Manuscript
Click here to download Manuscript: paper.ps

Runtime and Programming Support for Memory Adaptation
in Scientific Applications via Local Disk and Remote
Memory

Richard T. Mills (rmills@ornl.gov)
Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge,
TN 37831

Chuan Yue (cyue@cs.wm.edu) and Andreas Stathopoulos

(andreas@cs.wm.edu)
Department of Computer Science, College of William and Mary, Williamsburg, VA
23187-8795

Dimitrios S. Nikolopoulos (dsn@cs.vt.edu)

Department of Computer Science, Virginia Tech, 660 McBryde Hall, Blacksburg,
VA 24061

Abstract. The ever increasing memory demands of many scientific applications and
the complexity of today’s shared computational resources still require the occasional
use of virtual memory, network memory, or even out-of-core implementations, with
well known drawbacks in performance and usability. In [24], we introduced a basic
framework for a runtime, user-level library, MMLIB, in which DRAM is treated as a
dynamic size cache for large memory objects residing on local disk. Application
developers can specify and access these objects through MMLIB, enabling their
application to execute optimally under variable memory availability, using as much
DRAM as fluctuating memory levels will allow. In this paper, we first extend our
earlier MMLIB prototype from a proof of concept to a usable, robust, and flexible
library. We present a general framework that enables fully customizable, memory
malleability in a wide variety of scientific applications. We provide several necessary
enhancements to the environment sensing capabilities of MMLIB, and introduce a
remote memory capability, based on MPI communication of cached memory blocks
between ‘compute nodes’ and designated memory servers. The increasing speed of
interconnection networks makes a remote memory approach attractive, especially at
the large granularity present in large scientific applications. We show experimental
results from three important scientific applications that require the general MM-
LIB framework. Their memory-adaptive versions perform nearly optimally under
constant memory pressure and execute harmoniously with other applications com-
peting for memory, without thrashing the memory system. Under constant memory
pressure, we observe execution time improvements of factors between three and five
over relying solely on the virtual memory system. With remote memory employed,
these factors are even larger and significantly better than other, system-level remote
memory implementations.

Keywords: memory management, shared computational pools, network RAM,
scientific libraries, autonomic computing

';:‘ © 2006 Kluwer Academic Publishers. Printed in the Netherlands.

paper.tex; 25/08/2006; 23:06; p.1

1. Introduction

Commoditization of memory chips has enabled unprecedented increases
in the memory available on today’s computers and at rapidly decreas-
ing costs. Manufacturing and marketing factors, however, keep the
costs disproportionally high for larger memory chips. Therefore, al-
though many shared computational resource pools or even large scale
MPPs boast a large aggregate memory, only a small amount (rela-
tive to the high demands of many scientific applications) is available
on individual processors. Moreover, available memory may vary tem-
porally under multiprogramming. Sharing memory resources across
processors is a difficult problem, particularly when applications can-
not reserve sufficient memory for sufficiently long times. These reali-
ties pose tremendous problems in many memory demanding scientific
applications.

To quantify the magnitude of the problem, we use a simple moti-
vating example. We ran a parallel multigrid code to compute a three-
dimensional potential field on four SMPs that our department main-
tains as a resource pool for computationally demanding jobs. Each SMP
has 1 GB of memory. Since our code needed 860 MB per processor, we
could run it using only one processor per node. While our code was
running other users could run small jobs without interference. When a
user attempted to launch Matlab to compute the QR decomposition of
a large matrix on one of the processors in an SMP, the time per iteration
in our multigrid code jumped from 14 to 472 seconds as virtual memory
system thrashed. Most virtual memory systems would cause thrashing
in this case, because their page replacement policies are not well suited
for this type of scientific application.

Memory pressure can also be encountered on dedicated or space-
shared COWs and MPPs. An important class of scientific applications
runs a large number of sequential or low parallel degree jobs to explore
a range of parameters. Typically, larger numbers of processors enable
higher throughput computing. However, when memory is insufficient
for individual jobs, such applications grind to a halt under virtual
memory. On some MPPs, with small or no local disks, virtual memory
is not adequate or even possible. Utilizing more processors per job to
exploit larger aggregate memory may not be possible either, because
the jobs are sequential or of limited parallel scalability. Application
scientists often address these issues by implementing specialized out-
of-core codes, and utilizing the parallel file systems that many MPPs
employ. Besides the double performance penalty (data read from disk
and propagated through the interconnection network), such codes often

paper.tex; 25/08/2006; 23:06; p.2

3

lack flexibility, performing I/O even for data sets that could fit in
memory.

Scenarios such as the above are one of the reasons for using batch
schedulers, resource matchmakers, process migration and other tech-
niques that warrant that each application will have enough memory to
run without thrashing throughout its lifetime. These methods are not
without problems. They may incur high waiting times for jobs, or high
runtime migration overheads whenever there is resource contention.
On certain platforms, such as shared-memory multiprocessors, some
of these methods are not even applicable, as users may reserve more
memory than their memory-per-CPU share [10]. A similar situation
can occur if applications are allowed to use network RAM (NRAM) or
other remote memory mechanisms [39]. Moreover, most remote memory
research has been conducted at page-level granularity, which may incur
unacceptably high latencies for page replacement [22].

The problem is equally hard at the sequential level. Page replace-
ment policies of virtual memory systems are usually generic in nature
and are ill-suited to access patterns encountered in many scientific
applications. In addition, high seek times during thrashing cannot be
amortized by prefetching, as it may be difficult for virtual memory sys-
tem to predict the locality and pattern of block accesses on disk. On the
other hand, compiler or user-provided hints would require modifications
to the system.

To tame these problems we have developed a runtime library, MM-
LIB (Memory Malleability library), that controls explicitly the DRAM
allocations of specified large objects during the runtime of an appli-
cation, thus enabling it to execute optimally under variable memory
availability. MMLIB allows applications to use customized, application-
specific memory management policies, running entirely at user-level. To
achieve portability and performance, MMLIB blocks specified memory
objects into panels and manages them through memory mapping. This
provides programmers with a familiar interface that has no explicit I/0O
and can exploit the same common abstractions used to optimize code
for memory hierarchies. Moreover, the advantages of running applica-
tions fully in-core are maintained, when enough memory is available.
The library is designed for portability across operating systems and
implemented in a non-intrusive manner.

In [24], we gave a proof of concept of MMLIB based on a simplified
framework, and developed a parameter-free algorithm to accurately
ascertain memory shortage and availability strictly at user-level. In
this paper, we first provide a general framework that enables memory
malleability in a variety of scientific applications, and enhance MMLIB’s
sensing capabilities to require no user input. Second, we introduce re-

paper.tex; 25/08/2006; 23:06; p.3

4

mote memory capability into MMLIB, based on MPI communication of
panels between compute nodes and designated memory servers. Besides
performance improvements on clusters with high speed networks, our
flexible, user-level design enables a host of options such as multiple
memory servers, and dynamic migration of panels between servers.

We see several benefits in this library-based approach for memory
malleability. Injecting memory malleability into scientific applications
allows them to run under memory pressure with degraded but accept-
able efficiency, under a wider variety of execution conditions. Efficient
memory adaptive applications can benefit both high-level batch sched-
ulers, by letting them harness cycles from busy machines with idle
memory, and operating system schedulers, by avoiding thrashing and
thus securing continuous service to jobs. Also, as we show in this paper,
the transparent design enables the library to implement remote mem-
ory when local disks are small or slower than fetching data from the
network. MMLIB is an optimization tool for DRAM accesses at the low
level of the memory hierarchy (disk/network), but it can co-exist with
and complement optimization tools for higher levels (memory/cache),
enabling a unified approach to locality optimization in block-structured
codes.

We present experimental results from three important scientific ap-
plications that we linked with MMULIB. Besides their importance for sci-
entific computing, these applications stress different aspects of MMLIB
and motivate the runtime optimizations presented in this work.

The rest of this paper is organized as follows: Section 2 reviews re-
lated work. Section 3 outlines our simplified framework and our parameter-
free sensing algorithm from [24]. Section 4 presents the new extensions;
general framework, runtime support and performance enhancements,
and the remote memory implementation. Section 5 presents the ap-
plications along with experimental results. Section 6 concludes the

paper.

2. Related work

Interesting memory usage and availability patterns on multiprogrammed
clusters of workstations have been pointed out in a quantitative study
by Acharya and Setia [3]. They show that, on average, more than half
of the memory of the clusters is available for intervals between 5 and
30 minutes, with shorter intervals for larger memory requests. The
study did not investigate mechanisms and policies for exploiting idle
memory or the impact of fluctuations of idle memory on application
performance.

paper.tex; 25/08/2006; 23:06; p.4

!

Batch schedulers such as the Maui Scheduler [21], NQE [34], the
Portable Batch System [17] and experimental systems [7, 32] as well
as schedulers for privately owned networks of workstations and grids,
such as Condor-G [16] and the GrADS scheduling framework [12], use
admission control schemes which schedule a job only on nodes with
enough memory. This avoids thrashing at the cost of reduced utilization
of memory and potentially higher job waiting times. Other coarse-grain
approaches for avoiding thrashing include checkpointing and migra-
tion of jobs. However, such approaches are not generally aware of the
performance characteristics or the execution state of the program [38].

Co-scheduling attempts to keep all parallel processes of a job running
at the same time, either explicitly [14], implicitly [4] or dynamically [36].
Beyond algorithmic and implementation difficulties, these approaches
may compromise fairness and quality-of-service, especially in the not
well studied situation of memory contention.

Chang et.al. [9] have presented a user-level mechanism for constrain-
ing the resident set sizes of user programs within a fixed range of avail-
able memory. They assume that the program has an a-priori knowledge
of lower and upper bounds of the required memory range. This work
does not consider dynamic changes to memory availability, nor does it
address the problem of customizing the memory allocation and replace-
ment policy to the memory access pattern of the application—both
central issues in our research.

An approach that addresses a dynamically changing environment for
general applications has been developed by Brown and Mowry [8]. This
approach integrates compiler analysis, operating system support, and
a runtime layer to enable memory-intensive applications to effectively
use paged virtual memory. The runtime layer makes the appropriate
memory allocation decisions by processing hints on the predicted mem-
ory usage that the compiler inserted. Although the approach has shown
some good results, it requires modifications to the operating system. In
addition, applications with complex memory access patterns can cause
significant difficulties in identifying appropriate release points.

Barve and Vitter [6] presented a theoretical framework for esti-
mating the optimal performance that algorithms could achieve if they
adapted to varying amounts of available memory. They did not discuss
implementation details or how system adaptivity can be achieved. Pang
et al. [31] presented a sorting algorithm that dynamically splits and
merges the resident buffer to adapt to changes in the memory available
to the DBMS. This is a simulation-based study that does not discuss
any details of the adaptation interface.

Remote memory servers have been employed in multicomputers [19]
for jobs that exceed the available memory per processor. They also en-

paper.tex; 25/08/2006; 23:06; p.5

6

abled the implementation of diskless checkpointing [33], a fault-tolerance
scheme which exploits the speed of the interconnection network to
accelerate saving and restoring of program state.

The advent of high-throughput computing on shared computational
resources has motivated the design of NRAM systems for clusters of
workstations [22, 20, 5, 15, 30]. Real implementations of NRAM and
memory servers [5, 19, 13, 39] extend the operating system paging
algorithms and provide support for consistency and fault tolerance at
the page level. Though performance improvements have been reported
over disk-based virtual memory systems, the page level granularity of
memory management still incurs significant overheads, and thrashing
can still occur. Moreover, such implementations require substantial
changes to the operating system.

At the user-level, Nieplocha et al. [27] have developed the Global
Arrays Toolkit that implements a distributed shared memory access
to certain, user-specified arrays. Its design philosophy is different from
ours, however, as many processes require access to the shared array,
and at various levels of granularity. Global Arrays have been used to
implement out-of-core computations via shared data structures that
spill over onto disk [11], but this approach does not take dynamic
memory availability into consideration.

Several researchers have utilized remote memory for implementing
co-operative caching and prefetching in clustered web servers. Recently,
Narravula et al. [26], exploit remote memory and direct remote DMA
operations to improve utilization of aggregate distributed caches in a
co-operative caching environment. OQur work differs in that it employs
remote memory in an application-controlled execution environment.

Koussih et al. [20] describe a user-level, remote memory manage-
ment system called Dodo. Based on a Condor-like philosophy, Dodo
harvests unused memory from idle workstations. It provides allocation
and management of fine-grained remote memory objects, as well as
user-defined replacement policies, but it does not include adaptation
mechanisms for dynamically varying RAM, and cannot apply to local
disks, or to remote memory servers that are not idle.

In [29], Nikolopoulos presented an adaptive scheduling scheme for
alleviating memory pressure on multiprogrammed COWs, while co-
ordinating the scheduling of the communicating threads of parallel
jobs. That scheme required modifications to the operating system. In
[28], the same author suggested the use of dynamic memory map-
ping for controlling the resident set of a program within a range of
available physical memory. The algorithm operated at page-level gran-
ularity and allowed very little space for customization to the applica-
tion access pattern. In [25], two of the authors of this paper followed

paper.tex; 25/08/2006; 23:06; p.6

7

an application-level approach that avoided thrashing of an eigenvalue
solver, by having the node under memory pressure recede its com-
putation during the most computationally intensive phase, hopefully
speeding the completion of competing jobs.

MMLIB bears similarities with SHMOD (Shared-Memory on Disk)
[40], an application-level asynchronous remote 1/O library, which en-
ables effective remote disk space usage, continuous application-level
checkpointing and out-of-core execution. SHMOD is designed to sup-
port specifically a class of hydrodynamics applications and uses coarse-
grain panels (called things in SHMOD’s terminology), allocated and
managed transparently across local and remote disks in a cluster of
workstations. SHMOD organizes computation as a bag of tasks, with
each task retrieving, working on and updating a thing. MMLIB differs
in that it utilizes remote DRAM instead of remote disks for faster
retrieval of panels. On the other hand, unlike MMLIB, SHMOD ex-
ploits cluster-wide storage and works with a task-parallel programming
model.

In [24] we proposed MMLIB as an application-level, memory man-
agement framework for scientific applications that perform repetitive
data accesses. Using the main memory as cache and a user-defined
replacement policy the application experiences a graceful degradation
of performance as memory becomes scarce. The dynamic adaptation to
available memory is performed by a system independent, parameter-
free algorithm as described in [24]. In this paper we extend the appli-
cability and functionality of the framework in a few important aspects:
supporting multiple memory objects and multiple active panels at the
same time; performing automatic accurate estimation of the size of the
non-managed memory; and providing application level remote memory
capability.

3. User-level adaptation

Application-level approaches are sometimes received with caution be-
cause of increased developer involvement. However, to exploit higher
memory hierarchies, developers of scientific applications already block
the accesses to the data or use libraries where such careful blocking is
provided. Blocking for memory access is performed at a much larger
granularity and thus complementary to cache access. Based on this,
our approach in [24] considered the largest data object partitioned into
P blocks, which in out-of-core literature are often called panels, and
operated as follows:

paper.tex; 25/08/2006; 23:06; p.7

fori=1.P
Get panel ppyspern(;) from lower level memory
Work with Ppattern(i)

Most scientific applications consist of code segments that can be de-
scribed in this familiar to developers format. As long as the “get panel”
encapsulates the memory management functionality, no code restruc-
turing is ever needed.

On a dedicated workstation one can easily select between an in-core
or an out-of-core algorithm and data structure according to the size of
the problem. On a non-dedicated system though, the algorithm should
adapt to memory variability, running as fast as an in-core algorithm
if there is enough memory to store its entire data set, or utilizing
the available memory to cache as many panels as possible. Based on
memory mapped 1/0O, we provided a framework and supporting library
for modifying codes for memory adaptivity that are portable to many
applications and operating systems. Memory mapping has several ad-
vantages over conventional I/O because it avoids write-outs to swap
space of read-only panels, integrates data access from memory and
disk, allows for fine tuning of the panel size to hide disk latencies and
facilitates an implementation of various cache replacement policies.

To get a new panel, the application calls a function from our library
that also controls the number of panels kept in-core. At this point, the
function has three choices: it can increase or decrease the number of
in-core panels if additional, or respectively less, memory is available;
or it can sustain the number of in-core panels if no change in memory
availability is detected. The policy for selecting panels to evict is user
defined as only the application has full knowledge of the access pattern.

Critical to this functionality is that our library be able to detect
memory shortage and availability. However, the amount of total avail-
able memory is a global system information that few systems provide,
and even then, it is expensive and with no consistent semantics. In [24],
we developed an algorithm which relies only on measurements of the
program’s resident set size (RSS), a widely portable and local infor-
mation. Memory shortage is inferred from a decrease in a program’s
RSS that occurs without any unmapping on the part of the program.
Memory surplus is detected using a “probing” approach in which the
availability of a quantity of memory is determined by attempting to use
it and seeing if it can be maintained in the resident set. The algorithm is
parameter-free, expecting only an estimate of the memory requirements
of the program, excluding the managed panels. We call the size of this
non-managed memory, static memory (sRSS). The algorithm detects
memory availability, by probing the system at dynamically selected

paper.tex; 25/08/2006; 23:06; p.8

9

time intervals, attempting to increase memory usage one panel at a
time.

In [24] we demonstrated the effectiveness of our algorithm and used
it to inject memory-malleability into an implementation of a conjugate-
gradient linear solver. Our memory adaptation framework was lim-
ited, however, to a very specific class of applications with repeated,
exhaustive passes through one read-only object. In section 3.1 we de-
scribe a more comprehensive framework that captures characteristics
from a much larger set of applications, and in section 3.2 we give
an abbreviated description of the new MMULIB library that provides
memory-malleability within this framework. In section 3.3 we explain
how we overcome a key technical challenge, that of estimating the size
of the static memory that is not managed by MMULIB. In section 3.4
we describe an optimization in MMLIB that allows it to deal with
antagonistic page replacement by the operating system by adaptively
evicting those panels that the system has already paged out.

3.1. A GENERAL FRAMEWORK

Scientific applications often work on many large memory objects at a
time, with various access patterns for each object, sometimes working
persistently on one panel, while other panels are only partially accessed,
or even modified. A framework modeling the memory access needs such
applications is shown in Figure 1.

Figure 1 depicts only one computation phase, which is repeated
several times during the lifetime of the program. A computation phase
denotes a thematic beginning and end of some computation, e.g., one
iteration of the CG method or the two innermost of three nested loops.
In this phase, a small number of memory objects are accessed (e.g., the
matrix and the preconditioner in the CG algorithm), as their sheer size
limits their number. In contrast to the previous simplified framework,
we do not assume a sequential pass through all the panels of an object,
although this is often the case in practice. In this context, a full sweep
denotes a completion of the phase.

For each iteration of the computation phase, certain panels from
certain memory objects need to be fetched, worked upon, and possibly
written back. The iteration space in the current computation phase,
the objects needed for the current iteration, and the access patterns for
panels depend on the algorithm and can be described by the program-
mer. Finally, our new framework allows memory objects to fluctuate in
size between different computation phases.

paper.tex; 25/08/2006; 23:06; p.9

10

Identify memory objects My, My, ..., My
needed during this phase
for i = [Iteration Space for all Objects]
for j= [all Objects needed for iteration i]
panellD = accessPattern(Mj, i)
Get panel or portion of panel (panellD)
endfor
Work on required panels or subpanels
for j= [all Objects needed for iteration i |
panellD = accessPattern(}Mj, i)
if panel panellD was modified
Write Back(panelID)
if panel panellD not needed persistently
Release(panellD)
endfor
endfor

Figure 1. Extended framework modeling the memory access needs of a wide variety
of scientific applications. Although write-backs are represented explicitly in the
framework, when panels are accessed via a named memory map, write-backs do
not occur until a panel is evicted from main memory by the virtual memory system.
When panels are accessed via remote memory, the write-back is performed explicitly
at panel eviction.

3.2. CORE MMLIB INTERFACE AND FUNCTIONALITY

Based on the general framework, we have developed an object-based
C library, MMLIB, to provide memory-malleability while hiding all
bookkeeping and adaptation decisions from the user. Here we give an
abbreviated presentation of the core library interface and some of the
technical issues involved; a more detailed discussion is described in
detail in [23].

To be managed by MMULIB, a given data-set must be broken into
a user-specified number of panels for which a backing store is created
on disk, accessed through memory mapping. The size of the panel is
usually determined as a large multiple of the block size that is optimal
for cache efficiency so that it also amortizes I/O seek times. In case
of memory contention, a large number of panels can fine tune more
accurately the exact level of available memory but incur higher book-
keeping and I/O overheads. Because of diminishing returns beyond a
5-10% accurate prediction of available memory, and because our goal is
to match the performance of unmanaged in-core methods when running
without memory contention, we suggest that about 10-40 panels be
used per object.

paper.tex; 25/08/2006; 23:06; p.10

11

MMS mmlib_new_mmstruct(type, *filename, P)

Each data-set and its panels are associated with an MMS object, which
handles all necessary bookkeeping and through which all accesses to the
data occurs. The above function constructs an MMS object of a given
MMULIB type. Type examples include MMLIB_TYPE_MATDENSE for
a dense two dimensional array, or MMLIB_TYPE_VECTOR for a one
dimensional array. The filename specifies the name of the backing store,
and P is the number of the panels into which the data is broken.

void mmlib_set_update_queue(void (*func) (MMReg, MMS, int))
An MMS object is associated with a distinct priority queue. This queue
orders the panels according to the eviction policy chosen by the user
for that object. When more than one objects are active simultaneously,
the choice of panel eviction must consider not only the intra- but also
the inter-object priorities. For this reason, MMLIB maintains a global
registry of all MMS objects (MMReg), using this instead to make its
adaptation decisions. When a given amount of space must be freed,
the MMULIB eviction function evicts panels according to their ordering
in the queue until enough space has been freed. The priority queue is
updated each time that mmlib_get_panel() is called, inserting the newly
accessed panel in the proper place. mmlib_set_update_queue() allows
the user to specify the function that should be called to perform this
update and maintain any other data structures that may be required to
implement the eviction policy, such as queues local to each MMS object.
MMULIB defaults to Most Recently Used (MRU) replacement, as this is
suited to the cyclic access patterns of many scientific applications.

We should note that to provide maximum flexibility, MMLIB also
provides an interface for the user to specify the function that performs
panel evictions. The preferred method for specifying an eviction policy
is to use mmlib_set_update_queue() when possible, however.

void *mmlib_get_panel(MMS mms, p)

This function is the basic building block of the library. It returns a
pointer to the beginning of panel p, hiding the rest of the bookkeeping.
If the panel is already mapped, it returns its address and updates the
global and corresponding local queues. If the panel is not mapped, it
checks for memory shortage or surplus, consults the eviction policy and
adjusts the number of panels in the queues accordingly.

void mmlib_release_panel(MMS mms, p)

Some applications work on many memory objects simultaneously, but
not all objects have the same lifetime. In particular, certain panels may
persist throughout the mapping and unmapping of other panels of the
same or different objects. For example, assume we need to compute
the interaction of a panel X,, with panels X;,7 = 1,m — 1. It would
be a performance disaster if, based on the MRU policy, we decided to

paper.tex; 25/08/2006; 23:06; p.11

12

unmap this panel because it was recently accessed. In this case, the user
needs to “lock” this panel as persistent, until all relevant computation
is completed. In MMLIB, the pointer returned by mmlib_get_panel
remains valid until the mmlib_release_panel is called. The release does
not evict the panel; it merely unlocks it so that it can be evicted if
deemed necessary.

3.3. ESTIMATING STATIC MEMORY SIZE

Our memory adaptation algorithm in [24] assumes that the program has
an accurate estimate of the size of its static memory, i.e., memory not
associated with managed objects. This is needed for calculating how
much of the RSS belongs to the mapped objects. However, this size
may not be easily computed or even available to the program if large
enough static memory is allocated within linked, third party libraries.
Moreover, for some programs the static memory may fluctuate between
sweeps of the computation phase. A more serious problem arises when
the static memory is not accessed during the computation phase. Under
memory pressure, most operating systems consider the static memory
least recently used and slowly swap it out of DRAM. This causes a false
detection of memory shortage, and the unmapping of as many panels
as the size of the swapped static memory.

An elegant solution to this problem relies on a system call named
mincore() for most Unix systems and VirtualQuery() for Windows.
The call allows a process to obtain information about which pages
from a certain memory segment are resident in core. Because MMLIB
can only ascertain residency of its managed memory objects, it uses
mincore () to compute the actual resident size of the managed panels,
which is exactly what our algorithm needs. Obviously, the use of this
technique at every get_panel is prohibitive because of the overhead
associated with checking the pages of all mapped panels. We follow
a more feasible, yet equally effective strategy. We measure the resi-
dency of all panels (mRSS) in the beginning of a new computational
phase, and derive an accurate estimate of the static memory: sRSS
= RSS — mRSS, with RSS obtained from the system. As long as no
memory shortage is detected, we use sRSS during the computation
phase. Otherwise, we recompute mRSS and sRSS to make sure we do
not unnecessarily unmap panels. Since unmapping is not a frequent
occurrence the overall mincore overhead is tiny, especially compared
to the slow down the code experiences when unmapping is required.

paper.tex; 25/08/2006; 23:06; p.12

13
3.4. A MOST-MISSING EVICTION POLICY

One of the design goals of MMLIB is to preempt the virtual memory
system paging policy by holding the RSS of the application below the
level at which the system will begin to swap out the pages of the appli-
cation. Under increasing memory pressure, the paging algorithm of the
system could be antagonistic by paging out data that MMULIB tries to
keep resident, thus causing unnecessary additional memory shortage. In
this case, it may be beneficial to “concede defeat” and limit our losses
by evicting those panels that have had most of their pages swapped out,
rather than evicting according to our policy, say MRU. The rationale
is that if the OS has evicted LRU pages, these will have to be reloaded
either way, so we might as well evict the corresponding panels. Evicting
MRU panels may make things worse because we will have to load the
swapped out LRU pages as well as the MRU panels that we evicted.

The mincore functionality we described above facilitates the imple-
mentation of this “most missing” policy. This policy is not at odds
with the user specified policy because it is only applied when memory
shortage is detected, which is when the antagonism with the system
policy can occur. Under constant or increasing memory availability
the user policy is in effect. Preliminary results in section 5 show clear
advantages with this policy.

4. Remote memory extension

Despite a dramatic increase in disk storage capacities, improvements in
disk latencies have lagged significantly behind those of interconnection
networks. Hence, remote virtual memory has often been suggested [22].
The argument is strengthened by work in [3, 2, 20] showing that there
is significant benefit to harvesting the ample idle memory in computing
clusters for data-intensive applications. The argument is imposing on
MPPs, where parallel I/O must pass also through the interconnection
network.

The general MMLIB framework in Figure 1 lends itself naturally to
a remote memory extension. The key modification is that instead of
memory mapping a new panel from the corresponding file on disk, we
allocate space for it and request it from a remote memory server. This
server stores and keeps track of unmapped panels in its memory, while
handling the mapping requests. In implementing this extension we had
to address several design issues.

First, we chose MPI for the communication between processors, be-
cause it is a widely portable interface that users are also familiar with.

paper.tex; 25/08/2006; 23:06; p.13

14

Also, because MMLIB works entirely at user-level, we need the user to
be able to designate which processors will play the role of remote mem-
ory servers. MMULIB is not concerned with locating memory servers, and
the long experience of some of the authors in scientific programming
suggests that users are empowered, not burdened by exercising this
control. We note, however, that nothing precludes the use of a system
such as Condor or Dodo to suggest appropriate machines to use. The
downside of using MPI is that the user must compile and run sequential
programs with MPI. All other MPI set up and communications are han-
dled internally in MMULIB. For parallel programs there is no additional
burden to the user. In the future, and if experience deems it necessary,
a more transparent communication mechanism can be implemented
with minimal change to MMULIB. Nevertheless, our implementation is
practically transparent, and it has provided a proof of concept for this
functionality.

Second, because each panel is associated with a particular remote
server, the executing process knows where to request it from and there
is no need for consistency maintenance between replicas of panels. This
allows the panels of one memory object to be kept on a number of
servers. At the same time each server may be storing and handling
panels from many objects, and possibly from many processors. Because
of the large granularity, there is only a small number of panels, so
the additional bookkeeping is trivial. This flexible design, which is
reminiscent of home-based shared virtual memory research [18], en-
ables a load balancing act between servers, that can migrate panels
completely independently from the execution nodes. As long as the
server pointer of each unmapped panel is updated in the corresponding
managed memory object, execution nodes know where to direct their
next request. An exploration of the many possibilities that arise from
this design as well as more fine-grain consistency models is beyond the
scope of this paper.

Third, the memory that will hold a remotely fetched panel does not
have to be allocated with named memory mapping. Named memory
mapping was important in the original MMLIB as it was used to read
a panel implicitly from a disk file, and because of that file it could
avoid writing to the swap device under memory pressure. With remote
memory, the existence of a file image for each panel is not required.
We have explored the question of which allocation mechanism among
malloc (), named mmap (), and anonymous mmap () provides the most
benefits in performance and flexibility. Our experimental testbed and
results, shown in the following section, yield anonymous mmap() as
the best choice. In principle, memory mapping should be preferred
because it permits the use of mincore() by MMLIB to compute the

paper.tex; 25/08/2006; 23:06; p.14

15

static memory size, and thus provide accurate sensing measurements for
adaptation. On some operating systems malloc() is not implemented
on top of mmap (), and thus does not permit the use of mincore().

An outline of the remote memory algorithm follows. Initially, the
memory server(s) load all the (initially unmapped) panels of all objects
of the application into their memory. When a working process issues a
get_panel (mms,p), and the panel is not in memory (mapped), MMLIB
sends a request to the appropriate server holding panel p of the object
mus. If no panel is to be unmapped, MMLIB allocates the appropriate
memory space and issues an MPI_Recv. If a panel, g, is to be unmapped,
MMULIB figures out the server to send it to, and initiates an MPI_Send.
When the send returns, this space of q can be reused to store the incom-
ing panel p, so MMLIB simply issues an MPI_Recv. We should point out
that if an object is designated as read-only, its panels need not be sent
to the memory server when unmapped, provided that the server keeps
all panels in its memory. Finally, the MMLIB framework retains all of
its adaptivity to external memory pressure when our remote memory
implementation is used in place of disk I/O.

5. Experiments

First we describe three applications that we modified to use MMLIB;
their special characteristics require our extended framework and opti-
mizations and cannot be implemented using the simple framework of
[24]. Second, we present experiments with these applications under con-
stant and variable memory pressure. Third, we explore experimentally
the question posed in the previous section about the most appropriate
allocation mechanism for remote memory. Finally we demonstrate the
power of remote memory in MMLIB using the CG application.

5.1. THE APPLICATIONS

The first application is the conjugate gradient (CG) linear system solver
provided in SPARSKIT [35]. Each iteration of CG requires one sparse
matrix-vector multiplication and a few inner products and vector up-
dates. Our only managed object is the coefficient matrix, as it poses
the bulk of the memory demands of the program, and is broken into
40 panels. CG also has a sizable amount of static memory for six work
vectors. For MMLIB to work, this size must be known. In [24], we hard
coded the size of this static memory. Here, we let MMLIB detect it
dynamically. Our test code, CG, does not construct a matrix, but loads
from disk a pre-generated sparse matrix in diagonal format. Figure

paper.tex; 25/08/2006; 23:06; p.15

16

Algorithm: Sparse matrix-vector multiplication

current = 1
for row = 1 to N do
y[row] =0
for i = 1 to nonzeros_per_row do
col = row + offset][i]
if (0 < col < N) then
y[row] = y[row] + Afcurrent] * x[col]
endif
current = current + 1
enddo
enddo

Figure 2. Matrix-vector multiplication algorithm for a sparse matrix of dimension N
consisting of a number of diagonals. x is the input vector and y is the output vector.
The array A[] consists of the elements from the first row, followed by the elements
from the seconds row, and so on. Note that all rows consume the same number of
entries in A[], so some entries will not be used: for example, the first row of the
matrix does not contain any elements from diagonals below the main diagonal, so
some empty elements will be “stored” in A[]. The offset[] array stores the offset of
each of the diagonals with respect to the main diagonal.

2 depicts the algorithm for matrix-vector multiplication of a sparse
matrix in this format; this is the algorithm in which MMLIB is used
to enable memory adaptivity. The matrices used in our experiments
are generated from a three-dimensional, eighth order finite-difference
discretization of the Laplacian operator on the unit cube using a regular
grid and Dirichlet boundary conditions. In the memory-adaptive code,
they are partitioned row-wise into panels of consecutive rows. Matrix-
vector multiplications sweep through each panel in typewriter fashion,
left to right and top to bottom. We note that, as far as MMLIB is
concerned, CG is a read-only application: writes do not occur to the
matrix managed by the library.

The second application is a modified Gram-Schmidt (MGS) orthog-
onalization procedure. A memory demanding application of MGS stems
from materials science, where Krylov eigensolvers are used to find about
500-2000 eigenvectors for an eigenvalue problem of dimension on the
order of one million [37]. Figure 3 depicts the algorithm executed by
the MGS code. Our code simulates a Krylov solver (such as GMRES)
except that it generates the recurrence randomly, not through matrix
vector multiplication, because our goal is to focus solely on the memory
demands imposed by the vectors. At each step, a new vector is gener-
ated, orthogonalized against previously generated vectors, normalized,

paper.tex; 25/08/2006; 23:06; p.16

17

Algorithm: MGS test code

for j=1 to min_basis_size do
U; = random(N)
enddo

for restart = 0 to num_restarts do
for j = min_basis_size to max_basis_size do
w = random(N)
fori=1tojdo // The MGS orthogonalization

h=w-v;
w=uw-—h-v;
enddo
Ujr1 = W/ |||
enddo

enddo

Figure 3. The algorithm executed by our MGS test code, which simulates the behavior
of a GMRES-type solver, generating random vectors of dimension N which are added
to an orthonormal basis via modified Gram-Schmidt. After the basis size grows to a
set maximum, the basis is discarded and the computation is “restarted”. To ensure
that a minimum level of memory pressure is maintained, one can specify a minimum
basis size, below which the size of the basis never drops.

and then appended to them. Only these vectors need to be managed
by MMLIB. In our experiment, we use one panel per vector for a total
of 30 vectors, each of 3,500,000 doubles (80 MB total). The code allows
a “restart size” max_basis_size to be specified: that is, once the basis
has grown to maz_basis_size vectors, it discards all but min_basis_size
vectors from the basis and begins building a new set. Restarting is
commonly employed with GMRES and related solvers because as the
basis grows, memory and computational costs may become prohibitive.
A remedy is to restart the algorithm, retaining the current approximate
solution vector and discarding the basis vectors. We note that MGS
is the only one of our test codes whose memory requirements vary
considerably throughout its lifetime, as the basis grows or is discarded;
our improved MMULIB is needed because the size of the managed object
varies at runtime, and multiple panels are active simultaneously.

The third application is an implementation of the Ising model, which
is used to model magnetism in ferromagnetic material, liquid-gas transi-
tion, and other similar physical processes. Considering a two-dimensional
lattice of atoms, each of which has a spin of either up or down, the
code runs a Monte-Carlo simulation to generate a series of configura-

paper.tex; 25/08/2006; 23:06; p.17

18

tions that represent thermal equilibrium. The memory accesses follow a
simple 5-point stencil pattern, common to many scientific applications.
Figure 4 presents a pseudocode summary of the operation of our ISING
code. For each iteration the code sweeps the lattice and tests whether
to flip the spin of each lattice site. The flip is accepted, if it causes a
negative potential energy change, AFE. Otherwise, the spin flips with a
probability equal to exp %, where k is the Boltzman constant and
T the ambient temperature. The higher the T, the more spins are
flipped (equivalent to a “melting” of magnetic order or evaporation of
liquids). In computational terms, T' determines the frequency of writes
to the lattice sites at every iteration. The memory-adaptive version
partitions the lattice row-wise into 40 panels. To calculate the energy
change at panel boundaries, the code needs the last row of the above
neighboring panel and the first row of the below neighboring panel.
The improved MMLIB framework is needed for panel write backs with
variable frequency, and multiple active panels: Note that unlike CG,
which performs no writes to the panels, and MGS, which writes only
when a vector is added to the basis, ISING performs frequent writes
when higher values of T are used. Also, ISING requires more than two
panels to be active simultaneously, so that interactions across panel
boundaries can be computed.

In all three applications the panel replacement policy is MRU, but
there is also use of persistent (MGS) and neighboring (Ising) panels.

5.2. ADAPTATION VIA LOCAL DISK

5.2.1. Graceful degradation of performance

Figure 5 includes one graph per application, each showing the perfor-
mance of three versions of that application under constant memory
pressure. Each point in the charts shows the execution time of one
version of the application when run against a dummy job that occupies
a fixed amount of physical memory, using the mlock() system call to
pin its pages in-core. For each application we test a conventional in-
core version (blue top curve), a memory-adaptive version using MMLIB
(red lower curve), and an ideal version (green lowest curve) in which the
application fixes the number of panels cached at an optimal value pro-
vided by an oracle. The charts show the performance degradation of the
applications under increasing levels of memory pressure. In all three ap-
plications, the memory-adaptive implementation performs consistently
and significantly better than the conventional in-core implementation.
Additionally, the performance of the adaptive code is very close to the
ideal-case performance, without any advance knowledge of memory

paper.tex; 25/08/2006; 23:06; p.18

19

Algorithm: Metropolis Ising model sweep

for row = 1 to L do
for col =1 to L do
up = spinfi-1, j]; down = spin[i+1, j]
left = spinli, j-1]; right = spinl[i, j+1]
AE =2 - spinli, j| - (left + right + up + down)
if random() < w[AE + 8] then
spin[i, J] = 'Spin[ia J}

E=F+AF
M = M + 2 - spinli,j]
endif
enddo

enddo

Figure 4. The algorithm for executing a Metropolis sweep through the LxL spin
lattice of the Ising model. Sites in the lattice possess either spin up (41) or down (-1).
Periodic boundary conditions are used to calculate the spins (up, down, left, right) of
the four nearest neighbors. The array w] is a lookup table of Boltzmann probability
ratios; these ratios are dependent on the ambient temperature in the simulation.
The total energy E and the magnetization M are scalar quantities that track some
macroscopic observables of interest; they do not factor into the computations. Note
that for each lattice site, we always generate a random number to determine whether
the spin should flip. This could actually be avoided by automatically accepting a
spin flip whenever AE < 0, but by always generating the random number we ensure
that the amount of computation is the same at any temperature. This allows us
to ensure that performance differences observed at different temperatures are solely
due to differences in frequency of writes to memory.

availability and static memory size, and regardless of the number of
active panels (whether read-only or read/write).

5.2.2. Effects of panel write-frequency

One might question whether MMLIB becomes ineffectual when applica-
tions write to the panels frequently, as many dirty pages must be flushed
to disk before a panel can be unmapped. In the case of CG the panels
are never updated and thus never need their contents flushed. MGS does
write to panels, but infrequently, doing so only when an orthonormal-
ized vector is added to the basis. ISING, however, updates the panels
with each sweep through them, and it does so frequently if the ambient
temperature T' of the simulation is high. To determine if frequent writes
to the panels negatively affect performance, we tested MMULIB-enabled
ISING under constant memory pressure for different values of T'. Figure
6 displays performance curves generated under static memory pressure
on Linux 2.4 for temperatures 7' =0, T = 2, and T = 50. At T = 0,

paper.tex; 25/08/2006; 23:06; p.19

20

Average CG iteration time vs. memory pressure

§ 40 ‘ ‘ .
® —+— Memory-adaptive ’
g 85~ panelinixedatoptimalvalue A
o == In-core)

8 30t *]
8 25t]
w

3

@ 15 ¢

g * % «

£ . 7
: _

=) -]
5 s "

(0] S . .

> ‘ ‘ ‘ | |

z

30 40 50 60 70 80
Size of locked region (MB)

Average MGS time for last 10 vectors vs. memory pressure
400 T T —
—+— Memory-adaptive
350 = panels_in fixed at optimal value E
- In-core g

300 F 7

200 |

T
*.
L

150
100 |- i

Average MGS time (seconds)

50

Size of locked region (MB)

Average Ising sweep time vs. memory pressure

% 60 T T T

> —+— Memory-adaptive

?, rrrrr =--- panels_in fixed at optimal value ;
o 50 | ~x In-core .
<

3 40 3 |
Q
230 |
] :

@

g .

o 20 o ’
© L e — 1
? 10 e — M

o focsasascoiess Y ——

:: 0 . | | | I L L

10 20 30 40 5 60 70 80 90
Size of locked region (MB)

Figure 5. Performance under constant memory pressure. The top chart shows the
average time per iteration of CG with a 70 MB matrix, which requires a total of 81
MB of RAM including memory for the work vectors. The middle chart shows the
time to orthogonalize via modified Gram-Schmidt the last 10 vectors of a 30 vector
set. Approximately 80 MB are required to store all 30 vectors. The bottom chart
shows the time required for an Ising code to sweep through a 70 MB lattice. All
experiments were conducted on a Linux 2.4.22-xfs system with 128 MB of RAM,
some of which is shared with the video subsystem.

paper.tex; 25/08/2006; 23:06; p.20

21

Effect of write frequency on MMLIB-ISING performance
16 T T T T

T =0 (0% acceptance)

T =2 (16% acceptance)

T =50 (97% acceptance)

Average time for Ising sweep (sec)
=5
T
L

of - ////,,}7777——%”” — |

4
20 30 40 50 60 70 80
Size of locked region (MB)

Figure 6. Effects of write frequency on MMLIB performance in ISING. ISING runs
with a 70 MB spin lattice against static memory pressure applied via memlock on a
Linux 2.4 system with 128 MB RAM. P = 20, Rpen_maz = 10, and low frequency
probing is used. Performance curves are shown for temperatures T'= 0, T' = 2, and
T = 50, which correspond to acceptance probabilities of 0, 16.2, and 97.0 percent.
Error bars represent 95% confidence intervals. Performance is markedly better in
the T' = 0 case because no time is spent flushing panels to disk.

the simulation quickly reaches equilibrium after a few sweeps through
the matrix, and afterwards never flips any spins. At the other extreme,
T = 50, the lattice is in a highly disordered state, with an average
of 97.0% of the spins flipping during one sweep through the panels.
At T = 2, a more modest 16.2% of spins are flipped during a sweep
through the panels. The ISING code performs the same amount of CPU
work for each sweep, regardless of the simulation temperature. However,
we see that as memory pressure increases, ISING at 7' = 0 performs
much better than in the 7' = 2 or T' = 50 cases. This confirms that,
not surprisingly, frequent writes to the panels do increase execution
times, as there is no avoiding flushing dirty pages to disk when panels
are unmapped. Note, however, that even for extremely frequent writes,
graceful performance degradation is observed.

One may notice that despite the much higher frequency of writes in
the T' = 50 case, the observed performance is essentially the same as in
the T = 2 case. This makes sense because although only around 16%
of the flips are accepted in the T' = 2 case, those flips are distributed
widely throughout the spin lattice. Because one page can contain over
a thousand spins, it is likely that with 16% acceptance, almost every
page will be updated and therefore must be flushed to disk. To the
memory subsystem, there is essentially no difference between 16% and
97% acceptance.

paper.tex; 25/08/2006; 23:06; p.21

22

The impact of frequent writes on performance explains, at least par-
tially, why in Figure 5, MMLIB seems to confer less benefit to ISING
than to CG or MGS in the sense that lower speedups over the in-core
version are observed. The MMLIB-enabled CG and MGS spend very little
time writing to disk, which gives them an advantage over the in-core
versions which must write to the swap device. Memory-adaptive ISING
on the other hand, running at 7" = 2, must devote considerable time
to such writes, so it loses some of its advantage over the in-core code.
(We could make memory-adaptive ISING show better performance in
Figure 5 by running at 7' = 0, but this temperature is of no scientific
interest, so we use T' = 2, a temperature that physicists might actually

wish to simulate.)

5.2.3. Quick response to transient memory pressure

60 MB ising_mem vs. transient (30 sec) 60 MB dummy job
T

70000

60000 ‘j Hj

50000 |

-t |

30000

Resident set size (KB)

20000] \ r

10000 |

. . . .
0 50 100 150 200 250
Time elapsed (seconds)

Figure 7. Adaptation to transient memory pressure. A memory-adaptive Ising job
with a 60 MB lattice begins running on a Linux 2.4.22-xfs system with 128 MB of
RAM. Circles in the figure represent sweeps through the lattice. 12 seconds later
a competing jobs starts and writes randomly to a 60 MB region of RAM for 30

seconds.

Our goal is for MMLIB-enabled applications to not only exhibit
graceful performance degradation under memory pressure, but also
to respond quickly to changes in memory availability. To verify that
this is the case, we performed a test in which we started a memory-
adaptive Ising model computation, allowed it to complete a few sweeps
through its lattice, and then applied transient memory pressure in the
form of a competing memory-intensive job that ran for 30 seconds. The
results or this experiment are depicted in Figure 7 and show that the
job quickly adapts its resident set size to a safe level at the onset of

paper.tex; 25/08/2006; 23:06; p.22

23

memory pressure and, furthermore, readily adjusts its memory usage
back to normal when the competing job finishes.

5.2.4. Adaptive versus adaptive jobs

The litmus test for MMLIB is when multiple instances of applications
employing the library are able to coexist on a machine without thrash-
ing the memory system. Figure 8 shows the resident set size (RSS)
over time for two instances of the memory adaptive Ising code running
simultaneously on a Sun Ultra 5 node. After the job that starts first has
completed at least one sweep through the lattice, the second job starts.
Both jobs have 150 MB requirements, but memory pressure varies
temporally. The circles in the curves denote the beginning of lattice
sweeps. Distances between consecutive circles along a curve indicate
the time of each sweep.

The results show that the two adaptive codes run together har-
moniously without constantly evicting each other from memory and
the jobs reach an equilibrium where system memory utilization is high
and throughput is sustained without thrashing. The system does not
allow more than about 170 MB for all jobs, and it tends to favor the
application that starts first. A similar phenomenon was observed in
Linux. We emphasize that the intricacies of the memory allocation
policy of the OS are orthogonal to the policies of MMLIB. MMLIB
allows jobs to utilize as efficiently as possible the available memory,
not to claim more memory than what is given to each application by
the OS.

5.2.5. Performance under a most-missing eviction policy

Figure 9 shows the benefits of our proposed “most-missing” eviction
policy. After external memory pressure starts, the job that uses strict
MRU eviction exhibits very slow performance initially, because it must
load the pages evicted by the operating system as well as the MRU
panels that MMULIB has evicted, which usually do not coincide with
the panels from which the operating system has taken pages. The job
that employs the “most-missing” policy adapts more nimbly to the
sudden increase in memory pressure, because it does not make the
mistake of automatically throwing out many panels that have been
untouched by the VM system. Note that after the application adapts
to the sudden decrease in available memory, it automatically reverts
from most-missing to MRU replacement when no further shortage is
detected.

paper.tex; 25/08/2006; 23:06; p.23

24

ising_mem: 150 MB versus 150 MB
160000 T T T T T

|
140000 —‘ B ' R
Loy
- po! i
120000 || oo/ !]
100000 —‘ | 1

80000 4 : R

Resident set size (KB)

60000 : 1

40000 | ; 4

20000 | | ' o778 B
! 150 MB ——
150 MB -

oki ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Time elapsed (seconds)

ising_mem: 200 MB versus 100 MB
220000 T T

200000 L@ 4
180000 "& | 4
160000 —‘
140000 —‘ \
120000 H

100000

Resident set size (KB)

80000

60000 i q
40000 i 1

20000 [!

200 MB
100 MB

04 1 1 1
0 500 1000 1500 2000 2500
Time elapsed (seconds)

ising_mem: 100 MB versus 200 MB
200000 T T

180000 |
160000 |- P ,
140000 - 1
120000 |- i —
100000

80000

Resident set size (KB)

60000

40000 [| R

20000

100 MB ——
200 MB -------

0 1 1 1
0 500 1000 1500 2000 2500
Time elapsed (seconds)

Figure 8. Running adaptive versus adaptive jobs. The top chart plots RSS vs. time
for two equal-sized (150 MB) memory-adaptive Ising jobs. The second job is started
30 seconds after the first job. The chart in the middle plots the performance of a
small (100 MB) and a large (200 MB) Ising job. The small job starts 70 seconds
after the large job. The bottom chart plots the performance of a small and a large
job (100 MB and 200 MB respectively), where the large job starts 40 seconds after
the small job.

paper.tex; 25/08/2006; 23:06; p.24

25

Performance with evict_mru_greedy() vs. evict_most_missing()

T T T T T
evict_mru_greedy() ——
evict_most_missing()

* o ®
T T T
L L L

o
T
L

Average time (seconds) for iteration

AN

y
/
\

0 1 5 6
Iteration number

Figure 9. Benefits of evicting partially swapped out panels. The chart shows the
times for the first 10 sweeps of a memory-adaptive Ising job running with a 60 MB
lattice on a Linux machine with 128 MB of RAM. After 12 seconds, a dummy job
that uses 60 MB of memory begins. The job that evicts panels with the largest
number of missing pages, labeled evict_most missing, has lower and less variable
times than the original MRU replacement, labeled evict_mru_greedy.

Performance of CG with LRU-friendly access pattern under memory pressure
45 T T T T
+—+— CG-MEM-LRU
"""" CG-INCORE-LRU
-*---1 CG-INCORE-MRU|

35

Average time for CG iteration (sec)

80

Size of locked region (MB)

Figure 10. Performance of in-core and memory adaptive versions of CG-LRU, which
uses an LRU-friendly access pattern. Jobs run under static memory pressure pro-
vided by memlock on a Linux 2.4 system with 128 MB of RAM. The performance

profile for in-core, MRU-friendly CG is also depicted for comparison. P = 20 and low
frequency probing is used with Rpen_maz = 10. Error bars represent 95% confidence

intervals.

5.2.6. Dependence of performance gains on replacement policy
Because all three of the applications we have tested employ memory

access patterns for which MRU replacement is appropriate (and are
thus very poorly served by the LRU-like algorithms employed by virtual
memory systems), one might wonder if all of the performance gains

paper.tex; 25/08/2006; 23:06; p.25

26

provided by MMLIB are attributable to the MRU replacement that it
enables. To test this notion, we devised two experiments.

In the first experiment, we modified the CG code to utilize an LRU-
friendly access pattern. Normally, CG performs matrix-vector multipli-
cations starting with the first row of the matrix and proceeding down
the rows until the last row is processed. Similarly for the memory-
adaptive case, at each CG iteration, a sweep from the first (top) to
the last (bottom) panel of the matrix is performed. We can make CG
LRU-friendly, however, by employing an alternating access pattern:
during one iteration, sweep through the matrix from top to bottom,
and then during the next iteration, sweep from bottom to top. In
our LRU-friendly implementations, CG-LRU, the conventional in-core
code performs the backsweeps row by row, while the MMLIB-enabled
version sweeps backwards through its set of panels, but processes the
rows of each panel in the usual top to bottom fashion. In this manner
the MMLIB version utilizes an LRU-friendly access pattern while still
taking advantage of the pre-fetching that the large units (panels) of
data access enable. Figure 10 compares the in-core and MMLIB-enabled
versions of CG-LRU with the in-core CG that uses the conventional,
MRU-friendly access pattern. The MMLIB-enabled CG-LRU performs
well (as expected) under memory pressure. But somewhat surprisingly,
the in-core CG-LRU performs only marginally better than conventional
in-core CG, implying that the improved access pattern of CG-LRU is
immaterial. Tracing the reasons for this is challenging because the
system activity that occurs during thrashing can be quite complicated.
Although in-core CG-LRU does not avoid VM-system overheads and
write-backs to the swap device, and it cannot take advantage of pre-
fetching from backing store like MMULIB-enabled codes can, it is likely
that its poor performance also stems from problems in the page replace-
ment policy of the operating system. The LRU-like page replacement
policies employed by many operating systems are prone to thrashing
given certain small disruptions in the LRU access pattern. Although
CG-LRU uses an LRU-friendly pattern to access the matrix, this mod-
ification does not extend to the work vectors (static memory), which
cannot be protected from page reclamation in the same way they are
by MMLIiB-enabled CG codes; this may explain at least part of the poor
performance observed.

In our second experiment, we tested what performance gains MM-
LIB could still provide when used with an inappropriate replacement
policy: We ran the standard (MRU-friendly) MMLIB-enabled CG un-
der memory pressure and instructed MMLIB to use LRU replacement.
This introduces a serious performance bug in the replacement policy
— in the presence of memory pressure, all panel fetches will result

paper.tex; 25/08/2006; 23:06; p.26

27

Performance of MMLIB-CG using wrong access pattern

MMLIB-CG-LRU-wrong' —— ' ' '
MMLIB-CG-MRU-correct
-incore -

Average time for CG iteration (sec)
0
3
T
L

. .
10 20 30 40 50 60 70 80
Size of locked region (MB)

Figure 11. Performance of memory-adaptive CG versus memory pressure when us-
ing the wrong panel replacement policy, which is depicted by the curve labeled
MMLIB-CG-LRU-wrong. The appropriate replacement policy is MRU, but LRU is
used instead; any observed performance gains are not due to the ability of MM-
LIB to allow application-specific replacement. For comparison, the performance of
memory-adaptive correctly employing MRU is depicted by the curve labeled MM-
LIB-CG-MRU-correct. Jobs run under static memory pressure provided by locking
a region of memory in-core on a Linux 2.4 system with 128 MB of RAM.

in a miss! Consequently, any performance benefits observed will be
unrelated to the ability of MMLIB to enable the use of application-
specific replacement policies. Figure 11 compares the performance of
CG using the wrong (LRU) replacement policy with the CG correctly em-
ploying MRU. The version using LRU replacement performs markedly
worse, requiring roughly twice the amount of time required by the
MRU version to perform one iteration. However, when compared to
the performance of in-core CG under memory pressure, the code us-
ing the wrong replacement policy still performs iterations in roughly
half the time of in-core CG at lower levels of memory pressure, and
at higher levels performs even better. The performance benefits in
this case come strictly from the large granularity of panel access, as
opposed to the page-level granularity of the virtual memory system,
and from avoiding thrashing. Our experiments also suggest that for
a good replacement policy to offer additional benefits, the code must
have structured, controlled memory accesses.

5.3. ADAPTATION VIA REMOTE MEMORY
The remote memory experiments are conducted on the SciClone cluster

[1] at William & Mary. All programs are linked with the MPICH_.GM
package and the communications are routed via a Myrinet 1280 switch.

paper.tex; 25/08/2006; 23:06; p.27

28

We use dual-cpu Sun Ultra 60 workstations at 360MHz with 512MB
memory, of which about 80MB are reserved by the Solaris 9 system.

16384

16384

900 T T
20M buffer —}—
800 - 50M buffer g K
100M buffer K - _)
% 70 150Mbuffer || T T N
B“ 600 - 200M buffer L
2 250M buffer
N
500
=
= !
; 400
il
300
g L]
M 200
100 AR e
e e S VA i~ | 3
0 - ——] il i i i i
64 128 256 512 1024 2048 4096 8192
Block Size (K bytes)
900 T T
20M buffer —}—
800 - 50M buffer
100M buffer -+ -
% 70 150M buffer ||
B“ 600 1 200M buffer
2 250M buffer |
o SR
~ 500 5 \L ,,,,,, 7N
= |
= PN
=) |+
.= 400 = i
z B
'2 300 [+
<
M 200
100
0
64 128 256 512 1024 2048 4096 8192
Block Size (K bytes)
900 T T T ;
I P o L
[——) "
800 e
A
o 700 B
a, e
£ 600 -
E Pan]
~ 7
500,
= r
N— bl
E 400
20M buffer 4’7
"g 300 .
S 50M buffer -
M o0 100M buffer K- |
150M buffer ||
100 200M buffer -
250M buffer
0 .
64 128 256 512 1024 2048 4096 8192
Block Size (K bytes)

Figure 12. MPI_Recv perceived bandwidth microbenchmark results. The charts
show the perceived MPI_Recv bandwidth vs. receiving block size for six different
total buffer sizes. The receiving block is allocated using named mmap () (top chart),

anonymous mmap () (middle chart), or malloc() (bottom chart).

paper.tex; 25/08/2006; 23:06; p.28

16384

29

5.3.1. Microbenchmark results

These experiments help us understand the effect of various allocation
schemes (malloc, named mmap, anonymous mmap) on the MPI Recv
performance, under various levels of memory pressure. Figure 12 shows
three graphs corresponding to the three methods for allocating the re-
ceiving block of the MPI_Recv call. Each graph contains six curves plot-
ting the perceived MPI_Recv bandwidth for six different total ‘buffers’
that the MPI_Recv tries to fill by receiving ‘Block Size’ bytes at a time.
This microbenchmark simulates an MMLIB process that uses remote
memory to bring each one of the panels (of ‘Block Size’ each) of a
memory object (of ‘buffer’ size). On the same node with the receiving
process, there is a competing process reading a 300MB file from the
local disk. The larger the total ‘buffer’ size, the more severe the memory
pressure on the node. The remote memory server process is always
ready to send the requested data.

The top chart suggests that named mapping is the worst choice for
allocating MPI_Recv buffers, especially under heavy memory pressure,
which is exactly when MMLIB is needed. In fact when the receiving
block is small, performance is bad even without memory pressure (e.g.,
all curves for block size of 256 KB). With large block sizes bandwidth
increases but only when the total ‘buffer’ does not cause memory pres-
sure (e.g., the 20MB ‘buffer’ curve). A reason for this is that receiving
a remote panel causes a write-out to its backing store on the local disk,
even though the two may be identical.

For both the middle and bottom charts, all six curves are very sim-
ilar, suggesting that allocation using anonymous mmap () or malloc()
is not very sensitive to memory pressure. The MPI_Recv bandwidth
performance of using malloc() for memory allocation is better than
that of using anonymous mmap (). As no other processes were using the
network during the experiments, the perceived differences in bandwidth
must be due to different mechanisms of Solaris 9 for copying memory
from system to user space.

Although these microbenchmarks suggest malloc () as the allocator
of choice for implementing remote memory, experiments with CG fa-
vor anonymous mapping, with malloc() demonstrating unpredictable
behavior.

5.3.2. CG application results
To demonstrate the remote memory capability of MMLIB, we per-
formed two sets of experiments with the CG application on the same
computing platform as in microbenchmark experiments.

In the first set, the MMLIB enabled CG application runs on one local
node. It works on a 200MB matrix, which is equally partitioned into 20

paper.tex; 25/08/2006; 23:06; p.29

30

Table I. This table shows the wall-clock time for MMLIB CG running against
in-core CG, in six modes corresponding to the six rows in the table. MMLIB
CG works on local node on a 200MB matrix, which is the managed object,
requiring a total of 263MB. Memory pressure on the local node is created by
in-core CG running on three different matrix sizes: 300MB, 150MB, 100MB,
with total memory requirements: 385MB, 194MB, and 128MB respectively.
Without Pressure means in-core CG is not running.

Wall-clock time for MMLIB CG against in-core CG

memory pressure
\ 300MB 150MB 100MB No Pressure

mode

named mmap () local 388.097 326.642 309.365 285.135
named mmap () remote 484.34 472.831 371.277 289.617
anonymous mmap () local 541.005 367.357 317.726 294.406
anonymous mmap () remote 379.114 360.516 317.756 293.213
malloc() local 1325.485 1023.782 1059.640 1050.507
malloc() remote 534.229 504.043 475.662 462.117

panels. We create various levels of memory pressure on the local node
by running in addition the in-core CG application (without MMLIB)
with matrices requiring 300MB, 150MB, and 100MB memory sizes.
The experimental results are shown in Table I. There are two rows of
data for each of the three memory allocation methods. In the first row,
we run the MMLIB CG without remote memory; in the second row, we
run MMLIB CG with remote memory capability.

First, we see that under named mmap(), performance for remote
mode is inferior to local mode, while under anonymous mmap () mode
and malloc(), remote mode is obviously superior to local mode, es-
pecially when memory pressure is severe. The results also confirm the
microbenchmark observations that named mmap () is the wrong choice
for remote memory.

In contrast to the microbenchmark results, however, remote mode
performance is better under anonymous mmap () than under malloc().
There are two reasons for this. The most important reason is that on
Solaris 9 malloc() extends the data segment by calling brk(), rather
than by calling mmap (). Because MMLIB issues a series of malloc()
and free() calls, especially when there is heavy memory pressure, the
unmapped panels may not be readily available for use by the system.
This causes the runtime scheduler to think that there is not enough
memory and thus to allocate less resources to the executing process.
In our experiments on the dual cpu Suns, we noticed that the Solaris

paper.tex; 25/08/2006; 23:06; p.30

31

Table II. This table shows the wall-clock time for MMLIB CG running against
MMuLiB CG. Both MMLIB CG applications use anonymous mmap() to allocate
memory. The first three rows show the results when local disk is used by both
MMuLIB CG applications. The following three rows show the results when re-
mote memory is used by both MMLIB CG applications. The last row shows
the total wall-clock time reduction for remote over local mode. Actual memory
requirements for all codes are about 28% more than the matrix size.

Wall-clock time for MMLIB CG against MMLIB CG

matrix size
\ 300MB 250MB 200MB 150MB 100MB
processes

cgl local 1496.700 1116.355 413.500 265.929 181.252
cg2 local 1015.495 755.859 638.448 266.697 185.796
Total local 2512.195 1872.214 1051.948 532.626 367.048
cgl remote 1139.011 815.240 415.056 266.049 158.954
cg2 remote 809.446 519.031 603.588 252.822 157.289
Total remote 1948.457 1334.271 1018.644 518.871 316.243

Time reduction of
remote over local 22.4% 28.7% 3.16% 2.58% 13.8%

scheduler gave less than 25% cpu time to the application in malloc ()
mode, while it gave close to 50% cpu time to the one in anonymous
mmap () mode. Interestingly, the local MMLIB implementation without
remote memory demonstrates even a worse behavior, suggesting that,
on Solaris, the use of malloced segments should be avoided for highly
dynamic I/O cases. The second reason is that the mincore() system
call does not work on memory segments allocated by malloc (). There-
fore, MMLIB cannot obtain accurate estimates of the static memory to
adapt to memory variabilities.

In the second set of the experiments, we let two MMLIB CG appli-
cations run against each other to measure the performance advantages
of using remote memory over local disk in a completely dynamic set-
ting. Both MMLIB CG applications use anonymous mmap () to allocate
memory and work on different matrices of equal size. Each matrix is
equally partitioned into 10MB panels. The experimental results are
shown in Table II. When remote memory instead of local disk is used,
the total wall-clock time of the two MMLIB CG applications is always
reduced. Especially when the overall memory pressure is severe such
as the 300MB matrix and 250MB matrix cases (the overall memory
requirements for these matrices are 750MB and 640MB respectively),
the wall-clock time reduction can be 22.4% and 28.7% respectively.

paper.tex; 25/08/2006; 23:06; p.31

32

We emphasize that these improvements are on top of the improve-
ments provided by the local disk MMLIB over the simple use of virtual
memory. Considering also the improvements from Figure 5, our remote
memory library improves local virtual memory performance by a factor
of between four and seven. This compares favorably with factors of two
or three reported in other remote memory research [20].

6. Conclusions

We presented a general framework and supporting library that allows
scientific applications to automatically manage their memory require-
ments at runtime, thus executing optimally under variable memory
availability. The library is highly transparent, requiring minimal code
modifications and only at a large granularity level.

This paper extends our previous simplified framework and adapta-
tion algorithm for memory malleability with the following key func-
tionalities: (a) multiple and simultaneous read/write memory objects,
active panels, and access patterns, (b) automatic and accurate estima-
tion of the size of the non-managed memory, and (c) application level
remote memory capability.

We showed how each of the new functionalities (a) and (b) were nec-
essary in implementing three common scientific applications, and how
(c¢) has significant performance advantages over system-level remote
memory. Moreover, the remote memory functionality has opened a host
of new possibilities for load and memory balancing in COWs and MPPs,
that will be explored in future research. Our experimental results with
MMLIB, have confirmed its adaptivity and near optimality in perfor-
mance. Integration of MMLIB with high-level parallel programming
models will also be explored in future work.

7. Acknowledgments

This work is supported by the National Science Foundation (ITR/ACS-
0082094, ITR/AP-0112727, ITR/ACI-0312980, CAREER /CCF-0346867)
the Department of Energy (DOE-FG-02-05ER2568), a DOE computa-
tional sciences graduate fellowship, the College of William and Mary
and the College of Engineering at Virginia Tech. Part of this work was
performed using the SciClone clusters at the College of William and
Mary which were enabled by grants from Sun Microsystems, the NSF,
and Virginia’s Commonwealth Technology Research Fund.

paper.tex; 25/08/2006; 23:06; p.32

10.

11.

12.

13.

14.

15.

16.

33
References

SciClone cluster project at the College of William and Mary. 2005.

A. Acharya, G. Edjlali, and J. Saltz. The utility of exploiting idle workstations
for parallel computation. volume 25, pages 225-234, 1997.

A. Acharya and S. Setia. Availability and Utility of Idle Memory in Workstation
Clusters. In Proc. of the 1999 ACM SIGMETRICS Joint International Confer-
ence on Measurement and Modeling of Computer Systems (SIGMETRICS’99),
pages 35—46, Atlanta, Georgia, May 1999.

A. Arpaci-Dusseau. Implicit Coscheduling: Coordinated Scheduling with Im-
plicit Information in Distributed Systems. ACM Transactions on Computer
Systems, 19(3):283-331, August 2001.

A. Barak and A. Braverman. Memory Ushering in a Scalable Computing Clus-
ter. Journal of Microprocessors and Microsystems, 22(3-4):175-182, August
1998.

Rakesh D. Barve and Jeffrey Scott Vitter. A theoretical framework for memory-
adaptive algorithms. In IEEE Symposium on Foundations of Computer
Science, pages 273284, 1999.

A. Batat and D. Feitelson. Gang Scheduling with Memory Considerations.
In Proc. of the 14th IEEE International Parallel and Distributed Processing
Symposium (IPDPS’2000), pages 109-114, Cancun, Mexico, May 2000.
Angela Demke Brown and Todd C. Mowry. Taming the memory hogs: Using
compiler-inserted releases to manage physical memory intelligently. In Proceed-
ings of the 4th Symposium on Operating Systems Design and Implementation
(OSDI-00), pages 31-44, 2000.

F. Chang, A. Itzkovitz, and V. Karamcheti. User-Level Resource Constrained
Sandboxing. In Proc. of the 4th USENIX Windows Systems Symposium, pages
25-36, Seattle, WA, August 2000.

S. Chiang and M. Vernon. Characteristics of a Large Shared Memory Pro-
duction Workload. In Proc. 7th Workshop on Job Scheduling Strategies for
Parallel Processing (JSSPP’2001), Lecture Notes in Computer Science, Vol.
2221, pages 159-187, Cambridge, MA, June.

Holger Dachsel, Jarek Nieplocha, and Robert Harrison. An out-of-core imple-
mentation of the COLUMBUS massively-parallel multireference configuration
interaction program. In Proceedings of Supercomputing ’98, 1998.

H. Dail, H. Casanova, and F. Berman. A Decoupled Scheduling Approach for
the GrADS Program Development Environment. In Proc. of the IEEE/ACM
Supercomputing’02: High Performance Networking and Computing Conference
(5C’02), Baltimore, MD, November 2002.

M. Feeley, W. Morgan, F. Pighin, A. Karlin, H. Levy, , and C. Thekkat. Im-
plementing global memory management in a workstation cluster. In 15th ACM
Symposium on Operating Systems Principles(SOSP-15), pages 201-212, 1995.
D. Feitelson and L. Rudolph. Evaluation of Design Choices for Gang Scheduling
Using Distributed Hierarchical Control. Journal of Parallel and Distributed
Computing, 35(1):18-34, May 1996.

M. Flouris and E. Markatos. Network RAM. In High Performance Cluster
Computing, pages 383—-408. Prentice Hall, 1999.

J. Frey, T. Tannenbaum, M. Livny, I. Foster, and S. Tuecke. Condor-G: A Com-
putation Management Agent for Multi-Institutional Grids. In Proc. of the 10th
IEEE International Symposium on High Performance Distributed Computing
(HPDC-10), pages 55-63, San Francisco, California, August 2001.

paper.tex; 25/08/2006; 23:06; p.33

34

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

R. Henderson. Job Scheduling Under the Portable Batch System. In Proc. of
the First Workshop on Job Scheduling Strategies for Parallel Processingolph,
Lecture Notes in Computer Science Vol. 949, pages 279-294, Santa Barbara,
CA, April 1995.

L. Iftode. Home-Based Shared Virtual Memory. PhD thesis, Princeton
University, June 1998.

L. Iftode, K. Petersen, and K. Li. Memory Servers for Multicomputers. In
Proc. of the IEEE 1993 Spring Conference on Computers and Communications
(COMPCON’93), pages 538-547, February 1993.

S. Koussih, A. Acharya, and S. Setia. Dodo: A user-level system for exploiting
idle memory in workstation clusters. In HPDC, 1999.

M. Lewis and L. Gerner. Maui Scheduler, an Advanced System Software Tool.
In Proc. of the ACM/IEEE Supercomputing’97: High Performance Networking
and Computing Conference (SC’97), San Jose, CA, November 1997.
Evangelos P. Markatos and George Dramitinos. Implementation of a reliable
remote memory pager. In USENIX Annual Technical Conference, pages 177—
190, 1996.

R. T. Mills. Dynamic adaptation to CPU and memory load in scientific appli-
cations. PhD thesis, Department of Computer Science, College of William and
Mary, Fall, 2004.

R. T. Mills, A. Stathopoulos, and D. S. Nikolopoulos. Adapting to memory
pressure from within scientific applications on multiprogrammed COWs. In
International Parallel and Distributed Processing Symposium (IPDPS 2004),
Santq Fe, NM, USA, 2004.

R. T. Mills, A. Stathopoulos, and E. Smirni. Algorithmic modifications to
the Jacobi-Davidson parallel eigensolver to dynamically balance external CPU
and memory load. In 2001 International Conference on Supercomputing, pages
454-463. ACM Press, 2001.

S. Narravula, H. Jin, K. Vaidyanathan, and D. Panda. Designing Efficient Co-
operative Caching Schemes for Multi-Tier Data Centers over RDMA-Enabled
Networks. In Proc. of the 6th IEEE/ACM International Symposium on Cluster
Computing and the Grid, pages 401-408, Singapore, May 2006.

Jarek Nieplocha, Manojkumar Krishnan, Bruce Palmer, Vinod Tipparaju, and
Yeliang Zhang. Exploiting processor groups to extend scalability of the GA
shared memory programming model. In ACM Computing Frontiers, Italy,
2005, 2005.

D. Nikolopoulos. Malleable Memory Mapping: User-Level Control of Memory
Bounds for Effective Program Adaptation. In Proc. of the 17th IEEE/ACM In-
ternational Parallel and Distributed Processing Symposin (IPDPS’2003), Nice,
France, April 2003.

D. Nikolopoulos and C. Polychronopoulos. Adaptive Scheduling under Memory
Pressure on Multiprogrammed Clusters. In Proc. of the 2nd IEEE/ACM In-
ternational Conference on Cluster Computing and the Grid (ccGrid’02), pages
22-29, Berlin, Germany, May 2002.

J. Oleszkiewicz, L. Xiao, and Y. Liu. Parallel network RAM: Effectively utiliz-
ing global cluster memory for large data-intensive parallel programs. In 2004
International Conference on Parallel Processing (ICPP’2004), pages 353-360,
2004.

HweeHwa Pang, Michael J. Carey, and Miron Livny. Memory-adaptive ex-
ternal sorting. In Rakesh Agrawal, Sedn Baker, and David A. Bell, editors,

paper.tex; 25/08/2006; 23:06; p.34

32.

33.

34.

35.

36.

37.

38.

39.

40.

35

19th International Conference on Very Large Data Bases, August 24-27, 1993,
Dublin, Ireland, Proceedings, pages 618-629. Morgan Kaufmann, 1993.

F. Petrini and W. Feng. Time-Sharing Parallel Jobs in the Presence of Multiple
Resource Requirements. In Proc. of the 6th Workshop on Job Scheduling
Strategies for Parallel Processing (JSSPP’2000), in conjunction with IEEE
IPDPS’2000, LNCS Vol. 1911, pages 113-136, Cancun, Mexico, May 2000.

J. Plank, K. Li, and M. Puening. Diskless Checkpointing. IEEE Transactions
on Parallel and Distributed Systems, 9(10):972-986, October 1998.

R. Daugherty and D. Ferber. Network Queuing Environment. In Proceedings
of the Spring Cray Users Group Conference (CUG’94), pages 203-205, San
Diego, CA, March 1994.

Yousef Saad. SPARSKIT: A basic toolkit for sparse matrix computations.
Technical Report 90-20, Research Institute for Advanced Computer Science,
NASA Ames Research Center, Moffet Field, CA, 1990. Software currently
available at <ftp://ftp.cs.umn.edu/dept/sparse/>.

P. Sobalvarro, S. Pakin, W. Weihl, and A. Chien. Dynamic Coscheduling on
Workstation Clusters. In Proc. of the 4th Workshop on Job Scheduling Strate-
gies for Parallel Processing (JSSPP’98), Lecture Notes in Computer Science
Vol. 1459, pages 231-256, Orlando, Florida, April 1998.

A. Stathopoulos, Serdar Ogiit, Y. Saad, J. R. Chelikowsky, and Hanchul Kim.
Parallel methods and tools for predicting material properties. Computing in
Science and Engineering, 2(4):19-32, 2000.

S. Vadhiyar and J. Dongarra. A Performance Oriented Migration Framework
for the Grid. Technical Report, Innovative Computing Laboratory, University
of Tennessee, Knoxville, 2002.

G. Voelker, E. Anderson, T. Kimbrel, M. Feeley, J. Chase, A. Karlin, and
H. Levy. Implementing Cooperative Prefetching and Caching in a Globally-
Managed Memory System. pages 33-43, Madison, Wisconsin, June 1999.

P. Woodward, S. Anderson, D. Porter, and A. Iyer. Distributed Computing in
the SHMOD Framework on the NSF TeraGrid. Technical report, Laboratory
for Computational Science and Engineering, University of Minnesota, February
2004.

paper.tex; 25/08/2006; 23:06; p.35

