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NEARLY OPTIMAL PRECONDITIONED METHODS FOR HERMITIAN
EIGENPROBLEMS UNDER LIMITED MEMORY. PART I: SEEKING ONE
EIGENVALUE *

ANDREAS STATHOPOULOS!

Abstract. Large, sparse, Hermitian eigenvalue problems are still sortteeahost computationally challenging
tasks. Despite the need for a robust, nearly optimal pretiondd iterative method that can operate under severe
memory limitations, no such method has surfaced as a clear wilmidris research we approach the eigenproblem
from the nonlinear perspective that helps us develop twalyneptimal methods. The first extends the recent
Jacobi-Davidson-Conjugate-Gradient (JDCG) method to JBQiproving robustness and efficiency. The second
method, Generalized-Davidson+1 (GD+1), utilizes the lgagptimal Conjugate Gradient recurrence as a restarting
technique to achieve almost optimal convergence. We desbatiemethods within a unifying framework, and
provide theoretical justification for their near optimalith choice between the most efficient of the two can be
made at runtime. Our extensive experiments confirm the rolsstiiee near optimality, and the efficiency of our
multimethod over other state-of-the-art methods.

1. Introduction. The numerical solution of large, sparse, Hermitian andsgaimetric
eigenvalue problems is central to many applications imegend engineering. It is also one
of the most time consuming tasks. Recently, electronicciire calculations, with eigen-
problems at their core, have displaced Quantum Chromodigsaas the top supercomputer
cycle user. The symmetric eigenvalue problem seems deegpsimple to solve, given well
conditioned eigenvalues and a wealth of theoretical kndgde Yet, these advantages have
enabled researchers to push modeling accuracy to unpreeedevels, routinely solving for
a few extreme eigenvalues of matrices of size more than @émillvhile an order of a billion
has also been tried [48].

The sheer size of these problems can only be addressed agvitemethods. At the
same time, the size imposes limits on the memory availabtedse methods. Moreover,
preconditioning becomes imperative to reduce the totalbermof iterations. While many
eigenvalue iterative methods have been proposed, thatdascbnsensus on which method
is the best and in what situations. The unrestarted Lancatkad is known to be optimal
for solving Hermitian eigenvalue problems but, unlike thenfigate Gradient (CG) method
for linear systems, it requires unlimited storage of itsdtn vectors. With preconditioning,
or under limited storage, the question of optimality rersampen. Furthermore, there is a
noticeable scarcity of high quality, general purpose saferfor preconditioned eigensolvers.
In this research we seek an optimal, or nearly optimal, nmeethat can utilize preconditioning
and that can be implemented in a robust software that is alsiblié.

In the particular case of seeking one eigenpair, if the eiglere were known, solving
a linear system using CG to obtain the corresponding eigeowevould yield the optimal
Lanczos convergence. In practice both the eigenvalue a®lgenvector are unknown, so the
appropriate way to approach this problem is through theltiegwslight nonlinearity, which
then helps us to identify practical and near optimal metha@srrently, the best methods
follow this approach, adopting either the Newton point afwior the nonlinear Conjugate
Gradients (NLCG) point of view.

In the first part of this paper we argue that regardless offipecach (Newton or NLCG),
the underlying iterative method should be the Generalizadd3on method. In the second
part, we examine the optimality from the Newton point of vieand identify a truncated
Newton version followed by JDCG [46] as within a small factéoptimal. In fact, we argue
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that this factor is less than three and usually much lesstiian We then extend JDCG to
JDQMR by adapting the quasi-minimal residual (QMR) insteb@G, that allows for better
stopping criteria of the inner iteration, for indefinite poaditioners, interior eigenvalues and
improved robustness. In the third part of the paper, we sthdyNLCG point of view and,
in particular, the related locally optimal CG recurrencée®pproach can be used for short
recurrences (as in LOBPCG [32]) or for restarting the subseccelerated GD+1 [44, 68].
We show why local optimality of the Ritz value extends alsthoRitz vector, and we provide
new intuition on the performance of GD+1 by relating it to lineited memory quasi-Newton
methods (such as L-BFGS) [45]. In the fourth part, we presartof the most extensive set
of experiments in the literature, comparing our methodb wiate-of-the-art methods.

Our conclusion to be drawn from our experiments is that bdd+Gand JIDQMR always
solve a given problem, regardless of the difficulty, and ohthe two is always the fastest
method. Over all the methods tested, GD+1 typically yiehdssmallest number of iterations,
often matching the optimal convergence. The cheaper inagation of JIDQMR benefits
cases where the preconditioner and the matrix-vector tipegaare inexpensive. As this
expense can be measured at runtime, an implementation basee common GD driver can
switch dynamically between GD+1 and JDQMR to make the mdst#éfe use of these two
nearly optimal methods.

We note that this is not a review paper, although substaatiedunt of review material
is used to identify, build, and provide new intuition on tteieus components of the desired
method. To keep the paper tractable both in size and re#giabié focus on finding only
one eigenpair. The additional problems of deflation, logkitorrection equation projectors,
blocking, and subspace acceleration which are relevanbwaHarge number of eigenvalues
are required will be addressed in a separate paper.

2. The Generalized-Davidson as an outer iteration modelThere is a plethora of
iterative methods for large, sparse, symmetric eigenvphoblems. Invariably, these are
Krylov or Krylov-like subspace methods that approximate tequired eigenvectors from a
subspace that usually grows in size as it is iteratively tgtlaThe methods host a variety
of differentiating features, of which two are the definingtiges for our research: We need
methods that can utilize arbitrary preconditioners and ¢ha operate on a limited memory
space.

Shift-and-invert is probably the most well studied and pdulepreconditioning ap-
proach [52], which when coupled with a Lanczos-type metrardpgroduce robust, industrial
strength methods [27]. In this research we assume that an fdorization for shift-and-
invert is not possible because of the size of the problem.utth £ases, approximations to
(A—nl)~! are often used as preconditioners to linear solvers forrterse Iteration (IN-
VIT), Rayleigh Quotient Iteration (RQI) or the (Jacobi-)\dson methods [52, 71, 43, 60].
Although the accuracy of the term “eigenvalue preconditigh for this approach has re-
ceived some scrutiny [15, 31], the resulting methods improenvergence similarly to the
corresponding preconditioned linear system solvers. bl@g there are many established
and tunable ways to produce such preconditioners [56]. Sappécations may use differ-
ent types of preconditioners, including polynomial tramsfations, frequency filtering or
smoothing, or other techniques that do not correspond tooappately solving a linear sys-
tem [55, 67].

The Generalized Davidson (GD) method was one of the first odkstho cater to such an
arbitrary selection of preconditioners [43]. Extending tiriginal Davidson’s method [11],
at every iteration GD applies a user defined function on te@lval of the sought eigenpair
to “precondition” it — or to enrich it in the required direotis. The vector is then used to en-
large the search space from which a new approximation isradutahrough the Rayleigh-Ritz
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ALGORITHM 2.1. The Generalized Davidson algorithm for one eigenpair
(1) start withvg starting vector

(2) t9=vy, m=0, nmv=0

(3) while nmv< maxnummatvecs

(5) Orthonormalize¢(™ againstv,i =1,...,m
(6) m=m+ 1; nmv=nmv+1; vy, = t(™Y; wy, = Avpy
7 Hm=Vwnfori=1,....m

(8) compute eigendecomposition=HSOS" with8; <8, < ... <6,
(9) um =Vvg; 0M =9; wm =Wg

(10)  rM =w(m —gmy(m

(11)  if [r™] <tol, return 8(M u(m

(12) if m> mmaxthen

(13) H=0

(14) fori=2,...,Mnin

(15) vi=Vs§;w =Ws; Hj =6

(16) end for

(17) vy =um; wy =wm; Hyy = 8M; m= myi,
(18) endif

(19)  Precondition the residual™ = Preq(r(M)
(20) end while

procedure [52]. When the search space exhausts the avait@oiory, the method restarts
with the best approximations of the required eigenvectodspssibly with additional infor-
mation to improve convergence. Algorithm 2.1 depicts aieersf the basic GD algorithm
for finding one, smallest eigenpdiX1,X1) of a real symmetric matri>a.

Despite many efforts over two decades, the theory behinddhgergence of the GD
algorithm is still not well understood [43, 10, 69, 60]. Fonge recent, promising results see
[49, 50, 34, 47]. One of the early unsettling issues with tilelad been the stagnation of the
method if an accurate enough approximatioriAc- 6(™1)~1, where8(™ is the Ritz value,
is used as a preconditioner. An elegant resolution to tliblpm has been given by Sleijpen
et al. with the Jacobi-Davidson (JD) method [60]. Insteamheérting (A—nl ), they showed
that the appropriate form for this preconditioning shouédam approximate solution to the
correction equation:

(21) (l — u(m)u<m)T)(A_ nl)(l — u(m)u(m)T)t(m) — _r<m> = e(m)u(m) _,A\u<m)7

wheren is a shift close to the wanted eigenvalue. Thus, by workirtgogonally to the
Ritz vectoru(™, JD avoids stagnation. Among many known properties for ¢hisection
equation, one that is relevant to this paper is that if ed.)(. solved accurately, the new
vectoru™ +t(M is collinear to the iterate produced by Inverse Iteratiah BD, 58, 15, 73].
In addition, ifn = 8(™, the method is equivalent to RQI with subspace acceleratial
previous iterates. The true flexibility of GD and JD, howeligthat they converge even when
ed. (2.1) is solved approximately through an iterative métsuch as CG. A preconditioner
K can also be used as long as it is inverted orthogonally topheesofQ = u(™. To this
effect, the pseudoinverse of such a preconditioner can eewas:

22)  (1-QQNHK(I-QQN)" = (I-KQQ'K*Q) QK (1 -QQ")
(2.3) K1(1-QQ'KQ) QK1) (1—-QQ").
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Moreover, CG can be implemented efficiently with only onegj@ction withQ per iteration.
See [17, 60, 3] for details.

Algorithm 2.1 is identical to the JD algorithm as provided[3}), except for step (19)
which is handled specially in JD. In this sense, we can vievag@ subcase of GD. Practi-
tioners, however, usually refer to GD asiagleapplication of the available preconditioner
K1 to the residual. In that case, preconditioning orthoggrtalu™ , using equations (2.2—
2.3) is usually called Olsen’s method [48] (or JD with no initerations), and it involves two
operations withK 1 which can be very expensive. In practiedoes not often approximate
(A—8(M1), butA, and even when it does it is rarely accurate enough to requieen benefit
from the JD projections, and thus GD is widely used in manyiegions [73, 2]. Exceptions
exist for “non-standard” cases and when there is an innetite method as discussed in [61]
and more extensively in [47]. In the remaining of this pape,will use GD to refer to the
method that preconditions the residual without Olsen’shoet

Generality is an additional reason for considering GD asbasic iterative framework.
Algorithm 2.1 is strikingly similar to an Arnoldi method wiflexible preconditioner, making
GD a chameleon method. Without preconditioning, GD is egjeivt to Arnoldi, albeit with
an expensive implementation, that facilitates not onlytésting of software correctness, but
also a common platform for comparison between methods;aadtisty from the implementa-
tion details. For example, the restarted, unpreconditl@d®d® is mathematically equivalent to
implicitly restarted Lanczos (IRL) and Thick Restarted taos [63, 38, 42, 70, 74]. A block
GD implementation is also possible [39, 65, 23], yielding #guivalents of block Lanczos
[52] and subspace iteration [9] (without preconditioningy) preconditioned subspace itera-
tion [3]. In addition, combining a block GD with our earlieD3-k restarting scheme [68],
which we study closer in Section 4.3, allows an equivalert stable implementation of
the LOBPCG method [32]. Needless to say, with an appropsakation to the correction
equation, the algorithm is identical to many variants of RQIVIT, JD and the more re-
cent JDCG of Notay that we study closely in the following s@at{46]. Beyond emulating
the above methods, GD can enhance them with block, subspeeleation, while working
under given memory constraints.

Often the choice of algorithm and its parameters dependsherparticular problem
solved. The above discussion supports the argument theri is to be one general purpose
method that allows for arbitrary preconditioning and cages near optimally for a given
problem, that algorithm must follow the GD template. The mdshe paper presents argu-
ments why the tuning of the GD parameters, a dreaded taskdyifwners, can be almost
fully automated in the symmetric case.

3. The Newton view. Central to our discussion is the slight nonlinearity of tigea-
value problem, i.e., both eigenvectors and eigenvaluesirdegown. If the required eigen-
valueA; were known, the problem would degenerate to a symmetriatisgstem of equa-
tions (A—A1l)xg = 0. This singular system can be solved optimally with CG or sather
three-term recurrence method, provided that our initigsg is not defective in the direc-
tion of xq, i.e., x? = x; +y with x; L. y € RangéA —A1l). A Krylov solver approximates
the correctiorny from the subspace&(((A—A1l),(A—A1l)y). BecauseX ((A—Aql),(A—
A1l)y) C RangéA — A1l), the solver will converge teg with rate determined by the con-
dition number of the deflated systemiimax/A2. The optimality of CG implies that this is
the ultimate convergence rate that any Krylov eigensoleer reach for finding the small-
est eigenvalue [31, 33]. Note that unrestarted Lanczoseesithis rate, because the space
that includesy yields also the eigenvalug. Equivalently, but more stably, we could solve
eq. (2.1) fort =y with n = A1, obtaining the same optimal rate and converging in one outer
JD step. Because we use symmetric QMR, we call this bench@&Ropt. In general,
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before reaching that rate, an eigensolver would also hafiedad;.

This nonlinearity can be resolved by applying the Newtonhoéton the Grassmann
manifold (to enforce normalization of the eigenvectord)jch is equivalent both to RQI and
to the Jacobi-Davidson method with no subspace acceleratid with accurate solution of
the correction equation [59, 73, 15, 57]. Convergence obtlter iterations is known to be
ultimately cubic when the initial guess is sufficiently @o® x; [52]. In the absence of a
good initial guess, truncated Newton methods or a subspatieoth such as Lanczos or GD
must be used to ensure global convergence.

It has long been noticed that using iterative methods toeste linear equation in
RQI and INVIT beyond some level of accuracy does not decrdaseaumber of outer it-
erations, while increasing the overall number of matrixteeenultiplications which typi-
cally correlates to the computational cost of the methoderéstingly, solving the linear
equation approximately through a constant number of inleeations has been shown to be
equivalent to truncated (inexact) Newton methods [58]. EMmv, the equivalence does not
hold if the linear system in RQI is solved inexactly to a certaccuracy. Analysis of the
stopping criteria for these inner-outer methods has beeridttus of considerable research
[53, 36, 21, 37, 62, 26, 25]. Because the solution vector @@ &d INVIT grows in norm
the closer it is to the actual eigenvector, all proposedriegles test the convergence of the
linear system relative to the norm of the solution vectorisTiorm can be monitored during
the inner iteration.

The JD method is a better representative of inexact Newtainmization methods, be-
cause these apply the pseudoinverse of the Hessian to ttiemgraf the function. This is
equivalent to solving eq. 2.1, through a certain number péiriterations, or to a specified
accuracy. Hence various stopping criteria for truncateditide methods have been used in
JD [60, 13]. Still, the objective is the convergence of thgeeaivector, not of the linear system.
Recently, an analysis for the interplay of inner-outerat®ems was given by Notay [46]. No-
tay provided theoretical and experimental arguments whyrtathod, JDCG, provides nearly
optimal convergence.

3.1. The JDCG approach. To simplify the notation we denote the projected operators

as:
(3.1) A,y = (1 =u™u™Ty (A1) (1 —uMy™T)
(32) Ku(m) = (| _ u(m)u(m)T)K(l _ U(m>u<m>T).

Assume that a Krylov iterative method (e.g., CG) is used tgeseq. (2.1) and that no

Rayleigh Ritz is performed in the outer JD step, so the methesihilar to the unaccelerated
Newton method [58]. The latter assumption facilitates axjpensive way to monitor the

eigenvalue convergence inside the linear solver, whileadai worst case scenario for the
subspace accelerated JD. At theth inner iteration, the linear system residual is:

(3-3) ok =1 +A mtk,

wherety is the current approximate solution to the correction equatlif the linear solver
were stopped at the-th step, the corrected eigenvector, its Rayleigh quotéerd,its residual
would be:

(3.4) U™ = (U™ 4ty /] u™ 4t
(3.5) el((rml) _ ul((ml)TAul((erl)

(3.6) rl((m+l) _ Auf(m”) _ 9|<<m+l>uf<m+l)-
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Note that althouglgkx — 0, ask — o, the eigenresiduatml) converges not to zero but to the
eigenvalue residual of the next INVIT iterate™Y, Notay showed thatgy|| and\|r|<<m+1)||

converge at similar rates up to the point Whﬁréml)ﬂ approacheﬂr&ml)|\. Beyond this
point, there is no benefit in continuing the inner linear soland this is the main idea behind
JDCG. Notay also developed an inexpensive way to expressdime of the eigenresidual

Hrﬁmﬂ) || as a function of the linear system residligk|| when CG is the inner solver. When
the linear system residual starts to converge at a fastethrah the corresponding eigenvalue
residual, the inner iteration is stopped.

Notay showed that for extremal eigenvalues JDCG demoaestthe same convergence
as a periodically restarted CG method. Because the numbestafts is small, corresponding
to the number of Newton steps rather than to the size of threlsepace, JDCG achieves near
optimality, converging within a small factor of optimal. &ection 5.2 we provide intuition
on how to quantify this small factor. Notay also showed thtté Ritz valued™ is closer to
A1 than toA,, eq. (2.1) withn = 6(™ s positive definite and CG can be used safely. See [40]
for a similar result.

However, positive definiteness of the correction equatian loe a limiting factor for
a general purpose eigenvalue solver based on JDCG. Thesewwl reasons. First, when
good initial guesses are not availat®€” can be well inside the spectrum causing eq. (2.1) to
be indefinite. Second, eigensolvers of the GD/JD type carabiéyenodified to find interior
eigenvalues closer to a given shift Regardless of the quality of the initial guess, JDCG
cannot be used in this case, and we have to rely on methodasWINRES or SYMMLQ
[51]. Third, and perhaps most importantly, the precondick cannot be guaranteed to
be positive definite. Practitioners solving linear systemasild rarely choose an indefinite
preconditioner but for eigenvalue problems good approtiona to the shifted matrixA —
8(™1) arise naturally in many applications. Examples includersily diagonal dominant
matrices, for which the Davidson method was originally dewped [11], and discretizations
of PDEs with spectral or Fourier bases (see experimentgtioge.5). Unfortunately, neither
CG nor MINRES can utilize an indefinite preconditioner.

In the following section, we extend the JDCG ideas to the sgmmQMR of Freund and
Nachtigal [18, 19] which allows for both indefinite operasord preconditioner. In addition,
the monotonic convergence of the linear system quasiuakallows for more intuitive and
efficient stopping criteria than those used in JDCG.

3.2. The IDQMR method. In case of indefinite correction equation or preconditipner
GMRES or BICGSTAB have been suggested as robust inner solggr GMRES, how-
ever, requires either storage of its whole search spacesquént restarts that degrade its
convergence. BiIiCGSTAB on the other hand does have a shortremurrence, capable of
generating a large Krylov space implicitly, but it is obbuis to the symmetry of the matrix
and thus twice as expensive per step as CG. Although comazgeay be also twice as fast
as that of BiCG [72] in the general case, for symmetric magihis benefit may be smaller as
the squared polynomial of BICGSTAB is clearly suboptimathe same degree polynomial
obtained through aaptimalmethod based on the Lanczos recurrence.

3.2.1. Symmetric QMR. The QMR method for non symmetric matrices uses the BiCG
[4] short-term recurrence but obtains the approximatignes tuasi minimization of the resid-
ual over the available terms. Although there is no globainoglity property, and the actual
residual norm is not minimized, convergence is much smaoakiza with BiCG. Freund et al.
noticed in [18] that when the matrix is symmetric, the sifigdition of the Lanczos process
gives rise to a symmetric version of BiCG that can be used anthsymmetric, possibly in-
definite preconditioner. Based on this symmetric BiCG, theyposed the symmetric QMR
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ALGORITHM 3.1. Symmetric QMR

Input: A,y Ky, =T (M maxiter
Output: &
(1) t§”=0,8=0,r0=—rM do=K }ro

(2) @o=1Iroll,®0 = 0,po =rgdo
(3) if (maxiter=0), top = do, return
(4) for k=1,...,maxiter

(6  w=A um>dk )

(6) Ok_ 1_dk W, if (ok—1=0), return
M aca=5
(8) rk_rlﬁ_h_ak W

_ 1"k 1
9 k=g %= 1+e§ » Ok = Gk-1OKCk
(10) & = (BOF )0 1+ (CBak-1)dk 1

(112) tk = tke1 + O

12) if (& converged OFp;< 1 =0), return
(13)  w=K_ 5rk,pk=rgw, B = 2
(14)  dk= W+ Brdk-1

(15) end for

(sQMR) algorithm. sQMR improves the functionality of MINBEwhile keeping the same
computational requirements. SQMR and MINRES are equival@hout preconditioning.
Assume the correction equation with operaQRr , preconditioneK m and the right

hand side—r(™. As it is typical in the JD method, assume that the |n|t|alsgijs zero.
Algorithm 3.1 shows the sQMR algorithm for solving the ab@egrection equation with
right preconditioning.

Similarly to CG, thedy are the% ) conjugate vectors that BiCG produces, apare
the BiCG residuals of the linear system at kaeth step. Hence ([4]):

(3.7) d'A, md=0, ¥i=0,. . k-1
(3.8) d'rg=0, Vi=0,...,k—1.

Note that the SQMR residualk, and its normgx = [|gk|| = ||r(™ + A, ym || arenot com-
puted during the algorithm; only the norm from the quasi mizationgy. The actual norm
Ok, although typically larger thagy, it is bounded by:

(3.9) Ok < vVKk+1 gk

Without preconditioninggk = 6k, and depending on the preconditioner the above bound can
be sharp. The actual norgx could be computed at the expense of two additional vector
updates and one inner product, and by storing an extra vﬁmtfét;] mOk. However, as we
show in Section 3.4 this expense is not justified. In the Yoilhg sectlon we consider only
the actual residual norigy.

Finally, note that we have used right preconditioning s tihe normgy corresponds to
the original correction equation, not the preconditioned ¢see [18]). This is desirable as we
want to relate the eigenvalue residual to the monotonichdhyreasing linear system residual.

3.2.2. Monitoring the eigenresidual in sSQMR. Replacing CG with sQMR results in
a method which we call IDQMR. As with JIDCG, we must provideregpions foref(m“)
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and ||r,(<m+l)\| of egs. (3.4-3.6) that can be calculated through short regoes in sQMR
and without additional matrix-vector, preconditioning,w&ctor operations. The difference
between the expressions for JIDCG and JDQMR is strictly dtietprojection process. Simi-
larly to [46], we consider a simplified JD process where the Rector is updated through eq.
(3.4) and not through a Rayleigh Ritz procedure in the whetech space. A subspace accel-

erated JDQMR would improve the Ritz valtﬁ§<?1+l>, but not necessarily the residual norm,

Hr (m+1) || This simplification, therefore, constitutes a worst casenario for the complete
JDOQMR, and it also keeps the expressions inexpensive actdbta.

THEOREM 3.1. Consider Algorithm 3.1 applied to the correction equati@al{, and
the definitions in (3.1-3.6). Subscripts denote the QMRatiten number and superscripts
the iteration number of the outer JD process. Based on thatioot of the algorithm, define
the following scalars:

(3.10) B = tg (A—nl)u(™

(3.11) Mk=tg (A—nl tk—tkAqu )t
(3.12) Ac=8rM = _gro,

(3.13) Oy = 3 (A— 1B = A m &,
(3.14) Wi =t (A—n1)d = tg 1A m S,
(3.15) Yk = CEOZ_4, &k = Colk_1.

Then, these expressions hold:

(e<m> N+ 2B+ rk)

3.16 oY =n+

(310 il L+ Tt
2 0(M — 1+ By)?

3.17 )2 9| ( n+5k)~ g(MD) _ 2
@ I Lt e O
whereBy and T satisfy the following recurrences:

(3.18) Dy = YiDk—1 — &kPr-1
(3.19) Bk = Bk-1+4k
(3.20) M = Mko1 + 2We+ Dy

(3.21) Py = VePy_1 +EF0K-1
(3.22) Wi = Vi Wk-1 + Y Pr-1,
WithBo—Ao—ro—¢o—Wo—0

Proof. From egs. (3.4-3. 5}3 (MT Ay(m ||u )|| = 1, the symmetry oA, and the
fact thatt] u(™ = 0, we obtain|u +tk||2 1+ HtkHz and eq.(3.16):
8" = (U™ 4t TAU™ o/ ||tk||2>
=N+ (0™ —n+ 2L (A—nHu™ + A mt)/(1+ [[t]®).

Becausel((ml) € ul((m+l> we derive eq.(3.17) as in eqs. (23-25) from [46]:

Ir™ 12 = A=) -t 12/ (L4 [t]?) — (6™ —n)?
= (10 =u™u™T)(A-n1) ™ + o]+
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Ju™u™T (A= 1™ 440 2) /(24 ) - (O ~n)?
= (ol + (8™ —n+B2)/(1+[t|?) — (6™ —n)2.
The recurrences are obtained through the vector updatesfasim sQMR.
B =ty (A—nHu™ =tf (A—8M)um = tfrm
= (tee1+8)Tr™ =By g + A,
D =BT = (yiedy—1 + &) Tr ™ = Vi1 + & (df_or (™).

Notice thatr (™ = —ro = —ry_1 — A, (mt%Y, wherery_1,t0° are the residual and the solu-

tion that the BiCG process produces at khel inner step. We know that the BiCG solution
tﬁf% is a linear combination of the firsk j_ox_» BICG vectors, and from eq. (3.7) we have

dI_1%7u<m>tE5% = 0. Thus, using the update formula df_; in SQMR and eq. (3.8), we
obtain eq. (3.18):
Dy = Vb1 — Ekdg_1Tk-1 = Yidk-1 — Ek(leK&% Mk-1+ Bro1dg_ofk-1)

= Yilk-1— Ekrl,lKL;% M-1= Yklk—1 — &kPk-1
The recurrence fary is decomposed as follows:
M= (te148) A ym (k1 +8) = M1+ 2%+ B

We first considemy. Notice that from the SQMR algorithm that is a linear combination of
thed; j—ox_1. Therefored; are also conjugate w, i.e.,

(3.23) B 1Ay ym dk-1 = 0.

Then, we can derive eq. (3.21) as follows:

Py = (Ykdk—1+ Ekdkfl)TAqﬁu(m) (YkOk—1 + Ekdk—1)
= Ve®x 1+ Ed_1A, ym dk-1 = YePr-1+&LOk 1.

Now, we considely. We observe that the sSQMR solution vedtois a linear combination of
the §; j—ox vectors. Using the conjugacy &f with d; in eq. (3.23), we havt,?[Aﬂ ymdk = 0.
Then eq. (3.22) is obtained as:

Wi = tr_ g A, ym (k-1 + &k 1) = Witk A, o Sk
= Vit 2Ry i Bk 1+ WOk_1A, ym Bk1 = V(W1 + Py1).

Finally, it can be simply verified that fdt = 0 the above scalar quantities have the value of
zero.O

3.3. Stopping criteria. The above theorem provides the means to dynamically and in-
expensively monitor the eigenvector convergence insidditiear solver. It also characterizes
the convergence behavior of both the linear system and gfeselue residual. We first con-
sider the unpreconditioned case, where the sSQMR is equivelINRES, andy, = §k. To
simplify the discussion we introduce the following notatiwhere non-boldface letters are
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used to denote the norms of the vectors with correspondiltiyfaoe letters. Specifically,

(3.24) r = )
(3.25) (&Y = frol| = | fim ™)
(3.26) Ok = || 9k||
(3.27) ty = ||tx|
(e(m) —nN+ Bk)2 (m+1) 2
3.28 = — —~ (8 — .

Equation (3.17) suggests that as the linear system is sajxeée 0, rf(mﬂ) i

andpy — (r&ml))z. Note thatpy could be negative initially, but converges to a positiveitim

with rate similar to that ofi. In addition, Notay showed for a similar equation for the CG
that px is much smaller tha(rf(m”))z. Thereforerl((ml) stays close tgy until the proximity

of the limit. Notay proposed to stop the inner solver whenveogence rates start to devi-

ate: ge/gk_1 < (r\™ Y /ri™e’ for some user defined, say 0.9. The lack of monotonic

convergence ogk in CG complicates the above stopping criterion, and thetjpacJDCG

algorithm introduces several different tests and user défparameters. The smooth conver-

gence of the JDQMR residuals allows for a much more accuisgeoticonvergence rates.

Moreover, we show how to provide a set of almost parametsr-frdaptive stopping criteria.
First rewrite eq. (3.17) as

ok
1+t2

(3.29) r(M2 - 1 pe.
We want to quantify how accurate an approximation of the IN\térate we should obtain,
or equivalently to identify ai, such that we stop when

(3.30) ™ < ar™D witha > 1.

Based on our discussion above, the results in [46], and theh‘at in the domain of Newton

convergence (for the outer |terat|0|n§qm+ is much smaller tharb , We can assume that

Pk ~ ri™12 even for relatively smak, and in particular fok close to the required stopping

point. Thus, we can turn condition (3.30) into a testabledition involving only gk and
(m+1),
Ne -

M2 < o2 p = o2r(™ 2 _ o2l /(141))

(3.31) gk<rm+1 \/ \/1+tk

Because the norm of the correction is typicdjly« 1, especially close to convergence, the
above condition is determined by the factor basedxorA first approach to obtaining this

factor is to observe that when the two tergﬁ:;‘{(lﬂf) andpg in eg. (3.29) become equal,

rlﬁm”) is approximately within a factor of/2 from its limit. Thus, we could stop if the

linear system residual is smaller thary @7 1+t|f of the eigenresidual. Our experiments,

however, have shown this not to be an effective factor. Iddadactor close t0.99,/1+t2
has yielded consistently better results.
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To identify an appropriate factar, we should first understand its effects on the global
convergence of the method. On exit from the inner iteratioa eigenvalue errors satisfy the
Bauer Fike bounds:

(3.32) o™ | < r™Y
(3.33) 160D _ nq| < rlmD),

We avoid using the tighter bounds of [52] becadsenay not be sufficiently separated from

the spectrum relative txf(mﬂ). After completing the following outer step, exact INVIT wil

reduce the eigenvalue error by a facftoi.e, frm Therefore, a small enough value f

— obviously smaller than Af — is needed for the inexact INVIT to guarantee convergence.
An analysis of the bounds that such a value has to satisfy @mé $euristics are presented
in [62] (see also [6]). Similarly, exact RQI will yield an eigvalue errorf|6c(,<,m+1> —M/?

for some factorf. As Smit et al. derive in [62], quadratic convergence in aExRQl is
maintained even for relatively large values af especially during the later stages of the
iteration, as long as sufficiently small ones are used in theféw iterations.

In the first few outer iterations, the JDQMR may not have a gestinate of the eigen-
value, suggesting the contrary, i.e., that the correctguagon should not be solved accu-
rately at all. This presents no problem, because JDQMR i rfiexible than INVIT/RQI,
in that even if no accuracy is required in the solution of tberection equation (zero inner
iterations) the subspace accelerated algorithm still eaes as fast as Arnoldi or GD (with
preconditioning). The outer step, however, can be ratheersive compared with the recur-
rence based inner solver. For this reason, it is beneficipbsbpone exiting from the QMR
as much as possible to achieve an outer convergence similaaittof the exact INVIT/RQI.
This implies that ™™ andr{™™ should be of the same order of magnitude, e.g., for INVIT
o < min(1/f,10). We have chosen = 7, which yields the parameter 0.99 of the previous
paragraph. The choice of that gives an optimal total number of inner iterations, ineim-
ber of matrix-vector operations, is beyond the scope of haiser and the focus of current
research. We note, however, that preliminary results witR®| model based on equations
(3.29) and (3.31) have confirmed that when a constastto be used its value should be 8,
which is close to our experimental choice.

The criterion (3.31) can be complemented for the case wherednvergence of the

linear system solver is very slow or experiences plateauthdt case, we Wamf{mﬂ) to be
even closer tay relative to the convergence rategfand not only by a constant factor. We

demand, therefore, that the average convergence rate eigearesidua(rf(m*l)/ro)l/k =

(rf(ml)/go)l/k is no more (i.e., not slower) than the geometric averageeoliatst two average
rates of the linear system, i.e., stop when,

m+-1
(GG _
do Y0 do
(3.34) ok < 1™ /oG 1.

Putting together inequalities (3.31) and (3.34) we obtainfiost stopping criterion:

(3.35) g <™y max<0.99\ /1412, \/gk/gk1> .

As we discuss in section 5.2, despite the optimality of thevelcriteria, SQMR may
experience convergence plateaus in more than one outeerHligh. During these plateaus
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it attempts to resolve certain eigencomponents that pte@avergence for the specific cor-
rection equation. Although this plateau would be built ebgnour QMRopt benchmark,
repeating it every outer iteration would be wasteful; whsta a different sense than what
we have studied till now. Thex andrl((m”) may still be close and the inner iteration may still
offer improvements to the correction, but to do so it needspaments that it keeps rebuilding
for different correction equations at every outer stephéiltgh not severe, this is sometimes
observed in problems with slow convergence. In such casesiave found it beneficial to

stop wherrg is reduced by a certain factor, say
(3.36) ™Y < 0.11.

Note that this is very different from the traditiongd < 0.1 gp, and that it should be used in
conjunction with the criteria that guarantee closenegi aﬁdrf(m“).

For extreme eigenvalues, the variational principle guaesmonotonic convergence of

the Ritz value at the outer step, but not of the approximﬂfﬁﬁl) during the execution of
QMR. We have found it beneficial, however, to stop QMR when

(3.37) oY > g™,

If ef(””l) increases, an eigenvalue was missed and the solver is to/negarget convergence
to the missed one. Itis thus beneficial to exit the inner fteneand let the outer step improve
on the new Ritz value through the Rayleigh Ritz procedureyiging a better correction
equation during the next inner solution.

Finally, we should stop the inner iteration when the reglitoderance has been achieved

(or the maximum number of iterations reached). Althoggh< rf(m“), except possibly for

a few initial steps, it is safer to check bagh andrl((m+1> < €&inn. The threshold for the inner
iterations,&inn, could be the same as the user defined threshlthr the eigenresiduals.

The rl((m”), however, is the residual norm of the corrected Ritz veaod not from the
outer Rayleigh Ritz method on the basisthat includes the correction. Thus the residual
norm computed by the outer method could be slightly largan ¢hcausing the inner method
to be called again to provide a very small correction. Thigaring could force QMR to
build again certain vector components, wasting some iterst Therefore, we suggesin =
€/2, while making sure that this is achievable within the maelsi precision gmyschine
Estimating the norm of by the largest Ritz value seen thus far, we stop QMR if:

(3.38) Ok < €inn ORTI™Y) < i,
(3.39) with ginn = max(e/2,€machind All)-

3.4. The effect of quasi-minimization. With a preconditioneK, the BiCG residuals
re in the Algorithm 3.1 aré&K ~-orthogonal, but unlike MINRES which implicitly considers
the orthogonal basik ~/2r,, SQMR uses theyg and thus the actual norgy of the sSQMR
residual is bounded as shown in inequality (3.9). A natutedstion is whether the above
stopping criteria would be adversely affected by using dalily computedyinstead ofg.

The only quantity in Theorem 3.1 that is affected by replgajp with §y is the eigen-
residual norml((ml). Neither the eigenvalue estimag"”) nor thepg term of eq. (3.29)
depends on the choice gf. Let gk = ckdk, with 1 < ¢x < vk+1. We do not consider the
possibility 0< ¢k < 1, because in the rare case that this ocomgsyould still be very close

to 1. Denote by,(f'”l) the eigenresidual norm approximation computed through{389)
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usinggk. We can expresim*l) as a function of the approximatém’”)2 as follows:

(mi1)2 _ o Gt

Ok 1)2
e o 2+p*0§1 t2+pk*ck((m+)

— Px) + Pk

(3.40) =Y (- Dpw.

Ideally, criterion (3.35) should check the ratio of the et><ms|dualsgk/r (m-+1)

R=max0.99,/1+t2,/g«/0k_1) and using (3.40) we should check:

QE _ Cﬁ@ﬁ _ QE 1 <R

rl((m+1)2 Cﬁfl((mﬂ)z _ (Cﬁ —1)p f|(<m+1)2 1 (-1 py

. Denoting

Equivalently, using our computed residual approximatiesshould check:

XA -1
(3.41) Ok < Ty RJ 1- cﬁ IR

fi
In practice, becausg is not known, we can only check:
(3.42) G < FM™Y R

We have used the sarRen both ideal and practical tests, becagigk—1 = (Ck—1/Ck)0k/ k-1 ~
Ok/Ok—1 asck can change only slowly between successive steps.

When r‘m”) is far from convergencepy < r(m+l>2 and since(c2 — 1)/c2 < 1, the
factor multlplyng in (3.41) is almost one, and the approximate criterion (Bigt@ractically
equivalent to (3.41). Near convergencg'“)2 rim2 Px, SO a largecy could yield a
substantially small factor, thus invalidating the appnoate criterion. Two issues prevent
this.

First, criterion (3.35) was derived from the condition thgf*l)z should not come closer
thana? to pc. This gave rise to egs. (3.30-3.31). Working backwards fRme have

=1/(1—R?), so at any time before criterion (3.35) exits, it holds:

Pk
(3.43) e <1 R.

Mk

Substitutingl(< 2 for |(< Y2 trom eg. (3.40), and using (3.43) we can bo%:
"k

(3.44) P _ PP SR i
r“limﬂ) rf(mH) (-1 1+(1- R?)(ct—1)
Then the factor multiplyindr in the ideal bound (3.41) is bounded from below:
(-1 1
3.45 1- .
o J G\ T R -1

The above factor is always very close to 1, so checking (3dtead of (3.41) is a good
approximation. For example, given tHat> 0.99, it requires an excess of 1000 sQMR iter-
ations, and &0 close to the bound (3.9) to require a stopping criterion.8b0nstead of
the used ®9.
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The second reason preventing a small factor (3.45) is theatehm of 1- R2 = 1 —
Ok/Ok—1 becomes increasingly small with slow linear system coretecg. Thus, it compen-
sates for a possible increase in the teﬁm 1 that could result from a large number of SQMR
iterations, keeping the overall terml(1 — R?)(cZ — 1) ~ 1.

Finally, even if the factor (3.45) does become slightly & one, the inner SQMR is
stopped a few iterations earlier than if the correct redidaems were used. This, in fact, may
be beneficial because no time is wasted overconverging tie iteration when more outer
iterations are needed. On the contrary, using the uppercbgn- 1 g as the norm estimate
requires more iterations to satisfy the stopping criterard has consistently underperformed
thedyk choice in our experiments.

Am+1)

The use of the approximagg andr, may also affect criterion (3.39). Convergence
may be signaled a few iterations earlier than it is actuatlyieved, which could cause an ad-
ditional correction equation to be solved through a few toldal SQMR iterations. However,
this does not affect the overall convergence behavior oatperithm. Moreover, as without
preconditioning, the inner toleraneg,, can be chosen heuristically to reduce the number of

unnecessary iterations. For example, the norm i&gtie r‘f(m)/r(m) from the previous outer
iteration can be used to estimaieand converge tej,n = &e. In our experiments the simple
criterion from eq. (3.39) was used and performed consigterdll.

3.5. The JDQMR algorithm. Our stopping criteria and the recurrences of Theorem
3.1 can be implemented trivially into the sSQMR Algorithm 3athich in turn is called at step
(19) of Algorithm 2.1. Algorithm 3.2 provides the additidhiaes required in Algorithm 3.1.
Except for the initializations, only line (12) is replaced.

The GD outer algorithm can be implemented with storage fiarlong vectors of size
N. If IDQMR is used, there is an additional requirement of Sjleectors.

Excluding matvec and preconditioning operations, the egpef the outer GD Algo-
rithm 2.1 can be calculated as a function of flops. Followilessic literature, each of the
steps takes: re-orthogonalizati®i8Nm-+ 2N) (step 5), updating dfi O(2mN) (step 7), the
small eigenproblen®(4/3m?) (step 8), Ritz vector computatic®(2Nm) (step 9), residual
computatiorO(2Nm+4N) (steps 9—10), norm computati@{2N) (step 11), and the restart-
ing cost isSO(4NMmasMnin) (steps 12-19). Averaging oven = Mpyin... Mnax and setting
K = Mmin/Mmax We have the average cost per step:

72
GDcost= 0 (WN Mnax - %‘N n 1/3n"ﬁ1ax) .

Typically, Mmin = Mmax/3, in which case: GDouter 11.3Nmyax+ 20N + nﬁ]ax/& These
are mostly BLAS level 2 and level 1 operations. Similarly, @an obtain the cost for each
QMR step, including the JD projectors: QMRcesR4N. However, these are strictly level 1
BLAS operations. The QMR part of JDQMR is about 15% more egjperthan the CG part
of JDCG, but this is justified by the increased robustnesséfiaency.

4. The Conjugate Gradients view. An alternative to Newton is the use of the nonlinear
Conjugate Gradient (NLCG) method to minimize the quadfatim of the Rayleigh quotient
on the unit ball. As with the Newton approach, the NLCG musajelied on the Grassmann
(or Stiefel) manifold for this constrained minimizatioroptem. The appropriate forms of the
constrained version for the NLCG and for the case of manyiredweigenvalues are given
in [15]. Researchers have been using similar type of renae®quite successfully for many
decades; see Bradbury and Fletcher's seminal work [8], @ lishof references in [15], as
well as work in [20, 5].



16 A. STATHOPOULOS

ALGORITHM 3.2. JDQMR additions to sQMR algorithm

(12.0) Vk=CEOZ ,, &k =Ciak 1, f =1+ [|ty|?

(12.1) Wy=y(Wk-1+Px1)

(12.2) Py =Py 1+&20k1

(12.3) =Tk 1+ 2%+ Dy

(12.4) Dk = Wlk-1— &kPr-1

(12.5) Bk =Bk 1+Ak

(12.6) p= ge““) N+ 2B+ rk) /f

12.7) ™Y =n+p

(12.8) = (6™ —n+By)?/f —p?

12.9) ™Y = g2/ + p

(12.10) if (px—1 = 0), return

(12.11) if (™Y not real), ™ = | /g2/f

(12.12) if (g < r{™Y max(o.ggﬁ , «/gk/gk_l)
OR (6™ > g™ Y) OR if desired (™ < 0.1r¢)

OR (& < €nn ) OR( rl(<m+1) <E&pnn))
then return the correctiorty.

NLCG methods build iterates within a Krylov space as theyaiilize gradient infor-
mation. Therefore they cannot converge faster than umtedthanczos or the optimal QMR
benchmark. NLCG, however, uses a three term recurrencentpute both eigenvalue and
eigenvector without storing all the intermediate iterat@serefore, NLCG can often find one
eigenpair in less time than the Lanczos method despite arlatgnber of iterations.

Although the relations between NLCG, Newton and quasi Newtethods are well
documented [45], the question whether truncated Newtormaadstare more efficient than
NLCG (or quasi Newton) is problem dependent. In the extrease of a linear unconstrained
problem the NLCG is equivalent to CG, and since only one Newgtep is required in that
case, NLCG and truncated Newton are equivalent. For eigigmyaoblems, the nonlinearity
is not severe and the above NLCG variants perform quite w@lken that JDQMR is a
truncated Newton method with a number of matrix-vector patsl within a small factor of
optimal, we would like to explore its relation to NLCG vartan

4.1. The locally optimal recurrence. Most NLCG approaches consider minimization
of the functional along a search direction which is usuatipjuogate to the previous search
direction with respect to some variation of the Hessianh@digh not usually expressed like

this, the approximation™%) at the(m+1)-th step belongs in the spake= {u(m*l) ulm, r(m)} ,
wherer(™ = Au(M — @My is the residual ofi(™. It is natural to consider a method that

minimizes the Rayleigh quotient on the whole sphdastead of only along one search di-
rection. The method:

(4.1) umd — RayleighRitz({u(m*%u<m),r<m)}) ,m>1,

was proposed by D’'yakonov in 1983 [14], and was studied &rrtinder the name locally
optimal Conjugate Gradient (LOCG) in [30]. It is captivagiin its simplicity, especially
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because it avoids the question of how to pick the searchtiirec Most importantly, the
method seems to consistently outperform other NLCG typdaust

Yet, for many years since its inception, LOCG was plagued loyerical instability
problems. Obviously, a converging vectof” implies an increasingly linearly dependent
basis for the Rayleigh Ritz process. Orthogonalizatiomettasis was not considered, mainly
to keep recurrence costs low, but also because orthogmuatizo almost identical vectors
would result primarily in a noise vector. In that case, tfe@fveness of the method can be
no worse than steepest descent. However, these problentt doise until a good level of
convergence has already been achieved. An extension tmé#iieod for many eigenvalues,
and with a more stable recurrence (usit® — t(Mu(™-b | for some weight(™, instead of
u(m-1) is the more recently proposed locally optimal block pretitaned CG (LOBPCG)
method [32].

4.2. The locally optimal restarting. Restarting Krylov and Krylov-like methods every
k iterations can have detrimental effects on their convargeas the minimization of the
Rayleigh quotient occurs only over the l&dbasis vectors. In the extreme casekef 1 the
method is simply the steepest descent. In linear systenguattiens, CG has the remarkable
property of implicitly remembering all the visited diremtis. Although the Lanczos method
has the same memory, the Lanczos vectors must be revisiteartpute the eigenvector. For
symmetric problems, a larger subspace acceleration gfestedescent (largéj yields better
convergence, although beyond a certain basis size ortlatigation and restarting costs start
to dominate.

Thick restarting [70] is a technique that improves conveogeof restarted iterative meth-
ods by keeping more than the required Ritz vectors at re@taft, > ney). The technique
harnesses the superlinear convergence of Lanczos as riRigebyectors are improved, and
therefore are gradually deflated. It is theoretically eglgiat to Implicit Restarting [63], and
it has proved particularly effective when more than onemighie is required. Still, by itself,
thick restarting cannot capture the memory of directioas @G so well captures.

In [44], Murray, Davidson and Racine proposed to restartDagidson method with
not only the required Ritz vector at the current staff¢=), but also with the Ritz vector
at the previous stepu{™a1)). The motivation was to maintain the same three term space
L that CG uses to get its optimal approximation when solvinipealr system of equations.
However, it was unclear what this linear system is, and wittibe obvious connection to
NLCG the method went relatively unnoticed for some yearsoAthe suggested implemen-
tation was orthogonalization-heavy requiring even extaarix-vector products. On the other
hand, the convergence improvements for Davidson, with ¢lomit preconditioning, were
impressive.

4.3. The GD+k method. In [68], we showed a theoretical justification of the coniatt
of the above restarting scheme, which we called GD+1, to @Gcémpleteness we mention
the following two pertinent results. Proofs and additiosigcussion are given in [68, 64].

THEOREM 4.1. Let vectoru©@, with [[u@|| = 1, 8@ = u@TAu©, andn € O. Let
(8, u()) be a Ritz pair obtained after j steps of the Lanczos methat,uif) as a starting
vector. Leugl) =u® 4t j be the approximate eigenvector, wheyrés the correction obtained
by applying j steps of CG to the correction equation (2.1) ffio= 0). Then:

The theorem says that if we knew the Ritz valig at any Lanczos step, we could construct
a (CG) three term recurrence to yield the corresponding Wittor. Intermediate vector
iterates would differ in general. This is similar to the teda between the iterates obtained
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ALGORITHM 4.1. Modifications of Algorithm 2.1 for GD+k restarting
(71 $9=s5,i=1,....m
(12.1) Orthogonalizei"éd, i=1,...,k among themselves
and againsts i =1,...,Mnin
(12.2) Compute Ky, = sPldTHs!d
(12.3) Sets=[s1,. .., Sy SS9, ..., 2]
(14) fori=2,...,mmn+k
(17.1) H(Mmin+ 1 : Mmin+ K, Mnin+ 1 : Myin+k) = Hsup
(17.2) M= Mmin+ K

by the optimal QMR process)(= A) and the Ritz vectors of the unrestarted Lanczos. The
effectiveness of the GD+1 restarting technique is attetub the fact that the Lanczos Ritz
vectors approximate the CG iterates@8 converges. For the smallest eigenvalyewe
have:

LEMMA 4.2. Lety = A, — A1 the gap between the two smallest eigenvalue(9f —
A1| < 8, for & < y/2, then the distance between the Lanczos Ritz vectors anggiexamate
eigenvectors produced by CG on eq. (2.1) is bounded by:

J
(U

u —y® (i) _
| | _ 180 —n|

If we were to restart GD at themax Step, the Ritz value at th@nmax+ 1) step would be
minimum over onlyu(Mmad andr(Mmad  |f we also keptu(M™a1) | the three vector subspace
would be similar to the three term CG recurrence subspacgieids the exact(™maxt1) |n
fact, the lemma suggests that the distance between theameesand the GD+1 Ritz vectors
at the(Mmax+ 1) step is bounded by @(Mmax-1) —g(Mmaxt1)|) - This justifies a stronger local
optimality of the GD+1, not only with respect to the Raylemimotient as in LOCG, but also
to the Ritz vectors.

In[68], we extended GD+1 to GD+k and combined it with thickteeting. By GD{Nmin, Mmax) +K
we denote the GD method with basis simgay, Where at restart we retaimyi, smallest Ritz
vectors from stepmaxand in additiork smallest Ritz vectors from stepyax— 1. The special
case GD(1,3)+1 is mathematically equivalent to LOCG (angkineral a block GIK, 3k)+k
with block sizek is equivalent to LOBPCG). We also provided an implementatfat re-
quires no additional orthogonalization of long vectors andextra matrix-vector products,
by working exclusively with the Rayleigh Ritz coefficient$he modifications required to
the GD Algorithm 2.1 are shown in Algorithm 4.1. The expenséeirms of flops of steps
(12.1-12.3) ig0(mmaxk?) and thus insignificant for large problems. The only addiicex-
pense over GD is that we have to restart with a basis size.gf+ k (step 14). Because
convergence improves significantly, even whth- 1, a much smallemy, can be used than
regular GD, and thus GD+1 can be less expensive per step than G

We emphasize that the GD+k stability stems from the orthaltjityof the basiy/. Typi-
cally, the small coefficient vectoss andﬁ'd will be very close. Orthogonalizing'd against
s1 will produce a vector that may not lie exactly in the sparﬁdﬁ, but it will be orthogonal
to ;. This orthogonality is bequeathed\s (asV TV = ), which becomes a stable basis for
the LOCG recurrence. In contrast, the LOBPCG method corsithe vectolV/ (s; — '%)
(with VTV # 1) which is not exactly orthogonal #s;, and so the Rayleigh Ritz procedure
gives rise to a generalized eigenvalue problem, with infesiability properties. The dangers
of a non-orthogonal basis in LOBPCG have been pointed o@8h [



NEARLY OPTIMAL EIGENMETHODS 19

4.4. Global optimality and subspace accelerationDespite the local optimality of
GD+1, from both the Ritz value and Ritz vector viewpointsrthis no theoretical result
showing that GD(1,3)+1 (or equivalently LOCG) is within aahfactor of optimal QMR.
Extensive numerical experiments in [68, 64, 32] and in tldpgy suggest that this is true
for the majority of cases. The above theory can provide sarugtion for this. Because the
eigenvalue error in symmetric problems converges as thereqii the residual norm, the Ritz
value quickly approximates the eigenvalue and therefad. @CG recurrence approximates
well the optimal CG method (i.e., solving eq. (2.1) witk= A1). Interestingly, even when the
Ritz value nearly stagnates over many steps, Lemma 4.2 sisgipat the LOCG recurrence
can effectively built a space similar to the unrestarteddzas. When the algorithm realizes
that it was targeting the wrong eigenvalue, the global oglitynof the algorithm is lost. This
is similar to terminating the inner iteration of the JDQMRUjadate the shift in the correction
equation. Unlike JDQMR, however, each step of GD+1 invothesmost current Ritz value,
which may explain its faster observed convergence.

Yet, for some spectrum distributions or adversely choséialiiguesses, the Ritz value
may vary substantially, often locked temporarily on vasionterior eigenvalues. The re-
sult is several breaks in the global optimality of LOCG, darly to many outer steps of
a JDQMR (or RQI) algorithm. For such cases subspace actielei@nd thicker restarting
can improve convergence dramatically. The @R, Mnax+1 method takes advantage of
the global optimality when this is present, and when not,aintains the subspace conver-
gence of the restarted GD/Lanczos for required and neag®gnealues. This in turn makes
the Ritz value converge faster, thus expediting the retorbenefiting from the LOCG re-
currence. See also [50] for the effects of subspace actieleran classic GD. Finally, al-
though GD(min, Mmax 1 is a stable implementation, convergence of the coefficiectors
S1 andﬁ'd in Algorithm 4.1 yields a basig which, although orthogonal, may not fully corre-
spond to the ideal three term space of the LOCG recurrenchowtisubspace acceleration,
GD(1,3)+1 or LOBPCG revert back to steepest descent in theeses.

There is an interesting analog from the nonlinear viewpdiitCG is close to optimal
when the nonlinearity of the problem is not severe. When it.ig,, when the minimization
function gets trapped in various saddle points (interigeevalues), quasi-Newton methods
almost always converge faster than NLCG [24]. These metlsdsthe vector iterates to
construct incrementally an approximation to the Hessiarles& expensive, but equally ef-
fective in terms of convergence, alternative is to use ohéylast few vector iterates as in
the popular L-BFGS method, which is a limited memory versibithe Broyden, Fletcher,
Goldfarb, and Shanno method [45]. In the context of eigere/groblems, implementing
L-BFGS is similar to the subspace acceleration of the resta&D+1 method; the only dif-
ference being the minimization occurring over lines indte&the whole subspace in GD.
At one extreme, L-BFGS with memory 1 (in addition to the cotrigerate) is equivalent
to NLCG and similar to GD(1,3)+1, while at the other extrenmiimited memory BFGS is
similar to unrestarted GD (or Arnoldi). In the case of a $tyiconvex, quadratic objective
function the equivalence extends between certain formsBFGS, NLCG and the usual CG
[35]. Similar connections between quasi Newton methodsitamdtive methods for linear
systems have been studied. For example, the Broyden mashbdefar systems gives rise to
the EN method which is equivalent to GMRES [16]. In conclasiwe expect the subspace
accelerated GDimin, Mmax*+1 to be more robust and more effective than simple recaegn
(such as LOBPCG).

5. Experiments. Our first goal in the experiments is to verify that JDQMR and+@D
are indeed within a small factor of the optimal method QMRofMRopt refers to the
JDOQMR method where the exact eigenvalue is given as shifts;Ttne JDQMR outer step,
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with QMR solving eg. (2.1) resolves the smallest eigenpg@iir second goal is to show the
robustness and consistency of the JDQMR and GD+1 algorithrasvariety of situations,
including also interior eigenvalue problems. Third, weyide extensive comparisons with
JDCG, JDQR, ARPACK, LOBPCG, JDBSYM, and various versionShaft-Invert Lanczos,
with and without preconditioning. Fourth, as JDQMR and GDarike as the methods of
choice, we assess their relative merits. This helps a dynelmaice between the two methods,
as they both share the same implementation, leading to aalbrearly optimal method.

5.1. Tests and environment.Most of the algorithms used in our experiments are im-
plemented in Matlab. Our JDQMR/GD+1 code implements Aligionis 2.1-3.2 relatively
closely, by modifying the JDCG code of [46], which in turn isredification of the code
in [17]. To compare with ARPACK we use the Matlab built-in fiion ei gs(), and for
LOBPCG we use Revision: 4.0, Beta 4, with the modification ¢éhg( A, B) is used instead
of ei g(A B, chol "), for numerical stability. We also provide a set of experitsenith
three packages written in C: our PRIMME multimethod packggimplements also GD+1
and JDQMR, BLOPEX which is a LOBPCG implementation [29], and JDBSYMlack
Jacobi Davidson implementation [22].

In all experiments we seek only one, smallest algebraicigie. For GD based methods
(GD+1, JDCG, JDQMR, JDQR) we usBmin = 6 andmpax = 18. With eigs() we select a
basis size of 36 so that it requires the same storage as GD@BPCG requires storage
for 6 vectors. The Sl-eigs, implements the shift-invert ¢zws by calling QMR to perform
the inversions at each step of eigs(). A shift very close ¢odigenvalue ensures that only a
few outer eigs steps are needed. Because for LOBPCG we hand fofar more stable to
scale the matrix first, we always ude= A/||Al|r, where||A||r is the Frobenious norm of the
matrix. Then we iterate all methods until the residual noaffsfoelow 10'1°. The tolerance
for eigs() is also set to 1G°. All methods start with the same random initial guess. When
there is a preconditioner, this is always the Matlab funmctibol i nc( Atsl, 1le- 3), except
for NASASRB for which the threshold ise-5. The shifts is chosen for each matrix so
that the incomplete Choleski factorization can be carrigdstably. Experiments are run in
Matlab 7 (R14SP3) on an Apple G5 with 1 GB of memory and two 2@kcessors, each
with 512 MB L2 cache. For the C experiments we do not scale thteixn but converge until
the residual norm falls belofiA|r 10~1°. Experiments are run on the same Apple G5, using
the gcc-4.0.0 compiler with -O flags, but without optimizeldAS/LAPACK libraries.

One of our goals is to provide experiments that can be condiindependently by other
researchers, but are also representative of various slagggoblems. Thus, we have se-
lected thirteen different matrix problems available in fbéowing repositories: Matrix Mar-
ket, University of Florida, and the FEAP collection. Two tese matrices (LUNDA and
NASASRB) stem from eigenvalue computations, while the lheste spectra that present var-
ious levels of difficulty to iterative methods and the preditioner. In addition, we have
selected three matrices from eigenvalue applicationsfriovo vibrational analysis of molec-
ular structures [75], and the usual five point Laplacian aferon the unit cube. A larger
five point Laplacian is used for the C experiments. Our tesblgms cover the range from
easy to difficult, from small to relatively large, and fromesge to relatively dense. Table 5.1
shows the name, sizes, and source for each matrix.

5.2. Nearly optimal convergence.First, we present results from matrices 1138BUS
and NASASRB, as they are quite representative and demtmbwth the near optimality and
robustness of GD+1 and JDQMR. Figures 5.1 and 5.2 show, f88RWUS and NASASRB

1Available atht t p/ / www. ¢s. wm edu/ ~andr eas/ sof t war e
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TABLE 5.1
The matrices used in the experiments. Most matrices come Ntatrix Market (MM) [7], the University
of Florida matrix repository (UF) maintained by Tim DavisqJlL and the FEAP collection by Mark Adams [1].
SPARSKIT (SKIT) [54] was used to generate a 5-point finiteei@ifice Laplacian on the unit 3-dimensional cube
with Dirichlet conditions. nd3kf and or56f are difficult eigvalue problems from [75].

No Matrix N NNZ  Source || No Matrix N NNZ  Source
1.1138BUS 1138 4054 MM || 9. nd3kf 9000 3279690 Yang
2. BCSSTK09 1083 18437 MM || 10. or56f 9000 2890150 Yang
3. LUNDA 147 2449 MM 11. Fillet13KA 13572 632146 FEAP
4. 494BUS 494 1666 MM 12. ConeA 22032 1433068 FEAP
5. 685BUS 685 3249 MM || 13.Plate33KA0 39366 914116 FEAP
6. BCSSTK16 4884 290378 MM || 14. Wing22KA 22266 923922 FEAP
7. cfdl 70656 1825580 UF || 15. Laplacian3d 27000 189000  SKIT
8. finan512 74752 596992 UF || 16. NASASRB 54870 2677324 MM

1138BUS: Matvecs of unpreconditioned methods

1138BUS: Time of unpreconditioned methods
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FIG. 5.1.Residual convergence history for various methods withaedgnditioning for matrix 1138BUS (see
Table 5.1). §) and () designate the residual norms at outer steps of JDQMR and@k&pectively. JDQMR
improves convergence over JDCG, and GD+1, while being withfactor of 1.26 of the optimal QMR method.
Because of the very inexpensive matrix-vector operatind¥88BUS, the convergence advantages of JDQMR are
amortized by a slightly more expensive inner iteration a#8CG. This observation is amplified for the GD+1,
which improves only on LOBPCG. eigs and Sl-eigs require a80000 matvecs and 18 seconds each.

respectively, the convergence history of the residual rforreeveral unpreconditioned meth-
ods as a function of matvec operations (left graphs) and asaibn of time (right graphs).
As expected, the QMRopt is the fastest method both in matxedsn actual time, since it
basically solves one linear system with QMR. Neverthelest) JIDQMR and GD+1 are very
close to QMRopt.

For matrix 1138BUS, QMRopt displays superlinear convecgaiter about 800 matvecs,
which is expected despite the highly clustered eigenvadgethe matrix is of small dimen-
sion. On the other extreme, LOBPCG achieves a linear coamerysimilar to the initial
phase of QMRopt, but it never switches to superlinear cgarese. Despite the limited basis
size of 18, GD+1 manages to capture enough spectral chasticeeand converges much
faster than LOBPCG and similar to JDCG. The importance of#heestarting scheme is
notable: a thick restarted, larger basis eigs() takes 3&8t@ecs (7 times more than GD+1)
to converge. Note also that the time for GD+1 is only sligliigter than LOBPCG because
the matrix is extremely sparse and minimizing the number atfvecs does not substantially
outweigh the more expensive iteration step. Similarly, MIconvergence is faster than
JDCG, but their times are similar. Both JDQMR and JDCG cayeece curves are very
close to the QMRopt one.
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FIG. 5.2. Residual convergence history for various methods withoetgnditioning for matrix NASASRB.
The smallest eigenvalues are extremely hard to find. eigaseestagnate after 300000 matvecs. JDQMR is within
1.17 of the optimal QMR, and so is GD+1. JDCG converges sityil® GD+1 up to 76000 matvecs, at which
point the outer step realizes that the correction vectorrmbiticorrespond to the lowest eigenvalue. We have noticed
this behavior also on other matrices. A relatively inexpemsnatrix-vector operation plagues the time of GD+1.
Convergence for LOBPCG was far slower and is not shown.

For matrix NASASRB, LOBPCG does not converge fast enougHtl,eags() stagnates
after a large number of steps. Yet, the convergence of GDBCG] and JDQMR is al-
most identical to the one of QMRopt! With one exception: JDR#&5 been converging to
the second lowest eigenvalue, and only realized it nearesgence. At that point, JDCG
retargets and convergence is delayed accordingly. Besidegr convergence, this behavior
may cause misidentification of eigenvalues for larger toiees. We have noticed this IDCG
behavior in a few of the other matrices we have studied. Quoypshg criteria are apparently
more robust in this direction making JDQMR the fastest méitamd closest to QMRopt) for
this matrix.

Figure 5.3 shows a summary of our results from applying séveethods on all the
16 matrices without preconditioning. For each matrix, thestshow the ratios of matvecs
and time (top and lower graph respectively) taken by eachodebver the QMRopt method.
For completeness, we also provide the actual matvecs tak@MRopt, GD+1, and eigs in
Table 5.2. The results are surprisingly consistent, ang teiect also our experience with
a larger number of different test problems. The main comatugs that truncated Newton
methods (JDCG/JDQMR) are much more efficient in finding ogemialue than eigs() (and
much more so than LOBPC@)yen without preconditionindglhis goes against the common
wisdom that one should use the Lanczos method if no predonditis available. For most
cases, JDQMR requires slightly fewer matvecs than JDCGJDQG is slightly faster be-
cause of the 15% more expensive iteration of QMR over CG. Wewé three cases IDQMR
is much faster than JDCG, justifying it as more robust, galneurpose method. In the ab-
sence of a preconditioner, the matvec operation in spargécesis rarely dense enough to
justify the more expensive step of GD+1. Yet, the matvecsin+Gare usually the closest
(and often equal) to those of QMRopt. Therefore, a runtimexkhn the program can assess
the expense of the matvec operation and if it is relativagjhhas in matrices nd3kf and or56f,
we choose GD+1 over JDQMR.

Preconditioners, when available, tend to dominate theresgat each step. In addition,
as fewer iterations are needed with preconditioning, thectf of restarting are less dramatic.
In such cases, we expect the GD+1 method to have an advantage.

Figure 5.4 shows the convergence history of various prationdd methods on NASASRB.
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FiG. 5.3. Ratios of matrix-vector operations (top graph) and timet{®m graph) taken by each of the five
unpreconditioned methods over the the corresponding roatead time taken by the QMRopt. We show GD+1,
JDQMR, JDCG, JDQR with 10 inner steps of QMR, and eigs(). LOBRvas not competitive in these tests and is
not shown. Matvecs for GD+1 are very close to QMRopt, folbwiesely by IDQMR. JDQMR is best time-wise,
because of a less expensive inner step and sparse matroe yeatiucts.

TABLE 5.2
Number of matrix-vector operations performed for each teatrix by three unpreconditioned methods: the
optimal QMRopt, GD+1, and ARPACK (eigs).

Matrix No. 1 2 3 4 5 6 7 8
OptOMR | 3468 359 362 1798 733 439 2437 318
GD+1 5105 374 1018 3767 1214 522 2558 3p3
eigs() 38376 504 1080 17032 3293 2142 09864 432
Matrix No. 9 10 11 12 13 14 15 16
OptQMR | 8518 4765 82 200 610 75 858 61448
GD+1 10506 5687 84 205 713 77 864 73474
eigs() 80910 30636 180 252 792 90 1242 -
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FiG. 5.4. Residual convergence history for various preconditionethmds for matrix NASASRB. GD+1
converges identically to QMRopt and to the unrestarted Ghis Bhows the remarkable effectiveness of the +1
restarting scheme when coupled with subspace accelerati@BPCG is more than twice as slow. JDQMR and
JDCG are also effective but not as much as GD+1. The inexperstep of JDQMR/JDCG cannot outweigh the
fewer applications of an expensive matrix-vector and prelittoning operators.

TABLE 5.3

Number of matrix-vector (equivalently preconditioning)ecations performed for each test matrix by three
methods: the optimal QMRopt, the GD+1, and the Sl-eigs upiegonditioned QMR to solve fgA—nl)~* at
every step. The top table shows those matrices that reqairéehst one restart for GD+1. The performance of
GD+1 is very close to optimal. When restarting is not neededér table) the full subspace optimization of GD+1
even improves on the QMR recurrence. Every step of the Slreguires about as many matvecs as the optimal
QMR method. Thus, even if only 2 steps were required, Shagigl not have been competitive with GD+1. Similar
results are expected with inner-outer implementationseéise iteration or RQI.

Matrix No. | 1 4 7 9 10 13 15 16
OptOMR | 49 29 218 1045 92 48 50 213
GD+1 53 31 237 1809 145 47 49 212
Sl-eigs 458 247 2028 27683 1498 942 8553 2369
Matrix No. | 2 3 5 6 8 11 12 14
OptOMR |15 21 17 11 9 11 19 9
GD+1 13 17 16 7 8 12 18 9
Sl-eigs 83 145 128 221 220 182 322 83

All methods perform within a factor of two of optimal, but GID€onvergence is identical to
optimal! Moreover, their relative convergence behaviotgred also to execution time, as the
application of thechol i nc preconditioner for this matrix dominates the costs. Basethe
same principles, JDQMR and JDCG are similarly effectivehWwDQMR slightly better.

Figure 5.5 shows a summary of results from applying five nmethan our 16 matrices
using preconditioning. We also provide the actual matvakert by QMRopt, GD+1, and
Sl-eigs in Table 5.3. Similarly to NASASRB, GD+1 is the cleginner in all cases, both
iteration- and time-wise. Moreover, for all but two cased3kf and or56f) its convergence is
almost identical to optimal. Even for nd3kf and or56f, caigence is well within a factor of 2
from optimal. Clearly, inner-outer Sl-eigs is far from coetifive. Even adaptive inner-outer
schemes for RQI and Inverse iteration as in [62, 6] cannotriyebatter than the subspace
accelerated JDQMR.

Valuable intuition on the JDQMR convergence can be obtathealugh a closer look
at its convergence curve in Figure 5.4. Recall that the CGRQ@dnvergence is usually de-
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FIG. 5.5. Ratios of matrix-vector operations (top graph) and timet{@m graph) taken by each of the four pre-
conditioned methods over the the corresponding matvecsimedaken by the QMRopt. We show GD+1, JDQMR,
JDCG, and LOBPCG. JDQR with 10 inner steps of QMR was not ctitiveen these examples and is not shown.
Matvecs for GD+1 are impressively close to QMRopt and oftever, always improving on LOBPCG. JDQMR and
JDCG are also very effective, but usually slower than GD+1.

scribed by three phases; an initial linear, a plateau, ambhduperlinear. At the beginning
of the JDQMR curve, while the easiest components of the spacare being identified,
stopping the inner QMR process frequently does not have aggtive effects on the conver-
gence. Later, the inner QMR builds a plateau from step 100 iuig stopped at step 160.
This stopping causes the inner QMR to rebuild this plateamfstep 180 to step 240. In Fig-
ure 5.4, this second plateau accounts primarily for the slown over the optimal method.
Fortunately, for the inner QMR to start to plateau, the odi2must have reached the neigh-
borhood of an eigenvalue. After that point, its convergesogubic, similarly to RQI, and
thus two or three outer steps are sufficient. A plateau isllysoat expected during the third
outer step, which is the one yielding the full accuracy. Effiene, we conjecture that IDQMR
type methods cannot be more than three times slower tharptirmal method, and usually
they are significantly less than two times slower. All our eximents support this conjec-
ture. Avoiding this repetition with truncated Newton medsdqsuch as JDQMR) is an open
problem that quasi-Newton type methods (such as GD+1) deg®h to have. Our criterion
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TABLE 5.4
The effects of subspace acceleration on GRfmMmax)+1 without preconditioning. LOBPCG and GD(1,3)+1
are theoretically equivalent.

1138BUS 494BUS BCSSTK16 Laplacian3d nd3kf

MV sec MV sec | MV sec MV sec MV sec

LOBPCG 7495 29.72| 6919 20.00| 584 14.33| 1546 166.91| 30275 1894.17
GD(1,3)+1 8242 30.43| 6919 16.93| 610 5.84| 1752 54.71| 30000 1401.02
GD(3,6)+1 4884 16.91| 4158 11.13| 503 5.48| 943 36.64| 15732 645.18
GD(5,8)+1 4904 19.36| 4200 12.00| 507 6.49| 864 41.22| 10860 470.21
GD(8,15)+1 | 5196 22.98| 4604 14.19| 486 7.34| 864 51.24| 9460 447.82
GD(15,30)+1| 4967 30.50| 3386 12.87| 477 10.10| 863 78.84| 9060 539.91

TABLE 5.5
The effects of subspace acceleration on GRghmMmax)+1 with preconditioning.

Plate33KAO cfdl or56f Laplacian3d NASASRB

MV sec | MV sec MV sec | MV sec | MV sec
LOBPCG 88 23.23| 311 244.44| >1001 >211.65 64 10.01| 404 435.43
GD(1,3)+1 127 21.47| 500 309.51| >1000 >166.10 64 5.40| 403 379.51
GD(3,6)+1 54 9.77| 289 182.35 195 33.57| 51 4.64 | 224 21542
GD(5,8)+1 50 9.31| 251 166.09 161 28.01| 49 495 | 213 207.71
GD(8,15)+1 47 9.52| 231 163.41 144 25.14| 49 5.42 | 212 213.19
GD(15,30)+1| 46 11.15| 230 179.51 109 19.58| 48 6.35| 212 227.52

(3.36) alleviates this problem.

5.3. The effects of subspace acceleratioWVe provide a set of experiments that shows
the effects of increasing the basis size in the @R, Mnay+1 method. In Table 5.4 we
report the number of matvecs and running time for GD+1 withiouss basis sizes, and for
LOBPCG on five matrices without preconditioning. First, weserve that GD(1,3)+1 and
LOBPCG converge similarly, and often identically, suppuartthe theoretical equivalence of
the two methods. The differences in timings are due to théfizrént implementations and
cache behaviors. Second, convergence improves dragticidii a small subspace acceler-
ation (mmax = 6,8), but increasingnmax further only offers rapidly diminishing additional
improvements. Consequently, the best time is achievedlysuvigh mynax= 6,8, unless the
problem is too difficult and the matrix vector operator topensive (see nd3kf case).

Similar results are reported in Table 5.5 using the sameoptioner as in section 5.2.
Again even a small subspace acceleration on LOCG achievearlymoptimal convergence.
Note that the orthogonal basis of the GD(1,3)+1 may imprawaerical stability in some
problems (see next section), but not necessarily conveegfitst two cases in Table 5.5).
Finally, we note that the timings for GD(6,18)+1 in the pms section could improve if a
smallermy,ax Of 6 or 8 were to be used.

5.4. Experiments with PRIMME. In Table 5.6 we provide comparisons between three
state-of-the-art eigenvalue packages for symmetric gajaa problems. Our goal in devel-
oping PRIMME (PReconditioned Iterative MultiMethod Eigetver) was to provide a robust
and nearly optimal multimethod software for which usersrarerequired to set any parame-
ters. The adaptivity of the JIDQMR and the relatively robumsiices of parameters for GD+1
make these two methods excellent candidates for defadheaivers. We compare against
BLOPEX and JDBSYM. The first three matrices are precondéibwith ILUT [54] with its
parameters chosen to provide a stable factorization. Tdtevieo matrices are unprecondi-
tioned.

First, we observe that BLOPEX (LOPBCG), although it regsiin® parameter setting,
is not competitive. In addition, in the cases where it failecconverge, it had reached a
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TABLE 5.6
Comparison of three state-of-the-art preconditioned eggdver codes. BLOPEX implements LOBPCG, JDB-
SYM implements Jacobi-Davidson with sSQMR as inner solvet,aur PRIMME software includes both JDQMR
and GD+1 which provide almost parameter-free near optityali

cfdl or56f Plate33KA cfdl ConeA
MV sec | MV sec MV sec MV sec MV sec
BLOPEX | 669 114.14| 332 21.89 - - | 6426 186.63 - -
GD+1 270 49.92| 174 11.56 272 39.89| 2858 113.86| 214 3.49
JDQMR 294 4482 190 11.88 381 51.35| 2370 49.45| 281 3.19
JDBSYM | 373 60.42| 221 14.34| (747) (102.6)| 2412 48.95| (708) (7.70)

residual norm of| Al 1019 but then encountered numerical problems. The JDBSYM was
used with a symmetric QMR as inner solver, so the primanedifice from JDQMR is the
stopping criteria. The experiments confirm that when the S®OH criteria [13] capture the
Newton convergence well, JDBSYM is close to JDQMR and samegicompetitive (unpre-
conditioned cfd1). The results in parentheses, howevery stases where JDBSYM could
not converge, until the user provided a shift for the cofogceéquation that was very close to
the desired eigenvalue. GD+1 and JDQMR converge alwaykeiteast time, and with no a
priori information.

5.5. Interior eigenproblem with indefinite preconditioner. We borrow a model prob-
lem fromab-initio calculations that are common in many fields such as compuotdtchem-
istry and materials science. In these applications, thed8afger operator is a sum of the
Laplacian and certain local and non-local potential fuortdi We consider the eigenvalue
problem stemming from the following simplified operator,

(5.1) (~D*+V)p =ey,

whereV is a local potential. In some cases, a few lowest eigenvateseeded correspond-
ing to the ground (most stable) states of the system. In masgs; however, we need a few
eigenvalues around the Fermi energy level, a small enengyhga separates occupied from
unoccupied states. Obtaining all eigenvalues lower tharFgrmi level becomes extremely
expensive for systems with large number of particles, sstiyggethat an interior eigenmethod
should be preferable.

In real space discretizations is a diagonal matrix. In planewave (Fourier) discretiza-
tions, however[1? becomes a diagonal matrix (and thus easily invertible)\aaddense ma-
trix. Many planewave codes exploit this property, perfargipreconditioning with((0%)~1
in Fourier space, while operating within real space.

Consider the problem 5.1 in the two dimensional unit squaity Neumann bound-
ary conditions, and with a potential inversely proportiotmathe distance fronzy: V(x) =
1/||x— zo||, with zp,x € 02, We discretize the operator with a uniform finite differenfoee
point stencil, yielding the usual 5-diagonal Laplacian mxawith V added on the diagonal.
We usen = 110 points in each direction, for a matrix dimension of 12180d place the
largest potential in the middle of the grid-square close$t tzy = [0.5/n, 0.5/n]T. We look
(arbitrarily) for the eigenvalue closest ta88, which is beyond the 800th lowest eigenvalue
of our matrix. All computations are performed in real spapeept preconditioning. To pre-
condition a vector, we transform it through a fast sine transform to Fouriecspahere the
preconditioner
(5.2) K™= (0% —nel) ™

is diagonal. An inverse sine transform returns the prec¢aomgid vector to real space.
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TABLE 5.7
The benefits of IDQMR for finding one interior eigenvalueedt0.86. The lowest eigenvalue of A is greater
than—0.05. In the upper table an interior problem is solved, where lmtconditioner and correction equation can
be indefinite. A positive definite preconditiongk(= —0.05), as required by MINRES, does not converge. JDCG
does not converge either when solving the correction eqodir the extreme eigenvalue. The lower table shows that
the transformation into an extreme eigenproblem(#r- 0.861)2 is not a good alternative, even though JDQMR is
far better than JDCG. ARPACK (eigs) without preconditi@hgannot converge.

Seek eigenvalue closestdo= 0.86. (exact= 0.859768),—0.05 < Aj < 7.99
Interior approach
Correction equation with operatoh— nl) and preconditionef]% — ng|)

Method n Nk Matvecs Equivalent method

QMRopt | Aexact | Aexact 261 Optimal correction/no dynamic stopping
GD+1 pm | g(m 790 GD with recurrence restarting
JDOQMR | M | gm 1330 Adaptive accelerated RQI
JDQMR | 0.86 | 8M 1418

JDQMR | 0.86 | 0.86 1669 Adaptive accelerated INVIT
Sl-eigs 0.86 0.86 12294 Shift-Invert ARPACK, QMR inner solve
JDOMR | 0.86 | -0.05 - Adaptive IDMINRES

JDCG -0.05 | -0.05 -
Exterior approach
Smallest eigenvalue ¢ — 0.861 )2 with preconditionef1? — 0.861)2

Method Matvecs

GD+1 2642

JDQMR 4490

JDCG 12736

eigs > 30000 (no preconditioning)

Naturally, JIDCG cannot be used if the shiftin the correction eq. (2.1) is inside the
spectrum. Moreover, JD with MINRES as inner solver cannaide either ifjx makes the
preconditioner (5.2) indefinite. The question is whetheating the problem as an interior
with indefinite preconditioner is beneficial. Table 5.7 skdhe performance as the number
of preconditioning operations (equivalently matrix veqtooducts) for various methods. Be-
cause our Matlab implementation of the preconditioner ry expensive we do not report
times.

GD+1 is the closest to the QMRopt method that uses the exgatlue both in eq. (2.1)
and in (5.2). Note that the threefold factor in slowdown doetsreflect a decrease in conver-
gence rate, but the fact that the solver spends most of theettiying to identify the proper
eigenvalue to target. Once the eigenvalue is located, thvecgence rate is similar to the op-
timal method. We have not investigated the use of harmoniz\Riues that could improve
this identification. JDQMR converges in roughly 70% moreat®ns than GD+1. However,
JDQMR too spends most of its time identifying the eigenpaiffact exiting after one in-
ner iteration. The astute reader may have noticed that in sases the JDQMR is simply
GD+1, only with two preconditioning operations per step. Arseconomical implementa-
tion is possible, but beyond our current discussion. As ebtguk fixing one or both of the
shiftsn,nk makes convergence slightly worse, as demonstrated byugaaidaptive versions
of INVIT. Without inner-outer adaptivity, the Sl-eigs is ander of magnitude slower than
JDQMR. For this example, JIDMINRES with a positive definiteqonditioner, or JDCG on
a definite correction equation do not converge.

A common practice for interior eigenproblems is to solve tfoe smallest eigenvalue
of (A—al)?. This approach is attractively simple, but rarely compatibecause of worse
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conditioning. The lower half of the Table 5.7 shows the penfance of four methods on
the squared matrix with a similarly squared preconditionBne ratio between GD+1 and
JDQMR iterations is the same as in the interior method, wthiseJDCG converges but sig-
nificantly slower. As it cannot exploit preconditioningge() cannot converge in tractable
time.

6. Conclusions. Our goal is to develop a method, or multimethod, that coraergear
optimally and robustly for large, difficult eigenvalue ptelms. The method must operate
under limited memory and be capable of using various prdationdrs. We showed that
such a method should approach the eigenvalue problem fremdhlinear perspective; ei-
ther through the truncated Newton or through the limited mgnguasi Newton techniques.
Regardless of the technique, however, the underlying oo¢tihod must follow the GD outer
scheme.

We described a truncated Newton technique, JDQMR, whicinels the previously pro-
posed JDCG method. JDQMR can work with indefinite correcéiqnation and precondi-
tioners, and thus can be used for finding interior eigengiwhile providing better stopping
criteria that improve robustness. In addition, we argueg¢t WBQMR converges within a
small factor (2 or 3) of optimal.

We also described methods that use the locally optimal G@edts a recurrence (LOBPCG)
or as a restarting (GD+1), and unified them under the framkewblimited memory quasi
Newton. This framework, together with our previous theigadtresults, provided new intu-
ition on both the global and local convergence of these nusthfor instance, explaining why
GD+1 improves on unaccelerated recurrence methods sudDBBCG.

A rather unexpected conclusion from our experiments is lihdited memory BFGS
type methods (GD+1) outperform truncated Newton methagsh(as JDCG or IDQMR), in
terms of convergence, even with a small acceleration bBgisally impressive is the fact that
GD+1 usually matches the convergence, both asymptotic labelg of the optimal QMRopt
benchmark.

As the acceleration basis shrinks, the convergence of JDQMHih is less sensitive
to acceleration, matches or surpasses the convergence &f @bich, in turn, is always
better than the extreme of using no acceleration basis (LQBP Furthermore, when the
preconditioner and matrix-vector operations are inexpenshe cheaper inner iteration of
JDQMR requires less overall time than GD+1. The advantagauofapproach is that the
GD driver implements both methods, switching at runtime nvtiee actual expense of the
user-provided operators is measured.

Finally, we have provided an extensive set of experiment® cdhsidered a variety
of problems and methods, with and without preconditioniagd problems that involved
finding an interior eigenpair using indefinite preconditian Interestingly, both the theory
and our experiments suggest that even without preconditipour multimethod should be
preferred over ARPACK. Our results and conclusions extdésal ta finding a small number
of eigenpairs. When many eigenvalues are required, theectggdb and results are different;
these topics are addressed in a companion paper [66].
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