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PRIMME: PRECONDITIONED ITERATIVE MULTIMETHOD EIGENSOLVE R:
METHODS AND SOFTWARE DESCRIPTION ∗

ANDREAS STATHOPOULOS† AND JAMES R. MCCOMBS†

Abstract. This paper describes the PRIMME software package for the solving large, sparse Hermitian and real
symmetric eigenvalue problems. The difficulty and importance of these problems have increased over the years,
necessitating the use of preconditioning and near optimally converging iterative methods. On the other hand, the
complexity of tuning or even using such methods has kept themoutside the reach of many users. Responding to this
problem, our goal was to develop a general purpose software that requires minimal or no tuning, yet it provides the
best possible robustness and efficiency. PRIMME is a comprehensive package that brings state-of-the-art methods
from “bleeding edge” to production, with a flexible, yet highly usable interface. We review the theory that gives
rise to the near optimal methods GD+k and JDQMR, and present the various algorithms that constitute the basis of
PRIMME. We also describe the software implementation, interface, and provide some sample experimental results.

1. Introduction. PRIMME, or PReconditioned Iterative Multi-Method Eigensolver, is
a software package for the solution of large, sparse Hermitian and real symmetric eigenvalue
problems. We view PRIMME as a significant step toward an “industrial strength” eigenvalue
code for large, difficult eigenproblems, where it is not possible to factorize the matrix, and
users can only apply the matrix operator, and possibly a preconditioning operator, on vectors.

If the matrix can be factorized, the shift-invert Lanczos code by Grimes, Lewis, and
Simon has set a high standard for robustness [31]. However, even in factorizable cases,
the factorization and back-substitutions can be very expensive, and a Lanczos method or a
method that uses preconditioning can be more efficient, especially for extreme eigenvalues.
On the other end, if only matrix-vector multiplication is available, the software ARPACK
by Lehoucq, Sorensen, and Yang has set the standard for good quality code that is easy
to use with very little parameter tuning [44]. Yet, the implicitly restarted Lanczos method
[64], on which ARPACK is based, does not converge optimally,and it cannot directly use
preconditioning, which is required for very difficult problems. The range of problems targeted
by PRIMME is between the easy ones and the ones that must, and can be factorized. As
problem sizes in applications continue to grow, so does PRIMME’s target range.

Based on both research and integration, PRIMME’s design philosophy is
1. to provide preconditioned eigenvalue methods that converge near optimally under

limited memory
2. to provide the maximum robustness possible without matrix factorization,
3. to provide flexibility in mixing and matching among most currently known features,
4. to achieve efficiency at all architectural levels, and
5. to achieve all the above with a friendly user interface that requires no parameter

setting from end-users, but allows full experimentation byexperts.
This paper is organized as follows: In section 2 we describe the problem, its importance and
difficulty, and discuss the advantages and shortcomings of other current eigenvalue software.
In section 3 we present the main algorithmic framework for PRIMME, including the two near
optimal methods, GD+k and JDQMR. We also discuss how a host ofother algorithms can be
parameterized within this framework. In section 4 we discuss how the PRIMME software
meets its design goals. In section 5 we present sample comparisons with other state-of-the-
art software. We conclude in section 6 with some discussion on on-going work and future
extensions to PRIMME.
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ITR/ACS-0082094.

†Department of Computer Science, College of William and Mary, Williamsburg, Virginia 23187-8795,
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PRIMME implements a multitude of features, algorithms, techniques, and heuristics that
have emerged in research papers and software by this and other groups over many years.
When their description is beyond the scope of this paper, we refer to the appropriate literature.

2. A difficult problem and current approaches. Given a real symmetric, or com-
plex Hermitian matrixA of dimensionN, we consider the problem of seekingnumEvals
smallest, largest or interior eigenvaluesλi , and their corresponding eigenvectorsxi, i =
1, . . . ,numEvals. The numerical solution of this problem whenA is large and sparse is one of
the most computationally intensive tasks in a variety of applications.

One such application is structural engineering, where finite element models are used to
perform vibrational and buckling analysis [31]. Electromagnetics is another area that depends
on the solution of large, real symmetric eigenproblems [26,37]. A particular demanding
application comes from lattice Quantum Chromodynamics (QCD) where the pseudo-inverse
of a very large Hermitian operator is approximated on the space of several of its smallest
eigenpairs [22]. Recently, electronic structure applications from atomic scale physics [20]
to molecular scale materials science [11] and nanotechnology, with symmetric and hermitian
eigenproblems at their core, have been rivaling QCD as the top supercomputer cycle user.

The challenge is twofold; First, the matrix size,N, in these applications is routinely more
than a million, while an order of a billion has also been tried[54]. Second, many applications,
especially in electronic structure calculations, requirethe computation of hundreds or even
thousands of extreme eigenpairs. Often the number of required eigenpairs,numEvals, is
described as a small percentage of the problem size. In such cases, orthogonalization of
numEvalsvectors, anO(numEvals2N) task, becomesO(N3), making the scaling to larger
problem sizes practically infeasible.

Iterative methods are the only means of addressing these large problems. Yet, iterative
methods may converge slowly, especially as the problem sizegrows. As with linear systems,
preconditioning can be used to speed up convergence, but theoretical understanding of how it
should be used in eigenvalue methods has only started to mature over the last decade [19, 40,
62]. This probably explains the noticeable scarcity of high quality, general purpose software
for preconditioned eigensolvers.Beyond challenges in execution time, eigenvalue iterative
methods must also store the iteration vectors for computingeigenvector approximations. With
slow convergence, the storage demands of these applications can be staggering. Recently,
iterative methods have been developed [62, 69, 41, 61, 52, 66, 68], that can use effectively
the large arsenal of preconditioners for linear systems, and converge near optimally to an
eigenpair under limited memory requirements.

2.1. In search of (near) optimal methods.The quest for optimality under limited
memory is a natural one. In symmetric linear systems, Krylovmethods such as Conjugate
Gradient (CG) achieve optimal convergence in exact arithmetic through a three term recur-
rence. For eigenvalue problems, the Lanczos method can produce the optimal space through
a three term recurrence, but the vectors must be stored, or recomputed. With precondition-
ing even these Lanczos properties do not hold. Restarting techniques can be employed so
that approximations are obtained from a search space of limited size, see for example thick
restarting [71] and its theoretically equivalent implicitrestarting [64]. However this is at the
expense of convergence. As we show later, these techniques coupled with locally optimal
restarting can restore near optimal convergence when seeking one eigenpair.

When seeking many eigenpairs, it is an open question whetheroptimality can be achieved
under limited memory. If one eigenvalue is known exactly, the corresponding eigenvector can
be obtained optimally through a CG iteration [41, 66]. IfnumEvalseigenvalues are known,
one may think that the analogue optimality is to runnumEvalsseparate CG iterations. This is
the approach taken by most limited memory, preconditioned eigensolvers for smallnumEvals
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values. Yet, it is clearly suboptimal, because a method thatstores all the CG iterates from each
run would converge in much fewer iterations. For example, when the number of CG iterations
is O(N), the former approach takesO(numEvals N), while an unrestarted Lanczos would take
no more thanN.

In our research, and in the development of PRIMME, we have focused on methods that
do not allow their memory requirements to grow unbounded. With preconditioning this is
the only realistic alternative. However, even without preconditioning, the attractive Lanczos
method that does not store the iteration vectors has severaldrawbacks. To avoid spurious
eigenvalues, expensive selective and/or partial orthogonalizations are required [56]. Without
reorthogonalizations, as in the method of Cullum and Willoughby [13], the number of itera-
tions may grow much larger than the optimal, because the method keeps recomputing copies
of already converged eigenvalues. For highly ill conditioned problems, the method can be too
slow. Moreover, the method needs to store a tridiagonal matrix of size equal to the number
of iterations, which can be in the order of tens of thousands,and solve fornumEvalsof its
eigenpairs. Finally, to obtain multiple eigenvalues, a locking or a block implementation of
Lanczos must be implemented (see [12, 28], and [32] for extensive bibliography on block
methods).

2.2. Current state of Hermitian eigenvalue software.Iterative methods have gained
notoriety as very difficult to include in general purpose software. Dependence on special,
user-defined data structures has long been resolved by the standardization of the basic linear
algebra operations (through BLAS and LAPACK [43, 4]), and more flexible programming
languages (e.g., C, C++) and interfaces. What remains, however, is that different problems
may require different iterative solvers for robustness and/or efficiency, and often this is not
known a-priori. Dependence on the preconditioner complicates matters further. Expert opin-
ion is usually needed to tune the choice of methods and their parameters. This has led a group
of experts to produce the popular series of “Templates for the solution of linear systems” [9],
and “eigenvalue problems” [7]. Since then, the consensus onthe relative merits of methods
may not have changed for symmetric linear systems, but the area of symmetric eigenproblems
has seen some remarkable progress [66, 68, 53, 1, 52, 26, 46, 30, 41, 6, 74].

This recent progress is reflected in the large number of codesfor symmetric eigenprob-
lems. In their most recent survey of eigenvalue codes, [33],Hernandez et al. list 20 eigen-
value codes that have become available since the year 1998. Eighteen of these are for sym-
metric eigenproblems. The good theoretical understandingof the Lanczos method is also
reflected in this survey, with eight codes implementing various versions of Lanczos (block,
thick restarted, indefinite, etc). In this paper we do not further discuss these Lanczos codes,
because they are outside the scope of PRIMME’s target applications.

In the above survey, there are 12 codes that implement preconditioned eigensolver meth-
ods. We note that only one such code was publicly available before 1998; the Davidson code
that one of the authors (Stathopoulos) developed in 1994 [67]. We do not consider this code
further as it is superseded by PRIMME. From the rest 11 codes,EIGIFP [76] and JDCG [52]
are written in Matlab, and although their methods are of interest, their implementation does
not provide the robustness, flexibility, and efficiency required for general purpose software.
Moreover, PySparse is a Python environment built on top of the JDBSYM code [25], so we
only consider the underlying JDBSYM code. Finally, we do consider the SLEPc library, even
though it does not currently support preconditioning, because the external software packages
that it interfaces with (including PRIMME) support it. Therefore, besides PRIMME, the fol-
lowing 7 preconditioned symmetric eigensolver packages are currently available:
ANASAZI (2005, [73]), BLOPEX (2004, [38]), JDBSYM (1999, [25]), MPB (2003, [37]),
PDACG (2000, [24]), SLEPc (2006, [34]), SPAM (2000, [60]).
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ANASAZI is a well engineered package, with several featuresthat enhance robustness
and efficiency. ANASAZI implements a version of the LOBPCG method [41] and a block
Davidson method (what we refer to as Generalized Davidson) for solving standard and gen-
eralized real symmetric and Hermitian eigenvalue problems. The reason for block methods
is twofold: First, as an increased robustness measure, since Davidson methods have no prob-
lems identifying multiple eigenvalues [47]. Second, to take advantage of the increased cache
locality in block matrix-vector, preconditioning, and BLAS operations. Although the total
number of matrix-vector multiplications increases with larger block sizes, for appropriate
block sizes this effect is usually balanced by better data locality [5]. ANASAZI is part of the
Trilinos framework that includes highly optimized linear algebra operations, although some
users may define their own matrix-multivector and preconditioner-multivector operations.

ANASAZI is still under development, but currently it does not include the near optimal
GD+k or JDQMR methods. As we showed in [66, 68, 69] the difference in convergence
over LOBPCG and (Generalized) Davidson can be substantial,if the preconditioner is not
powerful enough to result in convergence in only a few iterations. Also, despite the very
high quality implementation of ANASAZI, some users may be reluctant to use it because it is
tightly coupled with the much larger Trilinos framework andits C++ object classes. For such
users, PRIMME offers the alternative of a stand-alone design, that includes most ANASAZI
features, while adding a choice of several near optimal methods.

BLOPEX is a software that implements the LOBPCG method for solving standard and
generalized real symmetric eigenproblems. Hermitian eigenproblems are not supported yet.
The code is written in C, and can be used both as stand-alone and as external package in
PETSc and Hypre. The power of LOBPCG is that it combines the fast convergence of the
three term locally optimal recurrence with a simple algorithm that requires no parameter
tuning other than the block size [41, 69]. BLOPEX does not implement any other methods,
and it cannot be used to find interior eigenpairs directly. Also, if the block size needs to be less
thannumEvals, either for memory reasons or efficiency, the user has to implement locking as
a wrapper to BLOPEX. Finally, a robustness issue may arise inthis particular implementation
of LOBPCG, because it does not maintain an orthonormal basisfor the search space [35, 68].

JDBSYM is a stand-alone software written in C that implements a block version of the
Jacobi-Davidson (JD) method for solving standard and generalized real symmetric eigen-
problems. Hermitian eigenproblems and parallelism are notsupported. Before PRIMME,
JDBSYM was the only JD implementation tailored to symmetricproblems. JDBSYM finds
eigenvalues near a shiftσ, therefore it provides MINRES and SYMMLQ for solving the in-
definite correction equation in JD, but also QMRs for using indefinite preconditioners. On the
other hand, extreme eigenvalues are also found close to aσ, which should be selected care-
fully to avoid misconvergence to interior eigenvalues. JDBSYM is implemented efficiently
but, as a classical Jacobi-Davidson method, its convergence depends on the interplay of in-
ner and outer iterations which can be controlled through several, usually problem dependent,
parameters, and a choice of three alternative correction equations. Nearly optimal dynamic
stopping criteria as in [52] are not implemented.

MPB includes implementations of the original Davidson method and a Preconditioned
CG minimization of the Rayleigh quotient for solving standard real symmetric or Hermitian
eigenvalue problems. These eigenvalue codes are actually part of MPB, which is an Ab-Initio
program for computing photonic band structures. Therefore, some of their functionality is
tightly coupled with the application. MPB is written in C andsupports parallelism.

PDACG is a parallel, Fortran 77 implementation of the deflation-accelerated CG method
for optimizing the Rayleigh Quotient of standard and generalized real symmetric eigenvalue
problems. Hermitian eigenproblems are not supported. The method is similar to other min-



6 A. STATHOPOULOS and J. R. McCOMBS

imization approaches, e.g., in MPB, and uses locking to find more than one eigenvalues. It
requires no parameter setting, but on the other hand it has limited functionality. For example,
it is built around a provided parallel sparse matrix-vectormultiplication routine with preset
data structure, which depending on the user’s needs, it may be either useful or difficult to use.

SLEPc is a library rather than an implementation of a single method. It is written in C and
can be considered an extension to the popular PETSc toolkit [8]. This coupling with the larger
PETSc package allows SLEPc to inherit a variety of tuned datastructures, multivector opera-
tions, matrix-vector multiplication and preconditioningoperators, but it cannot run as stand-
alone with applications that do not use PETSc. SLEPc provides implementations of several
basic and some more advanced methods for solving standard and generalized real symmetric
and Hermitian eigenvalue problems. An interesting and useful feature is SLEPc’s interface
to several external packages, specifically: ARPACK, BLZPACK, TRLAN, BLOPEX, and
PRIMME. Currently, SLEPc does not support preconditioningor finding interior eigenval-
ues, even if these functionalities are available in the underlying package (e.g., PRIMME).
When these features are included, SLEPc can be a powerful testbed for experimenting with
various eigenvalue software packages.

SPAM is a Fortran 90 code that solves standard, real symmetric eigenvalue problems.
The underlying basic method is Davidson (Generalized Davidson), but the interesting algo-
rithmic feature is that it solves the given problem through asequence of hierarchically sim-
pler problems. Simpler could mean sparser, coarser grids, smaller rank, etc. This algorithm,
which is reminiscent of multigrid, can be very effective forcertain problems, provided the
user can provide the operator functions for the sequence of simpler problems. When this is
not possible, the method reduces to simple Generalized Davidson.

In conclusion, we note that from the above codes the ones thatcome closest to a ro-
bust, efficient, general purpose code are the ANASAZI and SLEPc. Yet, neither of the two
implement the methods we have shown to be nearly optimal, andneither implements a Jacobi-
Davidson variant (although JD versions from PRIMME can be used through SLEPc). More-
over, SLEPc does not yet support preconditioning. Our goal in this software project has been
to bring state-of-the-art methods from “bleeding edge” to production.

3. Developing robust, near optimal methods and software.

3.1. Newton approaches.We can view the eigenvalue problem as a constrained mini-
mization problem, for minimizing the Rayleigh quotientxTAx on the unit sphere, or equiv-
alently minimizingxTAx/xTx [19]. For many eigenpairs, the same formulation applies for
minimizing the trace of a block of vectors [59], working withnumEvals-dimensional spaces
[2]. As we discussed in [66, 68], most eigenmethods can be interpreted through the inex-
act Newton viewpoint or the quasi-Newton viewpoint. The following includes excerpts from
these two papers.

3.1.1. The inexact Newton approach.The exact Newton method for eigenproblems
can be applied on the Grassmann manifold (to enforce normalization of the eigenvectors),
which is equivalent to classical Rayleigh Quotient Iteration (RQI) [19]. It is well known that
when using an inner iterative method to solve the linear system at every step, converging
beyond some level of accuracy, increases the overall numberof matrix vector multiplications,
and hence time. Inexact Newton methods attempt to balance good convergence of the outer
Newton method with an inexact solution of the Hessian equation. However, when the linear
system in RQI is solved to lower accuracy, RQI ceases to be equivalent to inexact Newton, and
it may not converge. This has attracted a lot of attention in the literature [57, 42, 63, 29, 61].

A more appropriate representative of the inexact Newton minimization for the eigenvalue
problem is the Jacobi-Davidson method [62]. Given an approximate eigenvectoru(m) and its
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Ritz valueθ(m), the JD method obtains an approximation to the eigenvector error by solving
approximately the correction equation:

(I −u(m)u(m)T)(A−ηI)(I −u(m)u(m)T)t(m) = −r (m) = θ(m)u(m) −Au(m),(3.1)

whereη is a shift close to the wanted eigenvalue. The next Newton iterate is thenu(m+1) =
u(m) + t(m). There are two important differences from RQI. First, the pseudoinverse of the
Hessian is considered to avoid the singularity whenη ≈ λ, and also to avoid yielding back
t(m) = u(m) when the equation is solved accurately withη = θ(m). The latter problem could
cause stagnation in the classical or the Generalized Davidson methods [15, 49, 70]. The
second difference from RQI is that JD applies the pseudoinverse of the Hessian to the resid-
ual, which is the gradient of the Rayleigh quotient, not tou(m). Some theoretical differences
between Newton variants are discussed in [1]. Here, we focuson their computational ramifi-
cations.

The Generalized Davidson (GD) method obtains the next iterate ast(m) = K−1r (m), where
the preconditionerK approximates(A−ηI). AlthoughK can be thought of as an approximate
solution to eq. (3.1), we follow prevalent nomenclature, and refer to GD as the application of
a given preconditioner to the residual.

JD is typically used with subspace acceleration, where the iteratest(m) are accumulated in
a search space from which eigenvector approximations are extracted through Rayleigh-Ritz or
some other projection technique [55, 48, 36]. This can be particularly beneficial, especially
when looking for more than one eigenpair. Note, however, that without inner iterations,
t(m) = −r (m), and JD becomes subspace accelerated steepest descent, or equivalently the
Lanczos method. With restarting and no inner iterations, JDis mathematically equivalent to
Implicitly Restarted Lanczos.

The challenge in JD is to identify the optimal accuracy to solve each correction iteration.
In [52], Notay proposed a dynamic stopping criterion based on monitoring the growing dis-
parity in convergence rates between the eigenvalue residual and linear system residual of CG.
The norm of the eigenresidual was monitored inexpensively through a scalar recurrence. In
[66], we proposed JDQMR that extends JDCG by using symmetricQMR (QMRs) [23] as the
inner method. The advantages are:

• the smooth convergence of QMRs allows for a set of robust and efficient stopping
criteria for the inner iteration.

• it can handle indefinite correction equations. This is important when seeking interior
or a large number of eigenvalues.

• QMRs, unlike MINRES, can use indefinite preconditioners, which are often needed
for interior eigenproblems.

We also argued that JDQMR cannot converge more than three times slower than the optimal
method, and usually it is significantly less than two times slower. Coupled with the very low
QMRs costs, JDQMR has proved one the fastest and most robust methods fornumEvals= 1.

When seeking many eigenvalues, the Newton method can be applied on thenumEvals
dimensional Grassman manifold to compute directly the invariant subspace (see [59] and [2]
for a more recent review). Practically, however, the Grassman RQI approach proposed in [2]
is simply a block JD method [68]. The open computational question is how to solvenumEvals
linear systems in block JD most efficiently, and whether to use a block method at all. Block
methods that solve all the correction equations simultaneously do not consistently improve
the overall runtime [26]. In our experience with block JDQMRand block JDBSYM, the sin-
gle vector versions outperform their block counterparts both in execution time and matvecs.
Unlike JDBSYM, however, the block JDQMR does not increase significantly the number of
matvecs over the single vector version. This is because the more interior eigenvalues in the
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block converge slower, and therefore their correction equations need to be solved less accu-
rately than the more extreme ones. The dynamic stopping criteria of JDQMR realize this
early, saving a lot of unnecessary matvecs.

Yet, a block size larger than one may be needed for robustness. Single vector JD methods
may converge to the required eigenvalues out of order, and thus are prone to misconvergence.
Moreover, in some occasions, a small block size was requiredfor JDBSYM to converge in the
presence of exact multiplicities. JDQMR did not exhibit this problem, but it may converge
out of order. The alternatives are to ask for a few more eigenvalues than needed, or to use a
small block size.

With largenumEvals, however, the near optimal convergence of the JDQMR has to be
repeatednumEvalstimes; much like thenumEvalsindependent CGs we mentioned in section
2.1. In this case, the role of a larger subspace accelerationis to obtain better approximations
for nearby eigenpairs while JD converges to the targeted eigenpair. Although the convergence
rate of QMR cannot improve further, increasing the basis size gives increasingly better initial
guesses for the eigenpairs to be targeted next. For practical reasons, we avoid this continuum
of choices and focus only on constant, limited memory basis sizes.

3.1.2. The quasi-Newton approach.An alternative to Newton is the use of the non-
linear Conjugate Gradient (NLCG) method on the Grassman manifold, which has given
rise to many NLCG eigenmethod variants [19], including MPB and PDACG. However, it
is natural to consider a method that minimizes the Rayleigh quotient on the whole space
{

u(m−1),u(m), r (m)
}

, instead of only along one search direction. The method:

u(m+1) = RayleighRitz
(

{u(m−1),u(m), r (m)}
)

, m> 1,(3.2)

is often called locally optimal Conjugate Gradient (LOCG) [18, 39], and seems to consis-
tently outperform other NLCG type methods. For numerical stability, the basis can be kept
orthonormal, oru(m) − τ(m)u(m−1) can be used instead ofu(m−1), for some weightτ(m). The
latter, when used with multivectorsu(m), r (m) is the LOBPCG method [41].

Because of the non-linearity of the eigenproblem, neither NLCG nor LOBPCG can be
optimal. Quasi-Newton methods use the NLCG vector iteratesto construct incrementally an
approximation to the Hessian, and therefore they almost always converge faster than NLCG
[27]. In the context of eigenvalue problems, if all the iterates of NLCG or LOBPCG are
considered, certain forms of quasi-Newton methods are equivalent to unrestarted Lanczos.
With thick or implicit restarting, however, IRL loses the single important direction (u(m−1))
that offers the excellent convergence to NLCG and LOBPCG. Therefore, the appropriate way
to restart methods such as JD, GD and even Lanczos, would be bysubspace acceleration of
the LOBPCG recurrence. This was first observed in [50] for theDavidson method, although
under a different viewpoint. In [69] we offered a theoretical justification of local optimality
both for the Rayleigh quotient and the Ritz vector. We also provided an efficient implemen-
tation that combined this technique with thick restarting for the GD. In [66], we noted the
connection of our method, which we call GD+k, to quasi-Newton and in particular to the
limited memory BFGS method [51].

GD(mmin,mmax)+k uses a basis of maximum sizemmax. When mmax is reached, we
compute themmin smallest (or closest to a target value) Ritz values and theirRitz vectors,

u(m)
i , i = 1,mmin, and also k of the corresponding Ritz vectors from stepm−1: u(m−1)

i , i = 1,k.
An orthonormal basis for this set ofmmin+ k vectors, which can be computed in negligible
time, becomes the restarted basis. A JD+k implementation isidentical. If the GD/JD method
is block, with block sizeb, it is advisable to keep k≥ b, to maintain good convergence for
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TABLE 3.1
The meaning of the parameters used in Algorithms 3.1–3.4

numEvals the number of required eigenvalues
mmax the maximum basis size forV
mmin the minimum restart size of the basisV
b the maximum block size
k the number of vectors from the previous step retained at restart
m the current basis size forV
l the number of locked eigenpairs
numConv the number of vectors converged in the current block
q the number of vectors converged since last restart
gq the number of initial guesses replacing locked eigenvectors
V the basis[v0,v1, . . . ,vm] for the search space
W W= AV array to save an extra matvec
X on input any initial guesses, on output the eigenvectorsxi

all block vectors. Note also that the special case of block GD(b, 3b)+b is mathematically
equivalent to LOBPCG with the same block size.

As we showed in [66], convergence of the GD+k is appreciably faster than LOBPCG
for one eigenpair, even with small subspace acceleration,and often indistinguishable from
the optimal method.For largenumEvalsthe convergence gains over LOBPCG are even
larger [68]. Yet, higher iteration costs than JDQMR make it less competitive for very sparse
operators. When seeking many eigenvalues, we have found block sizeb= 1 to always provide
the smallest number of matrix-vector multiplications (andpreconditioning operations), even
with a small subspace acceleration. Apparently, convergence to an eigenvalue is so close to
optimal that the synergy from other block vectors cannot improve the subspace acceleration
benefits. This may also explain why slower methods tend to benefit more from a larger block
size. Nevertheless, for both robustness and data locality reasons, general purpose software
must implement methods with a block option.

3.2. The GD+k and the JDQMR algorithms in the PRIMME framewor k. In [66]
we argued that most eigenvalue methods can be implemented using the basic iterative frame-
work of GD. Algorithm 3.1 depicts a version of the block GD+k algorithm as implemented in
PRIMME. For concise notation we use the abbreviations of Table 3.1 instead of the parameter
names appearing in the software. The GD(mmin,mmax)+k algorithm finds eigenpairs(λi ,xi)
with smallest or largest eigenvalue, or closest to a set of user provided shifts. Vectors with-
out subscripts are considered multivectors of variable block size between 1 andb. Vectors
with subscripts are single vectors in the designated location of their array. The transposition
symbolT denotes Hermitian transpose.

Although PRIMME can be used both with and without locking, Algorithm 3.1 presents
only the locking option to avoid further complicated indexing and book-keeping. PRIMME
includes a host of other features and handling of special cases, which are impractical to de-
scribe in one algorithm. Examples include special cases forbasis size and block size, an
algorithm that identifies Ritz pairs that although they cannot converge to full accuracy be-
cause of locking, they are practically converged (see [65]), an algorithm that repeats steps (4)
to (20) until convergence is verified for all required pairs (see [47]), the handling of multiple
user-defined shifts, and many others. Section 3.3 outlines some of them.

Algorithms 3.2–3.4 describe the PRIMME implementation of three important compo-
nents of GD+k: convegence checking and forming the target block, restarting, and locking
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ALGORITHM 3.1. The Generalized Davidson(mmin,mmax)+k algorithm
/* Initialization */

(1) Initial guesses are in X. Let m= min(mmin,size(X,2)), v0:m = X0:m

Build (mmin−m) Lanczos vectors to get basis V= [v0, ...,vmmin−1]
(2) Set W= AV, H= WTV, m= nmv= mmin, q = l = 0
(3) Compute eigendecomposition H= SΘST with θ0,θ2, . . . ,θm−1 sorted

according to user defined criteria (smallest, largest, interior)
/* Repeat until convergence or max number of matvecs */

(4) while (l < numEvalsand nmv< max nummatvecs)
/* Repeat until basis reaches max size or it spans the whole space */

(5) while (m< mmax and m< N− l)
(6) Reset b, if needed, so that m+b≤ mmax

(7) u(m) = Vs0:b−1 , θ(m) = diag(θ0:b−1),
w(m) = Ws0:b−1, r (m) = w(m) −u(m)θ(m)

(8) Check convergence and determine target block. SeeALGORITHM 3.2
(9) if (l +numConv≥ numEvals), break
(10) Precondition the block of residuals:t(m) = Prec(r (m))

(11) Orthonormalizet(m) among themselves and againstv0:m−1 andx0:l−1

(12) Updatevm:m+b−1 = t(m), wm:m+b−1 = Avm:m+b−1, nmv= nmv+b
(13) Update Hi,m:m+b−1 = vT

i wm:m+b−1 for i = 0, . . . ,m+b−1
(14) Remember Ritz vector coefficients: sold

i = si , i = 0, . . . ,max(b,k)−1
(15) m= m+b
(16) Compute eigendecomposition H= SΘST with θ0,θ2, . . . ,θm−1 sorted

according to user defined criteria (smallest, largest, interior)
(17) end while
(18) Restart the basis and reset variables. SeeALGORITHM 3.3
(19) Lock the q flagged Ritz pairs intoλ and X. SeeALGORITHM 3.4
(20) end while

ALGORITHM 3.2. Check convergence and determine target block
(1) repeat
(2) numConv = Number of converged vectors in blockr (m)

consider also practically converged vectors (seeALGORITHM 3.6)
(3) q= q+numConv. Flag these Ritz vectors as converged

(4) Find the next numConv unconverged Ritz vectorsu(m)
i and their

residualsr (m)
i to replace the numConv ones in the block

(5) Swap converged vectors after the block to maintain blocklocality
(6) until (b unconverged residuals are in the blockor not enough available)
(7) if (not enough unconverged residuals) reduce block size

converged eigenpairs. The restart procedure in particular(Algorithm 3.3) combines thick
(or dynamic thick) restarting [71], with the +k locally optimal restarting (steps (7) to (16)).
Note that steps (7) to (12) apply on vectors of sizemmax, and therefore the cost of the
GD(mmin,mmax)+k implementationis the same as that of the thick restartedGD(mmin+k,
mmax). In fact, GD+k is typically less expensive per iteration, because k=1 ork ≤ b is not
only sufficient [69, 66, 68], but also obviates the use of largermmin.

What characterizes Algorithm 3.1 is its flexibility, It allows for complete freedom on
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ALGORITHM 3.3. The Restart procedure
(1) Decide the order in which to keep Ritz vectors (dynamic/thick restarting)
(2) Let(nx) the indices of unflagged Ritz vectors in the desired order

Let (q, ix) the number and indices of flagged converged Ritz vectors
Let g the number of remaining initial guesses in X
/* Steps 3-6 guarantee mmin vectors are in the basis after locking */

(3) gq = min(q,g)
(4) if (gq ≥ mmin) mu = max(0,mmin−q)
(5) else mu = max(0,mmin−gq)
(6) Consider the first mu unconverged AND the q converged Ritz vectors

These correspond to coefficient vectors:[snx(0), . . . ,snx(mu−1)] and six
/* Steps 7-16 include the coefficients of the previous step vectors */

(7) Orthonormalize the k Ritz vector coefficients from the previous step: sold

among themselves, against[snx(0), . . . ,snx(mu−1)], and against six
(8) Compute Hsub= soldTHsold (k×k submatrix)
(9) Compute eigendecomposition of Hsub= YΦYT

(10) Set s= [snx(0), . . . ,snx(mu−1), sold
0 , . . . ,sold

k−1, six]
(11) SetΘ = [θnx(0), . . . ,θnx(mu−1), φ0, . . . ,φk−1, θix]
(12) m= mu +k+q
(13) vi = Vsi , wi = Wsi , i = 0, . . . ,m−1
(14) H = 0. Then Hii = θi , for i = 0 : mu−1 and i= mu +k : m−1
(15) H(mu : mu +k−1, mu : mu +k−1) = Hsub

(16) s= Im. Then s(mu : mu +k−1, mu : mu +k−1) = Y

ALGORITHM 3.4. The Locking procedure
/* Called immediately after restart. Flagged vectors at theend of V */

(1) Recompute residualsr i = wi −viθi , i = m−q : m−1 of flagged vectors
(2) Set(q, ix) to the number and index of flagged vectors remaining converged
(3) Flagged vectors that became unconverged stay in the basis V

(4) λl :l+q−1 = θ(m)
ix

(5) gq = min(q,g), update remaining initial guesses g= g−gq

(6) Swap the next gq initial guesses Xl :l+gq−1 with the convergedvix(0:gq−1)

(7) Lock the rest Xl+gq:l+q−1 = vix(gq:q−1)

(8) m= m−q+gq

(9) l = l +q
(10) Orthonormalize new guesses among themselves and against V andx0:l−1

(11) Update Wm−gq:m−1 = Avm−gq:m−1, nmv= nmv+gq

(12) Update Hi,m−gq:m−1 = vT
i wm−gq:m−1 for i = m−gq, . . . ,m−1

(13) Compute eigendecomposition H= SΘST with θ0,θ2, . . . ,θm−1 sorted
according to user defined criteria (smallest, largest, interior)

(14) Reset Flags

how to expand the space, how to extract approximations from it, and how to restart it. In
PRIMME, all these choices are available by setting certain parameters. The price for this
flexibility is that, at every step, it needs to compute eigenresiduals, orthogonalize new vectors
against all current ones in the basisV, and maintain a work array forW = AV.

Step (10) is the one differentiating between most eigenmethods. When the algorithm re-
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turnst(m) = r (m) (and with k=0), it is equivalent to an expensive IRL implementation. How-
ever, if the matrix vector operation is expensive, the near optimal convergence of GD+k
could be preferable over IRL. When the preconditioner is applied directly on the residual we
have the classical GD and GD+k methods. By considering multivectors, the algorithm yields
the equivalents of block (implicitly restarted) Lanczos [6, 56], subspace iteration (without
preconditioning) [10], and preconditioned subspace iteration [7]. We also derive the clas-
sical block GD and the block GD+k methods [45, 67, 26, 69]. Of particular interest is
the GD(b,3b)+b, which is a numerically stable implementation of the LOBPCG, maintain-
ing full orthogonality of the basis for only 5% more floating point operations per iteration
[69, 41, 66, 35]. In addition,b can be chosen independently fromnumEvals, to obtain lock-
ing implementations of LOBPCG. Variations such as GD(b, mb)+b are also plausible.

Step (10) can also return a JD correction vector. Without inner iterations, a precondi-
tionerK can be inverted orthogonally to the spaceQ = [X,u(m)] and applied to the residual.
The pseudoinverse of such a preconditioner can be written as:

(

(I −QQT)K(I −QQT)
)+

= (I −K−1Q(QTK−1Q)−1QT)K−1(I −QQT)(3.3)

= K−1(I −Q(QTK−1Q)−1QTK−1)(I −QQT).(3.4)

The above is known as Olsen’s method [54]. “Robust shifting”[70] can be used as an ap-
proximation to Olsen’s method to avoid the computation of the pseudoinverse. This applies
the preconditioner onr (m) + δθ u(m), whereδθ is an approximation to the eigenvalue error.

When the preconditioner (3.4) is used in an iterative methodon eq. (3.1), we obtain the
classical inner-outer JD variants. In [21, 62, 7] it is shownthat JD methods can be imple-
mented with one projection withQ per iteration. If the inner iteration solves eq. (3.1) accu-
rately, we obtain a subspace accelerated Inverse Iteration(for a givenη) or RQI (forη = θ(m)).
The true flexibility of JD is that it converges even when eq. (3.1) is solved approximately.

Let Aη,u(m) denote the projected matrix operator in the correction eq. (3.1), andKu(m)

the projected preconditioner. Our JDQMR algorithm uses theGD+k as the underlying outer
method, and at step (10) calls the symmetric, right preconditioned QMR withAη,u(m) , Ku(m) ,

and right hand side−r (m). Algorithm 3.5 shows our QMRs algorithm. The scalar recurrences
for monitoring the eigenvalue residual, and the dynamic stopping criteria are shown at steps
numbered with decimal points (see [66] for detailed analysis).

3.3. Other special techniques in PRIMME. The above state-of-the-art algorithms and
the myriad of their combinations are complemented by several other techniques that provide
additional efficiency and robustness.

3.3.1. Avoiding the JD oblique projectors. For largenumEvals, the classical JD re-
quires significant extra storage forK−1Q to avoid doubling the number of preconditioning
operations. In [68] we have shown that the pseudoinverse (3.4) with only u(m), not X, is
sufficient. Intuitively, projecting outu(m) from a very accurate preconditioner helps avoid
the classical Davidson problems where the correction is almost completely in the direction of
u(m) [53]. However, projecting outX does not serve the same purpose. Instead, one would
hope that it produces a better conditioned correction equation. Our analysis in [68] showed
that usually there is no significant difference between the condition numbers, and often the
correction equation without the pseudoinverse is better!

Avoiding the pseudoinverse withX yields significant storage savings, effectively halving
the memory required by the JD method for largenumEvals. PRIMME follows this strategy
as a default, but it also implements all possible combinations of different projector and pseu-
doinverse strategies, for bothu(m) andX. Assume that the JD projectors foru(m) are included
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ALGORITHM 3.5. Symmetric QMR for JDQMR with adaptive stopping criteria
Input: Aη,u(m) ,Ku(m) ,−r (m),maxiter
Output: tk
(1) t0 = 0,δ0 = 0, r0 = −r (m),d0 = K−1

u(m) r0

(2) g0 = ‖r0‖,Θ0 = 0,ρ0 = rT
0 d0

(2.0) B0 = ∆0 = Γ0 = Φ0 = Ψ0 = 0
(3) if (maxiter= 0), t0 = d0, return
(4) for k = 1, . . . ,maxiter
(5) w = Aη,u(m)dk−1

(6) σk−1 = dT
k−1w, if (σk−1 = 0), return

(7) αk−1 =
ρk−1
σk−1

(8) r k = r k−1−αk−1w
(9) Θk = ‖rk‖

gk−1
,ck = 1

√

1+Θ2
k

,gk = gk−1Θkck

(10) δk = (c2
kΘ2

k−1)δk−1 +(c2
kαk−1)dk−1

(11) tk = tk−1 + δk

(12) if (ρk−1 = 0), return
(12.0) γk = c2

kΘ2
k−1, ξk = c2

kαk−1, f = 1+‖tk‖2

(12.1) Ψk = γk(Ψk−1 + Φk−1)
(12.2) Φk = γ2

kΦk−1 + ξ2
kσk−1

(12.3) Γk = Γk−1 +2Ψk + Φk

(12.4) ∆k = γk∆k−1− ξkρk−1

(12.5) Bk = Bk−1 + ∆k

(12.6) p=
(

θ(m) −η+2Bk + Γk

)

/ f

(12.7) θ(m+1)
k = η+ p

(12.8) pk = (θ(m) −η+Bk)
2/ f − p2

(12.9) r(m+1)
k =

√

g2
k/ f + pk

(12.10) if (r(m+1)
k not real), r(m+1)

k =
√

g2
k/ f

(12.11) if
(

gk ≤ r(m+1)
k max(0.99

√
f ,

√

gk/gk−1) or ( θ(m+1)
k > θ(m+1)

k−1 )

or (r(m+1)
k < 0.1r0) or ( gk < εinn ) or (r(m+1)

k < εinn)
)

then return the correctiontk.
(13) w = K−1

u(m) r k,ρk = rT
k w,βk = ρk

ρk−1

(14) dk = w+ βkdk−1

(15) end for

in the notation ofA andK. Define the orthogonal projectorP = I −QQT , and for any matrix
B the skew projector:

PB = (I −BQ(QTBQ)−1QT),(3.5)

and note that the correction equation preconditioned with (3.4) can be written as:

PAP(PKP)+ = PAPK−1K−1(3.6)

= PAK−1PT
K−1.(3.7)

Table 3.2 summarizes several variants of a projected operator based on whether we operate
with a projector on the left, and/or on the right ofA, and whether we relax the requirement for
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TABLE 3.2
Projection alternatives to the classical Jacobi-Davidsoncorrection equation (with right preconditioning). The

0/1 string characterizes whether there is a projection on the left of A, on the right of A, and whether the right
projection is skew projection or not. Theoretically Jacobi-Davidson corresponds to (111) although it is typically
implemented as (011). All options are available in PRIMME, with (100) the default for preconditioning, and (000)
the default for unpreconditioned cases.

(Left Skew Right) Operator (Left Skew Right) Operator
111 PAPK−1K−1 011 APK−1K−1

101 PAPK−1 001 APK−1

100 PAK−1 000 AK−1

a right skew projector, replacing it withP. For example, the casePAPK−1K−1 = PAK−1PT
K−1,

which is equivalent to notation (111), requires two projections per QMR step. The case
APK−1K−1 = AK−1PT

K−1, or equivalently (011), is the proposed implementation by the JD
authors and includes the skew projection withX. Our default strategy with preconditioning is
the (100), or equivalentlyPAK−1 where there is no skew projection, and only one, orthogonal
projection on the left.

A particular impressive outcome of the above flexibility is possible whenK has the same
eigenvectors asA (e.g., if K is a polynomial ofA, or simply K = I ). In that case, all the
QMR iterates stay inX⊥ invariant space, without any orthogonalization! Floatingpoint arith-
metic, and the fact thatX are converged totol, not to machine precision, will eventually
introduceX components that QMR will have to remove by additional iterations. However,
a few additional iterations is a small price to pay for removing the limiting scalability fac-
tor O(numEvals2N) of orthogonalization. In our experience, unpreconditioned JDQMR-000
achieves an almost linear scaling withnumEvals, both in convergence and in time, which is
as close to optimality as possible under limited memory.

3.3.2. Avoiding stagnation because of locking.Locking is a stable form of deflation,
where an eigenvectorx is removed from the search space of an eigensolver and all subsequent
vector operations are performed orthogonally tox. Without locking, converged eigenvectors
are kept in the search space and improve with time. Locking usually provides a better mech-
anism than non-locking for identifying eigenvalues that are highly clustered or of very high
multiplicity [47].

However, locking introduces a subtle numerical, but not floating point, problem. Specifi-
cally, a large number of locked, approximate eigenvectors,that have converged totol residual
accuracy, may impede convergence totol accuracy for some subsequent eigenvector. This
problem is described in our recent report [65]. Before that report, occurrences of the problem
have been mainly anecdotal, and not well documented. Yet, many practitioners were well
aware of the problem, but had no good solution to it, other than to stop the method, perform
a subspace projection with all converged vectors, and then continue with new initial guesses
and the already computed eigenvectors.

The problem is rather rare and it tends to surface when hundreds of eigenpairs are com-
puted, but its existence undermines the reliability of any numerical software that implements
locking. The resulting stagnation, which must be differentiated from slow convergence, is
not an option in critical applications. In [65] we have provided an algorithm that identifies
the problem when it occurs. Its variant as implemented in PRIMME appears in Algorithm
3.6. The interesting theoretical result is that a “practically converged” eigenvector can still
be locked, because enough of its missing components are inX, so that a single Rayleigh Ritz
projection at the end will produce a Ritz vector with residual norm less than the required
tolerance.
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ALGORITHM 3.6. Identify a locking stagnation problem
l is the number of locked vectors
tol is the convergence tolerance for residual norms
mxTol is the maximum residual norm of any locked eigenvector
E is the guaranteed attainable tolerance without stagnation

In step (2) of the Convergence procedure (ALGORITHM 3.2) include:
Set E=

√
l mxTol

if (‖r (m)‖ < tol) Flag u(m) as converged to be locked,break
if (‖r (m)‖ < E)

Compute‖rd‖ = ‖(I −XXT)r (m)‖, β =
√

‖r (m)‖2−‖rd‖2

if
(

β > tol and ‖rd‖ < tol2/(2‖r (m)‖)
)

Flag u(m) as “practically converged” to be locked
endif

endif

In step (2) of the the Locking Procedure (ALGORITHM 3.4) include:
Check if a recomputed norm remains “practically converged”
if (‖r (m)‖ ≥ E) Unflagu(m). It has become unconverged again
elseif(‖r (m)‖ < tol) Locku(m) as converged
else

Locku(m) as “practically converged”
Update mxTol= max(mxTol,‖r (m)‖)

endif

3.3.3. Dynamic method selection.Many users commonly invoke the complexity of
tuning the parameters of the JD method as the main reason for choosing an alternative method.
The self-tuned inner-outer iteration of JDQMR has all but removed such reasons. The other
important remaining choices of block size and basis size arecommon to most other methods.
More importantly, both GD+k and JDQMR display remarkable robustness for a wide variety
of choices for these parameters.

One choice remains, however; the choice between GD+k and JDQMR. As we mentioned
before, GD+k converges almost identically to the optimal method, while JDQMR may repeat
some subspace information in the QMRs of different outer steps. In our extensive experience,
JDQMR is usually between 1.1 and 1.7 times slower than optimal1 On the other hand, the cost
per iteration of the JDQMR is significantly lower than the GD+k one. The crossover point
between the two methods depends on the expense of the matrix and the preconditioner oper-
ators, onnumEvals, and on the slowdown of the JDQMR convergence relatively to GD+k.

In [68], besides an asymptotic comparative analysis, we provided cost models for the
time complexity of GD+k and JDQMR as a function of certain parameters and procedural
components, rather than the traditional flop counts. Such components include the matrix-
vector and preconditioning operations, the outer GD+k iteration, which is common to all
methods, and the inner QMRs iteration. The parameters are the number of inner/outer it-
erations, and the convergence slowdown experienced by JDQMR. This approach allows a
dynamic prediction of the execution time of GD+k and JDQMR based on runtime measure-

1The actual convergence is usually closer to optimal, but QMRs, like most iterative methods for linear systems,
takes one more matvec before it exits the inner iteration, which can add up if only a few inner iterations are required.
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ments of the parameters and the cost of the components.
It is beyond the current scope to describe the exact averaging we use over successive

iterations to update the measured statistics. Instead, we outline in Algorithm 3.7 and motivate
the extensions needed to Algorithm 3.1 to achieve a dynamic method selection between GD+k
and JDQMR. For this, the following problems have to be addressed.

First, by running solely with GD+k we cannot measure the costor predict the conver-
gence of JDQMR. By running solely with JDQMR, we can still update the GD+k cost, but
not its convergence. Therefore, at least one switch betweenthe two methods is necessary.
Because initially the search space may not contain good eigenpair approximations, which is
important for Newton type methods, we start with GD+k and after a certain time we force a
switch to JDQMR so that statistics for both methods are obtained.

Second, because convergence rates and even the runtime costof various components may
change since they were last measured, more than one switch may be necessary. Deciding on
the frequency of switching depends onnumEvals. If numEvalsis large, we can afford to have
each method converge alone to one eigenpair, and thus collect better convergence statistics
to evaluate what method to use for the following eigenpair. For smallnumEvals, methods
must be evaluated much more frequently, because the software should adapt quickly to avoid
solving almost the whole problem with the wrong method.

Third, the two methods need to be evaluated at different points. For GD+k a reasonable
evaluation point is at every restart. At that point, the method has completed a full cycle,
so all components have been measured, andmmax−mmin iterations provide a good update
for estimating its convergence rate. JDQMR, however, should not be evaluated at restarts,
because it only takes a small number of outer iterations (often less thanmmax−mmin) to
converge to an eigenpair. Moreover, JDQMR may perform a large number of inner iterations.
If it is clear that JDQMR should not be used further, e.g., because of a very expensive matrix
operator, our dynamic algorithm should not solve another correction equation. Therefore, we
must evaluate JDQMR at every outer step, just before the callto the correction equation.

Fourth, regardless of evaluation points andnumEvals, if some eigenpairs converged dur-
ing the current outer iteration, the algorithm has to updatethe convergence statistics. Finally,
before exiting, PRIMME can use the obtained statistics to recommend a method to the user,
in case problems similar to the current one need to be solved repeatedly. The algorithm that
summarizes these decisions for dynamic method switching isshown in Algorithm 3.7.

We have observed that this dynamic, completely automated meta-method runs usually
within 5% of the fastest of GD+k and JDQMR. More surprising was that in certain cases
where JDQMR was the fastest method, the dynamic method improved the JDQMR timing!
This is because it has the freedom to switch between GD+k and JDQMR when this is bene-
ficial. The method may choose GD+k during the early stages of convergence when JDQMR
takes too few inner iterations and switch later. Similarly,for largenumEvals, GD+k could
be preferable up to a certain number of eigenvalues, beyond which JDQMR should be used.
Finally, we note that our dynamic method responds even to external, system load changes.

3.3.4. Orthogonalization stability and efficiency.Orthogonalization is the single most
important component of an eigenvalue iterative solver. If there is orthogonality loss in the
V basis, methods cannot converge to the required accuracy, and they may even stagnate or
produce “eigenpairs” that do not exist. PRIMME currently uses a variation of the classical
Gram-Schmidt with iterative reorthogonalization [14]. After two iterations, if an additional
orthogonalization is needed, we determine that the vector has lost all significant components
of the original direction and we replace it with a random vector. The procedure also guards
against vectors that are zero or close to machine precision.

In parallel computers, one of the factors limiting scalability is the presence of several
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ALGORITHM 3.7. Basic algorithm for Dynamic Method Choice

When dynamicMethod = 1, 3, current method is GD+k
When dynamicMethod = 2, 4, current method is JDQMR
For numEvals< 5, we alternate between 1, 2,

evaluating GD+k every restart, and JDQMR every outer step or
when an eigenpair converges

For numEvals≥ 5, we alternate between 3, 4,
evaluating GD+k and JDQMR only when an eigenpair converges

Extensions toALGORITHM 3.1
(3.1) if (dynamicMethod> 0)

initializeModel(CostModel)
/* Start always with GD+k. Switch to JDQMR later: */
if (numEvals< 5)

dynamicMethod = 1; /* switch to 2 at first restart */
else

dynamicMethod = 3; /* switch to 4 after first pair converges */
endif

(9.1) if (dynamicMethod> 0)
Measure and accumulate time spent in correction equation
/* if some pairs converged OR we evaluate jdqmr at every step */
if (numConv> 0 or dynamicMethod = 2)

/* update convergence statistics and consider switching */
Updatestatistics(CostModel)
switch (dynamicMethod)

case1: break /* for few evals evaluate GD+k only at restart */
case3: Switchfrom GDpk(CostModel);break;
case2: case4: Switchfrom JDQMR(CostModel);

end switch
endif

endif

(19.1) if (dynamicMethod = 1 )
Measure outer iteration costs
Updatestatistics(CostModel)
Switchfrom GDpk(CostModel)

endif

(20.1) if (dynamicMethod> 0 )
ratio = ratio of estimated overall times for JDQMR over GD+k
if (ratio < 0.96) For this problem recommend method: JDQMR
else if(ratio > 1.04) For this problem recommend method: GD+k
elseRatio is too close to 1. Recommend method: DYNAMIC
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dot products in Gram-Schmidt. We have implemented a not so well known strategy that
typically removes one dot product per Gram-Schmidt iteration. Let r be the vector to be
orthogonalized againstV, ands0 = ‖r‖. After orthogonalizationr ′ = (I −VVT)r , the test
s1 = ‖r ′‖ < 0.7071 s0 determines whether to reorthogonalize. It is possible to avoid the
expense of the dot product to compute the norms1, and the synchronization that it implies.
Note that:

s2
1 = ‖(I −VVT)r‖2 = (rT − (rTV)VT)T(r −V(VT r)) = s2

0− (VT r)T(VT r).

The (VT r) is a byproduct of the orthogonalization, and because it is a small vector of size
m, not N, all processors can compute(VT r)T(VT r) locally, and inexpensively. If the test
s1 < 0.7071s0 is not satisfied, the resulting vector can be normalized,r ′/s1, and the process
exits. Otherwise, we sets0 = s1 and reorthogonalize.

This process hides a numerical danger;s1 may be computed inaccurately ifV andr are
almost linearly dependent. Although the normality ofr ′ is not important at this stage, this
can cause the reorthogonalization test to fail, and return avector that is neither normal nor
orthogonal. An error analysis of the computation provides the following interesting result:

|s1− ŝ1|
|s1|

= O

(

(
s0

s1
)2 εmachine

)

,

where ˆs1 is thes1 as computed by our algorithm. This result suggests that our algorithm is
safe to use, with no loss of digits ins1, if s1 > s0

√
εmachine. If this test is not satisfied, our

algorithm computes explicitly the norms1 = ‖r ′‖, and continues. Experiments with many
ill-conditioned sets of vectors have confirmed the theoretical results and the robustness, as
well as improved efficiency, of the resulting algorithm.

3.3.5. A verification iteration. PRIMME can be used without locking, when the num-
ber of required eigenvectors fit in the basis:mmax> numEvals≥ mmin. Converged eigenvec-
tors remain inV, but are flagged as converged, so that they are not further placed in the target
block. Still, they participate in the Rayleigh Ritz at everystep, and therefore they improve
as additional information is gathered inV. For the same reason, however, it is possible that
a Ritz vectorxi that was flagged converged, it becomes unconverged during later iterations.
This could occur if eigenpairs converge out of order, or if they have very high multiplicities.

PRIMME implements an outer verification loop that includes steps (2) through (20) of
Algorithm 3.1. Before exiting, PRIMME verifies that all flagged Ritz vectors satisfy the
convergence tolerance. If they do not, the basisV is orthonormalized,W = AV is recomputed,
H is rebuilt, all flags are reset, and the algorithm starts again trying to find all eigenpairs.
Usually a small number of outer iterations is enough to recover the small deficiencies that
have caused some eigenvectors to become unconverged. This verification is repeated until all
required eigenvectors converge.

3.4. Memory requirements. The memory requirements for the underlying GD, JD,
and symmetric QMR methods are established in the literature[9, 7]. The way that these basic
methods are combined in PRIMME through various parameter choices determines the actual
method and its memory requirements. PRIMME requires that the user provides three arrays
where the computed eigenvalues, eigenvectors, and their residual norms will be placed. With-
out locking, and for certain method choices that do not use the expensive skew JD projections,
the user may set the eigenvector array to be at the start of thework array in the primme data
structure. This saves the additional(numEvals N) storage of the eigenvector array. For gen-
eral users, we do not yet recommend this undocumented feature. We focus now on the actual
requirements of the PRIMME software.
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Because GD+k is implemented as a thicker restarted GD, the two methods require prac-
tically the same memory footprint, as outlined in the table below:

2mmaxN storage forV andW
2m2

max storage forH andS
mmaxk storage for thesold

max(k2,mmaxk,
2b(numEvals+mmax)) general storage shared by various components

The above storage is clearly dominated by 2mmaxN for the arraysV andW. With the use
of locking, mmax can be kept small (e.g., 10–15 for extreme eigenvalues), butwe can still
compute a large number of eigenpairs.

The basic QMR method requires storage for five long vectors (5N) and some small work
space of 2numEvals+mmax+2b. JDQMR may require additional storage if skew projectors
with the preconditioner are required (see section 3.3). Specifically, skew projection only on
u(m) (method JDQMR-100) requires one additional vector (N), while the skew projector on
bothu(m) andX requires storage forN + (numEvals+ mmax)(N + numEvals+ mmax). The
latter can be a limiting factor for applications that seek hundreds or thousands of eigenvectors,
and we do not recommend it. Considering also the expense of the GD+k outer iteration, our
default JDQMR-000 and JDQMR-100 methods require storage for O((2mmax+ 5)N) and
O((2mmax+6)N) elements, respectively.

Storage for other methods is derived from the above. For example, Rayleigh Quo-
tient Iteration without subspace acceleration, requiresmmax = 2 and if we use QMRs with-
out the skew projectors the total memory isO(9N). Similarly, implementing LOBPCG as
GD(b,3b)+b, the memory requirements are:O(6bN).

3.5. Computational complexity. The complexity of any method in PRIMME can be
decomposed to the complexity of the outer iteration component, plus the complexity of the
inner iteration component. The only additional parameter is the relative frequency that a
method spends in each component. For completeness, we present a model based on floating
point operation counts for both GD+k and JDQMR. For a detailed complexity analysis see
[66, 68]. Following classic literature, each of the GD stepsrequires the following flops:

reorthogonalization O(8Nb(m+ l)+2b2N+2bN) (step 11)
updating ofH O(2mbN) (step 13)
the small eigenproblem O(4/3m3) (step 16)
Ritz vector computation O(2mbN) (step 7)
residual computation O(2mbN+4bN) (step 7)
norm computation O(2bN) (step 8)
restarting cost O(4Nmmaxmmin) (steps 18–19)

Averaging overm= mmin. . .mmax and settingµ = mmin/mmax, we have the average cost per
outer step:

GD cost= O

(

7+4µ−7µ2

1−µ
Nmmaxb+

11+2b+µ
1−µ

Nb+8Nbl+1/3m3
max

)

.

With typical values,mmin = mmax/3 andb = 1 we have:

GD cost= 11.3Nmmax+20N+8Nl +m3
max/3.

With b = 1, these are mostly BLAS level 2 and some BLAS level 1 operations. Withb > 1,
PRIMME uses mainly BLAS level 3 operations. Note also that when the number of locked
vectorsl > 22, the orthogonalization starts to dominate the iterationcosts.
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Currently, the inner QMRs solves the correction equations for each block vector inde-
pendently. Based on this, it suffices to obtain the cost for each QMR step, that includes also
two projections withu(m):

QMR cost= 25N+4Nl for JDQMR-100

QMR cost= 25N for JDQMR-000.

Note that Algorithm 3.5 shows 24N operations, but includes non traditional vector updates,
which when implemented as BLAS level 1 routines, give 26N. We have managed to reduce it
to 25N by alternating between buffers ford andw. The projectors againstX are BLAS level
2 operations. Everything else is strictly BLAS level 1 operations. A similar implementation
of JDCG as described in [52] would cost 24N operations, but the slightly additional cost of
JDQMR is justified by the increased robustness, general purpose flexibility, and ability to
derive better stopping criteria.

4. The PRIMME software. Our target is to produce an eigenvalue code as close as
possible to “industrial strength” standards. To this end, our design philosophy as outlined in
the introduction, consists of three components; the algorithmic, the implementation, and the
user-interface. In the previous sections, we have described a long list of methods, techniques,
and specialized algorithms that have been implemented in PRIMME. These address (1) what
are the near optimal methods under limited memory that a state-of-the-art eigensolver should
implement, (2) how to employ certain techniques to enhance robustness (block methods,
verification, avoiding locking stagnation, etc), (3) how these can be combined in a unified
framework. In this section we address the remaining issues,in particular implementation
efficiency, rich functionality, and a flexible but usable user interface.

4.1. Choice of language and implementation.The underlying ideas for the basic struc-
ture of PRIMME have evolved starting from the 1994 Fortran 77code DVDSON (or ACPZ)
[67], which has been popular in the physics community, and are loosely based on our early
Fortran version of GD+k/Jacobi-Davidson, DJADA, which we circulated in 2000. At that
point, we set the goal of developing a general purpose, robust, and state-of-the-art eigen-
solver. Our design philosophy suggested that a project of this proportion must be engineered
around a more flexible language. We have chosen the C language.

In the past, Fortran users claimed, not often without merit,that C compilers were not
optimizing numerical code as efficiently as Fortran compilers. In the last ten years there is
significant improvement, not only on the quality of optimization of C compilers, but also in
the way programmers have learned to program numerical methods in C. Nowadays, properly
written C codes run as efficiently as their Fortran versions.However, efficiency was a sec-
ondary reason for choosing C. The brunt of computation in PRIMME is handled by calls to
BLAS and LAPACK functions, which are usually in Fortran or hand tuned in assembly.

Our primary reasons for choosing C are: the flexibility it allows for the user interface
and parameter passing, its interoperability, as well as itscleaner memory management. A
PRIMME type structure, could contain all the required information, such as function pointers
to the matrix-vector multiplication and preconditioning operators, pointers to arbitrary data
the user would like to pass to these operators, pointers to work space that may be already avail-
able, as well as a wide range of parameters. A judicious setting of defaults within PRIMME
presents an uncluttered interface to the user. A similar functionality could be achieved from
Fortran, but only through a more involved reverse communication interface. C is the most
commonly used programming language for systems programming, which gives it a status of
“lingua franca” among other languages. C interoperates easily with C++, Fortran 77, Fortran
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90, Python, and many other scripting languages and environments (e.g., Matlab, Mathemat-
ica, etc), and thus could help PRIMME achieve a broader impact in the community. Finally,
we have opted not to use the larger, more complicated C++ language, which would be a better
choice if PRIMME were tightly coupled with a bigger problem solving environment, not a
stand alone, general purpose package.

On the technical side of the implementation, memory for PRIMME workspace can be
allocated internally, if the user does not provide enough workspace. Because most workspace
in PRIMME is needed throughout the execution of the program,there is no point in allocating
and freeing it in different functions. Therefore, we allocate all required memory as one chunk
in the beginning of the algorithm, and use pointers to different parts of it as different param-
eters. For example, the pointerVptr for the basisV points at the beginning of this work
array, the pointerWptr for W = AV points atWptr = Vptr + N*maxBasisSize, which is
Nmmax elements later, and so on. After all variables that are present in the algorithm have
been accounted for, the remaining memory is shared among functions as temporary storage.
We have also ensured that the allocated memory is aligned with a page boundary. There are
two reasons for this. First, we wanted natural memory alignment for our double precision
and double complex data types (8 and 16 bytes respectively).Although in many systems
malloc will align in multiples of 8 bytes, this is not guaranteed in general, and depending on
the memory/bus architecture it may not be sufficient for our double complex data. Second,
neithermemalign or posix memalign are portable, so we were led to use the older but still
widely availablevalloc. The use ofvalloc is not often recommended, because to guaran-
tee the page alignment it may waste big fractions of a page. Inour case this is not an issue
because memory allocation occurs only once and for very large sizes.

The PRIMME code is both sequential and parallel. By this we mean that a parallel SPMD
application can invoke the same PRIMME code, providing the local vector dimensions on
each processor. As with all SPMD iterative methods, vector updates are performed in parallel
while dot products require a global summation of the reducedvalue. PRIMME, includes a
wrapper function for global sum. In sequential programs, this wrapper defaults to a sequential
memory dcopy. In parallel programs, the user must provide a pointer to a global sum function,
such as a wrapper toMPI allReduce() or pvmfreduce(). Hence, PRIMME is independent
from the communication library. Finally, the user must alsoprovide a parallel matrix-vector
multiplication and parallel preconditioning functions.

The PRIMME library adheres to the ANSI C standard so it shouldbe widely portable to
all current platforms. We have tested our code with the following operating systems: SUSE
Linux 2.6.13-15.12 (both 32 and 64 bit), CentOS Linux 2.6.9-22 (64 bit), Darwin 8.8.0 on
PowerPC, SunOS 5.9, and AIX 5.2. Macros have been used to resolve name mangling issues
when interfacing with Fortran libraries and functions. We have also provided macros for
“extern” declarations for allowing the library to be compiled with C++ compilers.

4.1.1. Structure, maintenance, and documentation.The distribution of the PRIMME
package includes in excess of 28,000 lines of code. The difficulty in maintaining this code is
not only its length, but that it implements all possible combinations of several algorithms and
techniques, that can also be extremely complicated themselves. In our multi-year experience,
we have found that the best way to remember complicated algorithms and data structures
and the many special cases is to include the critical parts ofthe algorithm description in the
comments of functions, and in-line explanations between code lines. Input/output arguements
for each function are also documented, but we have found themless useful than the above.

The complex Hermitian and double precision codes are almostidentical except for calls
to different BLAS/LAPACK functions, certain memory copying, and the handling of various
scalar issues. As in many software packages, the BLAS/LAPACK interface is handled by



22 A. STATHOPOULOS and J. R. McCOMBS

a layer of wrappers. In this layer, ourNum AXPY function is an interface that can link to
ZAXPY or DAXPY, depending on the code, and it could append underscores depending on the
compiler. Similarly for other BLAS/LAPACK functions. To facilitate further implementation
and management of the complex/double libraries, we have developed a single source code
that includes both the complex and real functionalities, differentiated by macros. A pass
through the preprocessor generates the two directories found in the public distribution, each
containing a different precision version of PRIMME. To allow coexistence of both complex
and real versions in the library, all functions are appendedeither with dprimme or zprimme.

The directory structure of the PRIMME distribution is as follows:
COPYING.txt <- LGPL License
Make_flags <- flags to be used by makefiles to compile library and tests
Link_flags <- flags needed in making and linking the test programs
PRIMMESRC/ <- Directory with source code in the following subdirectories:

COMMONSRC/ <- Interface and common functions used by all precision versions
DSRC/ <- The source code for the double precision dprimme
ZSRC/ <- The source code for the double complex precision zprimme

DTEST/ <- dprimme sample C and F77 drivers, both seq and parallel
ZTEST/ <- zprimme sample C and F77 drivers, sequential only
libprimme.a <- The PRIMME library (to be made)
makefile <- makes the libraries, and the sequential/parallel tests
readme.txt <- a detailed documentation in text
readme.html <- the same documentation organized with hyperlinks
doc.pdf <- a printable version of the html documentation

The code is distributed with a Lesser GPL license. All library functions are located
in PRIMMESRC directory. The ones that are specific to the double precisionversion are in
PRIMMESRC/DSRC/ and for the complex version inPRIMMESRC/ZSRC/. All these files are
appended withd.c, z.c or d.h, z.h for the real or complex versions respectively. In
PRIMMESRC/COMMONSRC/ all functions are prepended withprimme because they are the in-
terface functions that do not depend on the data types and arecommon to both precisions.
This directory contains also the header files (such asprimme.h and primme f77.h that
are needed to call PRIMME. The functionsdprimme andzprimme are called to solve the
eigenvalue problem and they are located in(D)ZSRC/primme (d)z.c. To simplify notation
consider only the double version. Algorithms 3.1 and 3.7 areimplemented in functions
PRIMMESRC/DSRC/main iter d.c. Algorithms 3.2 and 3.3 are implemented in functions
PRIMMESRC/DSRC/convergence d.c andPRIMMESRC/DSRC/restart d.c. Algorithm 3.4
is implemented inPRIMMESRC/DSRC/locking d.c which also implements the second part
of Algorithm 3.6. Algorithm 3.5 is implemented inPRIMMESRC/DSRC/inner solve d.c.
We note that there is a separate functioncorrection d.c which implements the various pre-
conditioning options for step (10) of the outer algorithm. In particular it can perform Olsen’s
or GD preconditioning, robust shifting, it can set up the JD projectors in a way specified
by the user and possibly call QMRs to solve the correction equation. Orthogonalization is
located inortho d.c.

In theDTEST andZTEST directories we have provided several sequential and one parallel
sample driver programs that read matrix and solver information from files and call PRIMME
to solve various eigenproblems. We have provided the function ILUT from SPARSKIT [58]
as a sample sequential preconditioner, and PARASAILS as a sample parallel preconditioner.
We warn the user, however, that ILUT does not necessarily yield symmetric factorizations,
which may cause stagnation to iterative methods for symmetric linear systems. Compared
to CG, QMRs has proved remarkably robust in this direction, but it could still slow down
significantly if the preconditioner is far from symmetric. GD+k methods do not share this
problem. For further details on makefiles and linking we refer the reader to the extensive
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#include "primme.h"
primme_params primme;
primme_initialize(&primme);

primme.n = N;
primme.matrixMatvec = Matvec_function;
primme_set_method(DYNAMIC, &primme);

ierr = dprimme(evals, evecs, rnorms, &primme);

FIG. 4.1. A minimal user-interface to PRIMME. Method is set toDYNAMIC. Other self-explanatory
method choices areDEFAULT MIN MATVECS, andDEFAULT MIN TIME. The function pointersMatvec function and
Precon function are provided by the user.

information in the documentation files of the distribution.

4.2. A multi-layer interface. A full documentation on how to install and run PRIMME
is included in the distribution in text, html, and pdf formats. Despite PRIMME’s complexity,
we have provided a multi-layer interface that hides this complexity from the users to the
level determined by their expertise. Our premise has been that the beginner, end-user would
probably be unaware not only of various techniques and tuning knobs, but also of the names
of the methods. More experienced users, or as end-users gainmore experience with the code,
they should be able to use incrementally additional functionality to match their specific needs.
PRIMME caters also to expert users who might use the code not only for solution of large
problems but also to experiment with new techniques, combinations of methods, etc.

Figure 4.1 shows a minimal interface required by PRIMME. Allusers must declare a
parameter of typeprimme params that holds all solver information, and is used both for in-
put and some output. Although not strictly required, a call to our initialization function is
strongly recommended. Then, users may set any desired problem and solver information. A
required field is the dimension of the matrixprimme.n, and the matrix vector multiplication
function. The user can then set the desired method and calldprimme to solve the problem. For
the non-expert user, we provide three generic method choicesDEFAULT MIN MATVECS (which
defaults to GD+k),DEFAULT MIN TIME (which defaults to JDQMRETol), andDYNAMIC. The
latter switches dynamically between the first two based on Algorithm 3.7. Finally, if a pre-
conditioning operator is available, it can be set (before setting the method) as follows:

primme.applyPreconditioner = Precon_function;
primme.correctionParams.precondition = 1;

The preconditioner and the matrix-vector functions shouldhave the following arguments:

void (*function_name)
(void *x, void *y, int *blockSize, struct primme_params *primme);

wherex is the input multivector,y is the output (result) multivector,blockSize is the number
of vectors in the multivectors, andprimme is passed so that any solver or external data (as the
matrix or the preconditioner) can be available in the function. A wrapper with this interface
can be easily written around existing, complicated, or legacy functions. Finally note that the
multivectors store individual vectors consecutively in memory.

The minimal interface makes heavy use of defaults. For example, the above snippet
of code will find one, smallest algebraic eigenvalue and its eigenvector, with residual norm
‖r‖ < 10−12∗ ‖A‖, while estimating‖A‖ internally. It will alternate between GD+1 and
JDQMR, usingmmin = 6, mmax = 15, b = 1, andk = 1. We emphasize that, despite the
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#include "primme.h"
primme_params primme;
primme_initialize(&primme);

double shifts[1] = {0.5};
double evecs[N*20] = {/*initialize the first 10 vectors*/}

primme.n = N;
primme.numEvals = 20;
primme.target = primme_closest_abs;
primme.numTargetShifts = 1;
primme.targetShifts = shifts;
primme.aNorm = 1.0;
primme.eps = 1.0e-10;
primme.initSize = 10;
primme.maxMatvecs = 30000;
primme.matrixMatvec = Matvec_function;
primme.applyPreconditioner = Precon_function;
primme.correctionParams.precondition = 1;
primme_set_method(DEFAULT_MIN_TIME, &primme);

ierr = dprimme(evals, evecs, rnorms, &primme);

FIG. 4.2. A lean user-interface to PRIMME, where a default method withdefault parameters are used. How-
ever, the problem to be solved is fully controlled by the user, with parameters such as what eigenvalues to target, how
accurately, initial guesses, and preconditioner.

simplicity of the interface, the defaults and the methods reflect expertly tuned, near optimal
methods. In fact, the above code snippet for finding one smallest eigenvalue of difficult
problems has matched or outperformed all other software we are aware of.

Most users would like to have more control on the problem theyare solving, than the
minimal interface. Figure 4.2 shows a detailed, but still lean interface. By detailed we
mean that the user specifies the exact problem to be solved; the dimension of the matrix,
the number of eigenvalues, where these eigenvalues are located (they should be found clos-
est in absolute distance from the shift 0.5), the exact residual norm convergence tolerance
(10−10 =primme.eps*primme.aNorm), the number of initial guesses available inevecs, the
maximum number of matvecs, the operators. None of the above parameters determines any
algorithmic features; so this is functionality that an end-user is well qualified to use. The
user can then request the default PRIMME strategy for yielding minimum time and solve the
given problem.

The list of preset methods available in PRIMME are listed in Figure 4.3. A few com-
ments are in order. We do not recommend the use of the methods of Arnoldi and classi-
cal GD, as they are superseded by GD+k methods. The default method for min matvecs is
GD Olsen plusK, which is the usual GD+k with the preconditioner applied to the “robustly
shifted” r (m) + δθ u(m) as described in section 3.2.JD Olsen plusK applies the pseudoin-
verse of the preconditioner of eq. (3.4) to the residual.RQI can be used either as RQI or
as Inverse Iteration; the latter if the user provides at least one target shift.JDQR is a classic
JD method, similarly to the JDBSYM implementation.JDQMR is our JDQMR Algorithm 3.5

withoutthe stopping criterion (r(m+1)
k < 0.1r0). Near convergence, this allows the inner equa-

tion to be solved very accurately and achieve the outer Newton convergence. However, for
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primme_preset_method method;
typedef enum {

DYNAMIC, // Switches to the best method dynamically
DEFAULT_MIN_TIME, // Currently set as JDQMR_ETol
DEFAULT_MIN_MATVECS, // Currently set as GD_Olsen_plusK
Arnoldi, // Anoldi implemented a la Generalized Davidson
GD, // Generalized Davidson
GD_plusK, // GD+k with locally optimal restarting for k evals
GD_Olsen_plusK, // GD+k, preconditioner applied to (r+deltaeps*x)
JD_Olsen_plusK, // As above, only deltaeps computed as in JD
RQI, // (accelerated) Rayleigh Quotient Iteration
JDQR, // Jacobi-Davidson with const number of inner steps
JDQMR, // JDQMR adaptive stopping criterion for inner QMR
JDQMR_ETol, // JDQMR + stops after resid reduces by a 0.1 factor
SUBSPACE_ITERATION, // Subspace iteration
LOBPCG_OrthoBasis, // A LOBPCG implementation with orthogonal basis
LOBPCG_OrthoBasis_Window // As above, only finds evals a Window at a time

} primme_preset_method;

FIG. 4.3. The set of preset methods available in PRIMME. These can be selected byprimme set method.
After setting the method, the user can still modify some of the presetprimme parameters.

some cases, we noticed that QMRs tends to repeat some information between outer steps
which causes the aforementioned slowdown. By stopping the inner method also when the
eigenvalue residual (not the linear system one) is reduced by an order of magnitude, we
achieved much smaller slowdown. We refer to this preset method which corresponds exactly
to Algorithm 3.5 asJDQMR ETol. There are two versions of LOBPCG, both maintaining
an orthonormal basis of the search space.LOBPCG OrthoBasis usesnumEvals= blockSize
while LOBPCG OrthoBasis Window usesblockSize< numEvalsand locking, to find all the
eigenvalues a window ofblockSizeat a time.

If not provided, PRIMME picks defaults for maximum basis size (mmax), restart size
mmin, block size (b), etc. Maximum basis size is by default 15 for extreme eigenvalue prob-
lems, and 35 for interior ones. When onlymmax is provided,mmin = 0.4mmax for extreme
eigenvalue problems, andmmin = 0.6mmax for interior ones. When the user sets the block
size, but not themmax andmmin, these are chosen such thatb divides themmax−mmin− k.
Depending on the method, the above parameters may change further.

Finally, a few users may opt to set a preset method, and then modify various parameters
manually, or even not to set a preset method at all. Figure 4.4shows the full PRIMME
interface available through theprimme structure. For detailed explanation for each parameter
we refer the reader to the distributed documentation.

In the previous examples we have used the double precision versiondprimme. The com-
plex Hermitian versionzprimme is called in an analogous way. Finally, we note that to
facilitate portability and usability, we have provided a Fortran 77 interface that covers the full
functionality of PRIMME. This is a set of wrappers that allows Fortran users to set all the
members of the primme structure, to set methods, and to call the PRIMME interface func-
tions. An example is given in Figure 4.5, while we refer to thedocumentation manual for the
complete interface.

4.3. Additional special features.We would like to briefly mention a few features that
improve usability of the code, and although some can be foundin other software packages,
they have never been incorporated in the same package.

First, users can find eigenvalues in five different ways. Two for extreme eigenvalues, and
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#include "primme.h"
primme_params primme;

primme.n = N;
primme.nLocal = N;
primme.numProcs = 1;
primme.commInfo = NULL;
primme.globalSumDouble = DCOPY_;
primme.outputFile = stdout;
primme.printLevel = 5;
primme.numEvals = 10;
primme.aNorm = 1.0;
primme.eps = 1.0e-12;
primme.dynamicMethodSwitch= 0;
primme.maxBasisSize = 15;
primme.minRestartSize = 7;
primme.maxBlockSize = 1;
primme.locking = 1;
primme.maxOuterIterations = 10000;
primme.maxMatvecs = 300000;
primme.target = primme_smallest;
primme.numTargetShifts = 0;
primme.targetShifts = Shifts;
primme.initSize = 0;
primme.numOrthoConst = 0;
primme.intWorkSize = 1000;
primme.intWork = &intWorkArray;
primme.realWorkSize = 0;
primme.realWork = NULL;
primme.iseed[0] = -1;
primme.restartingParams.scheme = primme_thick;
primme.restartingParams.maxPrevRetain = 1;
primme.correctionParams.precondition = 1;
primme.correctionParams.robustShifts = 1;
primme.correctionParams.maxInnerIterations = -1;
primme.correctionParams.relTolBase = 1.5;
primme.correctionParams.convTest = adaptive_ETolerance;
primme.correctionParams.projectors.LeftQ = 1;
primme.correctionParams.projectors.LeftX = 1;
primme.correctionParams.projectors.RightQ = 0;
primme.correctionParams.projectors.SkewQ = 0;
primme.correctionParams.projectors.RightX = 1;
primme.correctionParams.projectors.SkewX = 1;
primme.ShiftsForPreconditioner = NULL;
primme.matrixMatvec = Matvec_function;
primme.applyPreconditioner = Precon_function;
primme.matrix = &matrixDataStruct;
primme.preconditioner = &preconDataStruct;

FIG. 4.4.The full PRIMME interface. Expert users may set this manually, or combine with preset methods.

three for interior. This is summarized in the following table.
primmesmallest Smallest algebraic eigenvalues. No shifts are needed.
primmelargest Largest algebraic eigenvalues. No shifts are needed.
primmeclosestgeq Closest to, but greater or equal than a set of shifts.
primmeclosestleq Closest to, but less or equal than a set of shifts.
primmeclosestabs Closest in absolute value to a set of shifts.

For interior eigenvalues the user must provide at least one shift in the pointer to an array:
primme.targetShifts. Assuming thatq =primme.numTargetShifts are available in the
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double precision norm
integer primme (or integer*8 primme if on a 64 bit OS)
external matvec_function
external precon_function

call primme_initialize_f77(primme)
call primme_set_member_f77(primme, PRIMMEF77_n, N)
call primme_set_member_f77(primme, PRIMMEF77_matrixMatvec, matvec_function)
call primme_set_member_f77(primme, PRIMMEF77_applyPreconditioner, precon_function)
call primme_set_member_f77(primme, PRIMMEF77_correctionParams_precondition, 1)
call primme_set_method_f77(primme, PRIMMEF77_JDQMR_ETol, ierr)
call primme_display_params_f77(primme);

call zprimme_f77(evals, evecs, rnorms, primme, ierr)

call primmetop_get_member_f77(primme, PRIMME_aNorm, norm)
print*, ’The estimated 2 norm of the matrix is:’, norm

FIG. 4.5.An example of using the Fortran 77 interface to call PRIMME.

above array, and for simplicity denote them asτ1, . . . ,τq. If the user chooses the interior mode:
primme closest leq, PRIMME will find eigenvaluesλi , i = 1,numEvalsthat are closest to
those shifts in the following way:

(λ1 ≤ τ1), (λ2 ≤ τ2), . . . (λq ≤ τq), (λq+1 ≤ τq), . . . (λnumEvals≤ τq).

The other interior modes work similarly. The common modeprimme closest abs might be
wasteful in some cases when scientists want to find eigenvalues that are on one side of a given
shift. Moreover, we have noticed that it is often faster to find the eigenvalues first on the left
and then on the right of a shift, instead of using the commonprimme closest abs mode.

Another useful feature in PRIMME is that theprimme structure supplies an array of the
Ritz values corresponding to the vectors in the block to be preconditioned (or corrected).
Many applications can afford to invert the preconditioner at every step. Examples include a
diagonal matrix preconditioner, an FFT transform of the Laplace operator in planewave space
(where the preconditioner is diagonal), or when the preconditioner is an iterative method. In
those cases, instead ofK−1 ≈ A−1, a more appropriate preconditioner would be(K −λiI)−1.
Theλi , i = 1,b values are available in the arrayprimme.ShiftsForPreconditioner and are
accessible during the preconditioning operation. This feature is not readily available in other
packages.

In some cases, we want to solve an eigenvalue problem under certain orthogonality con-
straints, i.e., solve the eigenvalues of(I −QQT)A(I −QQT), whereQ could be previously
computed eigenvectors, or any set of vectors in general. PRIMME works seamlessly in this
case by includingQ in the firstprimme.numOrthoConst vectors ofevecs. Computed eigen-
vectors will be placed afterQ.

Finally, we mention that PRIMME includes a thorough parameter checking of user inputs
for consistency and correctness, a calling tree traceback report for tracing errors if any occur,
and five levels of output reporting, so that convergence history and algorithmic choices can
be monitored or plotted.

5. Sample experimental results.We have compared PRIMME methods with three
other software packages. The first is JDBSYM [25], which currently is the only other im-
plementation of the Jacobi-Davidson for symmetric problems. The second is the BLOPEX
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implementation of LOBPCG [38]. The third is ARPACK’s function dsaupd, which imple-
ments IRL for symmetric matrices [44]. Although ARPACK doesnot use preconditioning,
it is included as the default benchmark for unpreconditioned cases. We have not compared
with SLEPc methods as they do not allow for preconditioning.Also, we have not yet com-
pared with ANASAZI because of its involved installation andoptimization process, but also
because the methods it implements (block GD and LOBPCG) are available in PRIMME, and
LOBPCG in BLOPEX. We plan to make a comparison in the near future. The experiments we
present are sampled from our papers [66] and [68] which include one of the most extensive
list of comparisons in the literature.

With the exception of forcing the various projector configurations (100), (111), (000),
and (011), the default parameters provided by PRIMME are used in all the experiments.
The methods converge when the residual norm of each of thenumEvalsrequired eigenpairs
is less than‖A‖Ftol, where‖A‖F is the Frobenious norm ofA. For JDBSYM we use the
samemmin,mmax as in PRIMME, block size of 1, a maximum number of 200 inner iterations,
TOLDECAY = 1.5, symmetric preconditioning OPTYPE, and strategy = 0. In certain cases,
strategy = 1 was necessary to achieve convergence. To find extreme eigenpairs with JDB-
SYM, we provideτ as a small, left perturbation of the precomputedλ1, and we let JDBSYM
switch to using the Ritz values as shifts when EPSTR = 10−3‖A‖F/

√
N. Convergence is

declared when all residual norms fall below‖A‖Ftol.
ARPACK does not implement locking, so when many eigenvaluesare required ARPACK

must use a much larger basis size than the rest of the methods.We choose the basis size for
ARPACK as max(40,2numEvals), and supply directly the tolerancetol.

BLOPEX does not explicitly implement locking, but it allowsusers to find eigenvectors
orthogonal to a set of a given vectors. We chose to implement awrapper around BLOPEX(b)
that uses locking to computenumEvalseigenvalues a block,b, at a time. After some experi-
mentation, we foundb = 10 to be the best choice for most problems with largenumEvals. In
fact, for largenumEvals, BLOPEX(numEvals) was several times slower than BLOPEX(10).
We ask for convergence tolerance of‖A‖Ftol.

All methods start with the same random initial guess. We haverun experiments for two
different tolerances:tol = 1e-15 andtol = 1e-7. For BLOPEX we only report results for
tol = 1e-7,as it could not produce results with the lower tolerance.We run experiments on
an Apple G5 with 1 GB of memory and two 2GHz processors, each with 512 MB L2 cache.
The C codes are compiled using the gcc-4.0.0 compiler with -O3 flag, and the ARPACK
is compiled with the g77 compiler. We link with the Apple vecLib library that includes
optimized versions of BLAS/LAPACK libraries.

We use 10 matrix problems, six from the University of Florida[16] and the FEAP [3]
collections, one from vibrational analysis of molecular structures [75] and three standard
7-point 3D Laplacian matrices generated by SPARSKIT [58] with zero Dirichlet boundary
conditions. The smallest side of the spectrum is hard to obtain for all matrices, while the
largest side is easier for several of them.

5.1. Looking for one smallest eigenvalue.In Table 5.2 we provide comparisons be-
tween PRIMME, JDBSYM, and BLOPEX for finding one smallest eigenvalue of five ma-
trices. The first three matrices are preconditioned with ILUT with its parameters chosen to
provide a stable factorization. The last two matrices are unpreconditioned.

First, we observe that BLOPEX although it requires no parameter setting, is not com-
petitive. In addition, in the cases where it failed to converge, it had reached a residual norm
of ‖A‖F10−10 but then encountered numerical problems. The JDBSYM was used with a
symmetric QMR as inner solver, so the primary difference from JDQMR is the stopping
criteria. The experiments confirm that when the JDBSYM criteria [17] capture the Newton
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TABLE 5.1
The matrices used in the experiments, their size, non-zero elements per row, and their source.

Matrix N nz/row Source
or56f 9000 321.13 Yang
torsion1 40000 4.94 UF
Andrews 60000 12.67 UF
cfd1 70656 25.84 UF
finan512 74752 7.99 UF

Matrix N nz/row Source
ConeA 22032 65.04 FEAP
Plate33KA0 39366 23.22 FEAP
Lap7pt15K 12167 6.74 SKIT
Lap7pt125K 110592 6.88 SKIT
Lap7pt1M 941192 6.94 SKIT

TABLE 5.2
Comparison of three state-of-the-art preconditioned eigensolver codes. BLOPEX implements LOBPCG, JDB-

SYM implements Jacobi-Davidson with sQMR as inner solver, and our PRIMME software includes both JDQMR
and GD+1 which provide almost parameter-free near optimality.

cfd1 or56f Plate33KA cfd1 ConeA
MV sec MV sec MV sec MV sec MV sec

BLOPEX 669 114.14 332 21.89 - - 6426 186.63 - -
GD+1 270 49.92 174 11.56 272 39.89 2858 113.86 214 3.49
JDQMR 294 44.82 190 11.88 381 51.35 2370 49.45 281 3.19
JDBSYM 373 60.42 221 14.34 (747) (102.6) 2412 48.95 (708) (7.70)

convergence well, JDBSYM is close to JDQMR and sometimes competitive (unprecondi-
tioned cfd1). The results in parentheses, however, show cases where JDBSYM could not
converge, until the user provided a shift for the correctionequation that was very close to
the desired eigenvalue. GD+1 and JDQMR converge always, in the least time, and with no a
priori information.

In Figure 5.1 we show results from two large dimension 3D Laplacians, the one million
case, and a ten million case. The one million case is run both with and without precondi-
tioning. The first thing we observe is that, as in Table 5.2, GD+1 always takes the smallest
number of matvecs. However, because the matrices are very sparse, JDQMR takes less time.
For the same reason, the timings for BLOPEX are competitive with GD+1 in this example,
despite taking more iterations. ARPACK is not competitive even for the smaller matrix, and
it scales worse as the problem increases in dimension.

5.2. Looking for many smallest eigenvalues.

Unpreconditioned JDQMR-000 vs ARPACK. For largenumEvals, the number of ma-
trix vector operations per eigenvalue found by ARPACK is expected to decrease rapidly with
numEvals, because of the effectiveness of the large Lanczos basis. Incontrast, the number
of matvecs per new eigenvalue found for JDQMR-000 is expected to be at least constant or
increase slightly for highly interior eigenpairs, becauseof the loss of implicit orthogonal-
ity during inner iterations. Despite this worse case scenario, where ARPACK is allowed to
grow its memory requirements withnumEvals, our asymptotic analysis in [68] showed that
for sufficiently sparse matrices, such as those coming from many finite difference and finite
element analysis, JDQMR-000 is faster than ARPACK for obtaining a very large number of
eigenvalues (usuallynumEvals> 1000). For denser matrices, ARPACK becomes faster than
the limited memory JDQMR-000 for smallernumEvals. However, according to the model,
JDQMR-000 should always be faster than ARPACK fornumEvals< 5, regardless of operator
cost. Despite the approximate nature of the model for smallnumEvals, our above conclusions
are confirmed by the experiments with 8 matrices in Figure 5.2.
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FIG. 5.1. Finding one eigenvalue for Laplacians of 1 and 10 million size. GD+1 yields minimum iterations,
JDQMR is the fastest method, BLOPEX is competitive, and ARPACK does not scale well.
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FIG. 5.2.Relative performance of ARPACK over JDQMR-000 for finding numEvals smallest eigenvalues of 8
matrices. The left graph shows the matvec ratios. The right graph shows time ratios.

Comparisons with other methods without preconditioning. In the following experi-
ments, we look for the smallest 100 eigenvalues, and ask fortol=1e-15. BLOPEX could not
reach the requiredtol, hence it is not reported. In Figure 5.3, all JD/GD methods converge
very similarly including JDBSYM, which means that its stopping criteria work well in this
case. Interestingly, most methods and particularly JDQMR-000 are better than ARPACK up
to 50 eigenvalues, but fornumEvals= 100, ARPACK uses a much larger basis which cap-
tures some part of the spectrum that smaller bases could not.ARPACK takes fewer matvecs
to find 100 eigenvalues than 50, and it matches the time of JDQMR-000.

In Figure 5.4, we consider the Laplacian matrix of dimension125K, whose eigenvalues
are all of multiplicity 3 or 6. JDBSYM cannot converge in tractable time for this matrix
with strategy = 1, and strategy = 0 performed worse. The sparsity of this Laplacian makes
JDQMR-000 significantly faster than all other methods. Also, in all four examples, we see
GD+1 always taking the minimum number of matvecs among JD methods, yet it loses time-
wise because of its more expensive iteration.

Figure 5.5 shows results from the cfd1 matrix, but withtol=1e-7. BLOPEX with block
size of 10 is significantly slower than all PRIMME methods. Wealso observe a significant
deterioration of the performance of ARPACK over thetol =1e-15 case in Figure 5.3. Closer
scrutiny of the iterations between the two figures reveals they are about the same. ARPACK
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FIG. 5.3.Matvecs (left graph) and time (right graph) of six methods for numEvals smallest eigenvalues.
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FIG. 5.4.Matvecs (left graph) and time (right graph) of six methods for numEvals smallest eigenvalues.

does not benefit from the higher threshold, still computing almost all 100 eigenpairs in full
accuracy. We observed this behavior of ARPACK with high tolerances in the majority of
our experiments. Surprisingly, JDBSYM is much slower fortol=1e-7 than with full accuracy
(compare with Figure 5.3).

Figure 5.6 reports similar results for the Lap7pt125K matrix. Both BLOPEX and JDB-
SYM cannot converge in tractable time, and ARPACK does not benefit from the lower thresh-
old. The JDQMR and GD+k methods are consistent both in robustness and their relative
behavior. Experiments with seekingnumEvals= 500 largest eigenvalues have confirmed a
similar behavior of all methods.

Comparisons with other methods with preconditioning. For our preconditioning ex-
periments, we use the the ILUT preconditioner from the SPARSKIT library [58].

In Figure 5.7, all preconditioned methods improve over their unpreconditioned versions
and become much better than ARPACK. Notice that all JDQMR-100/111/011 variants con-
verge identically, but the 111 takes more time for largernumEvals. JDBSYM also improves
but not as much as JDQMR-100. Because of large fill-in, the computed ILUT factors are
expensive and therefore the method with smallest matvecs wins, i.e., GD+1. The number of
matvecs for ARPACK is large and out of scale.

Despite the use of preconditioning, BLOPEX was not able to reach convergence to
tol =1e-15, in any of our test matrices. Therefore, we conclude this section with one ex-



32 A. STATHOPOULOS and J. R. McCOMBS

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

x 10
4 Matrix: cfd1     tol = 1E−7

Number of smallest eigenvalues found

M
at

ve
cs

 

 

arpack
GD+2
jdqmr000
jdqmr100
jdbsym
blopex

0 10 20 30 40 50 60 70 80 90 100
0

1000

2000

3000

4000

5000

Matrix: cfd1     tol = 1E−7

Number of smallest eigenvalues found

T
im

e 
in

 s
ec

on
ds

 

 

arpack
GD+2
jdqmr000
jdqmr100
jdbsym
blopex

FIG. 5.5.Matvecs (left) and time (right) of six methods with tol=1e-7, for smallest eigenvalues.
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FIG. 5.6.Matvecs (left) and time (right) of six methods with tol=1e-7, for smallest eigenvalues.

periment that includes preconditioning but uses a higher tolerance, 1e-7.
In Figure 5.8, with an ILUT(20,1e-6) neither JDBSYM nor BLOPEX were competitive.

The graphs also include the unpreconditioned JDQMR-000, whose performance is identical
to preconditioned JDQMR-100.

6. Current and future work. We have motivated and described the theory that gives
rise to the near optimal methods GD+k and JDQMR that constitute the basis of PRIMME.
We have also described the many algorithmic, implementation, and interface features present
in PRIMME. Our sample experiments demonstrate that our methods at least match, and typ-
ically improve significantly the fastest methods available. Even without preconditioning,
PRIMME should be considered the method of choice for a small number of eigenvalues.

PRIMME is currently in a stable state, which means that no known bugs exist in the
code at this time. The software and its documentation, however, evolve continuously. The
following is a list of on-going and future projects, orderedby expected completion time.

1. Generalized eigenvalue programs. The current distribution of PRIMME includes an
interface for generalized eigenproblems, but the functionality is not implemented
yet. Traditionally, it is suggested that JD is based on aB inner product with the mass
matrix. For stability reasons, we are working on a 2-norm orthogonality implemen-
tation, which is similar to JDQZ but exploits symmetry.

2. A Matlab interface to PRIMME. One of our collaborating groups in Europe is near-
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FIG. 5.7.Matvecs (left) and time (right) with ILUT(80,1e-4) preconditioner. Smallest numEvals.
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FIG. 5.8.Matvecs (left) and time (right) with ILUT(20,1e-6). Smallest numEvals and tol=1e-7.

ing the completion of such an interface, which will significantly improve the poten-
tial impact of the package.

3. A front-end that calls PRIMME to compute singular triplets of large sparse matrices.
PRIMME’s functionality allows both theATA approach, and the augmented matrix
[0 AT ;A 0] approach. Factorized preconditioners ofA, or other problem specific
preconditioners can be readily used.

4. The current distribution of PRIMME implements only a subset of the Iterative Vali-
dation of Eigensolvers (IVE) algorithm [47]. We have a fullyfunctional IVE work-
ing with an older version of PRIMME that will be ported to the current distribution.
This will also be coordinated with the final Rayleigh-Ritz procedure over all locked
vectors that is needed when a locking problem has occurred.

5. Implementation of the block orthogonalization algorithm SVQB [72].
6. A dynamic block that adjusts its size depending on the architecture, but also accord-

ing to the clustering or multiplicity of the eigenvalues targeted at every step.
7. Further comparisons on more applications and matrices, and with additional soft-

ware including ANASAZI and SLEPc.
8. The extension of PRIMME to non symmetric problems is a longer term goal. The

basic structure is the same, but the lack of near optimal, global methods means that
many algorithmic choices must rely upon heuristics.
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