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Abstract

Locking is a popular deflation technique followed by many eigensolvers, where a
converged eigenvector is frozen and removed from the iteration search space. Other
deflation techniques that do not modify the matrix have less favorable numerical
properties, so the alternative to locking is not to perform deflation at all. Without
deflation, which we refer to as non-locking, converged eigenvectors are kept in the
search space. One of the goals of this paper is to determine when locking is compu-
tationally preferable, and for which eigensolvers. Our primary goal, however, is to
address a subtle numerical, but not floating point, problem that arises with locking.
The problem stems from the fact that converged eigenpairs are only accurate to a
specified tolerance Tol, so if they are locked, they may impede convergence to Tol
accuracy for some subsequent eigenvector. Although the problem is rare, the result-
ing stagnation is a liability for general purpose software. We provide a theoretical
explanation of the problem, and based on it we derive an algorithm that resolves
the problem, is easy to implement, and incurs minimal additional costs.

Key words: locking, soft locking, eigenvalues, large number of eigenvalues,
convergence accuracy

1 Introduction

Hermitian eigenvalue problems remain some of the most computationally in-
tensive application kernels. Because their eigenvalues are well conditioned,
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and their theoretical properties well understood, we can solve problems of
very large size. This ability has spurred even further increases in the accuracy
of engineering models, which in turn requires the solution of matrix problems
of unprecedented size. Even more challenging is the need to compute hundreds
and often thousands of eigenvalues and their corresponding eigenvectors.

Eigenvalue iterative methods for such problem sizes are based predominantly
on projection methods. These methods build a sequence of subspaces, called
search spaces, from which they extract the approximations to the eigenval-
ues and eigenvectors through the RR or some other projection technique
[22,20,10,34]. For the RR, the approximations are referred to as Ritz val-
ues and Ritz vectors. Krylov subspaces are a common and effective choice
of search space. In particular, when seeking a large number of eigenvalues
that are not tightly clustered, unrestarted Lanczos [13,5] is difficult to beat,
while for a few eigenvalues, implicitly restarted Lanczos (IRA) and Shift and
Invert Lanczos [27,16,9] may be preferable. In the presence of multiplicities
or tightly clustered eigenvalues, subspace iteration and block methods (e.g.,
LOPSI, block Lanczos) [33,8], or methods that use preconditioning to build
non-Krylov spaces (e.g., Davidson, Generalized Davidson, Jacobi Davidson,
LOBCPG) are usually more effective [6,21,26,12].

There are two main ways that eigensolvers deal with converged eigenpairs.
The first flags an eigenvector as converged and leaves it in the search space
with no other special treatment. Some flag checking may be needed for eigen-
solvers that work specifically on unconverged eigenvectors (e.g., Davidson type
solvers). The second way deflates a converged eigenvector x from the search
space so that all work is performed in the orthogonal complement of x. The
latter approach is often called locking, as the converged x is frozen and removed
(locked) from the search space [3,4,28,15]. In exact arithmetic, locking is equiv-
alent to working with the deflated matrix (I−xx∗)A(I−xx∗), but locking does
not modify the matrix and it is also a numerically stable way to implement
deflation. For this reason, other forms of deflation (such as Wielandt deflation
or polynomial filtering) have been discouraged for iterative methods [34,25].
The former approach, which involves no deflation, is sometimes referred to as
“soft locking” [11], but because there is no locking involved, we simply call it
non-locking.

There are trade offs between using or avoiding locking, but the differences do
not show until a relatively large number of eigenvalues (nev) is required. Con-
vergence is generally better without locking, because the subspace size must
be larger than nev, but the computational costs of Rayleigh Ritz, restarting,
and the computation of residuals increase rapidly with the subspace size. This
implies that the use of locking becomes necessary for eigensolvers that make
frequent use of these kernels (e.g., Davidson, LOBPCG). At the same time,
locking may reduce the storage requirements of a method, because it works
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with a small basis. A computational cost benefit analysis has not been carried
out, and this is one of the goals in this paper.

Our primary goal is to address a more important, yet quite subtle numerical
problem that is caused by locking. Although the problem has not been dis-
cussed in the eigenvalue literature, it is sometimes observed by practitioners. It
stems from the fact that converged eigenpairs are only accurate to a specified
tolerance Tol, so their orthogonal complement is not an accurate invariant
subspace. Thus, it is possible that convergence to a subsequent eigenvector
to Tol accuracy is impeded by locked vectors, causing any iterative solver to
stagnate. A similar problem is sometimes observed in block iterative methods
for linear systems of equations with multiple right hand sides, as several sys-
tems converge and their solutions are deflated [14]. Although the problem is
quite rare, it is a big liability for any eigenvalue software that is general pur-
pose, or used within a production code. Yet, we are not aware of any attempts
to theoretically understand this problem and address it appropriately at the
software level.

In this paper, we provide theory that shows that the problem is not funda-
mental, but related to the implementation of locking and of iterative solvers.
Specifically, we provide a computable bound on how far from Tol the residual
norm of an approximate eigenvector can be, and we show that the missing
eigenvector components are almost entirely in the deflated space. Thus, a
Rayleigh Ritz procedure with a basis that includes both the locked vectors
and the yet unconverged eigenvector resolves the problem. We also outline
the modifications to iterative solvers that address this problem with minimal
additional computational costs.

2 Notation

We consider the problem of finding nev eigenvalues and the corresponding
eigenvectors of a Hermitian matrix A of size N×N : Axi = λixi, i = 1, . . . , nev.
Usually extreme eigenpairs are sought but our discussion applies to eigenvalues
obtained in any order. A Ritz value and its Ritz vector obtained through the
Rayleigh Ritz procedure on some basis V is denoted as (θ, u). We also use
the acronym RR for Rayleigh Ritz. Convergence requires that the 2 norm of
the residual, r = Au − θu, is less than Tol. With locking, Q and Θ denote
the matrix of all converged Ritz vectors and the diagonal matrix of their Ritz
values, respectively, and R the matrix of their corresponding residuals. We
will also be using the orthogonal projector P = I − QQ∗. By ‖ · ‖ we denote
the 2 norm, and ‖ · ‖F the Frobenious norm.
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3 Iterative solvers and locking

To better describe the computational and numerical issues of locking, we
present a generic form of an eigenvalue iterative solver. We have already seen
the basic ingredients: build a subspace, or more accurately a basis for a sub-
space, and then extract the approximations from the subspace through the
RR procedure. Krylov subspaces are the most common, but often a precon-
ditioner can be used to create a subspace enriched in the required directions.
For a broad survey of eigensolvers see [3] and for some more recent advances
see [29,1]. In this paper we focus only on the way these eigensolvers handle
the converged eigenpairs.

Typically, eigensolvers test convergence by checking the norm of the residual
of the Ritz vectors. Depending on the algorithm, this test may occur at every
step (e.g., (Jacobi-)Davidson, LOBPCG), or every certain number of steps
(e.g., ARPACK). When the residual and the test are computed infrequently,
non-locking is a natural choice. When an eigenvector converges, a counter
k is increased and the method continues until k > nev. As the RR has to
produce approximations to all nev eigenvectors, the maximum basis size has
to be maxSize > nev. On the other hand, for methods that require the most
recent Ritz vectors and their residuals at every step (e.g, (Jacobi-)Davidson),
there is little sense in continuing iterations with the residual of a converged
eigenvector. Similar concerns apply also to block methods, if some vectors in
the block have converged. These methods can still be implemented without
locking, but more book-keeping is required so that converged eigenvectors are
not targeted. Traditionally, such methods have been used with locking.

Table 1 depicts two implementations of a generic eigensolver; one without
locking (left) and one with locking (right). These eigensolvers build a basis
of maximum size maxSize, at which step they restart with the most recent
approximations to the the sought eigenvectors. The RR and convergence tests
are applied every m steps. Without locking, the converged eigenvectors are
simply kept in V , and participate in subsequent RR procedures. Thus, they
are expected to improve as more information is accumulated in V .

For the purposes of this paper, most known eigensolvers can be represented
in these generic forms. For example, ARPACK corresponds to the non-locking
case with m = maxSize, and vnew coming from a Krylov space, Generalized
Davidson corresponds to non-locking with m = 1, and vnew being the precon-
ditioned residual, while Jacobi-Davidson is usually implemented as a locking
method, with m = 1, and vnew the vector returned by some inner solver. Note
also that vnew and uk+1 could be multivectors so that the solvers capture block
methods. For simplicity, however, we consider only the single vector case.
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Table 1
Generic iterative eigensolvers based on projection methods, without locking (left)
or with locking (right). Matlab-like notation is followed. By V = (I − uu∗)V we
mean that u is removed from V , and V is reassigned to a basis of size: size(V )− 1.

Generic solver without locking

k = 0, V = [ ]
while k ≤ nev

for i = 1 : m
V = [V, vnew]

end
(θ, u)k+1 = Rayleigh Ritz (V )
rk+1 = Auk+1 − θk+1uk+1

if ( ‖rk+1‖ < Tol )
k = k + 1

if (size(V ) = maxSize)
restart V = [u1, . . . , uk+1]

end

Generic solver with locking

k = 0, V = [ ], Q = [ ]
while k ≤ nev

for i = 1 : m
V = [V, (I − QQ∗)vnew]

end
(θ, u)k+1 = Rayleigh Ritz (V ),
rk+1 = Auk+1 − θk+1uk+1

if ( ‖rk+1‖ < Tol )
Q = [Q, uk+1]; V = (I − uu∗)V
k = k + 1

if (size(V ) = maxSize)
restart V = [u1]

end

4 Computational trade offs for locking

The effect of the basis size on the convergence, in terms of iterations, of a
method is hard to quantify. Qualitatively, larger bases imply faster conver-
gence, especially for difficult problems without good preconditioners. But the
convergence benefits wane beyond a certain basis size which depends on the
problem and on nev. Non-locking algorithms require that maxSize > nev,
therefore for large nev they usually converge in fewer iterations than locking
algorithms that use maxSize � nev. If the matrix-vector and/or precondi-
tioning operator are very expensive (much more expensive than O(nevN) as
we see later), non-locking algorithms should be preferable. For sparse matri-
ces, however, the smaller computational costs per iteration of locking methods
may outweigh the faster convergence of non-locking methods.

Ideally, one would like to identify cross-over points for nev and maxSize where
non-locking becomes faster than locking. Because of the difficulty to quantify
the convergence effects, we present only the difference in the per-step compu-
tational costs of the two methods for large nev. We do not consider the cost
of the matrix-vector and preconditioning operators as these are common to
both locking and non-locking. In the following complexity analysis, we include
coefficients for the largest order terms, and consider single vector operations of
cost O(N) (i.e., BLAS level 1 kernels) the building blocks for all computations.

Non-locking costs. Typically maxSize is a small multiple of nev or a small
number of vectors larger than nev. We use the former case because it is much
more common (e.g., ARPACK suggests maxSize ≥ 2nev), but we retain the
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variable maxSize to show some effects of the latter case.

The RR procedure is applied every m steps and it involves the solution of
an eigenvalue problem of size j ≤ maxSize. Thus, the computational cost
per step (matvec operation) is O(maxSize3/m). RR also involves the re-
combination of the basis V to compute the Ritz vector uk+1 and its resid-
ual. The total cost for these operations between two successive restarts is
O(

∑

j 2 ∗ j ∗ N, j = nev : m : maxSize). Performing the summation and
averaging over (maxSize−nev) steps, we obtain the average cost per step for
RR: O(maxSize3/m + (nev + maxSize) ∗ N/m).

Non-locking algorithms restart with at least the number of converged eigen-
pairs, and therefore the restarting cost is O(nev∗maxSize∗N). Averaged over
the (maxSize−nev) steps, we have: O(nev ∗maxSize ∗N/(maxSize−nev))
per step. This demonstrates the inefficiency of the case maxSize−nev = O(1)
as restarting costs become O(nev ∗ maxSize ∗ N) or O(nev2 ∗ N) per step!
When maxSize = 2 ∗ nev, the average restarting cost is O(nev ∗N) per step.

Each vnew vector is orthogonalized against the current basis V , which includes
j = nev, . . . ,maxSize vectors, for a cost of O(2 ∗ j ∗ N). Summing and av-
eraging over the (maxSize − nev) steps between two successive restarts, the
cost per step for orthogonalization is O((maxSize + nev) ∗ N).

Therefore, the total average cost per step for non-locking is:

O( maxSize3/m + (nev + maxSize) ∗ N/m +

nev ∗ maxSize ∗ N/(maxSize − nev) + (maxSize + nev) ∗ N).

When m = 1, as in the case of Generalized Davidson, and using the common
maxSize = 2 ∗ nev, the average non-locking cost per step becomes:

NonLockm=1 = O(8 ∗ nev3 + 8 ∗ nev ∗ N). (1)

When m = maxSize, as in the case of ARPACK, the costs per step become:

NonLockm=maxSize = O(4 ∗ nev2 + 6.5 ∗ nev ∗ N). (2)

Because Davidson type methods are more expensive per step than ARPACK,
they rely on the effectiveness of the preconditioner to converge in fewer itera-
tions. These per-step-costs do not include the matrix-vector and, if available,
the preconditioning operation. Although these constitute the dominant costs
for small nev, for large nev (O(100–1000)) it takes an extremely expensive
operator to match the above iteration costs.
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Locking costs. With locking, maxSize is a small constant (20 is a common
recommendation), and for the purpose of this asymptotic analysis, m is also
constant. Therefore, the costs of RR, of computing the Ritz vector and the
residual, of restarting, as well as the orthogonalization costs against V do not
depend on nev, and thus can all be considered O(N) per step.

The orthogonalization at every step against all k currently locked eigenvectors,
involves a cost of O(2 ∗ k ∗N), k = 1, . . . , nev. Assuming that each eigenvalue
converges at about the same number of steps, a simple averaging argument
results in the average cost per step: O(nev ∗ N) Then, the total average cost
per step for locking techniques becomes:

Locking = O(N + nev ∗ N) (3)

For large nev, locking methods have a significant advantage over non-locking
ones in terms of per-iteration costs (at least a factor of 6 in our models). More-
over, locking methods take about the same number of iterations to converge
for each eigenvalue, as they treat each one as an independent problem. Af-
ter a few eigenpairs have converged, we can estimate accurately the expected
total execution time. On the other hand, non-locking methods may take far
fewer iterations. If we have an estimate of their relative convergence rates,
the above models can determine which method should be preferable, and for
how large nev. For small nev (e.g., 10 or 20) the two techniques have simi-
lar complexities, and the winner is determined primarily by their the relative
convergence characteristics. For Davidson-like, LOBPCG, or subspace itera-
tion methods, where RR, residual, and (re-)orthogonalization are required at
every step, non-locking involves unreasonably high computational costs for
large nev. This justifies the use of locking in most implementations of these
methods.

We conclude this section with a storage consideration. Many methods require
more than one vector to be stored for each basis vector. For example, Davidson
requires 2 ∗ maxSize, while LOBPCG requires 2 ∗ maxSize and maxSize =
3 ∗ nev. Locking versions of these methods still require the additional space
but for a very small constant maxSize. For many applications, this storage
reduction is a much more important consideration than computational costs.

5 A numerical problem with locking

The premise of locking, or deflation in general, is that the locked vector x is
an accurate eigenvector, so that the rest of the eigenvectors can be found in
the orthogonal complement of x. In practice, however, eigensolvers converge
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Table 2
Harwell-Boeing matrices that caused the convergence problem for Generalized
Davidson. There are three experiments: GD without preconditioning, GD with
cholinc(A, 1e − 3), and GD with the almost accurate inverse cholinc(A, 1e − 13).
Entries without a dash denote the index of the first eigenpair that the code stag-
nated while trying to obtain it. For example, for matrix BCSSTK06, GD without
preconditioning had locked 312 eigenvectors, but failed to converge to the 313th.

No precond cholinc(A,1e-3) cholinc(A,1e-13)

Matrix Size eval index eval index eval index

494BUS 494 - 283 -

BCSSTK06 420 313 319 -

NOS6 675 293 - -

NOS7 729 - 177 -

GR3030 900 - - 252

to a residual tolerance Tol, and x is only an approximate eigenvector. This
raises the question of whether other eigenvectors can also be found to Tol
residual accuracy. Most eigensolvers that implement locking presume a positive
answer to the question. In spite of this, practitioners have long observed rare,
but real world cases where some eigenvectors could not be obtained. Almost
invariably, the scenario involves many locked eigenvectors and low accuracy
(high Tol value). Unfortunately, occurrences of this problem have been mainly
anecdotal, and not well documented.

To show that this problem can indeed occur, we ran our Generalized David-
son (GD) algorithm with locking, which is implemented in Matlab [29], on
all the matrices of the symmetric Harwell-Boeing collection [7]. Obviously we
only consider matrices where GD could converge. We used a basis size of
maxSize = 20, a restart size of 10, and we tried to compute 350 smallest
eigenpairs. We were not able to observe the above problem for small resid-
ual tolerances Tol, until Tol ≈ ‖A‖F

√
εmachine. Table 2 shows five matrices

for which the problem occurred when Tol = ‖A‖F 1e − 5. The table records
the eigenvalue index at which the code stagnated, unable to converge to the
required accuracy. Evidently, the problem is rare and requires extenuating
circumstances (in all these cases, a substantial part of the spectrum was com-
puted). Nevertheless, it occurred both with and without preconditioning.

In all the above cases, the problematic Ritz vector reached an accuracy very
close to Tol, but it could never reach below Tol. A reasonable explanation
is that the inaccuracies of the k converged Ritz vectors (at the Tol level)
somehow conspire to impede convergence for the k + 1 eigenvector.

It should not be surprising that non-locking methods do not suffer from this

8



problem. Converged eigenvectors, that are not locked but participate in the
RR, keep improving beyond the required accuracy Tol, at a rate which de-
pends on both the solver and the problem. Thus, those eigenvectors that are
obtained earlier by a solver, tend to have better accuracy at the end. Even
if the required accuracy is poorly chosen, stagnation or extra iterations will
improve the converged eigenpairs up to the accuracy necessary to allow the
computation of the k + 1 eigenvector.

Although it is rare, the above problem undermines the reliability of any numer-
ical software that implements locking. Stagnation can prove extremely costly
in many applications, while it is not an option in critical applications. The first
question is how to identify the problem. Observed stagnation is not a good
criterion, because it may be due to various other reasons, including asking
for more accuracy than can be numerically attained, clustering of eigenvalues,
or simply bad initial guesses. However, although many of these problems can
be identified, and sometimes treated appropriately, we are not aware of any
techniques that identify the locking problem.

Moreover, once identified there seems to be very little we can do to cure it.
The required accuracy cannot be achieved regardless of how long we iterate, it
is too late to improve on the locked vectors, and we may not be able to single
out which locked vectors cause the problem.

5.1 Some ad hoc approaches

If locked vectors with residual norms converged to Tol accuracy can impede
convergence of future residuals to the same accuracy, a first response would
be to use a better accuracy than Tol. For example, the choice Tol/

√
nev is

suggested by Lemma 1 in the following section. However, it is easy to see that
we have not solved the problem, just restated it at a lower threshold. The
same reasons that caused the problem at the Tol level could also cause the
stagnation at the Tol/

√
nev level. In practice, we have observed that more

accurate Tol (better than square root of machine precision) tend to avoid
the problem. However, the lack of guarantees does not justify the significant
additional expense. More practically, we cannot predict when this problem
occurs so that we can choose a new Tol a priori.

One approach that has often been used is to require higher tolerance to outer
eigenvalues and decrease the accuracy for the inner eigenvalues [31] (which are
usually obtained last). In a way, this tries to mimic the resulting accuracies
of non-locking, with the innermost eigenvalue residuals having the required
Tol. However, there is no explanation why this should work better, and in
most of the problems of Table 2 this approach failed to resolve the problem.
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Moreover, it is not clear how to progressively reduce the accuracy, and whether
the additional iterations are justified.

Computational scientists faced with this problem have noticed that an applica-
tion of the RR procedure over the space that includes both the locked vectors
Q and the search space V improves the stagnating eigenvector and allows it
to achieve the required accuracy. The consensus is that, although expensive,
this is the only way to deal with the problem [17,24]. As we show next, this
problem can be understood theoretically and corrected appropriately.

6 Theoretical approach

We assume exact arithmetic, so that all convergence problems that might occur
are due to the inaccurate convergence of locked eigenvectors. An investigation
of the influence of floating point errors in this situation is necessary but beyond
the scope of our current work.

Lemma 1 Let P = I − QQ∗, the orthogonal projector against the computed

approximate k eigenvectors Q. Let also R = AQ−QΘ be the matrix of residuals

for each converged Ritz pair (θi, Qi). Let r = Au − θu denote the residual of

the current Ritz pair (θ, u), and define the deflated residual rd = Pr. Then,

r = rd + QR∗u, ‖r‖ ≤ ‖rd‖ + ‖R‖, ‖r‖2 = ‖rd‖2 + ‖R∗u‖2. (4)

PROOF. Because A is Hermitian, Q∗A = ΘQ∗ + R∗. Using u ⊥ Q, ‖u‖ =
‖Q‖ = 1, we have: rd = P (Au − θu) = (Au − θu) − Q(Q∗Au) = r − QR∗u.
Then, ‖r‖ = ‖rd + QR∗u‖ ≤ ‖rd‖ + ‖R‖. Finally, note that rd ⊥ QR∗u. 2

Any eigenvalue algorithm that uses locking works orthogonally to the locked
eigenvectors (i.e., on Q⊥). Equivalently we can consider the algorithm working
on the matrix PAP , but ignoring the zero eigenvalues. For Krylov methods
in exact arithmetic an initial guess in Q⊥ is sufficient to ignore zero eigenval-
ues, because powers of PAP remove the null space components from iteration
vectors. Therefore, convergence of the eigenmethod to an eigenpair of PAP
implies that ‖rd‖ → 0, and from Lemma 1 the upper bound for the residual is
‖r‖ ≤ ‖R‖ ≤

√
k Tol. For most matrices and small number of locked eigen-

vectors (k), the residual r regularly achieves a norm less than Tol. However,
the bound does not preclude cases where the residual norm can be as large
as

√
k Tol. In such cases, no matter how rare, a method that expects ‖r‖ to

converge to less than Tol will stagnate.
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The question, therefore, is how to detect those instances, and how to resolve
the problem. Detection follows when ‖rd‖ � ‖r‖, but it is unclear how smaller
‖rd‖ should be. Near convergence, and if the eigenvalue is simple, u does not
vary much between steps, so we expect ‖r‖ → ‖R∗u‖. If ‖R∗u‖ < Tol, the
residual r can achieve the required tolerance so we should let the algorithm
continue. If ‖R∗u‖ ≥ Tol, there is no hope to get ‖r‖ < Tol, even if we
let the algorithm converge to rd = 0. Thus, a first approach to detect this
problem checks whether ‖rd‖ is sufficiently converged, but β = ‖r−rd‖ ≥ Tol.
Obviously the test need not be performed when ‖r‖ ≥

√
k Tol:

if ‖r‖ < Tol, Lock u as converged, break

if ‖r‖ <
√

k Tol

Compute ‖rd‖ = ‖Pr‖ and β = ‖r − rd‖ =
√

‖r‖2 − ‖rd‖2

if (β > Tol and ‖rd‖ < Tol) then declare Locking Problem.

We now address how to deal with the locking problem when it arises. The
source of this problem is that the required k-th eigenvector x has components
in Q that the algorithm working on matrix PAP cannot identify. We can
follow the traditional suggestion and perform a RR with a larger basis that
includes the converged vectors Q and the basis V . During this step, the al-
gorithm is equivalent to its non-locking version, and therefore the new Ritz
vector, w, will contain the x components that were hidden in Q. The algo-
rithm then resumes in locking mode, targeting w, if additional convergence is
needed, or the next Ritz pair. Although this approach recovers x, it does not
guarantee that the Locking Problem will not resurface for future Ritz vectors
(k + 1, . . . , nev). It is possible therefore, that this expensive RR may have to
be repeated frequently, giving the locking algorithm the computational cost
of its non-locking counterpart, but not its convergence benefits.

A different strategy is to declare the problematic Ritz pair (θ, u) “practically
converged”, lock it, and continue with the k + 1 eigenpair. At first, it seems
that such a strategy would return solutions that do not satisfy the accuracy
requirements posed by the user. However, the x components missing from
u are mainly in Q, and therefore if we performed one RR procedure over
all the nev locked vectors at the end of the algorithm, we should obtain all
eigenvectors at the required accuracy. The above intuitive argument can be
supported theoretically, but with a subtle difference stemming from the fact
the method in PAP converges close to, but not exactly Px.

Theorem 2 Let (λ, x), ‖x‖ = 1, be the exact eigenpair approximated by (θ, u).
Let u∞ = limrd→0 u, and θ∞ = limrd→0 θ be the eigenvector and eigenvalue

of PAP , respectively, to which u and θ converge in the locking algorithm.

Denote by γd = mini |λ − Θii|, the gap of the required eigenvalue from all

locked eigenvalues, and γp = minµi 6=θ∞ |θ∞−µi| the gap of eigenvalue θ∞ from
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Fig. 1. The orthogonal decomposition of the eigenvector x onto the locked eigenvec-
tors Q, the Ritz vector u, and the yet undiscovered components z. In the limit, the
locking method still is missing z∞, which however is very small.

the rest of the eigenvalues µi of PAP . Then,

sin(u∞, Px) ≤ ‖R‖2/(γpγd) ≤ k Tol2/(γpγd).

PROOF. Assume that λ is a single eigenvalue, so that there is a unique
orthogonal decomposition x = δ + αu + z, with δ ∈ span(Q), and z ⊥
span([Q, u]). Then Px = αu + z, and 1 = ‖δ‖2 + ‖z‖2 + α2. This is depicted
in Figure 1(a).

To bound ‖δ‖ = ‖QQ∗x‖ = ‖Q∗x‖ note that Q∗A = ΘQ∗ + R∗ ⇒ Q∗Ax =
λQ∗x = ΘQ∗x + R∗x. Then,

‖δ‖ = ‖Q∗x‖ = ‖(λI − Θ)−1R∗x‖ ≤ ‖(λI − Θ)−1‖‖R‖ ≤ ‖R‖/γd.

Also, Ax = λx ⇔ A(Px + δ) = λ(Px + δ) ⇒ PAPPx − λPx = −PAδ =
−P (QΘ + R)Q∗x = −PRQ∗x. Let µ̃ = x∗PAPx/(x∗Px). One of the proper-
ties of the Rayleigh quotient is that ‖Aw−w(w∗Aw)/w∗w‖ ≤ ‖Aw−µw‖,∀µ.
Then, using the classical bound on the angle between Px and the exact eigen-
vector u∞ of PAP (Theorem 11.7.1 in [23]), we have:

sin(u∞, Px)≤‖PAPPx − µ̃Px‖/γp ≤ ‖PAPPx − λPx‖/γp

= ‖PRQ∗x‖/γp ≤ ‖R‖‖δ‖/γp ≤ ‖R‖2/(γpγd) ≤ kTol2/(γpγd).

2

Thus, if the algorithm converges to a sufficiently small ‖rd‖, x is very close
to the space [Q, u] and could be obtained accurately through RR. The bound
‖R‖ ≤

√
k Tol, although sharp, is usually pessimistic. In practice, we observe

‖R‖ = O(β) = O(‖r − rd‖) which is often much less than
√

k Tol, but more
importantly, it provides a computable approximation at runtime:

sin(u∞, Px) ≤ β2/(γpγd). (5)
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Some discussion on the presence of gaps is in order. First, because eigenvalues
have a much smaller error than eigenvectors, we can assume that they are well
approximated by the Ritz values. Thus, the gap for the sought eigenvalue in the
spectrum of A is its minimum distance from the locked and the yet unlocked
eigenvalues: γ = min(γd, γp). Let w be the Ritz vector from the RR on [Q, u],
and rw its residual. The algorithm must conform to the user requirement of
‖rw‖ < Tol, which implies sin(w, x) ≤ ‖rw‖/γ ≤ Tol/γ. Theorem 2 says that
for “practically converged” vectors, the RR can attain an angle on the order
of kTol2/(γpγd) ≤ kTol2/γ2 � Tol/γ, which satisfies the user requirement.
For this angle, we can estimate, not bound, the ‖rw‖ as:

‖rw‖ = O(‖R‖2γ/(γpγd)) = O(β2γ/(γpγd)). (6)

Theorem 2 can provide also a heuristic for when to stop converging the ‖rd‖.
Because sin(x, [Q, u]) ≤ sin(u, Px), we focus again on sin(u, Px). As shown
in Figure 1(b), the positive angles between the three vectors Px, u, u∞ satisfy
the following inequality: ∠(u, Px) ≤ ∠(u∞, Px) + ∠(u∞, u), with equality
achieved only when Px, u, u∞ are co-planar, and u∞ is the middle vector. Near
convergence the three angles are very small, far less than π/4, and therefore
their cosines are very close to 1, and sin() is monotonic. Hence,

sin(u, Px)≤ sin (∠(u∞, Px) + ∠(u∞, u))

= sin(u∞, Px) cos(u∞, u) + cos(u∞, Px) sin(u∞, u)

< sin(u∞, Px) + sin(u∞, u) < kTol2/(γpγd) + ‖rd‖/γp.

The user requirement sin(u, Px) ≤ Tol/γ surely holds if we require instead
that the bound is less than Tol/γ. Then we can solve for an appropriate
stopping threshold for ‖rd‖:

‖rd‖≤Tol γp/γ − Tol2k/γd. (7)

Intuitively, when the locking problem arises in highly clustered eigenvalues
and/or when a large number of eigenvectors have been locked, it is advisable
to iterate the rd to better accuracy. Practical implementations must ensure
that threshold (7) is in the interval [εmachine‖A‖, T ol) , although in practice,
it is usually only slightly less than Tol. For large k, the bound for ‖R‖ may
lead to too low a threshold, and it is more efficient to use the approximation:

‖rd‖ ≤ Tol γp/γ − β2/γd. (8)

Yet, solving to better accuracy through threshold (7) may avoid locking prob-
lems for subsequent Ritz vectors. This justifies the additional few iterations,
as the locking problem is not expected to arise frequently.
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Table 3
Algorithm for identifying the locking problem. It replaces the convergence test of
any eigensolver with locking.

Originally E =
√

k Tol
Convergence test at each iteration

if ‖r‖ < Tol, Lock u as converged, break

if ‖r‖ < E

Compute ‖rd‖ = ‖Pr‖, β =
√

‖r‖2 − ‖rd‖2, and E =
√

Tol2 + β2

Compute γp, γd, γ from current Ritz values
if (β > Tol and ‖rd‖ < Tol γp/γ − Tol2k/γd)

Lock u as “practically converged”

restore E =
√

k + 1 Tol, break

Finally, we point out that for methods like Davidson, or subspace iteration,
where the residual is updated at every step, we want to avoid performing the
expensive residual projection Pr at every step after ‖r‖ <

√
k Tol, but only af-

ter ‖r‖ is close to its limit β∞ = ‖R∗u∞‖. Note that β∞ can be estimated quite
early, as u is very close to u∞: β∞ = ‖R∗(u∞−u)+R∗u‖ ≤ O(‖R‖‖rd‖/γp)+β.
Eventually, ‖rd‖ < Tol and because of eq. (4), we can start checking ‖rd‖ again
after ‖r‖ = (‖rd‖2+β2)1/2 < (Tol2+β2)1/2. One could also monitor the change
in the angles of u iterates, and recompute ‖rd‖ when needed, but these details
are beyond the current scope. We are now ready to present in Table 3 our
algorithm for efficiently dealing with the locking problem.

7 Numerical experiments

We present numerical experiments with our Matlab GD code, and with our
PRIMME eigenvalue multi-method package, which is implemented in C [19],
to demonstrate that our theory agrees with observed numerical behavior. We
also explore how the maximum basis size, and different methods affect the
occurrence of the locking problem. We use two of the matrices in Table 2:
BCSSTK06 and NOS6, and one additional Harwell-Boeing matrix, 1138BUS,
of size 1138. For all matrices we try to find as many eigenvalues as we can with
residual norm tolerance ‖A‖F 10−7. For the Matlab experiments we use Matlab
6 on an Apple G4 computer, while for PRIMME experiments we compile with
gcc-4.0.0 and g77 with option -O3, on an Apple G5, dual processor computer.

In the first experiment we focus on the matrix BCSSTK06. Our Matlab GD
code with locking, without preconditioning, a maximum basis size 20, and
a restart size 10, stagnates trying to obtain the 217-th eigenvalue. Figure
2 shows the convergence history before and during stagnation for five values:
‖r‖, ‖rd‖, sin(u∞, Px), sin(u∞, u), and ‖rw‖ which is the norm of the residual
resulting from the RR on [Q, u]. Their behavior is exactly as described by
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Fig. 2. Matrix BCSSTK06. The norm of the residual ‖r‖ of the Generalized David-
son stagnates while trying to obtain the 217-th eigenvalue. As expected, ‖rd‖, the
residual of the PAP eigenproblem, converges to zero. However, the residual of the
Ritz vector from applying the RR to the [Q, u] basis, does not converge to zero
‖rw‖ → ‖rw,∞‖ 6= 0. Similarly, although u converges to an eigenvector of PAP , u∞,
the eigenvector u∞ cannot fully recover the complement of the required eigenvector
x in Q⊥ : Px. Eqs. (5) and (6) provide the bound for sin(u∞, Px) and the estimate
for ‖rw,∞‖ respectively.

theory. Specifically, note that u∞, the eigenvector of PAP , does not fully
match Px, but their angle is sufficiently small. Theorem 2 provides a quite
accurate bound for this angle, and a means to compute a good estimate for
‖rw‖ at the limit.

Figure 3 shows the convergence curves for ‖r‖ and ‖rd‖ of the GD method from
the PRIMME eigensolver, again for BCSSTK06 and the 217-th eigenvalue. In
the left figure we run PRIMME with the Algorithm 3 turned off. Again ‖r‖
stagnates while ‖rd‖ → 0. We also plot β = ‖r − rd‖ which shows that the
problem appears when β > Tol. It also shows that β is relatively constant
near the locking problem, hence its value can be used to estimate ‖R‖. The
right graph shows the convergence of GD with the Algorithm 3 turned on. The
algorithm correctly detects the problem and declares the eigenpair “practically
converged”. Surprisingly, also the 218-the eigenvalue was declared practically
converged as the β > Tol shows. The tight clustering of these two eigenvalues
must have triggered this locking problem.

In the next set of experiments, we use four methods from PRIMME: GD,
GD+1 which is an extension of GD that uses a locally optimal restarting
[32,29], JDQMR-000 which is Jacobi-Davidson that uses QMR with optimal
stopping criteria as an inner solver, but without any projections against Q dur-
ing the inner iterations [29,30], and JDQMR-100 which is identical to JDQMR-
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Fig. 3. Matrix BCSSTK06. GD from the PRIMME eigensolver with the detection
Algorithm 3 turned off (left graph), and turned on (right graph). In addition to
‖r‖, ‖rd‖ we show the role of β = ‖r−rd‖ in detecting the locking problem (β > Tol),
and that it is relative constant near the locking problem (so β ≈ ‖R‖).

000 except that inner iteration vectors are projected against Q [30]. All meth-
ods use locking, and we vary the values for maximum basis size (maxSize)
and the restart size (minSize). We experiment on NOS6, BCSSTK06, and
1138BUS. Results from GD and GD+1 methods are shown in Table 4, and
from JDQMR-000 and JDQMR-100 in Table 5. As in Table 2, we report the
eigenvalue index for which the method first demonstrates the locking problem.

First, we observe that regardless of method and matrix, increasing the basis
size results in the locking problem appearing much later. There are two rea-
sons for this. First, because all PRIMME methods lock converged eigenpairs
only at restart, converged eigenvectors stay in the basis and improve a little
further than Tol from the time they are declared converged to the time the
are locked. Second, larger basis sizes offer subspace acceleration advantages
[30], i.e., approximate not only the targeted eigenvector but also nearby ones.
Therefore it is less likely that large missing components of nearby eigenvectors
are locked away in Q. Nevertheless, although our matrices are of small size,
the trend in the results seems to suggest that for any constant basis size, there
is a large enough nev for which the locking problem will appear.

Our second observation from these tables is that methods that converge in the
fewest iterations (not necessarily in smallest time), GD+1 and JDQMR-100 in
particular, tend to experience locking problems later than the other methods.
The reason may be that fast convergence during the last step may improve
eigenvectors well below the Tol threshold. A third observation from Table 5
is that the JDQMR-100, which orthogonalizes against Q at every step of the
QMR inner method, is the least prone to get into a locking problem. This
orthogonalization is too expensive, however, especially without precondition-
ing where the JDQMR-000 offers similar convergence, but most importantly it

16



Table 4
Index of the first eigenvalue that demonstrated a locking problem with the GD and
GD+1 methods from the PRIMME package. We look for N smallest eigenvalues for
three matrices, under different basis sizes. A dash means that the method found all
the eigenvalues without locking problems. Residual tolerance is ‖A‖F 10−7.

GD method GD+1 method

(minSize, Matrices Matrices

maxSize) NOS6 BCSSTK06 1138BUS NOS6 BCSSTK06 1138BUS

(3,6) 99 77 128 138 203 41

(5,10) 137 97 181 134 215 545

(7,15) 143 217 273 93 - 616

(9,18) 143 216 415 143 216 632

(20,40) 240 - - - - 749

(80,160) 479 - - - - -

Table 5
As in Table 4, the index of the first eigenvalue that demonstrated a locking problem
with the JDQMR-000 and JDQMR-100 methods from the PRIMME package.

JDQMR-000 method JDQMR-100 method

(minSize, Matrices Matrices

maxSize) NOS6 BCSSTK06 1138BUS NOS6 BCSSTK06 1138BUS

(3,6) 87 96 32 226 278 319

(5,10) 94 100 457 - 100 -

(7,15) 146 101 616 256 - -

(9,18) 143 372 649 255 - -

(15,30) - - 646 235 - -

does not eliminate the vulnerability to the problem (see NOS6 case). With the
Algorithm 3 switched on, all PRIMME methods detected the locking problems
in all cases, and were able to compute all N eigenvalues for each matrix.

Finally, to show that these locking problems are not artificially created by
asking for a huge portion of the spectrum of very small matrices, we present a
few examples of much larger matrices where our algorithm has detected and
resolved successfully locking problems. In these examples, all algorithms use
minSize = 6 and maxSize = 18, and attempt to find 1000 eigenvalues. The
most common example is the 3-D, 7 point Laplacian, with Dirichlet boundary
conditions on the unit cube, with a 25×25×25 uniform finite difference grid.
The GD+1 method without detection on, stagnated on the 748-th eigenvalue.
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The JDQMR-000 method, with Algorithm 3 turned on, identified “practi-
cally converged” eigenpairs at indices: 591, 686, 692, 699. Locking problems
were also detected with JDQMR-000 for matrices Cone A of size 22032 and
Plate33K A0 of size 39366, both from the FEAP collection [2]. The corre-
sponding “practically converged” indices were: 492, 532, 758, 843, 894, 951,
954, 956, for Cone A, and 731, 774, 928, 930, 965, for Plate33K A0.

A surprising observation came from two runs with the same parameters as
before, but for residual threshold close to machine precision: ‖A‖F 10−15. The
JDQMR-000 detected “practical convergence” for eigenvalue indices: 495, 925,
926, 927, for the 3-D Laplacian, and for eigenvalue index 571 for the Cone A
matrix. These were the only two instances we have observed the locking prob-
lem with such a high accuracy. Yet, they demonstrate that dealing with this
problem is essential for robustness in eigenvalue software.

8 Implementation issues

As shown in Table 3, the additions required to implement the algorithm in
any method are minimal. A variable can be maintained that keeps track of
whether or how many eigenpairs have “practically” converged. If the problem
has occurred at least for one eigenpair, the code has to call the RR procedure
after all nev eigenpairs have been computed.

Computationally, there are only a few more orthogonalizations with the locked
vectors Q per eigenvector sought. There is one orthogonalization when ‖r‖
goes below

√
kTol for the first time, and a small number of them from ‖r‖ < E

until rd converges. One step of Gram-Schmidt without re-orthogonalization is
always enough because r is almost orthogonal to Q.

Interestingly, the RR procedure that uses all nev eigenvectors returned by the
solver can be implemented with no additional matrix vector products, if we
update the projected matrix Q∗AQ at every step. To see this, consider the
matrix Q∗AQ at some step of the solver, and assume that the Ritz pair (θ, u)
has just been declared converged (actually or “practically”). Then the matrix
Q∗AQ needs to be updated as follows:

[Q, u]∗A[Q, u] =







Q∗AQ Q∗Au

(Q∗Au)∗ u∗Au





 .

Our algorithm in Table 3 ensures that rd = (I−QQ∗)r is computed always for
the vector that just converged. Because Q∗u = 0, we have rd = (Au − θu) −
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QQ∗Au, and the required column vector (Q∗Au) is a byproduct of the Gram-
Schmidt process. Thus, if we use the k + 1 column of the above projection
matrix as storage for (Q∗Au), the update is completely automatic. When our
algorithm determines that convergence occurred, it will also append θ = u∗Au
at the diagonal element of the Q∗AQ matrix. By induction, the Q∗AQ matrix
of all the locked vectors is built correctly, with no additional operations.

The final RR procedure will solve an nev×nev eigenvalue problem, and it will
produce a set of new, slightly better, approximate eigenvalues, and a matrix
of coefficients Y ∈ <nev,nev, that yield the new approximate eigenvectors W =
QY . The eigendecomposition and the linear recombination of the Ritz vectors
are the only expenses, which cannot be avoided.

The only disadvantage of this implementation is that it does not provide the
final residuals of the W vectors. Although all residual norms are expected
to be less than Tol, in practice it is possible that an eigenvalue might have
been missed by the solver. In that case, the final RR could have accumulated
enough information in Q to identify the missing pair, but not at the required
accuracy. This problem, however, does not reflect a shortcoming of our ap-
proach but of any iterative eigenvalue algorithm. In [18], we have provided an
algorithmic solution to missing eigenvalues, by repeatedly calling the solver
until no further eigenvalues can be identified. Our so called Iterative Valida-
tion of Eigensolvers (IVE) approach meshes well with the algorithm proposed
in this paper, because it requires locking and an a-posteriori RR application.

8.1 A hybrid locking, non-locking approach

Non-locking eigensolvers do not have the locking problem because converged
Ritz vectors keep improving as they remain in the basis. This suggests a
hybrid locking approach, where an eigenvector xk is not locked immediately
when it converges, but stays in the basis until the eigenvector xk+j converges.
This strategy maintains a pipeline of j converged Ritz vectors in the basis
V , allowing them some additional time to improve beyond the Tol accuracy,
before they are locked out. When j = 0 we have traditional locking, and when
j = nev we have non-locking.

In practice, the value of j must be kept small enough to avoid the large compu-
tational and storage costs of non-locking, but large enough to allow sufficient
improvements to converged eigenvectors. The optimal value for j is not easy
to find, and it depends not only on the algorithm and the problem, but also
on the initial guess. In general, although the implementation of the RR post
processing is still needed as a safe guard, the hybrid approach may reduce the
frequency that the post processing is needed. The PRIMME implementation

19



that locks eigenvectors only at restart is reminiscent of this hybrid approach.

9 Relation to other approaches

An alternative to applying the RR procedure once at the end is to apply
it at the iteration that the problem arises. The benefit is that the RR is
applied on fewer vectors and it is thus cheaper. According to computational
folklore, practitioners have resorted to this alternative as their codes could not
identify the problem, and thus they had to stop the code, apply the RR, and
then restart for computing the rest of the required eigenvalues. However, this
approach does not guarantee that the problem will not re-occur for some of the
remaining eigenvalues. Because of the possibility of such a repeated expense,
and because such problems are more likely to occur after most eigenvalues
have already been found, we do not consider this alternative further.

Our theory also explains why in some cases the cascading accuracy approach
has been reported to provide a viable alternative. In fact, we can provide a
formula that guides the cascading, and ensures that the problem is avoided.
According to Lemma 1, when k = 1, i.e., one eigenvector is locked with residual
accuracy ‖r1‖, the second eigenvector can also be obtained with residual norm
‖r1‖. To obtain the third residual to accuracy Tol, it is sufficient that both
‖r1‖, ‖r2‖ < Tol/

√
2. By induction we can show that to obtain ‖rk‖ < Tol,

earlier eigenvectors must be obtained with accuracy ‖ri‖ < Tol/
√

2k−i for 1 <
i ≤ k. However, such a strategy is unreasonable, as it requires an exponentially
decreasing accuracy toward the extremes of the spectrum. The linear cascading
strategy in [31] did not resolve the problem in most of our experiments.

10 Conclusions

Locking is a stable form of deflation, where an eigenvector x is removed from
the search space of an eigensolver and all subsequent vector operations are
performed orthogonally to x. In our earlier research [18], we have shown that
locking provides a better mechanism than non-locking for identifying eigenval-
ues that are highly clustered or of very high multiplicity. In this paper, we an-
alyzed the computational and storage costs of locking versus non-locking, and
showed that for large numbers of eigenvalues and for Davidson-type methods,
locking is almost always beneficial. However, convergence may vary between
locking and non-locking methods.

We have also identified a subtle numerical, but not floating point, problem
with locking. Specifically, a large number of locked, approximate eigenvectors,
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that have converged to Tol residual accuracy, may impede convergence to
Tol accuracy for some subsequent eigenvector. Although the problem is rare,
the resulting stagnation is a liability for general purpose software. We have
provided a theoretical explanation of the problem that helped us derive an easy
to implement algorithm that identifies the problem correctly, and resolves it
with minimal additional costs. We also presented a hybrid locking, non-locking
approach that reduces the occurrence of the problem, at no additional costs.
Our methods proved effective in the all occurrences of the problem we have
identified.
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