
Adapting to memory pressure from within scientific
applications on multiprogrammed COWs

�

Richard T. Mills
�

Andreas Stathopoulos
�

Dimitrios S. Nikolopoulos
�

October 15, 2003

Abstract

Dismal performance often results when the
memory requirements of a process exceed the
physical memory available to it. Moreover,
significant throughput reduction is experienced
when this process is part of a synchronous par-
allel job on a non-dedicated computational clus-
ter. A possible solution is to develop programs
that can dynamically adapt their memory usage
according to the current availability of physical
memory. We explore this idea on scientific com-
putations that perform repetitive data accesses.
Part of the program’s data set is cached in res-
ident memory, while the remainder that cannot
fit is accessed in an “out-of-core” fashion from
disk. The replacement policy can be user de-
fined. This allows for a graceful degradation
of performance as memory becomes scarce. To
dynamically adjust its memory usage, the pro-
gram must reliably answer whether there is a
memory shortage or surplus in the system. Be-
cause operating systems typically export limited
memory information, we develop a parameter-

�
Work supported by the National Science Foundation

(ITR/ACS-0082094 and ITR/AP-0112727), a DOE com-
putational sciences graduate fellowship, and the College
of William and Mary.�

Department of Computer Science, College of
William and Mary, Williamsburg, Virginia 23187-8795,
(rtm/andreas/dsn@cs.wm.edu).

free algorithm that uses no system information
beyond the resident set size (RSS) of the pro-
gram. Our resulting library can be called by sci-
entific codes with little change to their structure
or with no change at all, if computations are al-
ready “blocked” for reasons of locality.

Experimental results with both sequential
and parallel versions of a memory-adaptive
conjugate-gradient linear system solver show
substantial performance gains over the original
version that relies on the virtual memory system.
Furthermore, multiple instances of the adaptive
code can coexist on the same node with little in-
terference with one another.

1 Introduction

Powerful, yet cost efficient, clusters of work-
stations (COWs) bear the brunt of the scien-
tific computing workload at many institutions.
These can be dedicated, space-shared COWs,
or, quite often, networks of desktops used as a
shared computational resource for parallel and
sequential jobs. Besides increased computa-
tional power, these environments also address
the ever increasing memory demands of scien-
tific applications. However, COWs are often
shared by one or more research groups, and net-
works of workstations by the pool of local users.
In periods of high demand, (approaching dead-

1

lines, end of semester, etc.) time sharing the lim-
ited memory resources on these environments
can have particularly adverse effects on the ef-
fectiveness of the system.

An example of such adverse effects is our ex-
perience with running a large, parallel multi-
grid code to compute a three-dimensional po-
tential field on four SMPs that our department
maintains to support computationally demand-
ing jobs. Our code required 860MB per proces-
sor. Because each SMP node had 1GB available,
we used only one processor per node. Other
users were running smaller jobs at the same
time without interference. However, when a
user attempted to use Matlab to compute the
QR decomposition of a large matrix on one of
the processors, the time for one iteration of our
code jumped from 14 seconds to 472 seconds!
Such thrashing is a familiar scenario to many
researchers that rely on similar shared environ-
ments.

In the presence of memory pressure on some
node, the local operating system usually chooses
one of the following two strategies. It may
swap out some of the competing processes to
enable the remaining processes to fully utilize
the resources and finish earlier, thus improving
the throughput of the node. However, if the
swapped out process happens to be part of a
parallel job that requires frequent synchroniza-
tions, the job experiences extreme increase in
response time. Alternatively, the system may
choose to time share all jobs, leading to thrash-
ing, low CPU utilization, high response time for
all jobs and thus low throughput. The prob-
lem is equally severe on SMPs where memory
pressure may not coincide necessarily with ad-
ditional CPU load, and even for sequential jobs
on time shared compute servers.

A typical solution to these problems is not
to multiprogram the computational nodes but
to enforce admission control, usually through

some centrally administered batch queue [22,
14, 15]. This solution assumes full availability
of resources (including CPUs and memory) for
a job to commence execution. It is adopted in
most supercomputing centers, in which proces-
sors are dynamically space shared between jobs,
so that each job runs on a dedicated partition of
the system throughout its execution.

The most common problem of these sched-
ulers is that jobs may suffer high slowdown
compared to a stand-alone parallel execution,
due to long waiting times in the queues. In
many practical cases, jobs can sustain reason-
able performance even with partial availability
of CPU and memory resources. In particular,
data-intensive jobs, the performance of which is
most often dominated by I/O time, can sustain
good performance with variable memory space
available to them, as long as they use an edu-
cated policy for caching data blocks in memory.

Space-sharing with admission control may
also be problematic in systems that use small-
scale or large-scale SMPs. Although the proces-
sors of an SMP can be partitioned between jobs,
each job has access to the entire physical mem-
ory available on the SMP. In fact, many users
prefer to send their jobs to large-scale SMPs,
such as the NCSA Origin2000 [8], precisely for
their ability to oversubscribe memory, i.e. use
more memory than the memory-per-CPU share
of the CPUs on which their jobs are running.
This may force the admission control scheme to
allocate processors with unit equal to the size of
an SMP, or limit the amount of memory given
to each job to a small fraction of the memory
available on the SMP.

Co-scheduling techniques [19] are an alter-
native to space sharing. These techniques at-
tempt to keep all parallel processes of a job run-
ning at the same time on different nodes. Un-
fortunately their implementations lack general-
ity, and also incur large overheads. Further-

2

more, co-scheduling interacts poorly with I/O-
intensive applications and interactive jobs on
non-dedicated systems.

Finally, migrating processes to unloaded
nodes may provide a solution on COWs but it
does not work within SMPs, as the shared mem-
ory is equally accessible regardless of the node
of execution. Migration of parallel jobs in clus-
ters and distributed systems is difficult in theory
and in practice. It incurs high overhead (typi-
cally in the order of minutes, even for programs
with small problem sizes) and its effectiveness
depends on the granularity, execution time, and
communication patterns of the application, of
which the system has limited or no knowledge
[27].

At the sequential system level, because the
virtual memory system is not capable of predict-
ing the locality and pattern of block accesses on
disk, it cannot use prefetching to amortize the
high seek times and its caching policy may be
ineffective, especially on the regular access pat-
terns of scientific applications. Earlier research
in this topic modified operating systems to ac-
cept hints from applications in order to tune their
prefetching and caching policies [6]. However,
operating system modification limits portability.

In this paper, we propose a general framework
for application-level dynamic memory adapta-
tion in a certain class of applications with repet-
itive access patterns. Using this framework, an
application can run very efficiently in-core when
enough memory is available, and, when memory
becomes scarce, can gracefully degrade its per-
formance by shifting some of its work out-of-
core in a controlled way. Available main mem-
ory is used as cache, while uncached pages are
explicitly brought to and from the disk. Be-
cause the application has exact knowledge of the
access pattern, optimal cache and prefetching
policies can be used, vastly improving on what
the virtual memory system can do. Throughout

the paper we maintain the generality of our ap-
proach, but we draw our examples from scien-
tific computing, where repetitive access of large
amounts of data is typical. Our design goals
are: (1) provide a framework and a supporting
library for modifying codes for memory adap-
tivity that is portable to many applications and
operating systems, (2) dynamically ascertain the
amount of available memory at any point of ex-
ecution, and (3) provide proof of concept for the
use of algorithms that perform optimally given a
certain amount of available memory that fluctu-
ates unpredictably at runtime.

In section 2, we summarize other related work
in context to the problem we study. In section 3,
we provide a framework for minimally modify-
ing applications and discuss system-dependent
implementation details. In section 4, we de-
velop a parameter-free algorithm that achieves
our second design goal using only runtime mea-
surements of the resident set size. Using this al-
gorithm, our library enables a graceful degrada-
tion of performance as memory becomes scarce.
In section 5, we modify a Conjugate Gradient
linear system solver for memory adaptation and
we provide timings that show the benefits of our
method. We conclude with some discussion on
the future directions of our approach.

2 Related work

A quantitative study of Acharya and Setia [1]
has shown that the average-case availability of
idle memory on multiprogrammed clusters of
workstations is such that users can obtain more
than half the memory available in each worksta-
tion for idle intervals that range between 5 and
30 minutes. The same study has shown that the
larger the memory requested, the shorter the av-
erage length of the intervals during which this
memory is available for use. The study pro-
vided quantitative evidence of the availability

3

of idle memory in networks of workstations, in
space and time, but did not investigate mecha-
nisms and policies for exploiting idle memory
or the impact of fluctuations of idle memory on
the performance of applications.

Batch schedulers for supercomputers such as
the Maui Scheduler [15], NQE [22], the Portable
Batch System [14] and experimental systems
[4, 21] as well as schedulers for privately
owned networks of workstations and grids, such
as Condor-G [12] and the GrADS scheduling
framework [9], use admission control schemes
which allow a job to commence execution on
a computational node only when enough mem-
ory is available on that node. This guarantees
thrashing avoidance at the cost of reduced uti-
lization of memory and potentially higher job
waiting times. To avoid thrashing and other
undesirable interferences between jobs and the
system, batch schedulers may employ coarse-
grain measures such as checkpointing and mi-
gration of jobs. However, such measures are not
generally aware of the performance characteris-
tics or the execution state of the program [27].

Explicit co-scheduling performs a simulta-
neous context switching on all parallel pro-
cesses of a job to keep them running at the
same time [11], but suffers from high context
switch overheads and limited scalability. Im-
plicit co-scheduling uses adaptive local wait-
ing algorithms based on observed communica-
tion latencies and traffic [2], but has algorith-
mic deficiencies, since it is generally difficult
to select optimal waiting times. Other, poten-
tially better-performing forms of co-scheduling,
such as dynamic co-scheduling [25] require sub-
stantial modifications to the operating system
and may compromise fairness and quality-of-
service.

Chang et.al. [7], have presented a user-
level mechanism for constraining the resident
set sizes of user programs within a fixed range

of available memory. This mechanism assumes
that the program knows a-priori the lower and
upper limit of the band of available memory on
which it can run, and customizes its resident
set accordingly at startup. This work does not
consider dynamic changes to the memory avail-
able to a program at runtime (either increases or
decreases), nor does it address the problem of
customizing the memory allocation and replace-
ment policy to the memory access pattern of the
application.

Application-specific algorithms for physi-
cal memory management [13], and caching,
prefetching and disk scheduling [6] have been
proposed to remedy the problems of generic
operating system policies for memory manage-
ment, such as approximations of the LRU. These
algorithms have been proposed for stand-alone
applications with specific access patterns, rather
than for multiprogrammed systems. Further-
more, they assume generally a fixed amount of
physical memory that is available to a program
at runtime. Out-of-core methods for sequential
and parallel numerical programs [10, 23, 28, 26]
assume that the program runs in a fixed memory
space which is not enough to cache the working
set of a program throughout execution, and use
restructuring optimizations to minimize I/O la-
tency and improve disk utilization. These meth-
ods do not react to variations in the memory
available to the program at runtime.

Brown and Mowry [5] developed an approach
that integrates compiler analysis, operating sys-
tem support, and a runtime layer to enable
memory-intensive applications to effectively use
paged virtual memory. A compiler inserts
prefetching hints where it predicts that pages
will soon be needed. It inserts release hints
where pages are no longer needed and/or where
it predicts that pages must be released to avoid
exceeding the expected amount of available
memory. Because conditions at run-time may

4

make releasing a page at a compiler-inserted re-
lease hint undesirable, a run-time layer gathers
from the inserted hints what pages can be re-
leased, and executes releases only when nec-
essary. The run-time system requires modifi-
cations to the operating system to add support
for the user-level prefetch and release paging di-
rectives. The above approach has shown some
good results, although applications with com-
plex memory-access patterns can cause signif-
icant difficulties in identifying appropriate re-
lease points.

Barve and Vitter [3] presented a theoreti-
cal framework for estimating the optimal per-
formance that algorithms could achieve if they
adapted to varying amounts of available mem-
ory. They presented such optimal algorithms for
some popular problems, such as sorting and ma-
trix multiplication. However, they did not dis-
cuss implementation details and, most impor-
tantly, how system adaptivity can be achieved.
Pang et.al. [20] presented an adaptive version
of a sorting algorithm, which dynamically splits
and merges the size of the resident buffer to
adapt to change in the memory available to the
sort by the DBMS. This study was conducted
with a simulator and no implementation details
of the adaptation interface between the algo-
rithm and the DBMS were discussed.

In [18], one of the authors presented an adap-
tive scheduling scheme for alleviating memory
pressure on multiprogrammed COWs, while co-
ordinating the scheduling of the communicat-
ing threads of parallel jobs. That scheme re-
quired modifications to the operating system. In
[17], the same author suggested the use of dy-
namic memory mapping for controlling the res-
ident set of a program, so that it stays within a
band of available physical memory at any point
of execution. The proposed mechanism was
application-independent and used generic, but
suboptimal algorithms for eviction of memory

blocks. The algorithm operated at page-level
granularity. However, better optimizations are
possible with application-defined units of data
transfer.

In [16], two of the authors followed an
application-level approach for memory balanc-
ing. The idea was to avoid thrashing during
the most computationally intensive phase of an
eigenvalue iterative solver, the so-called correc-
tion phase. If the program detected memory
pressure on a node, it receded its correction
phase from that node, hopefully speeding the
completion of competing jobs. A load balanc-
ing scheme guaranteed that other nodes would
pick up the correction work of the receded pro-
cess. Outside the correction phase the code exe-
cuted with memory pressure but for a very short
period of time.

3 A portable framework for
memory adaptivity

Many scientific applications, such as sparse it-
erative methods, dense matrix methods, and
Monte Carlo techniques, use blocked algorithms
to exploit memory hierarchies. Applications
with data sets that do not fit in the DRAM avail-
able in a workstation use typically out-of-core
algorithms, which are also blocked to effectively
use DRAM as a cache for disk data. For out-of-
core methods, the blocks are often referred to as
panels to distinguish from disk blocks. Blocked
algorithms have a common processing pattern.
Normally, data is partitioned into� panels and
the algorithm operates on them in a loop as
shown below:

for i = 1:�
Get panel� � from lower level of the

memory hierarchy.
Work on� �.
Write results back and evict� � to the

5

lower level of the memory hierarchy.
end

On a dedicated workstation with a fixed
amount of DRAM on board, one can easily se-
lect between an in-core or an out-of-core algo-
rithm, according to the size of the problem that
needs to be solved. On a non-dedicated system
though, the choice between in-core and out-of-
core algorithms is not obvious. Multiple appli-
cations may contend for physical memory. If
the amount of DRAM available to a specific ap-
plication fluctuates at runtime, the data set of
the application may or may not fit in memory
at different points of execution. It is desirable
to use an adaptive algorithm, which adjusts dy-
namically the size of the resident set of the ap-
plication, based on memory availability.

In theory, virtual memory mechanisms can
transparently adjust the resident sets of appli-
cations according to memory load. The operat-
ing system pages in non-memory-resident data
on demand, and reclaims pages from programs
when it detects memory shortage. Virtual mem-
ory is entirely transparent to the application, but
has several shortcomings. The most important is
that the page replacement algorithms used in vir-
tual memory do not necessarily match the data
access patterns and the memory demands of ap-
plications. As a consequence, the operating sys-
tem often pages out data when they are actually
needed by the application. In the worst case,
poor replacement decisions have a cascading ef-
fect and lead to thrashing. Eventually, the sys-
tem spends more time paging data, rather than
executing useful computation.

Adaptation to memory load can be achieved
by switching dynamically from an in-core to an
out-of-core version of the algorithm, whenever
the application detects memory pressure. This
solution is attractive from many points of view.
Optimized out-of-core algorithms are readily
available for many applications. In an out-of-

core algorithm, controlling the size of the res-
ident set can be done naturally by controlling
the number and the size of panels kept in core.
Out-of-core algorithms optimize the data trans-
fers by taking advantage of the physical place-
ment of panels on the disk and exploit filesys-
tem optimizations such as prefetching and data
aggregation to minimize latency and maximize
disk throughput.

Nevertheless, several additional mechanisms
need to be introduced in out-of-core algorithms
to make them work in an adaptive manner. The
out-of-core algorithm should run as fast as an in-
core algorithm if the program has enough mem-
ory to cache its entire data set. Besides that,
the algorithm needs a mechanism to detect if the
operating system changes the amount of phys-
ical memory that the program can use at run-
time. The algorithm must react to both memory
shortage and memory availability. At the appli-
cation level, this is a non-trivial task, since most
operating systems do not reveal information on
available physical memory.

In this section we provide a framework for
memory adaptivity which is portable to many
block-structured applications and operating sys-
tems. In the following sections we provide algo-
rithms for obtaining this memory adaptivity and
we confirm their optimal performance given a
certain amount of memory.

The key element of our implementation is the
management of panels with memory mapped
I/O. Memory mapped I/O unifies computation
and I/O and simplifies the code to a great extent.
With memory mapped I/O, we can derive an
adaptive implementation of an algorithm which
is identical to an in-core version, with one min-
imal extension to control the number of panels
kept in-core, whenever a new panel is fetched.

Memory mapped I/O is a highly portable
mechanism, available in all modern desktop and
server operating systems. For out-of-core al-

6

gorithms with dynamic resident sets, memory
mapped I/O has some striking advantages over
virtual memory. By using named mappings
to files, the application can optimize I/O traf-
fic. Disk reads and writes are performed at
the granularity of panels of contiguous pages.
With proper selection of panel size, the applica-
tion can reduce I/O latency and make the code
amenable to optimizations such as prefetching
and write aggregation. On the contrary, virtual
memory performs I/O at the granularity of pages
(typically 4 to 16 kilobytes) which may be scat-
tered in the address space of the program. In
particular, virtual memory writes dirty pages to
swap space. This not only increases the latency
of writes, but also nullifies the ability of the ap-
plication to exploit blocking during reads. Dirty
pages that need to be brought back in core may
be scattered between non-contiguous blocks in
the swap space.

We control the number of panels that the ap-
plication keeps in-core, whenever the algorithm
attempts to bring a new panel to work on. At this
point, the algorithm has three choices: it can in-
crease the number of in-core panels if additional
memory is available; it can decrease the number
of in-core panels if less memory is available; or
it can sustain the number of in-core panels if no
change in memory availability is detected.

The policy for selecting panels to evict and
panels to bring in is application-specific. Given
full knowledge of the data access pattern, the
application can use the optimal policy for panel
replacement. For instance, the test programs in
this paper have repetitive, sequential access pat-
terns, so MRU is the optimal policy, whereas the
LRU approximations used in most virtual mem-
ory systems would completely fail.

The next section describes machine-
independent algorithms to detect memory
shortage or availability from within the applica-
tions, using solely local information. Coupled

with memory mapped I/O, these algorithms
inject adaptivity to memory shortage and avail-
ability with minimal implementation cost and
maximum portability.

4 Adapting to memory avail-
ability

Having addressed how the library decides on
the total number of panels and on their replace-
ment policy, the main question is that of memory
adaptivity. We would like to be able to reduce
the number of panels when memory shortage is
detected but still cache as many panels as pos-
sible. Moreover, when memory becomes avail-
able we should be able to utilize it promptly by
mapping more panels.

Detecting memory shortage is relatively
straightforward. During execution, a decrease
in the program’s resident set size (RSS), with-
out any program unmapping action, is an indica-
tion of memory pressure. Detecting the level of
pressure can be determined by the disparity be-
tween RSS and the amount of memory the pro-
gram thinks it should have.

Detecting memory availability is more in-
volved. Ideally, the system would provide an
estimate of the amount of available memory,
and the program would use this to determine
the number of additional panels to map. Un-
like RSS, however, this is global system infor-
mation and most operating systems do not pro-
vide it accurately. The amount of free memory
that is reported by many systems can be a huge
underestimate of the amount of memory actually
available. For instance, in many systems, the
amount of free memory is usually close to zero,
because any memory not associated with run-
ning processes is used by the file cache. In this
case, the system might still service a large mem-
ory request from a program by reducing the size

7

of the file cache. Thus, the most reliable way to
determine if a quantity of memory is available is
to use it and see if it can be maintained in RSS.

We emphasize that memory shortage and
availability are concepts that are local to the pro-
gram. For example, high system CPU utiliza-
tion may still mean memory shortage if our pro-
gram is swapped out, and memory availability
may be the result of memory pressure on other
processes.

4.1 Detecting memory shortage

Consider an application that is memory man-
aged by our library. We denote by Panelsin
the number of panels that are cached in mem-
ory. Because the application has knowledge of
the rest of its memory requirements, it can com-
pute what its current RSS should be. We call
this desired RSS and denote as dRSS:

dRSS = (Other Program Memory) +
Panelsin * Panel size.

By definition, the application is under (addi-
tional) memory pressure when it cannot main-
tain this desired RSS. If the application detects
a decrease in RSS, a number of cached pan-
els should be unmapped so that the new desired
RSS reflects the reduced RSS. However, the
panels to be unmapped may not coincide with
the memory paged out by the system (the cause
of RSS reduction), so the following straightfor-
ward scheme

if (RSS� dRSS) then
diff = (dRSS-RSS) / Panelsize
unmap diff panels
Panelsin = Panelsin � diff
dRSS = dRSS� diff * Panel size

may lead to a cascade of unmappings until Pan-
els in = 1. Consider an example where the pro-
gram’s data set is broken into five panels, all of

which are currently mapped (Panelsin = 5). A
memory shortage has caused the system to evict
portions of panels 1 and 2 from memory, but
there is enough memory available to keep four
panels mapped (diff = 1). When the program
accesses panel 4, the condition (RSS� dRSS)
holds, so Panelsin is decreased to 4 by replac-
ing the MRU panel 3. However, panel 3 was
fully resident, so its unmapping causes RSS to
reduce even further by exactly Panelsize. This
is the same amount the dRSS is reduced, so
when the program tries to access panel 5, the
condition (RSS� dRSS) still holds — despite
the availability of memory. The above process
repeats until all but one panels are unmapped.

This cascade of unnecessary unmappings of
cached panels reduces the performance of the
code significantly. To avoid this problem, we in-
troduce lastRSS, a variable that tracks the value
that RSS had immediately before the access of
the last panel. If memory pressure increased
during that panel access, then additional panels
may have to be unmapped in the following it-
eration. We initialize lastRSS to dRSS and we
update it by executing the first five lines and the
last line of the algorithm in figure (2) before ac-
cessing each new panel. We assume that within
the execution of the if-statement no additional
page out activity occurs, so that RSS can be re-
duced only by the unmap call. This is because
the number of page faults that can occur in the
system during the execution of three statements
is limited and far smaller than the panel size. Fi-
nally, in practice, we can only unmap down to a
minimum of one panel, so that the program can
still perform work.

A program experiences memory shortage if
and only if our algorithm detects it. Using vari-
able subscripts to denote the iteration number,
observe that lastRSS� is the RSS at iteration� � �
after the end of the algorithm and before the
panel access. If the condition of the algorithm

8

holds, RSS� � lastRSS�, RSS decreased during
the access of the last panel, so there must be
memory shortage. Conversely, if there is mem-
ory shortage it will manifest itself by reducing
RSS during the access of the last panel. Since
lastRSS� records the last value of RSS at� � �
iteration the condition will hold.

4.2 Detecting memory surplus

Because the operating system provides no
mechanism for determining memory availabil-
ity, we must employ an invasive approach. We
periodically probe the system, attempting to in-
crease memory usage by one panel. If enough
memory is available, RSS should grow by one
panel. If memory is not available, then RSS
will remain constant, or decrease as the oper-
ating system responds to memory pressure by
evicting pages.

We should not probe for more memory if RSS
� dRSS. This condition indicates that parts of
mapped panels have been paged out by the sys-
tem. If memory is available, RSS will grow
as panels are touched and pages are brought
back into memory. When RSS = dRSS, and if
there are additional panels to map, then we may
probe, performing the next mapping of a panel
without replacement. If the new dRSS cannot be
maintained, RSS will eventually decrease below
lastRSS and the Detect Shortage algorithm will
take memory usage back to a safer level.

The simplest policy is to attempt to increase
Panelsin whenever RSS = dRSS. This policy is
too aggressive, however. It continually pushes
Panelsin above a safe level, incurring a signif-
icant performance penalty each time this hap-
pens. Figure 1a depicts experimental results that
illustrate this. In the experiment, there is room
to keep 40% of the panels in memory. Our pro-
gram is able to temporarily obtain enough mem-
ory to hold up to 60% of the panels. Quickly,
however, the operating system senses a memory

shortage and begins reclaiming pages from the
program, sometimes reducing RSS significantly
below 40% of the panels. The program adapts
by decreasing Panelsin back to the safe value of
40%. Eventually all mapped pages come back
into resident memory, and the cycle repeats.

We can reduce the aggressiveness of our pol-
icy by delaying growth of Panelsin for a time
after Panelsin has been reduced by the Detect
Shortage algorithm. Choosing an appropriate
delay is a balancing act between two sources
of performance penalties. If a probe is unsuc-
cessful, this induces what we call an “incur-
sion” penalty because it will induce paging and a
subsequent performance decrease. On the other
hand, if the program’s memory usage stays be-
low the amount of memory available, it suffers
an “inaction” penalty because some panels will
be loaded from secondary storage when they
could instead reside in main memory. We as-
sume a simple model in which the time� to
fetch � words from disk depends only on the
bandwidth�� of the disk. This model is very
simplistic, but is appropriate in our case because
we access large, contiguous blocks of data; seek
times are largely hidden by prefetching. Define
maxRSS to be the maximum amount of mem-
ory currently available to our program. If the
program stays at RSS, then for each iteration
(that is, a cycle through all panels), (maxRSS
- RSS) of data which could have been kept in-
core will be brought from disk, incurring an in-
action penalty of (maxRSS - RSS)/�� seconds.
If the program probes beyond maxRSS, the op-
erating system responds by decreasing RSS. As
figure 1a shows, in the worst case Panelsin may
be reduced all the way down to 1. The incursion
penalty then is roughly (maxRSS���), because
all of the evicted panels will have to be brought
back in.

We attempt to choose a delay that balances the
two penalties. This suggests that we consider

9

the quantity
�� �� = maxRSS�(maxRSS - RSS),

which is the ratio of the incursion and inac-
tion penalties. When RSS is zero, the inaction
penalty is as great as the incursion penalty, so
we have nothing to lose by probing for more
memory; thus when�� �� � � we should probe
as soon as possible. When the ratio is greater
than unity, it indicates that the possible incursion
penalty outweighs the possible inaction penalty
by that ratio; thus suggests we should wait�� ��

times as long as we would in the�� �� � � case
before probing. Given a base delay time, then,
we can scale it by�� �� to determine the delay:

delay = (base delay) *
maxRSS�(maxRSS - RSS)

We have noted that when RSS is close to 0, we
should probe for memory as soon as possible.
Since we never probe unless RSS=dRSS, after
Detect Shortage causes an unmapping the pro-
gram may have to wait for a full iteration (cycle
through the panels) for RSS to grow to dRSS.
Thus the time for an iteration provides a reason-
able approximation for the minimum delay, and
therefore is a natural value for the base delay.

The complete memory adaptation algorithm
is shown in figure 2. Our code maintains a
queue of timestamps for the the last� panel ac-
cesses to determine the base delay. Because we
do not know maxRSS, we must approximate it
somehow. We use peakRSS, which is the max-
imum RSS that has been achieved by the pro-
gram since the last probe for more memory. Fig-
ure 1 demonstrates how the introduction of our
delay parameter improves performance.

4.3 Graceful degradation of perfor-
mance

Given the algorithm in figure (2), which closely
tracks the available memory in the system, and

a user defined replacement policy, our approach
can achieve a nearly optimal caching scheme.
The remaining question is whether the system
can exploit this caching efficiently. Ideally, we
would expect a linear increase in execution time
as the available memory decreases. Figure (3)
provides evidence that performance does de-
grade gracefully and adaptively. The left figure
shows that a static version of our method ben-
efits almost linearly from more cached panels
up to the point of memory contention. On the
contrary, a traditional out-of-core implementa-
tion is mainly insensitive to the panel size, favor-
ing rather small panels. The right figure shows
that our dynamic scheme achieves the same lin-
ear degradation of performance under increasing
load but without any foreknowledge of available
memory.

5 Conjugate Gradient experi-
ments

To test our adaptive strategy and supporting li-
brary in the context of a scientific application,
we implemented it in a conjugate gradient (CG)
linear system solver using the CG routine pro-
vided in SPARSKIT [24]. The computational
and storage requirements of CG are typical of
many other scientific algorithms. Each itera-
tion requires a sparse matrix-vector multiplica-
tion and a few dot products. The program re-
quires storage for only four vectors while the
bulk of the memory demand comes from the co-
efficient matrix. In our experiments, the driver
program breaks the matrix into� � �� pan-
els and stores them on disk. Work vectors are
kept in-core. We note that the CG routine is not
modified, and we use an off-the-shelf blocked
sparse matrix vector multiplication with only a
single call to ourget next panel() func-
tion. We use both sequential and parallel ver-

10

sions of the solver. In the parallel version, when-
ever a matrix-vector or inner product is called
for, a collective communication operation must
occur.

We conducted a series of experiments on four
identically configured 1 GHz Pentium III ma-
chines with 128MB of DRAM. All machines
run Linux 2.4.18-19.7 and are connected to the
same fast Ethernet switch. We usegcc andg77
compilers and the LAM MPI communication li-
brary for the parallel version.

5.1 Sequential experiments

Some results have already been described in sec-
tion 4. Here, we compare four different ways
to implement a CG code. Besides a standard
in-core implementation and our memory adap-
tive one, we also use a conventional out-of-core
code, as well as an in-core code that stores the
matrix on disk and accesses it via a read-only
memory map to avoid inefficient write-outs to
the swap device. Table 1 summarizes what hap-
pens when any possible combination of two se-
quential CG solvers are run against each other.
Each solver runs on a 70MB matrix with a total
of 81MB storage requirements; this causes con-
siderable memory pressure, as only about 105
MB total are available to the programs. The
performance of the in-core code under memory
pressure is very poor, as expected. The memory-
mapped code performs well if it is started first,
but it is starved when jobs other than out-of-core
are already running. The out-of-core code per-
forms consistently against all other codes, but
its lack of adaptivity does not justify general
purpose use. The memory adaptive code works
well in all cases, even when run against itself,
demonstrating its truly dynamic nature.

In table 2 we present results like those from
table 1 but obtained under Solaris 8. Detailed
discussion of the performance of our adaptation
scheme under Solaris is beyond the scope of

this paper, but we wish to show that the scheme
works under both Linux and Solaris, though
the systems use different memory-management
strategies.

5.2 Parallel experiments

In our parallel CG experiments, we used the
in-core and memory-adaptive versions of the
solver to solve a problem with a 280 MB coeffi-
cient matrix arising from an eighth-order finite-
difference discretization of a three dimensional
Laplacian problem. To create memory pressure,
the root node executes a memory-intensive 70
MB dummy job. We have used a job that allo-
cates memory and continuously writes random
numbers to it as well as a sequential in-core CG
code. Results were identical for either dummy
job.

The results are consistent with those observed
in the sequential tests. Without competition, the
in-core code averages 0.72 seconds per itera-
tion, and the memory-adaptive code 0.73 sec-
onds. When running against the dummy job,
the in-core code performs very poorly, taking
anywhere from 32 to 80 seconds per iteration.
Under constant memory pressure, the memory
adaptive code averages between 8 and 9 sec-
onds, consistent with the slowdown experienced
by the sequential adaptive code under the same
memory pressure. However, the slowdown in
the parallel case affects all nodes. In some cases,
the memory adaptive code would thrash (system
CPU utilization� 95%) for 40–50 seconds, af-
ter which it would obtain enough memory re-
sources to keep its entire local portion of the ma-
trix. Figure 5 illustrates for both cases how the
time per iteration changes as the solver adapts to
memory pressure, while figure 4 shows the ac-
tual memory adaptation. In both cases, thrash-
ing is avoided eventually, and we observe good
resource utilization.

11

6 Conclusions

We have presented a framework for dynamic
adaptation of scientific applications to memory
pressure. This framework enables an applica-
tion running on a non-dedicated workstation to
gracefully degrade its performance when it can-
not obtain the resources required to fit its data
set in main memory. It is particularly suited for
non-centrally administered, open systems, such
as clusters of privately owned desktops, where
loads can fluctuate unpredictably.

We have made the following key con-
tributions: We presented a novel, system-
independent algorithm that ascertains the avail-
ability of main memory using a single metric,
i.e. the resident set size of the application. In
addition, we presented an optimal algorithm that
enables an application to dynamically adjust its
resident set size in response to memory shortage
or availability. The algorithms are portable to
almost any modern operating system and hard-
ware platform.

In addition to easy portability, our framework
has a modular design. Its use requires minimal
extensions to block-structured application ker-
nels. Because it can be embedded in a compu-
tational kernel, it can be immediately deployed
in any application that uses that kernel. For ex-
ample, embedding our framework in low-level
libraries such as BLAS or SPARSKIT makes it
immediately available to higher level libraries,
such as LAPACK and scaLAPACK, that depend
upon them. In turn, applications that rely on
these higher level libraries can immediately ben-
efit from the framework.

References

[1] A. Acharya and S. Setia. Availability and
Utility of Idle Memory in Workstation Clus-
ters. InProc. of the 1999 ACM SIGMETRICS

Joint International Conference on Measure-
ment and Modeling of Computer Systems (SIG-
METRICS’99), pages 35–46, Atlanta, Georgia,
May 1999.

[2] A. Arpaci-Dusseau. Implicit Coscheduling:
Coordinated Scheduling with Implicit Informa-
tion in Distributed Systems.ACM Transactions
on Computer Systems, 19(3):283–331, Aug.
2001.

[3] R. D. Barve and J. S. Vitter. A theoretical
framework for memory-adaptive algorithms. In
IEEE Symposium on Foundations of Computer
Science, pages 273–284, 1999.

[4] A. Batat and D. Feitelson. Gang Schedul-
ing with Memory Considerations. InProc. of
the 14th IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS’2000),
pages 109–114, Cancun, Mexico, May 2000.

[5] A. D. Brown and T. C. Mowry. Taming
the memory hogs: Using compiler-inserted
releases to manage physical memory intelli-
gently. In Proceedings of the 4th Symposium
on Operating Systems Design and Implementa-
tion (OSDI-00), pages 31–44, 2000.

[6] P. Cao, E. Felten, A. Karlin, and K. Li. Im-
plementation and Performance of Integrated
Application-Controlled File Caching, Prefetch-
ing, and Disk Scheduling.ACM Transactions
on Computer Systems, 14(4):311–343, Nov.
1996.

[7] F. Chang, A. Itzkovitz, and V. Karamcheti.
User-Level Resource Constrained Sandboxing.
In Proc. of the 4th USENIX Windows Systems
Symposium, pages 25–36, Seattle, WA, Aug.
2000.

[8] S. Chiang and M. Vernon. Characteris-
tics of a Large Shared Memory Production
Workload. In Proc. 7th Workshop on Job
Scheduling Strategies for Parallel Processing
(JSSPP’2001), Lecture Notes in Computer Sci-
ence, Vol. 2221, pages 159–187, Cambridge,
MA, June 2001.

12

0 50 100 150
10

15

20

25

30

35

40

45

50

55

60
RSS (solid line) and desired RSS (dashed line) for simple algorithm

Average iteration time: 17.5 sec

Seconds elapsed

M
B

0 50 100 150
10

15

20

25

30

35

40

45

50

55

60
RSS (solid line) and desired RSS (dashed line) for dynamic delay with ratio

Average iteration time: 4.4 sec

Seconds elapsed

M
B

Figure 1: RSS and desired RSS versus time for two versions of amemory-adaptive program that
performs dense matrix-vector multiplications with a 70 MB matrix broken into 10 panels. It runs
against a 70 MB dummy job on the Linux machines described in section 5. Circles denote the
beginning of a matrix-vector multiplication. The left graph (a) uses the original algorithm with
no delay. It is too agressive, continually pushing against the memory limit. In response, the
operating system evicts pages from the program, causing a significant performance penalty. The
right graph (b) utilizes a dynamically determined delay to reduce this penalty: after a memory
shortage is detected, attempts to grow memory usage must wait until the delay has elapsed. Using
the dynamic delay, the algorithm settles at what is close to the optimal value for dRSS (dashed
line) and diminishes RSS (solid line) fluctuations.

Algorithm: Adapting to memory variability
RSS = Get current RSS
if (RSS� lastRSS) & (Panelsin � �)

diff = (lastRSS-RSS) / Panelsize
unmap diff panels, Panelsin �= diff,
dRSS�= diff * Panel size

else if (dRSS == RSS) & (Panelsin � �)
peakRSS = max(peakRSS, RSS)
delay = Time to access the last� panels
if (Time since last unmap�

delay * min(10, peakRSS�(peakRSS�RSS)))
Panelsin ++
dRSS += Panelsize
peakRSS = RSS

endif
endif
lastRSS = Get current RSS

Figure 2: The complete algorithm for adapting to memory variability

13

10 15 20 25 30 35 40 45 50 55 60
1

2

3

4

5

6

7

8
Average time per iteration vs. size cached in RAM

Size of constantly cached panels in RAM (MB)

A
ve

ra
ge

 ti
m

e
pe

r i
te

ra
tio

n
(s

ec
on

ds
)

Against external load of:

70 MB (dashed)

50 MB (solid)

Memory mapping
traditional freads

30 35 40 45 50 55 60 65 70 75 80
0

1

2

3

4

5

6

7

8

9
Average time per matrix−vector multiplication vs. size of competing job

Size of competing job (MB)

A
ve

ra
ge

 ti
m

e
pe

r i
te

ra
tio

n
(s

ec
on

ds
)

Figure 3: Graceful degradation of performance. The left graph shows the execution time for a
static version of our method that caches a certain number of panels. Also, it shows the time for
a traditional out-of-core implementation for various sizes of its single panel. We report times
running with a 70 MB matrix against a 50 MB and a 70 MB external load running on the Linux
machines described in section 5. Increasing the number of panels cached improves performance
almost linearly as long as the amount of available availablememory is not exceeded; times increase
towards the right of the graph as the amount of panels cached exceeds available memory. In the
right graph, a similar graceful degradation of performanceis observed for our dynamic method for
external loads of increasing size. However, the number of panels is chosen dynamically.

Time for method X running against Y
�
�
�
�
�
�X

Y
incore ooc mmap mema

incore 204.00 0.82
0.66

20.50
27.00
22.50

ooc 5.00
8.82
9.60

4.90 5.10

mmap
0.70

35.00
0.84

0.67
35.00

0.79
35.00

mema 0.76 0.90
4.50
0.72

0.89
5.34

Table 1: Average time per iteration for method X when runningagainst method Y. “incore” denotes
a standard in-core algorithm, “ooc” a conventional out-of-core one, “mmap” an in-core algorithm
that uses memory-mapped I/O to read the matrix, and “mema” our memory adaptive code. Both
jobs execute CG on a 70 MB matrix, reading it from different files where applicable. The time is
measured after both methods have stabilized sharing the CPU. One of the jobs is started 9 seconds
after the other. If one time is reported, it is independent ofstarting order. If two times are reported,
the top is the time for method X when X is started first, while the bottom is the time when X is
started second.

14

Time for method X running against Y
�
�
�
�
�
�X

Y
incore ooc mmap mema

incore 493.0 11.74 239.8 203.4
ooc 20.25 92.10 19.76 19.87
mmap 7.59 12.18 99.72 66.34

mema 5.32 9.89
33.33
42.30

38.66

Table 2: A table like table 1, but showing experimental results obtained on a SunBlade 100 work-
station with 384MB running Solaris 8. Both jobs execute conjugate gradient on a 192 MB matrix.
Note that the in-core code is “starved” by the OS when runningagainst the memory-adaptive or
memory-mapped I/O codes. Although the memory management policies of Linux and Solaris dif-
fer, under both systems we can achieve graceful slowdown andreasonable performance with the
memory-adaptive code.

0 20 40 60 80 100 120
10

15

20

25

30

35

40

45

50

55

60
RSS (solid line) and desired RSS (dashed line) for dynamic delay with ratio

Average iteration time: 8.1 sec

Seconds elapsed

M
B

0 10 20 30 40 50 60 70 80
10

20

30

40

50

60

70

80

90

100
RSS (solid line) and desired RSS (dashed line) for dynamic delay with ratio

Average iteration time: 0.78 sec

Seconds elapsed

M
B

Figure 4: A memory profile similar to Figure (1) but for the root node of a parallel job. The external
load is 70 MB. We observe two possibilities. In the left graph, the external load keeps its entire
working set while our method utilizes the remaining memory.The scenario reverses in the right
figure. In both cases, resource utilization is high for all participating nodes.

15

0 5 10 15 20 25
0

5

10

15

20

25

30

35
Time per iteration versus iteration number

Iteration number

T
im

e
pe

r
ite

ra
tio

n
in

 s
ec

on
ds

CG gets all its memory
Competing job gets all its memory

Figure 5: Execution times for each iteration for the first 25 iterations of the parallel code. The two
sets of data correspond to the two possibilities observed inFigure (4). Even the slower set of times
are far lower than times produced using the virtual memory system.

16

[9] H. Dail, H. Casanova, and F. Berman. A De-
coupled Scheduling Approach for the GrADS
Program Development Environment. InProc.
of the IEEE/ACM Supercomputing’02: High
Performance Networking and Computing Con-
ference (SC’02), Baltimore, MD, Nov. 2002.

[10] J. Dongarra, S. Hammarling, and D. Walker.
Key concepts for parallel out-of-core LU fac-
torization.Parallel Computing, 23(1–2):49–70,
Apr. 1997.

[11] D. Feitelson and L. Rudolph. Evaluation of De-
sign Choices for Gang Scheduling Using Dis-
tributed Hierarchical Control.Journal of Par-
allel and Distributed Computing, 35(1):18–34,
May 1996.

[12] J. Frey, T. Tannenbaum, M. Livny, I. Foster, and
S. Tuecke. Condor-G: A Computation Manage-
ment Agent for Multi-Institutional Grids. In
Proc. of the 10th IEEE International Sympo-
sium on High Performance Distributed Com-
puting (HPDC-10), pages 55–63, San Fran-
cisco, California, Aug. 2001.

[13] K. Harty and D. Cheriton. Application-
controlled Physical Memory Using External
Page-Cache Management. InProceedings of
the 5th International Conference on Architec-
tural Support for Programming Languages and
Operating Systems (ASPLOS’V), pages 187–
197, Boston, Massachusetts, Oct. 1993.

[14] R. Henderson. Job Scheduling Under the
Portable Batch System. InProc. of the
First Workshop on Job Scheduling Strategies
for Parallel Processingolph, Lecture Notes in
Computer Science Vol. 949, pages 279–294,
Santa Barbara, CA, Apr. 1995.

[15] M. Lewis and L. Gerner. Maui Scheduler, an
Advanced System Software Tool. InProc. of
the ACM/IEEE Supercomputing’97: High Per-
formance Networking and Computing Confer-
ence (SC’97), San Jose, CA, Nov. 1997.

[16] R. T. Mills, A. Stathopoulos, and E. Smirni.
Algorithmic modifications to the Jacobi-
Davidson parallel eigensolver to dynamically
balance external CPU and memory load. In
2001 International Conference on Supercom-
puting, pages 454–463. ACM Press, 2001.

[17] D. Nikolopoulos. Malleable Memory Map-
ping: User-Level Control of Memory Bounds
for Effective Program Adaptation. InProc.
of the 17th IEEE/ACM International Par-
allel and Distributed Processing Symposin
(IPDPS’2003), Nice, France, Apr. 2003.

[18] D. Nikolopoulos and C. Polychronopoulos.
Adaptive Scheduling under Memory Pressure
on Multiprogrammed Clusters. InProc. of the
2nd IEEE/ACM International Conference on
Cluster Computing and the Grid (ccGrid’02),
pages 22–29, Berlin, Germany, May 2002.

[19] J. Ousterhout. Scheduling Techniques for Con-
current Systems. InProc. of the 3rd Inter-
national Conference on Distributed Comput-
ing Systems (ICDCS’82), pages 22–30, Miami,
Florida, Oct. 1982.

[20] H. Pang, M. J. Carey, and M. Livny. Memory-
adaptive external sorting. In Agrawal et al.
[20], pages 618–629.

[21] F. Petrini and W. Feng. Time-Sharing Parallel
Jobs in the Presence of Multiple Resource Re-
quirements. InProc. of the 6th Workshop on
Job Scheduling Strategies for Parallel Process-
ing (JSSPP’2000), in conjunction with IEEE
IPDPS’2000, LNCS Vol. 1911, pages 113–136,
Cancun, Mexico, May 2000.

[22] R. Daugherty and D. Ferber. Network Queu-
ing Environment. InProceedings of the Spring
Cray Users Group Conference (CUG’94),
pages 203–205, San Diego, CA, Mar. 1994.

[23] E. Rothberg and R. Schreiber. Efficient Meth-
ods for Out-of-Core Sparse Cholesky Factor-
ization.SIAM Journal on Scientific Computing,
21(1):129–144, Jan. 2000.

17

[24] Y. Saad. SPARSKIT: A basic toolkit for sparse
matrix computations. Technical Report 90-20,
Research Institute for Advanced Computer Sci-
ence, NASA Ames Research Center, Moffet
Field, CA, 1990. Software currently available
at �ftp://ftp.cs.umn.edu/dept/sparse/�.

[25] P. Sobalvarro, S. Pakin, W. Weihl, and
A. Chien. Dynamic Coscheduling on Work-
station Clusters. InProc. of the 4th Work-
shop on Job Scheduling Strategies for Parallel
Processing (JSSPP’98), Lecture Notes in Com-
puter Science Vol. 1459, pages 231–256, Or-
lando, Florida, Apr. 1998.

[26] S. Toledo. A survey of out-of-core algo-
rithms in numerical linear algebra. In J. Abello
and J. S. Vitter, editors,External Memory Al-
gorithms and Visualization, pages 161–180.
American Mathematical Society Press, Provi-
dence, RI, 1999.

[27] S. Vadhiyar and J. Dongarra. A Performance
Oriented Migration Framework for the Grid.
Technical Report, Innovative Computing Lab-
oratory, University of Tennessee, Knoxville,
2002.

[28] J. S. Vitter. External memory algorithms and
data structures: dealing with massive data.
ACM Computing Surveys (CSUR), 33(2):209–
271, 2001.

18

