
Multigrain parallelism for eigenvalue computations on networks of
clusters

�

James R. McCombs
�

Andreas Stathopoulos
�

March 1, 2002

Abstract

Clusters of workstations have become a cost-effective means of performing scientific computations.
However, large network latencies, resource sharing, and heterogeneity found in networks of clusters and
Grids can impede the performance of applications not specifically tailored for use in such environments.
A typical example is the traditional fine grain implementations of Krylov-like iterative methods, a central
component in many scientific applications. To exploit the potential of these environments, advances in
networking technology must be complemented by advances in parallel algorithmic design. In this paper,
we present an algorithmic technique that increases the granularity of parallel, block iterative methods
by inducing additional work during the preconditioning (inexact solution) phase of the iteration. During
this phase, each vector in the block is preconditioned by a different subgroup of processors, yielding a
much coarser granularity. The rest of the method comprises a small portion of the total time and is still
implemented in fine grain. We call this combination of fine and coarse grain parallelismmultigrain. We
apply this idea to the block Jacobi-Davidson eigensolver, and present experimental data that shows the
significant reduction of latency effects on networks of clusters of roughly equal capacity and size. We
conclude with a discussion on how multigrain can be applied dynamically based on runtime network
performance monitoring.

1 Introduction

Commodity components such as desktop workstations and high-speed networking media have made clusters
of workstations (COWs) a cost-effective way of performing scientific computing [8]. COW configurations
vary from a small number of compute nodes attached to a hub to collections of clusters. Such collections are
interconnected via a hierarchy of network switches yielding a heterogeneous networking environment where
not all nodes incur the same latency to communicate with each other. Grids are a further generalization of
this scheme that include various computational environments that are possibly geographically dispersed [6].
Providing an easy, integrative way for users to access these environments has been the focus of much Grid
research recently [5, 7, 22]. Instead, our research focuses on the challenge of devising methods that can
harness effectively the power of these environments.

�
Work supported by the National Science Foundation (ITR/ACS-0082094 and ITR/AP-0112727), a grant from the Virginia

Space Grant Consortium, and performed using computational facilities at the College of William and Mary which were enabled by
grants from the National Science Foundation (EIA-9977030) and Sun Microsystems (SAR EDU00-03-793).�

Department of Computer Science, College of William and Mary, Williamsburg, Virginia 23187-8795, (mccom-
bjr/andreas@cs.wm.edu).

1



Iterative methods for the solution of linear systems and eigenvalue problems are an important, and
often the most computationally intensive, kernel of many scientific applications. As these applications
require the use of various distributed resources, high performance implementations of iterative methods are
crucial to avoid bottlenecks. Traditionally, iterative methods have been implemented in a fine grain way,
with inner products requiring a global reduction and matrix-vector multiplication based on nearest neighbor
communications [4]. However, global reductions do not scale with the number of processors [20], and are
especially sensitive to network overheads which have not kept up with the explosive growth of bandwidth
in recent networks.

Beyond COWs, the latency problem in fine grain methods is exacerbated on collections of clusters that
employ different switching technologies, and where multiple parallel jobs compete for network bandwidth.
In a Grid environment, the significantly higher overheads can completely incapacitate these methods.

Block iterative methods increase granularity by having each processor apply the same fine grain opera-
tions on a block of vectors, thus increasing the computation/communication ratio [3, 13]. As a side benefit,
block operations also demonstrate better cache performance. However, the granularity increase is usually
marginal, and because block methods increase the total number of floating point operations, the benefits
from such implementations of these algorithms are limited.

In [21], we described a novel parallelization approach of a block Jacobi-Davidson eigenvalue solver.
Each vector from the block is assigned on a different processor that executes the preconditioning step in-
dependently, thus improving granularity significantly. In fact, the accuracy of the preconditioning could be
set arbitrarily so that prolonged parallel execution on each processor reduces any impact of interprocessor
latency. However, in this original implementation the number of processors used had to be equal to the block
size (usually less than 4-8), and each processor had to store the whole matrix.

In this paper, we extend our previous approach to any number of processors, and especially to collections
of small numbers of COWs connected with different networks. Within individual clusters (or subgroups of
processors) the iterative methods are implemented in a fine grain way, while a coarse grain distribution of
block vectors between clusters minimizes intercluster communications. Thismultigrain technique reduces
the effects of latency either when the number of processors in a COW is very large or when the link between
clusters is slow or highly variable, as is the case in Grids.

First, we describe a class of block iterative methods on which the multigrain technique is applicable.
These methods are formulated as an inner-outer iteration, where the inner iteration (preconditioning) solves
approximately a correction equation to accelerate the convergence of the outer method [19, 16]. We then
show the benefits of multigrain in the context of a Jacobi-Davidson eigensolver on our collection of COWs.
We conclude with a discussion on how to apply multigrain dynamically based on runtime network perfor-
mance monitoring.

2 A multigrain paradigm for preconditioned, block iterative methods

Many applications involve the solution of a system of linear equations� �� � � for the unknown vector��,
or the solution of the eigenvalue problem� ��� � ��� ���, for the � � �	 
 
 
 � smallest or largest eigenvalues
��� and the corresponding eigenvectors���. Because the matrix� is usually sparse and of large dimension,
iterative methods provide the only means of solving these problems. Many block iterative methods such as
block FGMRES [16] for linear systems and block Jacobi-Davidson [19] for eigenvalue problems follow the
inner-outer iterative structure of figure 1.

Considering a block size of�, these methods build a subspace
 , � vectors at a time, from where they
extract their approximate solutions. At each iteration, they build the next� vectors by solving approximately
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while( � � 
 
 
 � � are unconverged)
�

if (solving linear systems)
Set�� � � �, for � � �	 
 
 
 	 �

elseif (solving eigenvalue problem)
Set�� � ��, for � � �	 
 
 
 	 �

endif
Apply � inner iterations on �� to obtain ��
Append�� to 
 and orthogonalize

Compute the new approximations�� 
 
 
 ���

Figure 1: A class of inner-outer methods that can be implemented with multigrain parallelism. The inner
iterations are often themselves a preconditioned iterative solver.

� different correction equations, one per block vector. The approximate solutions are then orthogonalized
and appended to the subspace
 . The correction equations are usually solved using� steps of another
preconditioned iterative solver. The more accurately the inner systems are solved the fewer outer iterations
the algorithm performs. However, there is usually an optimal number of inner iterations beyond which the
actual time, as measured also by the total number of matrix vector multiplications, slowly increases.

Block methods are known to accelerate convergence in linear systems with multiple right-hand sides [13],
and to improve robustness when solving for eigenvalues that occur close together (clustered) [14]. However,
it is known that larger block sizes increase the total number of floating point operations. This is mani-
fested as an increase in the number of total matrix vector multiplications performed by both inner and outer
iterations. Despite improved cache efficiency and a relatively coarser granularity in fine grain parallel im-
plementations, block algorithms are only competitive when access to the matrix is expensive so that it pays
off to block several matrix-vector operations per matrix access.

The multigrain technique uses the block in a vertical rather than horizontal way. Extending the key
ideas from [21], we note that the correction equations are independent for each of the block vectors and
each may take an arbitrarily long amount of time. If we assign them on different subgroups of processors,
each subgroup should be able to compute the majority of its computation without communicating with other
groups. Thus, we effectively reduce the latencies in our cluster to the latencies of a cluster of��� the size.
This is particularly beneficial when each subgroup represents a COW with high performance intra-cluster,
but not inter-cluster, networks. Note that each subgroup (COW) should be able to keep the whole matrix�
to solve the correction equation. In contrast to our [21] method, this is not a scaling limitation any more, as
each processor in the subgroup needs to store only� times more rows than its fine grain partition — a small
amount considering the rapid growth of DRAM sizes.

Except the correction equation, the rest of the steps of the algorithm cannot be efficiently performed in
the above coarse grain setting. Fortunately, they comprise only a small portion of the total execution time.
Therefore, multigrain follows the traditional fine grain partitioning for all the other steps, and switches to
coarse grain only for the correction phase. An all-to-all operation is required to transition each of the fine
grain vectors�� and�� to their coarse partitioned counterparts on each processor, so that each subgroup has
its respective vector. Despite the high cost of the all-to-all operation, the number of inner iterations (and
thus granularity) can be increased arbitrarily to diminish the associated latencies. Finally, we show next that
in the case of homogeneous processors with a fast interconnect (such as MPPs) a faster all-to-all is possible.
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Figure 2: Example of MPP multigrain, with more processors than block vectors. Before the preconditioning
phase, nodes in the same all-to-all group receive the coarse-grain portions of the vectors�� they are respon-
sible for. Each preconditioning group then performs its respective preconditioning. After this phase, each
node distributes its coarse-grain portion of�� amongst its fellow all-to-all members.

2.1 Multigrain algorithm for MPPs

To avoid a global all-to-all exchange between all processors, we can consider the following hierarchical
partitioning. Assume for simplicity that the block size� divides the number of processors� , First, we
obtain the coarse grain partitioning of the matrix onto� �� processors using partitioning software [15, 10].
Second, each processor partitions its local, coarse grain rows into� subdomains, and designates one of those
as its fine-grain partitioning.

This hierarchical partitioning of rows reduces the complexity of the all-to-all communications that now
involve only groups of� �� processors. Before the preconditioning phase, each member of an all-to-all
group sends its fine-grain portions of the� vectors�� to the� �� members of its subgroup, and receives
the � �� pieces that compose its coarse-grain portion of��. Figure 2 illustrates this for� � � and� � �.
After each preconditioning group finishes its inner iterations, the all-to-all is reversed and each processor’s
coarse-grain portion of�� is distributed across all the processors in the all-to-all group.

2.2 Multigrain algorithm for collections of clusters and Grids

In collections of clusters, the preconditioning groups may be of different sizes and are chosen by the user to
correspond to the physical boundaries of the COWs, or to those processor boundaries where inter-boundary
communication is expensive. In a multigrain implementation, all nodes compute a fine grain partitioning of
� , and each solve group computes an independent coarse grain partitioning based on the group size. The
independence of the two partitionings makes it impossible to use all-to-all groups, as one processor may be
involved in a total exchange with all other processors in the cluster. Therefore, the all-to-all communications
must involve all� processors. In the next section we show how we applied the cluster algorithm to a block
Jacobi-Davidson method for solving eigenvalue problems.
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3 A multigrain, block Jacobi-Davidson method for use in Grid-like environ-
ments

Jacobi-Davidson (JD) is a popular method for computing eigenvalues of large, sparse matrices [19, 18].
A block version is also possible that follows the general iterative model of figure 1. At each iteration
the method computes the current approximate eigenvalues

��, the approximate eigenvectors��, and the
associated residuals�� � ��� � ��� which are then used to solve the correction equation,

�� � ����� � �� � ��� � �� � ����� ��� � � � 	 (1)

for the vector��, an approximation to the error in��. These� approximate correction vectors�� are then
used to extend the basis
 and improve future approximations. The block JD algorithm is given below.

Algorithm: Block JD
starting with� trial vectors��
While not converged do:
1. Orthogonalize��, � � � � � . Add them to

2. Matrix-vector � � � �
� 	 � � � � �
3. � � 
 � � (local contributions)
4. GlobalSum(� ) over all processors.
5. Solve� 	� � ��	 � 	 � � � � � (all procs)
6. �� � 
 	 � 	 
� � � 	 � 	 � � � � � (local rows)
7. � � � 
� � ���� 	 � � � � � (local rows)
8. Correction equation Solve eq. (1) for each��
end while

During the projection phase (steps 1-7), the block algorithm finds the� smallest Ritz eigenpairs and their
residuals. During the correction/preconditioning phase,� different equations (1) are solved approximately
for the ��, usually by employing an iterative solver for linear systems such asBCGSTAB or GMRES [17].
In the multigrain adaptation, the coarse-grain subgroups (solve groups) will solve these correction equa-
tions. Preconditioners such as sparse approximate inverse or incomplete�� factorization may be used to
accelerate the convergence of the corrections.

3.1 Adapting JD for use with multigrain

Steps 1-7 of the block JD algorithm are still performed in fine grain. However, the vectors�� and�� must
now be gathered onto their respective solve group with an all-to-all operation amongst the� processors
before the correction equations are solved. The new multigrain version of step 8 is as follows:

8. Multi grain correction phase in JD
All-to-All: send local fine-grain rows of��, � � to each proc

receive coarse-grain rows for�
������ 	 �
������ from each proc
Apply � steps of (preconditioned)BCGSTAB on

eq.(1) with the gathered�
������ , �
������
All-to-All: send coarse-grain rows of�
������ to proc�

receive fine-grain rows for�� from proc�
Note that the cluster version of all-to-all is used. Next, we present experiments that show the benefit of

our multigrain implementation on workstation clusters.
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Figure 3: SciClone: The William and Mary heterogeneous cluster of three homogeneous clusters: Typhoon,
Tornado (also called C), and Hurricane (also called D). We distinguish between A and B, the subclusters of
Typhoon, because their intercommunication passes through the Gigabit switch.

4 Experiments

We conducted experiments with our JD code using both the fine grain and multigrain capabilities. The ex-
periments were performed on the SciClone (Figure 3), a collection of clusters used for scientific computing
and computer science research at the College of William and Mary. SciClone is highly a suitable environ-
ment for our experimentation in cluster and Grid computing because it is composed of various networking
technologies and organized as a cluster of subclusters.

For the experiments, we test the fine grain implementation of JD with block sizes 1 and 4, and our multi-
grain JD with block size of 4. The test matrix is derived from a 3-D finite element problem [1] of dimension
��� 	 � �� and containing� 	 ��� 	 ��� non-zero elements. In all tests we compute the smallest 50 eigenvalues
using a maximum size of��� for the basis
 and a restart size of�� vectors. The correction equation is
solved approximately by a maximum of 40 steps of preconditionedBCGSTAB. The preconditioner is an
approximate inverse from the ParaSails library [2]. Note that we use this preconditioner because it does not
depend on the partitioning and thus provides a common reference for both fine and multigrain methods. In
practice, multigrain will have an additional numerical advantage over fine grain, because it can use larger
local domain preconditioners.

To better ensure load balance of multigrain during the correction phase, we choose solve groups of
equal size. The fine grain partitions of the matrix are computed using the weighted METIS library [9].
The weights account for the relative speed differences of the processors. An exception to this is in cases
where more than one process runs on a two or four-way SMP, which has been observed to degrade processor
performance. In these cases, no load balanced partitioning was used.

Examination of the fine-grain experiments with a block size of 1 show the speedup from 16 to 32 and
64 Ultra 5’s to be about 1.7 and 1.4 respectively. However, despite having more cache and faster processors,
the speedup on the Ultra 60’s was only about 1.08. In general, our test cases seem to perform more poorly
when more than one MPI process is executed on the SMPs. This may be due to a combination of contention
for the network interface and memory bus. Fortunately, the use of multigrain does alleviate these problems
in some cases.
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Nodes Time Mvecs Iterations
A �� 7513 67819 1849
A�� 4401 64196 1754
A��B�� 3022 62838 1725
A��B��C�� 2837 62879 1721
A��B��D�� 3360 65541 1790
A��C��D�� 2912 64465 1766
A��D�� 4412 66479 1813
A��C�� 3041 69185 1877
A��C�� 2854 61936 1702
C�� 3423 64196 1754
C�� 3163 62838 1725
C��D� 2410 66065 1799
C��D� 3411 67500 1838
C��D�� 4133 66479 1813
C��D�� 3388 65541 1790

Table 1: Performance of the fine-grain JD algorithm with block size of 1. “Time” indicates run time in seconds,
“Mvecs” is the number of matrix-vector multiplications performed, “Iterations” is the number of iterations performed.
The clusters used are denoted by the letters

�
, � , � , and� . The subscripts indicate how many MPI processes were

run on that particular cluster. For instance, C	
 indicates that one process was run on each of the 32 dual processor
Ultra 60’s and C�� indicates that two processes were run on each node. Combinations of clusters are indicated by two
or more letters.

Comparison of the multigrain results in Table 3 and the fine-grain data with block size 4 in Table 2
shows that the multigrain algorithm provides significant improvement for the vast majority of tests. Thus,
multigrain is particularly useful for solving those difficult problems where a block method is necessary.
On the other hand, load imbalance induced by the use of two solve groups of differing sizes increases the
run time for cluster combinations such as A��D�� . Our current work in [12] addresses such heterogeneous
clusters by considering an application based load balancing solution.

Of further interest are the improvements that the multigrain method provides over the fine-grain method
with a block size of 1. This is the most stringent test for multigrain because block methods tend to increase
the amount of work. Notice that from block size 1 to block size 4 the number of iterations decreases by more
than half, but the total number of matrix-vector multiplications goes up by at most 14%. Yet, the significant
reduction in latency caused by the multigrain design enables the block method to outperform its fine-grain
counterparts for more than 75% of the test cases.

5 Conclusions and work in progress

The increasing complexity of computing environments, consisting of collections of COWs either in the
same local area network or geographically dispersed, necessitates new algorithmic techniques that tolerate
high network latencies. The proposed multigrain technique for Krylov-like methods transfers most of the
convergence work from the outer fine grain iteration to an inner coarse grain iteration that processors can
execute for a long time independently, thus tolerating arbitrary large latencies.

Because block methods increase the total number of operations, the fine grain with block size of one
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Nodes Time Mvecs Iterations
A �� 10037 71934 631
A�� 5513 69608 617
A��B�� 3789 72112 631
A��B��C�� 3031 70943 625
A��B��D�� 3906 72942 636
A��C��D�� 3313 70483 626
A��D�� 4775 70835 626
A��C�� 3602 75082 654
A��C�� 3654 71400 626
C�� 4104 69936 618
C�� 3929 71051 630
C��D� 5721 70648 621
C��D� 5510 71932 628
C��D�� 4473 70835 626
C��D�� 3882 73216 640

Table 2:Performance of fine-grain JD algorithm with block size of 4. Each of the correction vectors were solved for
in fine-grain. The number of iterations was reduced and the number of matrix-vector multiplications increased as is
common with block methods.

% Improvement
MG Nodes FG counterpart Time over FG1 over FG4 Mvecs Iterations
A�A�A�A� A �� 7591 -1.1 24.4 71744 629
A�A�A�A� A�� 3868 12.2 29.9 69894 620
A ��A �� A�� 4396 0.2 20.3 72346 631
A��B�� A��B�� 2532 16.3 33.2 69740 617
A��C�� A��C�� 2562 15.8 28.9 71168 624
A ��A ��B��B�� A��B�� 2265 25.1 41.3 72510 633
A ��A ��C��C�� A��C�� 2104 30.9 41.6 69780 617
A��B��C��C�� A��B��C�� 2554 10.0 15.8 72432 634
C��C�� C�� 3429 -0.02 16.5 72346 631
C��C�� C�� 2960 6.5 24.7 69740 617
C��C��C��C�� C�� 2691 15.0 31.6 76450 658
A��D�� A��D�� 5149 -19.8 -7.3 73748 639
A ��A ��D�D� A��D�� 4387 -5.8 8.2 73946 641

Table 3:Performance of multigrain JD algorithm with block size of 4. Each node description indicates what machines
compose the solve groups. For, instance, C��C�� indicates two solve groups each consisting of 16 processes on 16
Ultra 60’s. If only two solve groups were used, then the four correction equations were solved two at a time. Columns
“FG1” and “FG4” indicate the percent decrease/increase in runtime of multigrain over its fine-grain counterpart with
block sizes 1 and 4. A negative value represents an increase.
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should be preferred when there is a low overhead network. However, in Grids and COWs the network load
may vary dynamically as a result of competing parallel applications or due to a few impaired links in a Grid
environment.

In such cases, it may be best to dynamically switch from fine grain to multigrain mode. Currently, a
system is being installed as part of the SciClone cluster that can mimic arbitrary synthetic network loads. We
plan to run our code under various dynamic configurations of this network, and interface it with Remos [11],
a network performance monitoring tool. Based on Remos’ runtime statistics and on a computational model
of our algorithm, we will compute estimates for the execution time of multigrain and fine grain (with a block
size of 1) and choose the smaller one dynamically. We plan to report preliminary results in the camera ready
copy.
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