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PRIMME: PRECONDITIONED ITERATIVE MULTIMETHOD EIGENSOLVE R:
METHODS AND SOFTWARE DESCRIPTION *

ANDREAS STATHOPOULOS' AND JAMES R. MCCOMBS'

Abstract. This paper describes the PRIMME software package for themgplarge, sparse Hermitian and real
symmetric eigenvalue problems. The difficulty and impartaof these problems have increased over the years,
necessitating the use of preconditioning and near opyntalhverging iterative methods. On the other hand, the
complexity of tuning or even using such methods has kept thatside the reach of many users. Responding to this
problem, our goal was to develop a general purpose softwatee¢quires minimal or no tuning, yet it provides the
best possible robustness and efficiency. PRIMME is a conepisge package that brings state-of-the-art methods
from “bleeding edge” to production, with a flexible, yet higlusable interface. We review the theory that gives
rise to the near optimal methods GD+k and JDQMR, and prekentdrious algorithms that constitute the basis of
PRIMME. We also describe the software implementation riate, and provide some sample experimental results.

1. Introduction. PRIMME, or PReconditioned Iterative Multi-Method Eigehsar, is
a software package for the solution of large, sparse Hamind real symmetric eigenvalue
problems. We view PRIMME as a significant step toward an “stdal strength” eigenvalue
code for large, difficult eigenproblems, where it is not plolesto factorize the matrix, and
users can only apply the matrix operator, and possibly aogmaitioning operator, on vectors.

If the matrix can be factorized, the shift-invert Lanczosledy Grimes, Lewis, and
Simon has set a high standard for robustness [31]. Howeven i factorizable cases,
the factorization and back-substitutions can be very esipenand a Lanczos method or a
method that uses preconditioning can be more efficient,céalpefor extreme eigenvalues.
On the other end, if only matrix-vector multiplication isaéable, the software ARPACK
by Lehoucq, Sorensen, and Yang has set the standard for gadidyccode that is easy
to use with very little parameter tuning [44]. Yet, the ingilly restarted Lanczos method
[64], on which ARPACK is based, does not converge optimalhyd it cannot directly use
preconditioning, which is required for very difficult praphs. The range of problems targeted
by PRIMME is between the easy ones and the ones that must,aantecfactorized. As
problem sizes in applications continue to grow, so does RNREd target range.

Based on both research and integration, PRIMME’s desiglogtphy is

1. to provide preconditioned eigenvalue methods that agreveear optimally under
limited memory
. to provide the maximum robustness possible without médtorization,
. to provide flexibility in mixing and matching among mostm@ntly known features,
. to achieve efficiency at all architectural levels, and
. to achieve all the above with a friendly user interfacd tleguires no parameter
setting from end-users, but allows full experimentatiorelagerts.

This paper is organized as follows: In section 2 we desctibetoblem, its importance and
difficulty, and discuss the advantages and shortcomingthef @urrent eigenvalue software.
In section 3 we present the main algorithmic framework folWRE, including the two near
optimal methods, GD+k and JIDQMR. We also discuss how a hasgthef algorithms can be
parameterized within this framework. In section 4 we dischisw the PRIMME software
meets its design goals. In section 5 we present sample cisapamith other state-of-the-
art software. We conclude in section 6 with some discussiooregoing work and future
extensions to PRIMME.
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PRIMME implements a multitude of features, algorithmshteques, and heuristics that
have emerged in research papers and software by this andgrthgys over many years.
When their description is beyond the scope of this paperefes to the appropriate literature.

2. A difficult problem and current approaches. Given a real symmetric, or com-
plex Hermitian matrixA of dimensionN, we consider the problem of seekimgmEvals
smallest, largest or interior eigenvalugs and their corresponding eigenvectoss i =
1,...,numEvals The numerical solution of this problem whatis large and sparse is one of
the most computationally intensive tasks in a variety ofliappons.

One such application is structural engineering, whereefiiement models are used to
perform vibrational and buckling analysis [31]. Electranatics is another area that depends
on the solution of large, real symmetric eigenproblems [@g, A particular demanding
application comes from lattice Quantum Chromodynamics@here the pseudo-inverse
of a very large Hermitian operator is approximated on thesp# several of its smallest
eigenpairs [22]. Recently, electronic structure appiocet from atomic scale physics [20]
to molecular scale materials science [11] and nanoteclygphdth symmetric and hermitian
eigenproblems at their core, have been rivaling QCD as {hsupercomputer cycle user.

The challenge is twofold; First, the matrix si2¢, in these applications is routinely more
than a million, while an order of a billion has also been tfte4]. Second, many applications,
especially in electronic structure calculations, reqtire computation of hundreds or even
thousands of extreme eigenpairs. Often the number of redj@igenpairsnumEvals is
described as a small percentage of the problem size. In sas#scorthogonalization of
numEvalsvectors, arO(numEvalsN) task, become®(N?3), making the scaling to larger
problem sizes practically infeasible.

Iterative methods are the only means of addressing thege papblems. Yet, iterative
methods may converge slowly, especially as the problengsaes. As with linear systems,
preconditioning can be used to speed up convergence, lmretiwl understanding of how it
should be used in eigenvalue methods has only started toerater the last decade [19, 40,
62]. This probably explains the noticeable scarcity of high dgyatjeneral purpose software
for preconditioned eigensolver8eyond challenges in execution time, eigenvalue iterative
methods must also store the iteration vectors for compeiggnvector approximations. With
slow convergence, the storage demands of these applisataambe staggering. Recently,
iterative methods have been developed [62, 69, 41, 61, 5B&6that can use effectively
the large arsenal of preconditioners for linear systemd, amverge near optimally to an
eigenpair under limited memory requirements.

2.1. In search of (near) optimal methods.The quest for optimality under limited
memory is a natural one. In symmetric linear systems, Krytmthods such as Conjugate
Gradient (CG) achieve optimal convergence in exact arittintierough a three term recur-
rence. For eigenvalue problems, the Lanczos method campedte optimal space through
a three term recurrence, but the vectors must be storedcomputed. With precondition-
ing even these Lanczos properties do not hold. Restarttciinigues can be employed so
that approximations are obtained from a search space dtlinsize, see for example thick
restarting [71] and its theoretically equivalent impli@starting [64]. However this is at the
expense of convergence. As we show later, these techniqueded with locally optimal
restarting can restore near optimal convergence whenrgeekie eigenpair.

When seeking many eigenpairs, it is an open question whefttienality can be achieved
under limited memory. If one eigenvalue is known exactlg,¢brresponding eigenvector can
be obtained optimally through a CG iteration [41, 66]nifmEvalseigenvalues are known,
one may think that the analogue optimality is to imE valsseparate CG iterations. This is
the approach taken by most limited memory, preconditioigehesolvers for smallumEvals
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values. Yet, itis clearly suboptimal, because a methodstioags all the CG iterates from each
run would converge in much fewer iterations. For examplesmtihe number of CG iterations
is O(N), the former approach tak€&numEvals N, while an unrestarted Lanczos would take
no more tharN.

In our research, and in the development of PRIMME, we havaded on methods that
do not allow their memory requirements to grow unboundedth\Wreconditioning this is
the only realistic alternative. However, even without reditioning, the attractive Lanczos
method that does not store the iteration vectors has seserabacks. To avoid spurious
eigenvalues, expensive selective and/or partial orthaligations are required [56]. Without
reorthogonalizations, as in the method of Cullum and Wdgldoy [13], the number of itera-
tions may grow much larger than the optimal, because theaddtbeps recomputing copies
of already converged eigenvalues. For highly ill condiéidproblems, the method can be too
slow. Moreover, the method needs to store a tridiagonalimetrsize equal to the number
of iterations, which can be in the order of tens of thousaadsd, solve fomumE valsof its
eigenpairs. Finally, to obtain multiple eigenvalues, &ing or a block implementation of
Lanczos must be implemented (see [12, 28], and [32] for ekterbibliography on block
methods).

2.2. Current state of Hermitian eigenvalue software.lterative methods have gained
notoriety as very difficult to include in general purposetsafe. Dependence on special,
user-defined data structures has long been resolved byaheastlization of the basic linear
algebra operations (through BLAS and LAPACK [43, 4]), andrenfiexible programming
languages (e.g., C, C++) and interfaces. What remains, yewis that different problems
may require different iterative solvers for robustness/andfficiency, and often this is not
known a-priori. Dependence on the preconditioner comgienatters further. Expert opin-
ion is usually needed to tune the choice of methods and theanpeters. This has led a group
of experts to produce the popular series of “Templates ®stiution of linear systems” [9],
and “eigenvalue problems” [7]. Since then, the consensub®mnelative merits of methods
may not have changed for symmetric linear systems, but treecrsymmetric eigenproblems
has seen some remarkable progress [66, 68, 53, 1, 52, 26) 461,36, 74].

This recent progress is reflected in the large number of clmtesymmetric eigenprob-
lems. In their most recent survey of eigenvalue codes, [38fnandez et al. list 20 eigen-
value codes that have become available since the year 199i@teEn of these are for sym-
metric eigenproblems. The good theoretical understandiripe Lanczos method is also
reflected in this survey, with eight codes implementingaasiversions of Lanczos (block,
thick restarted, indefinite, etc). In this paper we do nothfer discuss these Lanczos codes,
because they are outside the scope of PRIMME's target atiglits.

In the above survey, there are 12 codes that implement pdéamred eigensolver meth-
ods. We note that only one such code was publicly availalfleréd 998; the Davidson code
that one of the authors (Stathopoulos) developed in 1994 8@ do not consider this code
further as it is superseded by PRIMME. From the rest 11 cdel€dFP [76] and JDCG [52]
are written in Matlab, and although their methods are ofregk their implementation does
not provide the robustness, flexibility, and efficiency rieed for general purpose software.
Moreover, PySparse is a Python environment built on top ®JIbBSYM code [25], so we
only consider the underlying JDBSYM code. Finally, we dosider the SLEPc library, even
though it does not currently support preconditioning, liseathe external software packages
that it interfaces with (including PRIMME) support it. Tiedore, besides PRIMME, the fol-
lowing 7 preconditioned symmetric eigensolver packagesarrently available:

ANASAZI (2005, [73]), BLOPEX (2004, [38]), JDBSYM (1999, §), MPB (2003, [37]),
PDACG (2000, [24]), SLEPc (2006, [34]), SPAM (2000, [60]).
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ANASAZI is a well engineered package, with several featiihes enhance robustness
and efficiency. ANASAZI implements a version of the LOBPCGthual [41] and a block
Davidson method (what we refer to as Generalized Davidsorgdlving standard and gen-
eralized real symmetric and Hermitian eigenvalue problefie reason for block methods
is twofold: First, as an increased robustness measures Biagidson methods have no prob-
lems identifying multiple eigenvalues [47]. Second, toetaklvantage of the increased cache
locality in block matrix-vector, preconditioning, and BlSAoperations. Although the total
number of matrix-vector multiplications increases witngker block sizes, for appropriate
block sizes this effect is usually balanced by better datality [5]. ANASAZI is part of the
Trilinos framework that includes highly optimized linedgabra operations, although some
users may define their own matrix-multivector and precooiér-multivector operations.

ANASAZI is still under development, but currently it doesticlude the near optimal
GD+k or JDQMR methods. As we showed in [66, 68, 69] the diffiee2in convergence
over LOBPCG and (Generalized) Davidson can be substaiitihle preconditioner is not
powerful enough to result in convergence in only a few iiers. Also, despite the very
high quality implementation of ANASAZI, some users may blecent to use it because it is
tightly coupled with the much larger Trilinos framework &tglC++ object classes. For such
users, PRIMME offers the alternative of a stand-alone aesfeat includes most ANASAZI
features, while adding a choice of several near optimal atsth

BLOPEX is a software that implements the LOBPCG method férisg standard and
generalized real symmetric eigenproblems. Hermitianrgigeblems are not supported yet.
The code is written in C, and can be used both as stand-alahesexternal package in
PETSc and Hypre. The power of LOBPCG is that it combines teedanvergence of the
three term locally optimal recurrence with a simple alduritthat requires no parameter
tuning other than the block size [41, 69]. BLOPEX does notlemgnt any other methods,
and it cannot be used to find interior eigenpairs directlgoAlf the block size needs to be less
thannumEvalseither for memory reasons or efficiency, the user has todmpht locking as
awrapper to BLOPEX. Finally, a robustness issue may arig@smparticular implementation
of LOBPCG, because it does not maintain an orthonormal lhaisibe search space [35, 68].

JDBSYM is a stand-alone software written in C that implersenblock version of the
Jacobi-Davidson (JD) method for solving standard and gdized real symmetric eigen-
problems. Hermitian eigenproblems and parallelism aresnpported. Before PRIMME,
JDBSYM was the only JD implementation tailored to symmepricblems. JDBSYM finds
eigenvalues near a shift therefore it provides MINRES and SYMMLQ for solving the in-
definite correction equation in JD, but also QMRs for usirdgiiinite preconditioners. On the
other hand, extreme eigenvalues are also found closetaich should be selected care-
fully to avoid misconvergence to interior eigenvalues. 3YB/ is implemented efficiently
but, as a classical Jacobi-Davidson method, its convesgéepends on the interplay of in-
ner and outer iterations which can be controlled througksgyusually problem dependent,
parameters, and a choice of three alternative correctiaatems. Nearly optimal dynamic
stopping criteria as in [52] are not implemented.

MPB includes implementations of the original Davidson noetland a Preconditioned
CG minimization of the Rayleigh quotient for solving stardieeal symmetric or Hermitian
eigenvalue problems. These eigenvalue codes are actaallgfdMPB, which is an Ab-Initio
program for computing photonic band structures. Therefaoene of their functionality is
tightly coupled with the application. MPB is written in C aadpports parallelism.

PDACG is a parallel, Fortran 77 implementation of the dadlataccelerated CG method
for optimizing the Rayleigh Quotient of standard and geliezd real symmetric eigenvalue
problems. Hermitian eigenproblems are not supported. Tétbad is similar to other min-
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imization approaches, e.g., in MPB, and uses locking to fiedenthan one eigenvalues. It
requires no parameter setting, but on the other hand it miigt functionality. For example,
it is built around a provided parallel sparse matrix-vectaidtiplication routine with preset
data structure, which depending on the user’s needs, it majther useful or difficult to use.

SLEPc s a library rather than an implementation of a singéhmd. Itis written in C and
can be considered an extension to the popular PETSc to8]kit his coupling with the larger
PETSc package allows SLEPCc to inherit a variety of tuned stattures, multivector opera-
tions, matrix-vector multiplication and preconditioniogerators, but it cannot run as stand-
alone with applications that do not use PETSc. SLEPc pravi@lementations of several
basic and some more advanced methods for solving standadigkeaeralized real symmetric
and Hermitian eigenvalue problems. An interesting anduldefiture is SLEPc’s interface
to several external packages, specifically: ARPACK, BLZRACRLAN, BLOPEX, and
PRIMME. Currently, SLEPc does not support preconditiorandinding interior eigenval-
ues, even if these functionalities are available in the dgihg package (e.g., PRIMME).
When these features are included, SLEPc can be a powertinétefor experimenting with
various eigenvalue software packages.

SPAM is a Fortran 90 code that solves standard, real synuratgenvalue problems.
The underlying basic method is Davidson (Generalized Bmn, but the interesting algo-
rithmic feature is that it solves the given problem througdegquence of hierarchically sim-
pler problems. Simpler could mean sparser, coarser gnasljex rank, etc. This algorithm,
which is reminiscent of multigrid, can be very effective fmrtain problems, provided the
user can provide the operator functions for the sequenciengiier problems. When this is
not possible, the method reduces to simple GeneralizediBeni

In conclusion, we note that from the above codes the onesctme closest to a ro-
bust, efficient, general purpose code are the ANASAZI andRBLEYet, neither of the two
implement the methods we have shown to be nearly optimahaitider implements a Jacobi-
Davidson variant (although JD versions from PRIMME can bedusirough SLEPc). More-
over, SLEPc does not yet support preconditioning. Our gotlis software project has been
to bring state-of-the-art methods from “bleeding edge”roduction.

3. Developing robust, near optimal methods and software.

3.1. Newton approachesWe can view the eigenvalue problem as a constrained mini-
mization problem, for minimizing the Rayleigh quotiedtAx on the unit sphere, or equiv-
alently minimizingx" Ax/x"x [19]. For many eigenpairs, the same formulation applies for
minimizing the trace of a block of vectors [59], working witiimE valsdimensional spaces
[2]. As we discussed in [66, 68], most eigenmethods can lepntted through the inex-
act Newton viewpoint or the quasi-Newton viewpoint. Thédaing includes excerpts from
these two papers.

3.1.1. The inexact Newton approach.The exact Newton method for eigenproblems
can be applied on the Grassmann manifold (to enforce nazatan of the eigenvectors),
which is equivalent to classical Rayleigh Quotient IteatfRQI) [19]. It is well known that
when using an inner iterative method to solve the linearesysat every step, converging
beyond some level of accuracy, increases the overall nuaflpeatrix vector multiplications,
and hence time. Inexact Newton methods attempt to balarme gunvergence of the outer
Newton method with an inexact solution of the Hessian equatHowever, when the linear
system in RQI is solved to lower accuracy, RQI ceases to beaqut to inexact Newton, and
it may not converge. This has attracted a lot of attentiohénliterature [57, 42, 63, 29, 61].

A more appropriate representative of the inexact Newtorimiation for the eigenvalue
problem is the Jacobi-Davidson method [62]. Given an apiprate eigenvectan™ and its
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Ritz value8™, the JD method obtains an approximation to the eigenveator by solving
approximately the correction equation:

(3.1) (1 —uMu™Ty A1) (1 —uMyMTyem — (M — oM y(m _ Ay(m,

wheren is a shift close to the wanted eigenvalue. The next Newtoatitds theru(™?1) =
uM 4+ t(M_ There are two important differences from RQI. First, theymoinverse of the
Hessian is considered to avoid the singularity when A, and also to avoid yielding back
t(M = u(M when the equation is solved accurately with= 6™ . The latter problem could
cause stagnation in the classical or the Generalized Dawvidsethods [15, 49, 70]. The
second difference from RQI is that JD applies the pseudosevef the Hessian to the resid-
ual, which is the gradient of the Rayleigh quotient, nout®. Some theoretical differences
between Newton variants are discussed in [1]. Here, we fooukeir computational ramifi-
cations.

The Generalized Davidson (GD) method obtains the nextées(™ = K ~1r(™ where
the preconditionek approximate$A—nl). AlthoughK can be thought of as an approximate
solution to eq. (3.1), we follow prevalent nomenclaturel egfer to GD as the application of
a given preconditioner to the residual.

JD s typically used with subspace acceleration, whereéhnates(™ are accumulated in
a search space from which eigenvector approximations &@oted through Rayleigh-Ritz or
some other projection technique [55, 48, 36]. This can bequéarly beneficial, especially
when looking for more than one eigenpair. Note, however Without inner iterations,
tM = —r(M_ and JD becomes subspace accelerated steepest descemtjvateatly the
Lanczos method. With restarting and no inner iterationsisiathematically equivalent to
Implicitly Restarted Lanczos.

The challenge in JD is to identify the optimal accuracy tws@ach correction iteration.
In [52], Notay proposed a dynamic stopping criterion basednonitoring the growing dis-
parity in convergence rates between the eigenvalue rdsidddinear system residual of CG.
The norm of the eigenresidual was monitored inexpensivetyugh a scalar recurrence. In
[66], we proposed JDQMR that extends JDCG by using symm@ti& (QMRs) [23] as the
inner method. The advantages are:

e the smooth convergence of QMRs allows for a set of robust Hiuleat stopping
criteria for the inner iteration.
e it can handle indefinite correction equations. This is int@arwhen seeking interior
or a large number of eigenvalues.
e QMRs, unlike MINRES, can use indefinite preconditionersichtare often needed
for interior eigenproblems.
We also argued that JDQMR cannot converge more than thres stower than the optimal
method, and usually it is significantly less than two timesvar. Coupled with the very low
QMRs costs, JDQMR has proved one the fastest and most roletisvds fomumEvals= 1.

When seeking many eigenvalues, the Newton method can bedmpl thenumEvals
dimensional Grassman manifold to compute directly theriavaa subspace (see [59] and [2]
for a more recent review). Practically, however, the GrassRQI approach proposed in [2]
is simply a block JD method [68]. The open computational aess how to solveaumEvals
linear systems in block JD most efficiently, and whether ® aiblock method at all. Block
methods that solve all the correction equations simultasigado not consistently improve
the overall runtime [26]. In our experience with block JDQMNRJ block JDBSYM, the sin-
gle vector versions outperform their block counterparth o execution time and matvecs.
Unlike JDBSYM, however, the block JIDQMR does not increagaificantly the number of
matvecs over the single vector version. This is because tite interior eigenvalues in the
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block converge slower, and therefore their correction gqua need to be solved less accu-
rately than the more extreme ones. The dynamic stoppingrietiof JDQMR realize this
early, saving a lot of unnecessary matvecs.

Yet, a block size larger than one may be needed for robustS8esgle vector JD methods
may converge to the required eigenvalues out of order, argldie prone to misconvergence.
Moreover, in some occasions, a small block size was reqforelDBSYM to converge in the
presence of exact multiplicities. JDQMR did not exhibitstiproblem, but it may converge
out of order. The alternatives are to ask for a few more eiglel®s than needed, or to use a
small block size.

With largenumEvals however, the near optimal convergence of the JDQMR has to be
repeatechumEvalgimes; much like theumEvalsndependent CGs we mentioned in section
2.1. In this case, the role of a larger subspace acceleliagtiorobtain better approximations
for nearby eigenpairs while JD converges to the targeteshgigir. Although the convergence
rate of QMR cannot improve further, increasing the basis gizes increasingly better initial
guesses for the eigenpairs to be targeted next. For pra@asons, we avoid this continuum
of choices and focus only on constant, limited memory bazsess

3.1.2. The quasi-Newton approachAn alternative to Newton is the use of the non-
linear Conjugate Gradient (NLCG) method on the Grassmanifoldnwhich has given
rise to many NLCG eigenmethod variants [19], including MRRI #DACG. However, it
is natural to consider a method that minimizes the Rayleigbtignt on the whole space

{u““‘l), u(m),r(m)} . instead of only along one search direction. The method:

(3.2) ulmb) — RayleighRit%{u(m‘”,u<m>,r(m)}) ,m>1,

is often called locally optimal Conjugate Gradient (LOCGB] 39], and seems to consis-
tently outperform other NLCG type methods. For numericabgity, the basis can be kept
orthonormal, o™ — t(Mu(™-1) can be used instead of ™7, for some weight(™. The
latter, when used with multivectots™ , r (™ is the LOBPCG method [41].

Because of the non-linearity of the eigenproblem, neithe€®& nor LOBPCG can be
optimal. Quasi-Newton methods use the NLCG vector itermtesnstruct incrementally an
approximation to the Hessian, and therefore they almosty@wonverge faster than NLCG
[27]. In the context of eigenvalue problems, if all the itesaof NLCG or LOBPCG are
considered, certain forms of quasi-Newton methods arevelguit to unrestarted Lanczos.
With thick or implicit restarting, however, IRL loses theagle important directiony(™ 1)
that offers the excellent convergence to NLCG and LOBPC(rdfore, the appropriate way
to restart methods such as JD, GD and even Lanczos, would belispace acceleration of
the LOBPCG recurrence. This was first observed in [50] foiDagidson method, although
under a different viewpoint. In [69] we offered a theoreticstification of local optimality
both for the Rayleigh quotient and the Ritz vector. We alsavigled an efficient implemen-
tation that combined this technique with thick restarting the GD. In [66], we noted the
connection of our method, which we call GD+k, to quasi-Newand in particular to the
limited memory BFGS method [51].

GD(Mmin, Mmay+k uses a basis of maximum simgnax. Whenmyax is reached, we
compute thempi, smallest (or closest to a target value) Ritz values and Rigir vectors,

ui(m),i =1, mmin, and also k of the corresponding Ritz vectors from stepl.: ui(m_l),i =1k
An orthonormal basis for this set ofiyin + k vectors, which can be computed in negligible
time, becomes the restarted basis. A JD+k implementatigieigical. If the GD/JD method

is block, with block sizeb, it is advisable to keep & b, to maintain good convergence for
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TABLE 3.1
The meaning of the parameters used in Algorithms 3.1-3.4

numEvals the number of required eigenvalues

Mmax the maximum basis size for

Mmin the minimum restart size of the ba%is

b the maximum block size

k the number of vectors from the previous step retained ¢dntes
m the current basis size fof

I the number of locked eigenpairs
numConv the number of vectors converged in the current block

q the number of vectors converged since last restart

Oq the number of initial guesses replacing locked eigenvsctor
\% the basigvo,v1,...,vm| for the search space

W W = AV array to save an extra matvec

X on input any initial guesses, on output the eigenvectors

all block vectors. Note also that the special case of blocKlBb)+b is mathematically
equivalent to LOBPCG with the same block size.

As we showed in [66], convergence of the GD+k is appreciahdidr than LOBPCG
for one eigenpair, even with small subspace accelerasind,often indistinguishable from
the optimal method.For largenumEvalsthe convergence gains over LOBPCG are even
larger [68]. Yet, higher iteration costs than JDQMR makedisl competitive for very sparse
operators. When seeking many eigenvalues, we have founkl siteeb = 1 to always provide
the smallest number of matrix-vector multiplications (gmdconditioning operations), even
with a small subspace acceleration. Apparently, convergieman eigenvalue is so close to
optimal that the synergy from other block vectors cannotromp the subspace acceleration
benefits. This may also explain why slower methods tend tefitanore from a larger block
size. Nevertheless, for both robustness and data localityons, general purpose software
must implement methods with a block option.

3.2. The GD+k and the JDQMR algorithms in the PRIMME framework. In [66]
we argued that most eigenvalue methods can be implemeriteglthe basic iterative frame-
work of GD. Algorithm 3.1 depicts a version of the block GD+4garithm as implemented in
PRIMME. For concise notation we use the abbreviations ofeTaH instead of the parameter
names appearing in the software. The GR, Mmax) + K algorithm finds eigenpaird\;, x;)
with smallest or largest eigenvalue, or closest to a set @f pgovided shifts. Vectors with-
out subscripts are considered multivectors of variablelbkize between 1 anlol Vectors
with subscripts are single vectors in the designated looaidf their array. The transposition
symbol” denotes Hermitian transpose.

Although PRIMME can be used both with and without lockinggétithm 3.1 presents
only the locking option to avoid further complicated indexiand book-keeping. PRIMME
includes a host of other features and handling of specias;aghich are impractical to de-
scribe in one algorithm. Examples include special caseddgis size and block size, an
algorithm that identifies Ritz pairs that although they aatrconverge to full accuracy be-
cause of locking, they are practically converged (see [@®]algorithm that repeats steps (4)
to (20) until convergence is verified for all required pased [47]), the handling of multiple
user-defined shifts, and many others. Section 3.3 outlimee of them.

Algorithms 3.2—-3.4 describe the PRIMME implementation lalee important compo-
nents of GD+k: convegence checking and forming the targetihlrestarting, and locking
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ALGORITHM 3.1. The Generalized Davidsonfi, Mmax)+k algorithm
[* Initialization */
(1) Initial guesses are in X. Let B min(Mmin, Siz€X,2)), Vo:m = Xom
Build (mmin— m) Lanczos vectors to get basisV|vo, ..., Vimy—1]
(2) SetW=AV,H=WTV, m=nmv=mypn, q=1=0
(3) Compute eigendecomposition=HSOST with 89,0, ...,6y,_1 sorted
according to user defined criteria (smallest, largest, fitg
/* Repeat until convergence or max number of matvecs */
(4) while (I < numEvalsand nmv< maxnummatvec$
[* Repeat until basis reaches max size or it spans the whaleespy
(5) while (m< Mpaxandm< N—1)

(6) Reset b, if needed, so thatin < Mmax
(7) uM =Vgyp_1, 0™ = diag(Bop-1),

WM =Wy 1, 1M = w(m _ ymem
(8) Check convergence and determine target block ASeeRITHM 3.2
9 if (I +numConv> numEvals$, break
(10) Precondition the block of residualg™ = Preq(r(M)
(11) Orthonormalize(™ among themselves and againg$,—1 andxgq_1
(12) UpdatevVmmib—1 = t™, Wrmib—1 = AVmmeb—1, NMV= nmv+b
(13) Update Hmmib 1= V] Wymip_1 fori=0,...,m+b—1
(14) Remember Ritz vector coefficienf s=s, i =0,...,maxb,k) — 1
(15) m=m+b
(16) Compute eigendecompositionsHSOS' with 6g,0,....,6,_1 sorted

according to user defined criteria (smallest, largest, iitg
(17)  endwhile
(18) Restart the basis and reset variables. 8260ORITHM 3.3
(29) Lock the g flagged Ritz pairs inkoand X. SeALGORITHM 3.4
(20) end while

ALGORITHM 3.2. Check convergence and determine target block
(1) repeat
(2) numConv = Number of converged vectors in blo@k
consider also practically converged vectors ($e650RITHM 3.6)
3) d= g+ nhumConv. Flag these Ritz vectors as converged
4) Find the next numConv unconverged Ritz veonéf?% and their
residualsrfm) to replace the numConv ones in the block
(5) Swap converged vectors after the block to maintain blochlity
(6) until (b unconverged residuals are in the blamknot enough available)
(7) if (notenough unconverged residuals) reduce block size

converged eigenpairs. The restart procedure in parti¢digorithm 3.3) combines thick
(or dynamic thick) restarting [71], with the +k locally optal restarting (steps (7) to (16)).
Note that steps (7) to (12) apply on vectors of simgax, and therefore the cost of the
GD(mmin, Mmax+k implementationis the same as that of the thick restart& (mmin+k,
Mmax). IN fact, GD+k is typically less expensive per iteratioechuse k=1 ok < b is not
only sufficient [69, 66, 68], but also obviates the use oféargnin.

What characterizes Algorithm 3.1 is its flexibility, It alis for complete freedom on
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(1)
)

®3)
(4)
(5)
(6)

()

(8)
(9)

ALGORITHM 3.3. The Restart procedure

(10) Set% [SOX(O)V"vS\X(rTh—lﬁ %Ida"-; Ifjl; SX]

(11) Se® = [Bny0); - - - » Onxmy—1)> 90; -+, -1, Bix]

(12) m=my+k+q

13) vi=Vs,wj=Wg,i=0,....m—1

(14) H=0. Then =6;,fori=0:my—landi=my+k: m—1
(15) H(my :my+k—1, my:my+k—1) = Hsup

(16) s=Im. Then$my:my+k—1, my:my+k—-1)=Y

Decide the order in which to keep Ritz vectors (dynaimicitrestarting)
Let(nx) the indices of unflagged Ritz vectors in the desired order
Let(q,ix) the number and indices of flagged converged Ritz vectors
Let g the number of remaining initial guesses in X

[* Steps 3-6 guarantee i vectors are in the basis after locking */

g = min(q,g)

if (gq > Mmin) My = Max0, Mmin— Q)

else My = Max(0, Mmin — )

Consider the first gnunconverged AND the g converged Ritz vectors

These correspond to coefficientvectqq(@, ... ,snxmh,l)] and g

[* Steps 7-16 include the coefficients of the previous stefore*/
Orthonormalize the k Ritz vector coefficients from thevjmus step: %
among themselves, agaifsto); - - -, Sim,~1)], and againstig
Compute kp= s”9TH! (k x k submatrix)

Compute eigendecomposition of =YY T

11

(1)
(2)
3)
(4)
(5)
(6)
(7)
(8)
(9)

ALGORITHM 3.4.The Locking procedure

/* Called immediately after restart. Flagged vectors at #red of V */
Recompute residuats = w; — v;6;, i = m— q: m— 1 of flagged vectors
Set(q,ix) to the number and index of flagged vectors remaining conde

Flagged vectors that became unconverged stay in thes basi
)\I:I+qfl = ei(;n)

0y = min(g,9), update remaining initial guesses=gg — gq

Swap the nextgnitial guesses ¥ _.q,-1 with the convergeslyo.g, 1
Lock the rest X gq:14q-1 = Vix(gq:q-1)

M= m-—(q+gq

=149

(10) Orthonormalize new guesses among themselves andsayaamdxg_1
(11) Update W—ggm-1 = AVin—gq:m—1, NMV= NMV+ gq
(13) Compute eigendecomposition=HSOS' with 89,05, ...,6m_1 sorted

according to user defined criteria (smallest, largest, iittg

(14) Reset Flags

rge

how to expand the space, how to extract approximations ftpanid how to restart it. In
PRIMME, all these choices are available by setting certairameters. The price for this
flexibility is that, at every step, it needs to compute eigsiduals, orthogonalize new vectors
against all current ones in the bagisand maintain a work array faW = AV.
Step (10) is the one differentiating between most eigenatsthWhen the algorithm re-
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turnst™ = r(M (and with k=0), it is equivalent to an expensive IRL implersion. How-
ever, if the matrix vector operation is expensive, the ngammal convergence of GD+k
could be preferable over IRL. When the preconditioner idiagmirectly on the residual we
have the classical GD and GD+k methods. By considering wadltors, the algorithm yields
the equivalents of block (implicitly restarted) Lanczos $6], subspace iteration (without
preconditioning) [10], and preconditioned subspace fi@ng7]. We also derive the clas-
sical block GD and the block GD+k methods [45, 67, 26, 69]. @ftipular interest is
the GDp,3b)+b, which is a humerically stable implementation of the LOBR@&intain-
ing full orthogonality of the basis for only 5% more floatingipt operations per iteration
[69, 41, 66, 35]. In additiort) can be chosen independently fremmEvalsto obtain lock-
ing implementations of LOBPCG. Variations such as Ggb)+b are also plausible.

Step (10) can also return a JD correction vector. Withougiriterations, a precondi-
tionerK can be inverted orthogonally to the spage- [X,u““)] and applied to the residual.
The pseudoinverse of such a preconditioner can be written as

3.3)  ((1-QQNHK(I-QQ")" = (I -KQQ'K™Q)*Q"K (I —-QQ")
(3.4) =K1 -QQ'K'QQ"K™)(1 - QQ").

The above is known as Olsen’s method [54]. “Robust shiftipd@] can be used as an ap-
proximation to Olsen’s method to avoid the computation ef pseudoinverse. This applies
the preconditioner on(™ + 36 u(™, whered6 is an approximation to the eigenvalue error.

When the preconditioner (3.4) is used in an iterative mettrodg. (3.1), we obtain the
classical inner-outer JD variants. In [21, 62, 7] it is shawat JD methods can be imple-
mented with one projection witQ per iteration. If the inner iteration solves eq. (3.1) accu-
rately, we obtain a subspace accelerated Inverse Itet@tioagivenn) or RQI (forn = 8(M),
The true flexibility of JD is that it converges even when eql)3s solved approximately.

Let A,w<m> denote the projected matrix operator in the correction 8d.){ andK ;m)
the projected preconditioner. Our JDQMR algorithm usesGba-k as the underlying outer
method, and at step (10) calls the symmetric, right pre¢amdid QMR withAmum), Kym

and right hand side-r (™. Algorithm 3.5 shows our QMRs algorithm. The scalar recoces
for monitoring the eigenvalue residual, and the dynamipsittg criteria are shown at steps
numbered with decimal points (see [66] for detailed ana)ysi

3.3. Other special techniques in PRIMME. The above state-of-the-art algorithms and
the myriad of their combinations are complemented by séethar techniques that provide
additional efficiency and robustness.

3.3.1. Avoiding the JD oblique projectors. For largenumEvals the classical JD re-
quires significant extra storage f&r1Q to avoid doubling the number of preconditioning
operations. In [68] we have shown that the pseudoinvergd (@th only u™, not X, is
sufficient. Intuitively, projecting outi™ from a very accurate preconditioner helps avoid
the classical Davidson problems where the correction issimompletely in the direction of
u(™ [53]. However, projecting ouX does not serve the same purpose. Instead, one would
hope that it produces a better conditioned correction éguaOur analysis in [68] showed
that usually there is no significant difference between thediion numbers, and often the
correction equation without the pseudoinverse is better!

Avoiding the pseudoinverse wil yields significant storage savings, effectively halving
the memory required by the JD method for largenEvals PRIMME follows this strategy
as a default, but it also implements all possible combimataf different projector and pseu-
doinverse strategies, for bati™ andX. Assume that the JD projectors i are included
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ALGORITHM 3.5. Symmetric QMR for IDQMR with adaptive stopping criteria

Input: Ahu ) Kym, =1 (M, maxiter
Output:
@) to—0,6o—0,ro— —r(™,do =K % ro

2 w=lroll,© =0,po=r{do
(20) Bo:Aozr():CDo:LPo:O
3) if (maxiter: 0), to = do, return
4) for k=1,...,maxiter

(%) w=A, um ydi—1

(6) Ok_1= dk W, if (ok—1=0), return
Prk—1

) Ok-1= g1

8 k= rk-1— Ogk_1W

()] Ok = glk! ,Ck = m,gk = Ok—10kCk

(10) O = (Ckek_l)ékfl-i-( Ok—1)dk—1

(11) ty = ti—1+ O

(12) if (pk—1=0), return

(12.0)  yc=cOZ ;, & =cRak_1, f =1+ [t?
(12.1) We=V(WPe—1+ Pr_1)

(12.2) D =VP 1 +E20k 1

(12.3)  Tx=Tk 1+2W+ B

(12.4) D= VkDk-1— EkPr-1

(12.5) Bk = Br_1 + Ak

(12.6) p= ge<m> N+ 2B+ rk) /f

2.7 oMY= n+p

(12.8)  p=(8" —n+By?/f - p?

(12.9) ™Y = /q2/f 1 py

(12.10) if (™" not real), ™ = | /g2/f
(12.11) if (gk < r (m1) max(o 99/T, \/m or ( e (m+1) e(m+1))

or (rk s 0.1rg) or ( gk < €inn ) OF (rl(( Y sinn))
then return the correctiorty.

(13) w =KL, pk = rw, B = 2

(14) dx = W+ Brdk_1

(15) end for

in the notation ofA andK. Define the orthogonal projectér= 1 — QQ, and for any matrix
B the skew projector:

(3.5) Ps = (1 -BQQ'BQ)'Q"),

and note that the correction equation preconditioned \@ith)(can be written as:

(3.6) PAP(PKP)* = PAR, 1K1

(3.7) =PAK P,

Table 3.2 summarizes several variants of a projected apdrased on whether we operate
with a projector on the left, and/or on the rightAfand whether we relax the requirement for
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TABLE 3.2
Projection alternatives to the classical Jacobi-Davidsmmrection equation (with right preconditioning). The
0/1 string characterizes whether there is a projection oa keft of A, on the right of A, and whether the right
projection is skew projection or not. Theoretically Jac@kvidson corresponds to (111) although it is typically
implemented as (011). All options are available in PRIMMEHhW100) the default for preconditioning, and (000)
the default for unpreconditioned cases.

(Left Skew Right) Operator | (Left Skew Right) Operator
111 PAR_1K™T 011 AR 1K1
101 PAPK~! 001 APK~1
100 PAK~1 000 AK1

a right skew projector, replacing it with. For example, the cas®AR 1K~ = PAK"!P[_,,
which is equivalent to notation (111), requires two prdfmts per QMR step. The case
AR(-1K™1 = AK™1P]_,, or equivalently (011), is the proposed implementation fey 4D
authors and includes the skew projection withOur default strategy with preconditioning is
the (100), or equivalentlPAK—1 where there is no skew projection, and only one, orthogonal
projection on the left.

A particular impressive outcome of the above flexibility @spible wherK has the same
eigenvectors aé (e.g., if K is a polynomial ofA, or simply K =1). In that case, all the
QMR iterates stay iiXX - invariant space, without any orthogonalization! Floaiiognt arith-
metic, and the fact thaX are converged tool, not to machine precision, will eventually
introduceX components that QMR will have to remove by additional iters. However,

a few additional iterations is a small price to pay for renmgvthe limiting scalability fac-
tor O(numEval$N) of orthogonalization. In our experience, unprecondittbd®QMR-000
achieves an almost linear scaling withmEvalsboth in convergence and in time, which is
as close to optimality as possible under limited memory.

3.3.2. Avoiding stagnation because of lockingLocking is a stable form of deflation,
where an eigenvectaris removed from the search space of an eigensolver and akkgubnt
vector operations are performed orthogonallx t&Vithout locking, converged eigenvectors
are kept in the search space and improve with time. Lockinglisprovides a better mech-
anism than non-locking for identifying eigenvalues that highly clustered or of very high
multiplicity [47].

However, locking introduces a subtle numerical, but nottiit@gpoint, problem. Specifi-
cally, alarge number of locked, approximate eigenvecthed,have converged tol residual
accuracy, may impede convergencedbaccuracy for some subsequent eigenvector. This
problem is described in our recent report [65]. Before tepbrt, occurrences of the problem
have been mainly anecdotal, and not well documented. Yatymeactitioners were well
aware of the problem, but had no good solution to it, othen teastop the method, perform
a subspace projection with all converged vectors, and thatirme with new initial guesses
and the already computed eigenvectors.

The problem is rather rare and it tends to surface when hdsdreeigenpairs are com-
puted, but its existence undermines the reliability of angnerical software that implements
locking. The resulting stagnation, which must be diffeieied from slow convergence, is
not an option in critical applications. In [65] we have prd®@l an algorithm that identifies
the problem when it occurs. Its variant as implemented inMMRE appears in Algorithm
3.6. The interesting theoretical result is that a “pradijceonverged” eigenvector can still
be locked, because enough of its missing components &esa that a single Rayleigh Ritz
projection at the end will produce a Ritz vector with residoaerm less than the required
tolerance.
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ALGORITHM 3.6. Identify a locking stagnation problem

| is the number of locked vectors

tol is the convergence tolerance for residual norms

mxTol is the maximum residual norm of any locked eigenvector
E is the guaranteed attainable tolerance without stagmatio

In step (2) of the Convergence proceduta GORITHM 3.2) include:
Set E= /I mxTol
if (Ir(M]| <tol) Flagu™ as converged to be lockeoreak
if (|Ir™|| <E)
Compute|rg|| = [|(1 = XXT)r™ ||, B = /[[r M2 —rq|]2
if (B > tol and ||rq|| < toIZ/(ZHr(m)H))
Flag u™ as “practically converged” to be locked
endif
endif

In step (2) of the the Locking Procedu®i(GORITHM 3.4) include:
Check if a recomputed norm remains “practically converged”
if (Jr™| > E) Unflagu(™. It has become unconverged again
elseif (|r™|| < tol) Locku™ as converged
else

Locku(™ as “practically converged”
Update mxTolk= maxmxTol [|r(™|[)
endif

3.3.3. Dynamic method selectionMany users commonly invoke the complexity of
tuning the parameters of the JD method as the main reasohdosing an alternative method.
The self-tuned inner-outer iteration of JDQMR has all bumoged such reasons. The other
important remaining choices of block size and basis size@mmon to most other methods.
More importantly, both GD+k and JDQMR display remarkableustness for a wide variety
of choices for these parameters.

One choice remains, however; the choice between GD+k and/lIRR@s we mentioned
before, GD+k converges almost identically to the optimatlrod, while JDQMR may repeat
some subspace information in the QMRs of different outgrssten our extensive experience,
JDQMR is usually between 1.1 and 1.7 times slower than opti®a the other hand, the cost
per iteration of the JDQMR s significantly lower than the QDane. The crossover point
between the two methods depends on the expense of the madrtke preconditioner oper-
ators, omumEvalsand on the slowdown of the JDQMR convergence relativelyDa-ka

In [68], besides an asymptotic comparative analysis, weigeal cost models for the
time complexity of GD+k and JDQMR as a function of certaingraeters and procedural
components, rather than the traditional flop counts. Suchpoments include the matrix-
vector and preconditioning operations, the outer GD+lkatien, which is common to all
methods, and the inner QMRs iteration. The parameters araumber of inner/outer it-
erations, and the convergence slowdown experienced by JRQMis approach allows a
dynamic prediction of the execution time of GD+k and JDQMRédxhon runtime measure-

1The actual convergence is usually closer to optimal, but @MiRe most iterative methods for linear systems,
takes one more matvec before it exits the inner iterationchvban add up if only a few inner iterations are required.
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ments of the parameters and the cost of the components.

It is beyond the current scope to describe the exact aveyaginuse over successive
iterations to update the measured statistics. Insteadudiea®@in Algorithm 3.7 and motivate
the extensions needed to Algorithm 3.1 to achieve a dynamibod selection between GD+k
and JDQMR. For this, the following problems have to be adtkrés

First, by running solely with GD+k we cannot measure the oogtredict the conver-
gence of JIDQMR. By running solely with IDQMR, we can still apeithe GD+k cost, but
not its convergence. Therefore, at least one switch betwee=two methods is necessary.
Because initially the search space may not contain goodhpajeapproximations, which is
important for Newton type methods, we start with GD+k anéradt certain time we force a
switch to JDQMR so that statistics for both methods are abtai

Second, because convergence rates and even the runtinoé eagbus components may
change since they were last measured, more than one switchameecessary. Deciding on
the frequency of switching dependsimamEvalsIf numEvalss large, we can afford to have
each method converge alone to one eigenpair, and thus tthéé&er convergence statistics
to evaluate what method to use for the following eigenpagr $mallnumEvals methods
must be evaluated much more frequently, because the sefskauld adapt quickly to avoid
solving almost the whole problem with the wrong method.

Third, the two methods need to be evaluated at differenttpolfor GD+k a reasonable
evaluation point is at every restart. At that point, the rodtihas completed a full cycle,
so all components have been measured, raRgk— Mmin iterations provide a good update
for estimating its convergence rate. JDQMR, however, shaot be evaluated at restarts,
because it only takes a small number of outer iteration®ifoliéss thammimax — Mmin) 0
converge to an eigenpair. Moreover, JDQMR may perform alatgnber of inner iterations.
If it is clear that JIDQMR should not be used further, e.g. dose of a very expensive matrix
operator, our dynamic algorithm should not solve anothereotion equation. Therefore, we
must evaluate JDQMR at every outer step, just before theécHile correction equation.

Fourth, regardless of evaluation points amaonE valsif some eigenpairs converged dur-
ing the current outer iteration, the algorithm has to uptlfeeconvergence statistics. Finally,
before exiting, PRIMME can use the obtained statistics tomemend a method to the user,
in case problems similar to the current one need to be sobmehtedly. The algorithm that
summarizes these decisions for dynamic method switchislgas/n in Algorithm 3.7.

We have observed that this dynamic, completely automated-method runs usually
within 5% of the fastest of GD+k and JDQMR. More surprisingswhat in certain cases
where JDQMR was the fastest method, the dynamic method iredrthe JDQMR timing!
This is because it has the freedom to switch between GD+kRQIMR when this is bene-
ficial. The method may choose GD+k during the early stagesofergence when JDQMR
takes too few inner iterations and switch later. Similafty, largenumEvals GD+k could
be preferable up to a certain number of eigenvalues, beytichWwdDQMR should be used.
Finally, we note that our dynamic method responds even &reat, system load changes.

3.3.4. Orthogonalization stability and efficiency. Orthogonalization is the single most
important component of an eigenvalue iterative solverhére is orthogonality loss in the
V basis, methods cannot converge to the required accuradythay may even stagnate or
produce “eigenpairs” that do not exist. PRIMME currenthgsis variation of the classical
Gram-Schmidt with iterative reorthogonalization [14]. téf two iterations, if an additional
orthogonalization is needed, we determine that the veastdst all significant components
of the original direction and we replace it with a random weciThe procedure also guards
against vectors that are zero or close to machine precision.

In parallel computers, one of the factors limiting scali#piis the presence of several
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ALGORITHM 3.7. Basic algorithm for Dynamic Method Choice

When dynamicMethod = 1, 3, current method is GD+k
When dynamicMethod = 2, 4, current method is JDQMR
For numEvals< 5, we alternate between 1, 2,
evaluating GD+k every restart, and JDQMR every outer step pr
when an eigenpair converges
For numEvals> 5, we alternate between 3, 4,
evaluating GD+k and JDQMR only when an eigenpair converges

Extensions tALGORITHM 3.1
(3.1) if (dynamicMethod- 0)
initializeModel(CostModel)
/* Start always with GD+k. Switch to JDQMR later: */
if (humEvals< 5)
dynamicMethod = 1; /* switch to 2 at first restart */
else
dynamicMethod = 3; /* switch to 4 after first pair converges */

endif

(9.1) if (dynamicMethod- 0)
Measure and accumulate time spent in correction equation
/* if some pairs converged OR we evaluate jdgmr at every step *
if (humConv> 0 or dynamicMethod = 2)
[* update convergence statistics and consider switching */
Updatestatistics(CostModel)
switch (dynamicMethod)

casel: break /* for few evals evaluate GD+k only at restart ?

case3: Switchfrom_GDpk(CostModel)break;
case2: cased: Switchfrom_.JDQMR(CostModel);
end switch
endif
endif

(19.1)if (dynamicMethod=1)
Measure outer iteration costs
Updatestatistics(CostModel)
Switchfrom GDpk(CostModel)

endif

(20.1)if (dynamicMethod> 0)
ratio = ratio of estimated overall times for JDQMR over GD+k
if (ratio < 0.96) For this problem recommend method: JDQMR
else if(ratio > 1.04) For this problem recommend method: GD+k
elseRatio is too close to 1. Recommend method: DYNAMIC

~

17
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dot products in Gram-Schmidt. We have implemented a not dbkmewn strategy that
typically removes one dot product per Gram-Schmidt iteratiLetr be the vector to be
orthogonalized against, andsy = ||r||. After orthogonalization’ = (I —VVT)r, the test
s = ||I']| < 0.7071s determines whether to reorthogonalize. It is possible wicathe
expense of the dot product to compute the negiand the synchronization that it implies.
Note that:

=0 -VVDr|2= (T = (rTV)VH)T(r —V(VTr) =5 - (VT (VTr).

The (VTr) is a byproduct of the orthogonalization, and because it imallsvector of size
m, not N, all processors can compufé'r)T(VTr) locally, and inexpensively. If the test
51 < 0.7071s is not satisfied, the resulting vector can be normalizéts;, and the process
exits. Otherwise, we s&p = s, and reorthogonalize.

This process hides a numerical dangennay be computed inaccuratelyfandr are
almost linearly dependent. Although the normalityrbfs not important at this stage, this
can cause the reorthogonalization test to fail, and retwrector that is neither normal nor
orthogonal. An error analysis of the computation providesfollowing interesting result:

s1 — S ( 0.2 )
=0((—)¢ inel
|Sl| (51) machine

wheresy is thes; as computed by our algorithm. This result suggests that Igorithm is
safe to use, with no loss of digits 81, if S; > Sy v/Emachine [f this test is not satisfied, our
algorithm computes explicitly the nors = ||r’||, and continues. Experiments with many
ill-conditioned sets of vectors have confirmed the theoattiesults and the robustness, as
well as improved efficiency, of the resulting algorithm.

3.3.5. A verification iteration. PRIMME can be used without locking, when the num-
ber of required eigenvectors fit in the bagignax > numEvals> myin. Converged eigenvec-
tors remain irV, but are flagged as converged, so that they are not furthezgia the target
block. Still, they participate in the Rayleigh Ritz at evestgp, and therefore they improve
as additional information is gatheredVh For the same reason, however, it is possible that
a Ritz vectorx; that was flagged converged, it becomes unconverged dutiggiterations.
This could occur if eigenpairs converge out of order, or @tlave very high multiplicities.

PRIMME implements an outer verification loop that includesps (2) through (20) of
Algorithm 3.1. Before exiting, PRIMME verifies that all flagd Ritz vectors satisfy the
convergencetolerance. If they do not, the b¥sis orthonormalized)V = AV is recomputed,

H is rebuilt, all flags are reset, and the algorithm startsragging to find all eigenpairs.

Usually a small number of outer iterations is enough to rectle small deficiencies that
have caused some eigenvectors to become unconverged €fifisation is repeated until all

required eigenvectors converge.

3.4. Memory requirements. The memory requirements for the underlying GD, JD,
and symmetric QMR methods are established in the literg®yg. The way that these basic
methods are combined in PRIMME through various parameteicel determines the actual
method and its memory requirements. PRIMME requires thatiter provides three arrays
where the computed eigenvalues, eigenvectors, and tis&luad norms will be placed. With-
out locking, and for certain method choices that do not usexpensive skew JD projections,
the user may set the eigenvector array to be at the start @fdHearray in the primme data
structure. This saves the additiofalmEvals N storage of the eigenvector array. For gen-
eral users, we do not yet recommend this undocumented éeatg focus now on the actual
requirements of the PRIMME software.
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Because GD+k is implemented as a thicker restarted GD, therethods require prac-
tically the same memory footprint, as outlined in the tatséof:

2MmaxN storage folv andwW
22 storage foH andS
Mmak storage for the?'d
max(k?, MyaxK,

2b(numEvals- mmay) general storage shared by various components
The above storage is clearly dominated bg.@N for the arraysv andW. With the use
of locking, mmax can be kept small (e.g., 10-15 for extreme eigenvalues)wbutan still
compute a large number of eigenpairs.

The basic QMR method requires storage for five long vectas &nd some small work
space of ABumEvalst mpax+ 2b. IDQMR may require additional storage if skew projectors
with the preconditioner are required (see section 3.3)ciipally, skew projection only on
u™ (method JDQMR-100) requires one additional vectdy, (vhile the skew projector on
bothu(™ andX requires storage faX + (nUMEvalst Mmay) (N + nUMEvalst Myay). The
latter can be a limiting factor for applications that seekdneds or thousands of eigenvectors,
and we do not recommend it. Considering also the expense @ik outer iteration, our
default JIDQMR-000 and JDQMR-100 methods require storag®f{¢2mmax+ 5)N) and
O((2mmax+ 6)N) elements, respectively.

Storage for other methods is derived from the above. For pignRRayleigh Quo-
tient Iteration without subspace acceleration, requinggx = 2 and if we use QMRs with-
out the skew projectors the total memoryQ$9N). Similarly, implementing LOBPCG as
GD(b,3b)+b, the memory requirements ai®(6bN).

3.5. Computational complexity. The complexity of any method in PRIMME can be
decomposed to the complexity of the outer iteration compgnsus the complexity of the
inner iteration component. The only additional paramesdethe relative frequency that a
method spends in each component. For completeness, weipaesmdel based on floating
point operation counts for both GD+k and JDQMR. For a dedadlemplexity analysis see
[66, 68]. Following classic literature, each of the GD stegrpuires the following flops:

reorthogonalization O(8Nb(m+1) +2b°N +2bN) (step 11)
updating ofH O(2mbN) (step 13)

the small eigenproblem O(4/3m®) (step 16)

Ritz vector computation O(2mbN) (step 7)
residual computation ~ O(2mbN+ 4bN) (step 7)

norm computation O(2bN) (step 8)
restarting cost O(4N MyaxMmin) (steps 18-19)

Averaging oveim = Mjn. . . Mmax and settingl = Mpin/Mmax We have the average cost per
outer step:

7+ 4u— 72 11+2b
THACTC g M2

GDcost:O< - -

Nb-+8Nbl+ 1/3m;°;]ax) .

With typical valuesmmin = Mmax/3 andb = 1 we have:
GD cost= 11.3NMnax+ 20N+ 8NI 4 .. /3.
With b = 1, these are mostly BLAS level 2 and some BLAS level 1 openatiéVithb > 1,

PRIMME uses mainly BLAS level 3 operations. Note also thaewlkhe number of locked
vectord > 22, the orthogonalization starts to dominate the iteratimsts.
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Currently, the inner QMRs solves the correction equati@nsfch block vector inde-
pendently. Based on this, it suffices to obtain the cost foh&MR step, that includes also
two projections withu(™:

QMR cost= 25N+ 4Nl for JDQMR-100
QMR cost= 25N for JDQMR-000

Note that Algorithm 3.5 shows Mloperations, but includes non traditional vector updates,
which when implemented as BLAS level 1 routines, giv&l28Ve have managed to reduce it
to 25N by alternating between buffers fdrandw. The projectors again3t are BLAS level

2 operations. Everything else is strictly BLAS level 1 opienas. A similar implementation

of JDCG as described in [52] would costRR4perations, but the slightly additional cost of
JDQMR s justified by the increased robustness, generalgserflexibility, and ability to
derive better stopping criteria.

4. The PRIMME software. Our target is to produce an eigenvalue code as close as
possible to “industrial strength” standards. To this end,design philosophy as outlined in
the introduction, consists of three components; the algmic, the implementation, and the
user-interface. In the previous sections, we have destdleng list of methods, techniques,
and specialized algorithms that have been implemented iNFIE. These address (1) what
are the near optimal methods under limited memory that a-giathe-art eigensolver should
implement, (2) how to employ certain techniques to enhaonbeistness (block methods,
verification, avoiding locking stagnation, etc), (3) hovesle can be combined in a unified
framework. In this section we address the remaining issimeparticular implementation
efficiency, rich functionality, and a flexible but usable uisgerface.

4.1. Choice of language and implementationThe underlying ideas for the basic struc-
ture of PRIMME have evolved starting from the 1994 Fortrarc@de DVDSON (or ACPZ)
[67], which has been popular in the physics community, aed@ssely based on our early
Fortran version of GD+k/Jacobi-Davidson, DJADA, which wecalated in 2000. At that
point, we set the goal of developing a general purpose, tpbns state-of-the-art eigen-
solver. Our design philosophy suggested that a projectigptioportion must be engineered
around a more flexible language. We have chosen the C language

In the past, Fortran users claimed, not often without mérdf C compilers were not
optimizing numerical code as efficiently as Fortran compildn the last ten years there is
significant improvement, not only on the quality of optintina of C compilers, but also in
the way programmers have learned to program numerical rdetihcC. Nowadays, properly
written C codes run as efficiently as their Fortran versiddswever, efficiency was a sec-
ondary reason for choosing C. The brunt of computation inMMNRE is handled by calls to
BLAS and LAPACK functions, which are usually in Fortran omisltuned in assembly.

Our primary reasons for choosing C are: the flexibility ioals for the user interface
and parameter passing, its interoperability, as well asl#é&aner memory management. A
PRIMME type structure, could contain all the required imf@tion, such as function pointers
to the matrix-vector multiplication and preconditioningesators, pointers to arbitrary data
the user would like to pass to these operators, pointersito space that may be already avail-
able, as well as a wide range of parameters. A judiciousgetti defaults within PRIMME
presents an uncluttered interface to the user. A similactfanality could be achieved from
Fortran, but only through a more involved reverse commuiunanterface. C is the most
commonly used programming language for systems progragyminich gives it a status of
“lingua franca” among other languages. C interoperateyeaish C++, Fortran 77, Fortran
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90, Python, and many other scripting languages and envieatsi{e.g., Matlab, Mathemat-
ica, etc), and thus could help PRIMME achieve a broader itipabe community. Finally,
we have opted not to use the larger, more complicated C+-ubsgey which would be a better
choice if PRIMME were tightly coupled with a bigger problewhdng environment, not a
stand alone, general purpose package.

On the technical side of the implementation, memory for PRIEMworkspace can be
allocated internally, if the user does not provide enoughksfpace. Because most workspace
in PRIMME is needed throughout the execution of the progtharge is no pointin allocating
and freeing it in different functions. Therefore, we alltecall required memory as one chunk
in the beginning of the algorithm, and use pointers to déffeiparts of it as different param-
eters. For example, the pointdot r for the basisv points at the beginning of this work
array, the pointeit r for W = AV points atWtr = Vptr + N-nmaxBasi sSi ze, which is
Nmnax €elements later, and so on. After all variables that are pitesethe algorithm have
been accounted for, the remaining memory is shared amomngidas as temporary storage.
We have also ensured that the allocated memory is alignédaxpige boundary. There are
two reasons for this. First, we wanted natural memory aligninfor our double precision
and double complex data types (8 and 16 bytes respectivélghough in many systems
mal | oc will align in multiples of 8 bytes, this is not guaranteed engral, and depending on
the memory/bus architecture it may not be sufficient for couwlide complex data. Second,
neithermemal i gn or posi x_menal i gn are portable, so we were led to use the older but still
widely availableval | oc. The use ofal | oc is not often recommended, because to guaran-
tee the page alignment it may waste big fractions of a pageutrcase this is not an issue
because memory allocation occurs only once and for verg lsizes.

The PRIMME code is both sequential and parallel. By this wamtbat a parallel SPMD
application can invoke the same PRIMME code, providing teal vector dimensions on
each processor. As with all SPMD iterative methods, vegboiates are performed in parallel
while dot products require a global summation of the redu@dde. PRIMME, includes a
wrapper function for global sum. In sequential programis,wrapper defaults to a sequential
memory dcopy. In parallel programs, the user must providarter to a global sum function,
such as a wrapper | _al | Reduce() orpvnfreduce(). Hence, PRIMME is independent
from the communication library. Finally, the user must gisovide a parallel matrix-vector
multiplication and parallel preconditioning functions.

The PRIMME library adheres to the ANSI C standard so it shbalavidely portable to
all current platforms. We have tested our code with the Yailhg operating systems: SUSE
Linux 2.6.13-15.12 (both 32 and 64 bit), CentOS Linux 2.829(64 bit), Darwin 8.8.0 on
PowerPC, SunOS 5.9, and AlX 5.2. Macros have been used tvegsame mangling issues
when interfacing with Fortran libraries and functions. Wavé also provided macros for
“extern” declarations for allowing the library to be coneglwith C++ compilers.

4.1.1. Structure, maintenance, and documentationThe distribution of the PRIMME
package includes in excess of 28,000 lines of code. Theuiffin maintaining this code is
not only its length, but that it implements all possible canations of several algorithms and
techniques, that can also be extremely complicated thessdh our multi-year experience,
we have found that the best way to remember complicated iigts and data structures
and the many special cases is to include the critical partiseo&lgorithm description in the
comments of functions, and in-line explanations betweeledioes. Input/output arguements
for each function are also documented, but we have found tagsruseful than the above.

The complex Hermitian and double precision codes are alidestical except for calls
to different BLAS/LAPACK functions, certain memory copginand the handling of various
scalar issues. As in many software packages, the BLAS/LAPKGerface is handled by
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a layer of wrappers. In this layer, oblumAXPY function is an interface that can link to
ZAXPY or DAXPY, depending on the code, and it could append underscoresdiaegeon the
compiler. Similarly for other BLAS/LAPACK functions. To &itate further implementation
and management of the complex/double libraries, we havelolggd a single source code
that includes both the complex and real functionalitieffedéntiated by macros. A pass
through the preprocessor generates the two directorieslfuthe public distribution, each
containing a different precision version of PRIMME. To a&llgoexistence of both complex
and real versions in the library, all functions are apperedgeer with_dpr i nme or _zpri mre.
The directory structure of the PRIMME distribution is addals:
COPYI NG, t xt <- LGPL License

Make flags <- flags to be used by makefiles to conpile library and tests
Li nk_flags <- flags needed in making and linking the test prograns
PRI MVESRC/ <- Directory with source code in the follow ng subdirectories:
COMMONSRC/ <- Interface and common functions used by all precision versions
DSRC/ <- The source code for the double precision dprimme
ZSRC <- The source code for the double conplex precision zprimme
DTEST/ <- dprime sanple C and F77 drivers, both seq and parallel
ZTEST/ <- zprimme sanple C and F77 drivers, sequential only
I'ibprinmme.a <- The PRIMVE library (to be made)
makefil e <- nmakes the libraries, and the sequential/parallel tests
readne. t xt <- a detailed docunentation in text
readne. htm <- the sanme documentation organized with hyperlinks
doc. pdf <- a printable version of the htnml docunentation

The code is distributed with a Lesser GPL license. All ligr&unctions are located
in PRI MMESRC directory. The ones that are specific to the double preciggraion are in
PRI MVESRC/ DSRC/  and for the complex version iBRI MVESRC/ ZSRC/ . All these files are
appended withd. ¢, _z.c or_d.h, _z.h for the real or complex versions respectively. In
PRI MVESRC/ COMMONSRC/  all functions are prepended wifhi me_ because they are the in-
terface functions that do not depend on the data types ancbanenon to both precisions.
This directory contains also the header files (suclprasme. h andprinmre_f 77. h that
are needed to call PRIMME. The functiodgri me andzpri mme are called to solve the
eigenvalue problem and they are located ipZSRC pri mre_(d) z. ¢. To simplify notation
consider only the double version. Algorithms 3.1 and 3.7iamglemented in functions
PRI MVESRC/ DSRC/ mai n_i ter _d. c. Algorithms 3.2 and 3.3 are implemented in functions
PRI MVESRC/ DSRC/ conver gence_d. ¢ and PRI MVESRC/ DSRC/ rest art _d. ¢c. Algorithm 3.4
is implemented irPRI MVESRC/ DSRC/ | ocki ng_d. ¢ which also implements the second part
of Algorithm 3.6. Algorithm 3.5 is implemented iBRI MVESRC/ DSRC/ i nner _sol ve_d. c.
We note that there is a separate functionr ect i on_d. ¢ which implements the various pre-
conditioning options for step (10) of the outer algorithm plarticular it can perform Olsen’s
or GD preconditioning, robust shifting, it can set up the Jojgctors in a way specified
by the user and possibly call QMRs to solve the correctioraggn. Orthogonalization is
located inort ho_d. c.

In theDTEST andZTEST directories we have provided several sequential and oradi@ar
sample driver programs that read matrix and solver infolondtom files and call PRIMME
to solve various eigenproblems. We have provided the fandtiUT from SPARSKIT [58]
as a sample sequential preconditioner, and PARASAILS amalsgparallel preconditioner.
We warn the user, however, that ILUT does not necessarilg wgmmetric factorizations,
which may cause stagnation to iterative methods for symamiatear systems. Compared
to CG, QMRs has proved remarkably robust in this directiaut,ibcould still slow down
significantly if the preconditioner is far from symmetric.D&k methods do not share this
problem. For further details on makefiles and linking we reéfe reader to the extensive
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#include "prime. h"
primre_parans primre;
primre_initialize(&prime);

primre.n = N
prinme. matri xMatvec = Matvec_function;
prime_set met hod(DYNAM C, &prinme);

ierr = dprime(evals, evecs, rnorms, &prinmme);

FIG. 4.1. A minimal user-interface to PRIMME. Method is set B¥NAM C. Other self-explanatory
method choices arBEFAULT_M N_MATVECS, andDEFAULT_M N_TI ME. The function pointersht vec_f uncti on and
Precon_functi on are provided by the user.

information in the documentation files of the distribution.

4.2. A multi-layer interface. A full documentation on how to install and run PRIMME
is included in the distribution in text, html, and pdf forrmaDespite PRIMME’s complexity,
we have provided a multi-layer interface that hides this plaxity from the users to the
level determined by their expertise. Our premise has besrthile beginner, end-user would
probably be unaware not only of various techniques and ¢ukiobs, but also of the names
of the methods. More experienced users, or as end-usersga@experience with the code,
they should be able to use incrementally additional fumetiiby to match their specific needs.
PRIMME caters also to expert users who might use the codemigtfor solution of large
problems but also to experiment with new techniques, coatlzins of methods, etc.

Figure 4.1 shows a minimal interface required by PRIMME. éders must declare a
parameter of typer i mme_par ans that holds all solver information, and is used both for in-
put and some output. Although not strictly required, a aalbtir initialization function is
strongly recommended. Then, users may set any desiredepnabid solver information. A
required field is the dimension of the matpxi me. n, and the matrix vector multiplication
function. The user can then set the desired method andjealime to solve the problem. For
the non-expert user, we provide three generic method chbiEAULT_M N_MATVECS (which
defaults to GD+K)PEFAULT_M N_TI ME (which defaults to JDQMEETol), andDYNAM C. The
latter switches dynamically between the first two based aqqoAihm 3.7. Finally, if a pre-
conditioning operator is available, it can be set (befotrgethe method) as follows:

primme. appl yPrecondi ti oner = Precon_functi on;
prinmme. correctionParans. precondition = 1,

The preconditioner and the matrix-vector functions shbaleke the following arguments:

void (*function_nane)
(void *x, void *y, int *blockSize, struct primre_parans *prinme);

wherex is the input multivectoly is the output (result) multivectads| ockSi ze is the number
of vectors in the multivectors, amuli me is passed so that any solver or external data (as the
matrix or the preconditioner) can be available in the fusrttiA wrapper with this interface
can be easily written around existing, complicated, ordgdganctions. Finally note that the
multivectors store individual vectors consecutively inmuoegy.

The minimal interface makes heavy use of defaults. For el@ntipe above snippet
of code will find one, smallest algebraic eigenvalue andigemvector, with residual norm
r] < 10712 ||A||, while estimating||A|| internally. It will alternate between GD+1 and
JDOQMR, usingmmin = 6, Mmax = 15, b =1, andk = 1. We emphasize that, despite the
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#include "prime. h"
primre_parans primre;
primre_initialize(&prime);

doubl e shifts[1] = {0.5};
doubl e evecs[N*20] = {/*initialize the first 10 vectors*/}

primre.n =N

pri mre. nunkEval s = 20;

primre. target = primre_cl osest _abs;
pri mre. nunifar get Shifts = 1;

primre.target Shifts = shifts;

prime. aNorm =1.0;

pri mre. eps = 1. 0e- 10;
primre.initSize = 10;

pri mre. maxMat vecs = 30000;

prime. matri xMat vec = Matvec_function;

primme. appl yPrecondi ti oner = Precon_function;
primre. correctionParans. precondition = 1;
primre_set net hod( DEFAULT_M N _TI ME, &prime);

ierr = dprinme(evals, evecs, rnorns, &prinme);

FIG. 4.2. A lean user-interface to PRIMME, where a default method défault parameters are used. How-
ever, the problem to be solved is fully controlled by the,usiéh parameters such as what eigenvalues to target, how
accurately, initial guesses, and preconditioner.

simplicity of the interface, the defaults and the methodlece expertly tuned, near optimal
methods. In fact, the above code snippet for finding one sstalligenvalue of difficult
problems has matched or outperformed all other softwarerevavaare of.

Most users would like to have more control on the problem thieysolving, than the
minimal interface. Figure 4.2 shows a detailed, but stiéinenterface. By detailed we
mean that the user specifies the exact problem to be solveditiension of the matrix,
the number of eigenvalues, where these eigenvalues aredbfthey should be found clos-
est in absolute distance from the shift 0.5), the exact vasidorm convergence tolerance
(10710 =pri mme. eps* pri mre. aNor m), the number of initial guesses availableeirecs, the
maximum number of matvecs, the operators. None of the abanaaeters determines any
algorithmic features; so this is functionality that an ersgr is well qualified to use. The
user can then request the default PRIMME strategy for yigldainimum time and solve the
given problem.

The list of preset methods available in PRIMME are listed iguFe 4.3. A few com-
ments are in order. We do not recommend the use of the metHodisholdi and classi-
cal GD, as they are superseded by GD+k methods. The defatlibchéor min matvecs is
CGD_A sen_pl uskK, which is the usual GD+k with the preconditioner appliedhe trobustly
shifted” r(™ 4+ 80 u(™ as described in section 3.2D_A sen_pl usK applies the pseudoin-
verse of the preconditioner of eq. (3.4) to the residiRfl can be used either as RQI or
as Inverse lteration; the latter if the user provides attleas target shiftJDQR is a classic
JD method, similarly to the JDBSYM implementatialdQWR is our JDQMR Algorithm 3.5
withoutthe stopping criteriorrémﬂ) < 0.1rg). Near convergence, this allows the inner equa-
tion to be solved very accurately and achieve the outer Newtmvergence. However, for
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prinme_preset _nethod net hod,;
typedef enum {

DYNAM C, Il Switches to the best nethod dynamically
DEFAULT_M N_TI ME, Il Currently set as JDQVR_ETol

DEFAULT_M N_MATVECS, Il Currently set as GD_O sen_pl usk

Arnol di, /1 Anoldi inplenented a la Generalized Davi dson

@D, /1 Generalized Davidson

GD_pl usK, Il GOtk with locally optimal restarting for k evals
@D _d sen_pl uskK, [l GD+k, preconditioner applied to (r+deltaeps*x)
JD O sen_pl usk, /1 As above, only deltaeps conputed as in JD

RQ, Il (accel erated) Rayleigh Quotient Iteration

JDQR /1 Jacobi - Davi dson with const nunber of inner steps
JDQWR, /1 JDQWR adaptive stopping criterion for inner QW
JDQWR_ETol /1 JDQWR + stops after resid reduces by a 0.1 factor
SUBSPACE_| TERATI ON, /'l Subspace iteration

LOBPCG_Ort hoBasi s, /1 A LOBPCG i npl enentation with orthogonal basis

LOBPCG OrthoBasis_Wndow // As above, only finds evals a Wndow at a tine
} prinmme_preset _nethod,

FIG. 4.3. The set of preset methods available in PRIMME. These canleeteg bypri me_set _net hod.
After setting the method, the user can still modify someeopthsepr i e parameters.

some cases, we noticed that QMRs tends to repeat some infomteetween outer steps
which causes the aforementioned slowdown. By stoppingrtherimethod also when the
eigenvalue residual (not the linear system one) is redugednborder of magnitude, we
achieved much smaller slowdown. We refer to this preset atktvhich corresponds exactly
to Algorithm 3.5 asIDQVR_ETol . There are two versions of LOBPCG, both maintaining
an orthonormal basis of the search spdd®BPCG Ot hoBasi s usesnumEvals= blockSize
while LOBPCG.Or t hoBasi s_W ndow usesblockSize< numEvalsand locking, to find all the
eigenvalues a window diflockSizeat a time.

If not provided, PRIMME picks defaults for maximum basisesipmay), restart size
Mmin, block size b), etc. Maximum basis size is by default 15 for extreme eig&re/prob-
lems, and 35 for interior ones. When omiyyax is provided,mmin = 0.4mpax for extreme
eigenvalue problems, amtmin = 0.6mmay for interior ones. When the user sets the block
size, but not themmax and mmin, these are chosen such thadlivides themmax— Mmin — k.
Depending on the method, the above parameters may chartiyerfur

Finally, a few users may opt to set a preset method, and thelifyn@rious parameters
manually, or even not to set a preset method at all. Figuresdotvs the full PRIMME
interface available through thpei me structure. For detailed explanation for each parameter
we refer the reader to the distributed documentation.

In the previous examples we have used the double precisisiondpr i me. The com-
plex Hermitian versiorzpri me is called in an analogous way. Finally, we note that to
facilitate portability and usability, we have provided atfan 77 interface that covers the full
functionality of PRIMME. This is a set of wrappers that alWwortran users to set all the
members of the primme structure, to set methods, and tolmIPRIMME interface func-
tions. An example is given in Figure 4.5, while we refer to deeumentation manual for the
complete interface.

4.3. Additional special features.We would like to briefly mention a few features that
improve usability of the code, and although some can be faumdher software packages,
they have never been incorporated in the same package.

First, users can find eigenvalues in five different ways. Tevektreme eigenvalues, and
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#include "prime. h"
pri mme_parans pri mre;

prime.n =N

pri mre. nLocal =N

pri me. nunProcs =1

pri mre. comni nf o = NULL;
pri mre. gl obal SunDoubl e = DCOPY_;
primre.outputFile = stdout;
primre. printLevel =5

pri mre. nunEval s = 10;

pri mre. aNorm = 1.0;

pri mre. eps = 1. 0e-12;
pri mre. dynani cMet hodSwi t ch= 0;

pri mre. maxBasi sSi ze = 15;
primme. minRest art Si ze =T,

pri mre. maxBl ockSi ze =1,
prime. | ocki ng =1

pri mre. maxQuterlterations = 10000;
pri me. maxMat vecs = 300000;
primre. target = prinmme_smal | est;
pri me. nuniar get Shifts =0
primre.targetShifts = Shifts;
primre.initSize =0

pri mre. numOr t hoConst = 0;
primre.intWrkSi ze = 1000;
prime. int Wrk = & nt\WrkArray;
pri mre. real WrkSi ze =0

pri mre. real Wrk = NULL;
primre. iseed[ 0] =-1;

primre.restartingParanms. schene pri mre_t hi ck;

primre.restartingParans. maxPrevRet ai n =1;
primre. correctionParans. precondi tion =1,
primre. correctionParans. robust Shifts =1;

primme. correctionParans. maxl nnerlterations = -1,

primre. correctionParans. rel Tol Base = 1.5;

primre. correctionParans. convTest = adaptive_ETol erance;
primre. correctionParans. projectors. LeftQ = 1;

primre. correctionParans. projectors. LeftX = 1;

primre. correctionParams. projectors. Right Q= 0;

primre. correctionParans. projectors. SkewQ = 0;

primre. correctionParams. projectors. Right X = 1;

primre. correctionParans. projectors. SkewX = 1;

pri mre. Shi ftsForPrecondi tioner
prime. mat ri xMat vec

pri me. appl yPrecondi ti oner
primre. matrix

pri me. precondi ti oner

NULL;

Mat vec_function;
Precon_function;
&matrixDataStruct;
&preconDat aSt ruct ;

FIG. 4.4.The full PRIMME interface. Expert users may set this maguat combine with preset methods.

three for interior. This is summarized in the following tabl
primmesmallest Smallest algebraic eigenvalues. No shifts ardetke
primmelargest Largest algebraic eigenvalues. No shifts are mkede
primmeclosestgeq Closest to, but greater or equal than a set of shifts.
primmeclosestleq Closest to, but less or equal than a set of shifts.
primmeclosestabs  Closest in absolute value to a set of shifts.

For interior eigenvalues the user must provide at least bifeis the pointer to an array:

primre. target Shifts. Assuming thaty=pri me. nunifar get Shi fts are available in the
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doubl e precision norm

integer primme (or integer*8 prime if on a 64 bit OS)
external matvec_function

external precon_function

call prime_initialize f77(primme)

call prime_set _nenber f77(prinmme, PRIMEF77_n, N)

cal | primre_set_menber _f77(prinmre, PRIMVEF77_matrixMatvec, matvec_function)

call prime_set _nenber f77(prinmme, PRI MVEF77_appl yPreconditioner, precon_function)
call prime_set _nenber f77(primme, PRI MVEF77_correctionParans_precondition, 1)
call primre_set_method_f77(prinmre, PRI MVEF77_JDQOWR ETol, ierr)

call prime_display_paranms_f77(prime);

call zprime_f77(evals, evecs, rnorns, prinme, ierr)

cal | primretop_get_nenber _f77(prime, PRIMVE_aNorm norm
print*, 'The estimated 2 normof the matrix is:’, norm

FiG. 4.5.An example of using the Fortran 77 interface to call PRIMME.

above array, and for simplicity denote thentas. ., 1q. If the user chooses the interior mode:
pri mre_cl osest _| eq, PRIMME will find eigenvalued\j,i = 1,numEvalghat are closest to
those shifts in the following way:

A1<11), (A2<T12), ... O\q < Tq)a O‘q-&-l < Tq)a .. (AnumEvals< Tq)~

The other interior modes work similarly. The common medieme_cl osest _abs might be
wasteful in some cases when scientists want to find eigeesdhat are on one side of a given
shift. Moreover, we have noticed that it is often faster td fine eigenvalues first on the left
and then on the right of a shift, instead of using the compromme_cl| osest _abs mode.

Another useful feature in PRIMME is that tipei me structure supplies an array of the
Ritz values corresponding to the vectors in the block to @nditioned (or corrected).
Many applications can afford to invert the preconditiornteg\gery step. Examples include a
diagonal matrix preconditioner, an FFT transform of thelhap operator in planewave space
(where the preconditioner is diagonal), or when the preitmmer is an iterative method. In
those cases, instead 6f 1 ~ A=, a more appropriate preconditioner would(be— Ajl) 2.
TheA;,i = 1,bvalues are available in the arrpyi mme. Shi f t sFor Precondi ti oner and are
accessible during the preconditioning operation. Thituiegis not readily available in other
packages.

In some cases, we want to solve an eigenvalue problem undaircerthogonality con-
straints, i.e., solve the eigenvalues(bf- QQ")A(I — QQ"), whereQ could be previously
computed eigenvectors, or any set of vectors in generalMRME works seamlessly in this
case by including in the firstpri me. nunmOr t hoConst vectors ofevecs. Computed eigen-
vectors will be placed afte®.

Finally, we mention that PRIMME includes a thorough paramehecking of user inputs
for consistency and correctness, a calling tree tracelsgmkt for tracing errors if any occur,
and five levels of output reporting, so that convergencehjsind algorithmic choices can
be monitored or plotted.

5. Sample experimental results.We have compared PRIMME methods with three
other software packages. The first is JDBSYM [25], which ently is the only other im-
plementation of the Jacobi-Davidson for symmetric proldeffihe second is the BLOPEX
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implementation of LOBPCG [38]. The third is ARPACK'’s funati dsaupd, which imple-
ments IRL for symmetric matrices [44]. Although ARPACK dae#t use preconditioning,
it is included as the default benchmark for unpreconditibcases. We have not compared
with SLEPc methods as they do not allow for preconditioniAtso, we have not yet com-
pared with ANASAZI because of its involved installation asgtimization process, but also
because the methods it implements (block GD and LOBPCG )vaiitable in PRIMME, and
LOBPCG in BLOPEX. We plan to make a comparison in the nearéutlihe experiments we
present are sampled from our papers [66] and [68] which delne of the most extensive
list of comparisons in the literature.

With the exception of forcing the various projector confgiisns (100), (111), (000),
and (011), the default parameters provided by PRIMME ard useall the experiments.
The methods converge when the residual norm of each afuh®E valgequired eigenpairs
is less tharj|A||rtol, where||/A||r is the Frobenious norm d&. For JDBSYM we use the
SaMme&Mmin, Mmax as in PRIMME, block size of 1, a maximum number of 200 innawaitiens,
TOLDECAY = 1.5, symmetric preconditioning OPTYPE, and &gy = 0. In certain cases,
strategy = 1 was necessary to achieve convergence. To finehexteigenpairs with JDB-
SYM, we providet as a small, left perturbation of the precompukgedand we let JDBSYM
switch to using the Ritz values as shifts when EFS = 103||A|r/v/N. Convergence is
declared when all residual norms fall beldw(|tol.

ARPACK does notimplement locking, so when many eigenvadmesequired ARPACK
must use a much larger basis size than the rest of the metiMashoose the basis size for
ARPACK as max40,2numEvalg, and supply directly the tolerantel.

BLOPEX does not explicitly implement locking, but it allowssers to find eigenvectors
orthogonal to a set of a given vectors. We chose to implememapper around BLOPEX)
that uses locking to computaimEvalsigenvalues a blocl, at a time. After some experi-
mentation, we fount = 10 to be the best choice for most problems with largenEvalsIn
fact, for largenumEvalsBLOPEX({numEval¥was several times slower than BLOPEX(10).
We ask for convergence tolerance||éf|tol.

All methods start with the same random initial guess. We maweexperiments for two
different tolerancestol = 1le-15 andol = 1e-7. For BLOPEX we only report results for
tol = le-7,as it could not produce results with the lower toleran@ée run experiments on
an Apple G5 with 1 GB of memory and two 2GHz processors, eatih 512 MB L2 cache.
The C codes are compiled using the gcc-4.0.0 compiler with fi@g, and the ARPACK
is compiled with the g77 compiler. We link with the Apple veéblibrary that includes
optimized versions of BLAS/LAPACK libraries.

We use 10 matrix problems, six from the University of Flor[d&] and the FEAP [3]
collections, one from vibrational analysis of moleculaustures [75] and three standard
7-point 3D Laplacian matrices generated by SPARSKIT [58hwzero Dirichlet boundary
conditions. The smallest side of the spectrum is hard toiolite all matrices, while the
largest side is easier for several of them.

5.1. Looking for one smallest eigenvalueln Table 5.2 we provide comparisons be-
tween PRIMME, JDBSYM, and BLOPEX for finding one smallestegigalue of five ma-
trices. The first three matrices are preconditioned with Tlwith its parameters chosen to
provide a stable factorization. The last two matrices apgreconditioned.

First, we observe that BLOPEX although it requires no patametting, is not com-
petitive. In addition, in the cases where it failed to cogegiit had reached a residual norm
of ||Alr10~1° but then encountered numerical problems. The JDBSYM wad wsth a
symmetric QMR as inner solver, so the primary differencenfrdDQMR is the stopping
criteria. The experiments confirm that when the JDBSYM d&t§l 7] capture the Newton
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TABLE 5.1
The matrices used in the experiments, their size, non-emeeats per row, and their source.

Matrix N nz/row Source|| Matrix N nz/row Source
or56f 9000 321.13 Yang|| ConeA 22032 65.04 FEAP
torsionl 40000 4,94 UF || Plate33KA0 39366 23.22 FEAP
Andrews 60000 12.67 UF || Lap7ptl5K 12167 6.74 SKIT
cfdl 70656 25.84 UF || Lap7ptl25K 110592 6.88 SKIT
finan512 74752 7.99 UF || Lap7ptlM 941192 6.94 SKIT

TABLE 5.2
Comparison of three state-of-the-art preconditioned eggdver codes. BLOPEX implements LOBPCG, JDB-
SYM implements Jacobi-Davidson with sQMR as inner solvet,aur PRIMME software includes both JDOMR
and GD+1 which provide almost parameter-free near optityali

cfdl or56f Plate33KA cfdl ConeA
MV sec | MV sec MV sec | MV sec MV sec
BLOPEX | 669 114.14| 332 21.89 - - | 6426 186.63 - -
GD+1 270 49.92| 174 11.56| 272 39.89| 2858 113.86| 214 3.49
JDQMR 294 4482 190 11.88| 381 51.35| 2370 49.45| 281 3.19
JDBSYM | 373 60.42| 221 14.34| (747) (102.6)| 2412 48.95| (708) (7.70)

convergence well, JDBSYM is close to JDQMR and sometimespetitive (unprecondi-
tioned cfdl). The results in parentheses, however, shoescakere JDBSYM could not
converge, until the user provided a shift for the correceguation that was very close to
the desired eigenvalue. GD+1 and JDQMR converge alwaykeiteast time, and with no a
priori information.

In Figure 5.1 we show results from two large dimension 3D hajans, the one million
case, and a ten million case. The one million case is run bdthand without precondi-
tioning. The first thing we observe is that, as in Table 5.2 #&Rlways takes the smallest
number of matvecs. However, because the matrices are varyess@ DQMR takes less time.
For the same reason, the timings for BLOPEX are competititle @D+1 in this example,
despite taking more iterations. ARPACK is not competitiverefor the smaller matrix, and
it scales worse as the problem increases in dimension.

5.2. Looking for many smallest eigenvalues.

Unpreconditioned JDQMR-000 vs ARPACK. For largenumEvalsthe number of ma-
trix vector operations per eigenvalue found by ARPACK isextpd to decrease rapidly with
numEvals because of the effectiveness of the large Lanczos basisontnast, the number
of matvecs per new eigenvalue found for JDQMR-000 is expkittde at least constant or
increase slightly for highly interior eigenpairs, becao$d¢he loss of implicit orthogonal-
ity during inner iterations. Despite this worse case sdenarhere ARPACK is allowed to
grow its memory requirements witlumEvals our asymptotic analysis in [68] showed that
for sufficiently sparse matrices, such as those coming framynfinite difference and finite
element analysis, JDQMR-000 is faster than ARPACK for otitey a very large number of
eigenvalues (usuallyumEvals> 1000). For denser matrices, ARPACK becomes faster than
the limited memory JDQMR-000 for smalleaumEvals However, according to the model,
JDQMR-000 should always be faster than ARPACKriamEvals< 5, regardless of operator
cost. Despite the approximate nature of the model for smaiiE valsour above conclusions
are confirmed by the experiments with 8 matrices in Figure 5.2
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FiG. 5.1. Finding one eigenvalue for Laplacians of 1 and 10 millioresi&sD+1 yields minimum iterations,
JDQMR is the fastest method, BLOPEX is competitive, and ARRfoes not scale well.
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F1G. 5.2.Relative performance of ARPACK over JDQMR-000 for findingBuals smallest eigenvalues of 8
matrices. The left graph shows the matvec ratios. The rigigply shows time ratios.

Comparisons with other methods without preconditioning. In the following experi-
ments, we look for the smallest 100 eigenvalues, and adlofefie-15. BLOPEX could not
reach the requiretbl, hence it is not reported. In Figure 5.3, all JD/GD methodweoge
very similarly including JDBSYM, which means that its stapgp criteria work well in this
case. Interestingly, most methods and particularly JDQMIR-are better than ARPACK up
to 50 eigenvalues, but forumEvals= 100, ARPACK uses a much larger basis which cap-
tures some part of the spectrum that smaller bases couldARRACK takes fewer matvecs
to find 100 eigenvalues than 50, and it matches the time of JREQKO.

In Figure 5.4, we consider the Laplacian matrix of dimendi@bK, whose eigenvalues
are all of multiplicity 3 or 6. JDBSYM cannot converge in ttalle time for this matrix
with strategy = 1, and strategy = 0 performed worse. The gparfthis Laplacian makes
JDQMR-000 significantly faster than all other methods. Alsaall four examples, we see
GD+1 always taking the minimum number of matvecs among JIhaus, yet it loses time-
wise because of its more expensive iteration.

Figure 5.5 shows results from the cfd1l matrix, but withk=1e-7. BLOPEX with block
size of 10 is significantly slower than all PRIMME methods. W&o observe a significant
deterioration of the performance of ARPACK over tlk=1e-15 case in Figure 5.3. Closer
scrutiny of the iterations between the two figures reveay tre about the same. ARPACK
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FIG. 5.4.Matvecs (left graph) and time (right graph) of six methodsniamEvals smallest eigenvalues.

does not benefit from the higher threshold, still computilmgcst all 100 eigenpairs in full
accuracy. We observed this behavior of ARPACK with high ratees in the majority of
our experiments. Surprisingly, JDBSYM is much slowertim=1e-7 than with full accuracy
(compare with Figure 5.3).

Figure 5.6 reports similar results for the Lap7pt125K nxatBoth BLOPEX and JDB-
SYM cannot converge in tractable time, and ARPACK does noefiefrom the lower thresh-
old. The JDQMR and GD+k methods are consistent both in rolegstand their relative
behavior. Experiments with seekimgimEvals= 500 largest eigenvalues have confirmed
similar behavior of all methods.

Comparisons with other methods with preconditioning. For our preconditioning ex-
periments, we use the the ILUT preconditioner from the SPARSibrary [58].

In Figure 5.7, all preconditioned methods improve overrtbapreconditioned versions
and become much better than ARPACK. Notice that all JDQMBALD1/011 variants con-
verge identically, but the 111 takes more time for langemEvals JDBSYM also improves
but not as much as JDQMR-100. Because of large fill-in, theprded ILUT factors are
expensive and therefore the method with smallest matvats we., GD+1. The number of
matvecs for ARPACK is large and out of scale.

Despite the use of preconditioning, BLOPEX was not able tcheconvergence to
tol =1e-15, in any of our test matrices. Therefore, we conclugedbction with one ex-

a
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F1G. 5.6.Matvecs (left) and time (right) of six methods with tol=1&af smallest eigenvalues.

periment that includes preconditioning but uses a higHerdace, le-7.

In Figure 5.8, with an ILUT(20,1e-6) neither JDBSYM nor BLER were competitive.
The graphs also include the unpreconditioned JDQMR-000s@lperformance is identical
to preconditioned JDQMR-100.

6. Current and future work. We have motivated and described the theory that gives
rise to the near optimal methods GD+k and JDQMR that constthe basis of PRIMME.
We have also described the many algorithmic, implememntasiod interface features present
in PRIMME. Our sample experiments demonstrate that our austlat least match, and typ-
ically improve significantly the fastest methods availabEven without preconditioning,
PRIMME should be considered the method of choice for a smaetilver of eigenvalues.

PRIMME is currently in a stable state, which means that noaknbugs exist in the
code at this time. The software and its documentation, hewewolve continuously. The
following is a list of on-going and future projects, ordetdexpected completion time.

1. Generalized eigenvalue programs. The current disioibwf PRIMME includes an
interface for generalized eigenproblems, but the funetionis not implemented
yet. Traditionally, it is suggested that JD is based &irmner product with the mass
matrix. For stability reasons, we are working on a 2-norrha@gbnality implemen-
tation, which is similar to JDQZ but exploits symmetry.

2. A Matlab interface to PRIMME. One of our collaborating gps in Europe is near-
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F1G. 5.8.Matvecs (left) and time (right) with ILUT(20,1e-6). SmsilaumEvals and tol=1e-7.

ing the completion of such an interface, which will signifitig improve the poten-
tial impact of the package.

. Afront-end that calls PRIMME to compute singular triglef large sparse matrices.

PRIMME’s functionality allows both théT A approach, and the augmented matrix
[0 AT; A 0] approach. Factorized preconditionersAgfor other problem specific
preconditioners can be readily used.

. The current distribution of PRIMME implements only a setsf the Iterative Vali-

dation of Eigensolvers (IVE) algorithm [47]. We have a fuilyhctional IVE work-
ing with an older version of PRIMME that will be ported to thereent distribution.
This will also be coordinated with the final Rayleigh-Ritopedure over all locked
vectors that is needed when a locking problem has occurred.

. Implementation of the block orthogonalization algamnt&VQB [72].
. A dynamic block that adjusts its size depending on theitacture, but also accord-

ing to the clustering or multiplicity of the eigenvaluesgated at every step.

. Further comparisons on more applications and matriceswath additional soft-

ware including ANASAZI and SLEPc.

. The extension of PRIMME to non symmetric problems is a &rtgrm goal. The

basic structure is the same, but the lack of near optimalhaglmethods means that
many algorithmic choices must rely upon heuristics.
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