
improves convergence over JDCG, and GD+1, while being within a factor of 1.26 of the optimal QMR method.
Because of the very inexpensive matrix-vector operation for 1138BUS, the convergence advantages of JDQMR are
amortized by a slightly more expensive inner iteration overJDCG. This observation is amplified for the GD+1,
which improves only on LOBPCG. eigs and SI-eigs require about 40000 matvecs and 18 seconds each.

respectively, the convergence history of the residual normfor several unpreconditioned meth-
ods as a function of matvec operations (left graphs) and as a function of time (right graphs).
As expected, the QMRopt is the fastest method both in matvecsand in actual time, since it
basically solves one linear system with QMR. Nevertheless,both JDQMR and GD+1 are very
close to QMRopt.

For matrix 1138BUS, QMRopt displays superlinear convergence after about 800 matvecs,
which is expected despite the highly clustered eigenvaluesas the matrix is of small dimen-
sion. On the other extreme, LOBPCG achieves a linear convergence similar to the initial
phase of QMRopt, but it never switches to superlinear convergence. Despite the limited basis
size of 18, GD+1 manages to capture enough spectral characteristics and converges much
faster than LOBPCG and similar to JDCG. The importance of the+1 restarting scheme is
notable: a thick restarted, larger basis eigs() takes 38376matvecs (7 times more than GD+1)
to converge. Note also that the time for GD+1 is only slightlyfaster than LOBPCG because
the matrix is extremely sparse and minimizing the number of matvecs does not substantially
outweigh the more expensive iteration step. Similarly, JDQMR convergence is faster than
JDCG, but their times are similar. Both JDQMR and JDCG convergence curves are very
close to the QMRopt one.
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FIG. 5.2. Residual convergence history for various methods without preconditioning for matrix NASASRB.
The smallest eigenvalues are extremely hard to find. eigs seems to stagnate after 300000 matvecs. JDQMR is within
1.17 of the optimal QMR, and so is GD+1. JDCG converges similarly to GD+1 up to 76000 matvecs, at which
point the outer step realizes that the correction vector didnot correspond to the lowest eigenvalue. We have noticed
this behavior also on other matrices. A relatively inexpensive matrix-vector operation plagues the time of GD+1.
Convergence for LOBPCG was far slower and is not shown.

For matrix NASASRB, LOBPCG does not converge fast enough, and eigs() stagnates
after a large number of steps. Yet, the convergence of GD+1, JDCG, and JDQMR is al-
most identical to the one of QMRopt! With one exception: JDCGhas been converging to
the second lowest eigenvalue, and only realized it near convergence. At that point, JDCG
retargets and convergence is delayed accordingly. Besidesslower convergence, this behavior
may cause misidentification of eigenvalues for larger tolerances. We have noticed this JDCG
behavior in a few of the other matrices we have studied. Our stopping criteria are apparently
more robust in this direction making JDQMR the fastest method (and closest to QMRopt) for
this matrix.

Figure 5.3 shows a summary of our results from applying several methods on all the
16 matrices without preconditioning. For each matrix, the bars show the ratios of matvecs
and time (top and lower graph respectively) taken by each method over the QMRopt method.
For completeness, we also provide the actual matvecs taken by QMRopt, GD+1, and eigs in
Table 5.2. The results are surprisingly consistent, and they reflect also our experience with
a larger number of different test problems. The main conclusion is that truncated Newton
methods (JDCG/JDQMR) are much more efficient in finding one eigenvalue than eigs() (and
much more so than LOBPCG)even without preconditioning.This goes against the common
wisdom that one should use the Lanczos method if no preconditioner is available. For most
cases, JDQMR requires slightly fewer matvecs than JDCG, butJDCG is slightly faster be-
cause of the 15% more expensive iteration of QMR over CG. However, in three cases JDQMR
is much faster than JDCG, justifying it as more robust, general purpose method. In the ab-
sence of a preconditioner, the matvec operation in sparse matrices is rarely dense enough to
justify the more expensive step of GD+1. Yet, the matvecs in GD+1 are usually the closest
(and often equal) to those of QMRopt. Therefore, a runtime check in the program can assess
the expense of the matvec operation and if it is relatively high, as in matrices nd3kf and or56f,
we choose GD+1 over JDQMR.

Preconditioners, when available, tend to dominate the expense at each step. In addition,
as fewer iterations are needed with preconditioning, the effects of restarting are less dramatic.
In such cases, we expect the GD+1 method to have an advantage.

Figure 5.4 shows the convergence history of various preconditioned methods on NASASRB.
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FIG. 5.3. Ratios of matrix-vector operations (top graph) and time (bottom graph) taken by each of the five
unpreconditioned methods over the the corresponding matvecs and time taken by the QMRopt. We show GD+1,
JDQMR, JDCG, JDQR with 10 inner steps of QMR, and eigs(). LOBPCG was not competitive in these tests and is
not shown. Matvecs for GD+1 are very close to QMRopt, followed closely by JDQMR. JDQMR is best time-wise,
because of a less expensive inner step and sparse matrix vector products.

TABLE 5.2
Number of matrix-vector operations performed for each testmatrix by three unpreconditioned methods: the

optimal QMRopt, GD+1, and ARPACK (eigs).

Matrix No. 1 2 3 4 5 6 7 8
Opt QMR 3468 359 362 1798 733 439 2437 318
GD+1 5105 374 1018 3767 1214 522 2558 323
eigs() 38376 504 1080 17032 3293 2142 9864 432
Matrix No. 9 10 11 12 13 14 15 16
Opt QMR 8518 4765 82 200 610 75 858 61448
GD+1 10506 5687 84 205 713 77 864 73474
eigs() 80910 30636 180 252 792 90 1242 -
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FIG. 5.4. Residual convergence history for various preconditioned methods for matrix NASASRB. GD+1
converges identically to QMRopt and to the unrestarted GD. This shows the remarkable effectiveness of the +1
restarting scheme when coupled with subspace acceleration. LOBPCG is more than twice as slow. JDQMR and
JDCG are also effective but not as much as GD+1. The inexpensive step of JDQMR/JDCG cannot outweigh the
fewer applications of an expensive matrix-vector and preconditioning operators.

TABLE 5.3
Number of matrix-vector (equivalently preconditioning) operations performed for each test matrix by three

methods: the optimal QMRopt, the GD+1, and the SI-eigs usingpreconditioned QMR to solve for(A−ηI)−1 at
every step. The top table shows those matrices that requiredat least one restart for GD+1. The performance of
GD+1 is very close to optimal. When restarting is not needed (lower table) the full subspace optimization of GD+1
even improves on the QMR recurrence. Every step of the SI-eigs requires about as many matvecs as the optimal
QMR method. Thus, even if only 2 steps were required, SI-eigswould not have been competitive with GD+1. Similar
results are expected with inner-outer implementations of Inverse iteration or RQI.

Matrix No. 1 4 7 9 10 13 15 16
Opt QMR 49 29 218 1045 92 48 50 213
GD+1 53 31 237 1809 145 47 49 212
SI-eigs 458 247 2028 27683 1498 942 8553 2369

Matrix No. 2 3 5 6 8 11 12 14
Opt QMR 15 21 17 11 9 11 19 9
GD+1 13 17 16 7 8 12 18 9
SI-eigs 83 145 128 221 220 182 322 83

All methods perform within a factor of two of optimal, but GD+1 convergence is identical to
optimal! Moreover, their relative convergence behaviors extend also to execution time, as the
application of thecholinc preconditioner for this matrix dominates the costs. Based on the
same principles, JDQMR and JDCG are similarly effective, with JDQMR slightly better.

Figure 5.5 shows a summary of results from applying five methods on our 16 matrices
using preconditioning. We also provide the actual matvecs taken by QMRopt, GD+1, and
SI-eigs in Table 5.3. Similarly to NASASRB, GD+1 is the clearwinner in all cases, both
iteration- and time-wise. Moreover, for all but two cases (nd3kf and or56f) its convergence is
almost identical to optimal. Even for nd3kf and or56f, convergence is well within a factor of 2
from optimal. Clearly, inner-outer SI-eigs is far from competitive. Even adaptive inner-outer
schemes for RQI and Inverse iteration as in [62, 6] cannot be any better than the subspace
accelerated JDQMR.

Valuable intuition on the JDQMR convergence can be obtainedthrough a closer look
at its convergence curve in Figure 5.4. Recall that the CG/QMR convergence is usually de-
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FIG. 5.5.Ratios of matrix-vector operations (top graph) and time (bottom graph) taken by each of the four pre-
conditioned methods over the the corresponding matvecs andtime taken by the QMRopt. We show GD+1, JDQMR,
JDCG, and LOBPCG. JDQR with 10 inner steps of QMR was not competitive in these examples and is not shown.
Matvecs for GD+1 are impressively close to QMRopt and often lower, always improving on LOBPCG. JDQMR and
JDCG are also very effective, but usually slower than GD+1.

scribed by three phases; an initial linear, a plateau, and a final superlinear. At the beginning
of the JDQMR curve, while the easiest components of the spectrum are being identified,
stopping the inner QMR process frequently does not have any negative effects on the conver-
gence. Later, the inner QMR builds a plateau from step 100 until it is stopped at step 160.
This stopping causes the inner QMR to rebuild this plateau from step 180 to step 240. In Fig-
ure 5.4, this second plateau accounts primarily for the slowdown over the optimal method.
Fortunately, for the inner QMR to start to plateau, the outerJD must have reached the neigh-
borhood of an eigenvalue. After that point, its convergenceis cubic, similarly to RQI, and
thus two or three outer steps are sufficient. A plateau is usually not expected during the third
outer step, which is the one yielding the full accuracy. Therefore, we conjecture that JDQMR
type methods cannot be more than three times slower than the optimal method, and usually
they are significantly less than two times slower. All our experiments support this conjec-
ture. Avoiding this repetition with truncated Newton methods (such as JDQMR) is an open
problem that quasi-Newton type methods (such as GD+1) do notseem to have. Our criterion
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TABLE 5.4
The effects of subspace acceleration on GD(mmin,mmax)+1 without preconditioning. LOBPCG and GD(1,3)+1

are theoretically equivalent.

1138BUS 494BUS BCSSTK16 Laplacian3d nd3kf
MV sec MV sec MV sec MV sec MV sec

LOBPCG 7495 29.72 6919 20.00 584 14.33 1546 166.91 30275 1894.17
GD(1,3)+1 8242 30.43 6919 16.93 610 5.84 1752 54.71 30000 1401.02
GD(3,6)+1 4884 16.91 4158 11.13 503 5.48 943 36.64 15732 645.18
GD(5,8)+1 4904 19.36 4200 12.00 507 6.49 864 41.22 10860 470.21
GD(8,15)+1 5196 22.98 4604 14.19 486 7.34 864 51.24 9460 447.82
GD(15,30)+1 4967 30.50 3386 12.87 477 10.10 863 78.84 9060 539.91

TABLE 5.5
The effects of subspace acceleration on GD(mmin,mmax)+1 with preconditioning.

Plate33KA0 cfd1 or56f Laplacian3d NASASRB
MV sec MV sec MV sec MV sec MV sec

LOBPCG 88 23.23 311 244.44 >1001 >211.65 64 10.01 404 435.43
GD(1,3)+1 127 21.47 500 309.51 >1000 >166.10 64 5.40 403 379.51
GD(3,6)+1 54 9.77 289 182.35 195 33.57 51 4.64 224 215.42
GD(5,8)+1 50 9.31 251 166.09 161 28.01 49 4.95 213 207.71
GD(8,15)+1 47 9.52 231 163.41 144 25.14 49 5.42 212 213.19
GD(15,30)+1 46 11.15 230 179.51 109 19.58 48 6.35 212 227.52

(3.36) alleviates this problem.

5.3. The effects of subspace acceleration.We provide a set of experiments that shows
the effects of increasing the basis size in the GD(mmin,mmax)+1 method. In Table 5.4 we
report the number of matvecs and running time for GD+1 with various basis sizes, and for
LOBPCG on five matrices without preconditioning. First, we observe that GD(1,3)+1 and
LOBPCG converge similarly, and often identically, supporting the theoretical equivalence of
the two methods. The differences in timings are due to their different implementations and
cache behaviors. Second, convergence improves drastically with a small subspace acceler-
ation (mmax = 6,8), but increasingmmax further only offers rapidly diminishing additional
improvements. Consequently, the best time is achieved usually with mmax= 6,8, unless the
problem is too difficult and the matrix vector operator too expensive (see nd3kf case).

Similar results are reported in Table 5.5 using the same preconditioner as in section 5.2.
Again even a small subspace acceleration on LOCG achieves a nearly optimal convergence.
Note that the orthogonal basis of the GD(1,3)+1 may improve numerical stability in some
problems (see next section), but not necessarily convergence (first two cases in Table 5.5).
Finally, we note that the timings for GD(6,18)+1 in the previous section could improve if a
smallermmax of 6 or 8 were to be used.

5.4. Experiments with PRIMME. In Table 5.6 we provide comparisons between three
state-of-the-art eigenvalue packages for symmetric eigenvalue problems. Our goal in devel-
oping PRIMME (PReconditioned Iterative MultiMethod Eigensolver) was to provide a robust
and nearly optimal multimethod software for which users arenot required to set any parame-
ters. The adaptivity of the JDQMR and the relatively robust choices of parameters for GD+1
make these two methods excellent candidates for default eigensolvers. We compare against
BLOPEX and JDBSYM. The first three matrices are preconditioned with ILUT [54] with its
parameters chosen to provide a stable factorization. The last two matrices are unprecondi-
tioned.

First, we observe that BLOPEX (LOPBCG), although it requires no parameter setting,
is not competitive. In addition, in the cases where it failedto converge, it had reached a
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TABLE 5.6
Comparison of three state-of-the-art preconditioned eigensolver codes. BLOPEX implements LOBPCG, JDB-

SYM implements Jacobi-Davidson with sQMR as inner solver, and our PRIMME software includes both JDQMR
and GD+1 which provide almost parameter-free near optimality.

cfd1 or56f Plate33KA cfd1 ConeA
MV sec MV sec MV sec MV sec MV sec

BLOPEX 669 114.14 332 21.89 - - 6426 186.63 - -
GD+1 270 49.92 174 11.56 272 39.89 2858 113.86 214 3.49
JDQMR 294 44.82 190 11.88 381 51.35 2370 49.45 281 3.19
JDBSYM 373 60.42 221 14.34 (747) (102.6) 2412 48.95 (708) (7.70)

residual norm of‖A‖F10−10 but then encountered numerical problems. The JDBSYM was
used with a symmetric QMR as inner solver, so the primary difference from JDQMR is the
stopping criteria. The experiments confirm that when the JDBSYM criteria [13] capture the
Newton convergence well, JDBSYM is close to JDQMR and sometimes competitive (unpre-
conditioned cfd1). The results in parentheses, however, show cases where JDBSYM could
not converge, until the user provided a shift for the correction equation that was very close to
the desired eigenvalue. GD+1 and JDQMR converge always, in the least time, and with no a
priori information.

5.5. Interior eigenproblem with indefinite preconditioner. We borrow a model prob-
lem fromab-initio calculations that are common in many fields such as computational chem-
istry and materials science. In these applications, the Schrödinger operator is a sum of the
Laplacian and certain local and non-local potential functions. We consider the eigenvalue
problem stemming from the following simplified operator,

(−∇2 +V)ψ = εψ,(5.1)

whereV is a local potential. In some cases, a few lowest eigenvaluesare needed correspond-
ing to the ground (most stable) states of the system. In many cases, however, we need a few
eigenvalues around the Fermi energy level, a small energy gap that separates occupied from
unoccupied states. Obtaining all eigenvalues lower than the Fermi level becomes extremely
expensive for systems with large number of particles, suggesting that an interior eigenmethod
should be preferable.

In real space discretizationsV is a diagonal matrix. In planewave (Fourier) discretiza-
tions, however,∇2 becomes a diagonal matrix (and thus easily invertible) andV a dense ma-
trix. Many planewave codes exploit this property, performing preconditioning with(∇2)−1

in Fourier space, while operating withV in real space.
Consider the problem 5.1 in the two dimensional unit square,with Neumann bound-

ary conditions, and with a potential inversely proportional to the distance fromz0: V(x) =
1/‖x−z0‖, with z0,x∈ ℜ2. We discretize the operator with a uniform finite difference, five
point stencil, yielding the usual 5-diagonal Laplacian matrix with V added on the diagonal.
We usen = 110 points in each direction, for a matrix dimension of 12100, and place the
largest potential in the middle of the grid-square closest to 0: z0 = [0.5/n, 0.5/n]T . We look
(arbitrarily) for the eigenvalue closest to 0.86, which is beyond the 800th lowest eigenvalue
of our matrix. All computations are performed in real space,except preconditioning. To pre-
condition a vectorr , we transform it through a fast sine transform to Fourier space, where the
preconditioner

K−1 = (∇2−ηK I)−1(5.2)

is diagonal. An inverse sine transform returns the preconditioned vector to real space.
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TABLE 5.7
The benefits of JDQMR for finding one interior eigenvalue closest to0.86. The lowest eigenvalue of A is greater

than−0.05. In the upper table an interior problem is solved, where bothpreconditioner and correction equation can
be indefinite. A positive definite preconditioner (ηK = −0.05), as required by MINRES, does not converge. JDCG
does not converge either when solving the correction equation for the extreme eigenvalue. The lower table shows that
the transformation into an extreme eigenproblem for(A−0.86I)2 is not a good alternative, even though JDQMR is
far better than JDCG. ARPACK (eigs) without preconditioning cannot converge.

Seek eigenvalue closest toσ = 0.86. (λexact= 0.859768),−0.05< λi < 7.99
Interior approach

Correction equation with operator(A−ηI) and preconditioner(∇2−ηK I)
Method η ηK Matvecs Equivalent method
QMRopt λexact λexact 261 Optimal correction/no dynamic stopping
GD+1 θ(m) θ(m) 790 GD with recurrence restarting
JDQMR θ(m) θ(m) 1330 Adaptive accelerated RQI
JDQMR 0.86 θ(m) 1418
JDQMR 0.86 0.86 1669 Adaptive accelerated INVIT
SI-eigs 0.86 0.86 12294 Shift-Invert ARPACK, QMR inner solver
JDQMR 0.86 -0.05 – Adaptive JDMINRES
JDCG -0.05 -0.05 –

Exterior approach
Smallest eigenvalue of(A−0.86I)2 with preconditioner(∇2−0.86I)2

Method Matvecs
GD+1 2642
JDQMR 4490
JDCG 12736
eigs � 30000 (no preconditioning)

Naturally, JDCG cannot be used if the shiftη in the correction eq. (2.1) is inside the
spectrum. Moreover, JD with MINRES as inner solver cannot beused either ifηK makes the
preconditioner (5.2) indefinite. The question is whether treating the problem as an interior
with indefinite preconditioner is beneficial. Table 5.7 shows the performance as the number
of preconditioning operations (equivalently matrix vector products) for various methods. Be-
cause our Matlab implementation of the preconditioner is very expensive we do not report
times.

GD+1 is the closest to the QMRopt method that uses the exact eigenvalue both in eq. (2.1)
and in (5.2). Note that the threefold factor in slowdown doesnot reflect a decrease in conver-
gence rate, but the fact that the solver spends most of the time trying to identify the proper
eigenvalue to target. Once the eigenvalue is located, the convergence rate is similar to the op-
timal method. We have not investigated the use of harmonic Ritz values that could improve
this identification. JDQMR converges in roughly 70% more iterations than GD+1. However,
JDQMR too spends most of its time identifying the eigenpair,in fact exiting after one in-
ner iteration. The astute reader may have noticed that in such cases the JDQMR is simply
GD+1, only with two preconditioning operations per step. A more economical implementa-
tion is possible, but beyond our current discussion. As expected, fixing one or both of the
shiftsη,ηK makes convergence slightly worse, as demonstrated by various adaptive versions
of INVIT. Without inner-outer adaptivity, the SI-eigs is anorder of magnitude slower than
JDQMR. For this example, JDMINRES with a positive definite preconditioner, or JDCG on
a definite correction equation do not converge.

A common practice for interior eigenproblems is to solve forthe smallest eigenvalue
of (A−σI)2. This approach is attractively simple, but rarely competitive because of worse
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conditioning. The lower half of the Table 5.7 shows the performance of four methods on
the squared matrix with a similarly squared preconditioner. The ratio between GD+1 and
JDQMR iterations is the same as in the interior method, whilethe JDCG converges but sig-
nificantly slower. As it cannot exploit preconditioning, eigs() cannot converge in tractable
time.

6. Conclusions.Our goal is to develop a method, or multimethod, that converges near
optimally and robustly for large, difficult eigenvalue problems. The method must operate
under limited memory and be capable of using various preconditioners. We showed that
such a method should approach the eigenvalue problem from the nonlinear perspective; ei-
ther through the truncated Newton or through the limited memory quasi Newton techniques.
Regardless of the technique, however, the underlying outermethod must follow the GD outer
scheme.

We described a truncated Newton technique, JDQMR, which extends the previously pro-
posed JDCG method. JDQMR can work with indefinite correctionequation and precondi-
tioners, and thus can be used for finding interior eigenvalues, while providing better stopping
criteria that improve robustness. In addition, we argued why JDQMR converges within a
small factor (2 or 3) of optimal.

We also described methods that use the locally optimal CG either as a recurrence (LOBPCG)
or as a restarting (GD+1), and unified them under the framework of limited memory quasi
Newton. This framework, together with our previous theoretical results, provided new intu-
ition on both the global and local convergence of these methods; for instance, explaining why
GD+1 improves on unaccelerated recurrence methods such as LOBPCG.

A rather unexpected conclusion from our experiments is thatlimited memory BFGS
type methods (GD+1) outperform truncated Newton methods (such as JDCG or JDQMR), in
terms of convergence, even with a small acceleration basis.Equally impressive is the fact that
GD+1 usually matches the convergence, both asymptotic and global, of the optimal QMRopt
benchmark.

As the acceleration basis shrinks, the convergence of JDQMR, which is less sensitive
to acceleration, matches or surpasses the convergence of GD+1 which, in turn, is always
better than the extreme of using no acceleration basis (LOBPCG). Furthermore, when the
preconditioner and matrix-vector operations are inexpensive, the cheaper inner iteration of
JDQMR requires less overall time than GD+1. The advantage ofour approach is that the
GD driver implements both methods, switching at runtime when the actual expense of the
user-provided operators is measured.

Finally, we have provided an extensive set of experiments. We considered a variety
of problems and methods, with and without preconditioning,and problems that involved
finding an interior eigenpair using indefinite preconditioning. Interestingly, both the theory
and our experiments suggest that even without preconditioning, our multimethod should be
preferred over ARPACK. Our results and conclusions extend also to finding a small number
of eigenpairs. When many eigenvalues are required, the challenges and results are different;
these topics are addressed in a companion paper [66].
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