
PRIMME: PReconditioned Iterative MultiMethod

Eigensolver: Methods and software description

Andreas Stathopoulos

and

James R. McCombs

This paper describes the PRIMME software package for solving large, sparse Hermitian standard
eigenvalue problems. The difficulty and importance of these problems have increased over the
years, necessitating the use of preconditioning and near optimally converging iterative methods.
However, the complexity of tuning or even using such methods has kept them outside the reach of
many users. Responding to this problem we have developed PRIMME, a comprehensive package
that brings state-of-the-art methods from “bleeding edge” to production, with the best possible
robustness, efficiency, and a flexible, yet highly usable interface that requires minimal or no tuning.
We describe: (1) the PRIMME multimethod framework that implements a variety of algorithms,
including the near optimal methods GD+k and JDQMR; (2) a host of algorithmic innovations and
implementation techniques that endow the software with its robustness and efficiency; (3) a multi-
layer interface that captures our experience and addresses the needs of both expert and end users.

Categories and Subject Descriptors: [G.1.3 Numerical Analysis: Numerical Linear Alge-

bra]: G.4 Mathematical Software

General Terms: Algorithms

Additional Key Words and Phrases: Davidson, Jacobi-Davidson, Lanczos, conjugate gradient,
Hermitian, eigenvalues, eigenvectors, preconditioning, software package, iterative, block, locking

1. INTRODUCTION

PRIMME, or PReconditioned Iterative MultiMethod Eigensolver, is a software
package for the solution of large, sparse Hermitian and real symmetric standard
eigenvalue problems [Stathopoulos and McCombs 2006]. We view PRIMME as a
significant step toward an “industrial strength” eigenvalue code for large, difficult
eigenproblems, where it is not possible to factorize the matrix, and users can only
apply the matrix operator, and possibly a preconditioning operator, on vectors.

If the matrix can be factorized, the shift-invert Lanczos code by Grimes, Lewis,
and Simon has set a high standard for robustness [Grimes et al. 1994]. However,

Address for Andreas Stathopoulos: Department of Computer Science, College of William and
Mary, Williamsburg, Virginia 23187-8795, (andreas@cs.wm.edu).

Address for James R. McCombs: Cobham Inc, 1911 N. Ft. Myer Drive, Arlington VA 22209,
(james.mccombs@cobham.com)
Work supported partially by National Science Foundation grants: ITR/DMR 0325218, ITR/AP-
0112727, ITR/ACS-0082094, CCF/TF-0728915.
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0098-3500/20YY/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY, Pages 1–29.

2 · A. STATHOPOULOS and J. R. McCOMBS

even in factorizable cases, the factorization and back-substitutions can be very
expensive, and a Lanczos method or a method that uses preconditioning can be
more efficient, specially for extreme eigenvalues. On the other end, if only matrix-
vector multiplication is available, the software ARPACK by Lehoucq, Sorensen,
and Yang has set the standard for good quality code that is easy to use with
very little parameter tuning [Lehoucq et al. 1998]. Yet, the implicitly restarted
Lanczos method [Sorensen 1992], on which ARPACK is based, does not converge
optimally (i.e., converges slower than the unrestarted method) and can only use
preconditioning via iterative, shift-invert spectral transformations. The range of
problems targeted by PRIMME is between the easy ones and the ones that must
and can be factorized. As problem sizes in applications continue to grow, so does
PRIMME’s target range.

PRIMME’s design philosophy is to provide

(1) preconditioned eigenmethods converging near optimally under limited memory,

(2) the maximum robustness possible without matrix factorization,

(3) flexibility in mixing and matching among most currently known features,

(4) efficiency at all architectural levels,

(5) and to achieve all the above with a friendly user interface that requires no
parameter setting from end-users but allows full experimentation by experts.

This paper presents how PRIMME accomplishes this by integration of state-of-the-
art methods, new algorithms and implementation techniques, and a carefully crafted
user interface. In Section 2 we describe the problem, its importance and difficulty,
and briefly discuss other current eigenvalue software. In Section 3 we show how the
algorithmic framework of PRIMME is built on top of the two near optimal methods
GD+k and JDQMR, and how other algorithms can be parameterized within this
framework. In Section 4 we discuss how the PRIMME software meets its design
goals. After a few sample numerical comparisons in Section 5, we conclude in
Section 6 with some discussion of on-going work and future extensions.

PRIMME implements a multitude of features, algorithms, techniques, and heuris-
tics that have emerged in research papers and software by this and other groups
over many years. When their description is beyond the scope of this paper, we refer
to the appropriate literature.

2. A DIFFICULT PROBLEM AND CURRENT APPROACHES

Given a real symmetric, or complex Hermitian matrix A of dimension n, we consider
the problem of seeking numEvals smallest, largest or interior eigenvalues λi, and
their corresponding eigenvectors xi, i = 1, . . . , numEvals for Axi = λixi. The
numerical solution of this problem when A is large and sparse is one of the most
computationally intensive tasks in a variety of applications. Examples abound in
structural engineering [Grimes et al. 1994], electromagnetics [Geus 2002; Johnson
and Joannopoulos 2001], lattice Quantum Chromodynamics (QCD) [Foley. et al.
2005], and electronic structure applications from atomic scale physics [Fischer 1977]
to molecular scale materials science [Cohen and Chelikowsky 1989].

The challenge is twofold. First, the matrix size, n, is very large. Second, some
applications, e.g., electronic structure calculations, require the computation of hun-

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

PRIMME · 3

dreds or even thousands of extreme eigenpairs. Often the number of required eigen-
pairs is described as a small percentage of the problem size. In such cases, orthogo-
nalization of numEvals vectors, an O(numEvals2n) task, becomes O(n3), making
the scaling to larger problem sizes practically infeasible.

Iterative methods are the only means of addressing these problems but may con-
verge slowly, especially as the problem size grows. Preconditioning can be used
to speed up convergence, but theoretical understanding of how it should be used
in eigenvalue methods has only started to mature over the last decade [Edelman
et al. 1998; Knyazev 1998; Sleijpen and van der Vorst 1996]. This probably ex-
plains the noticeable scarcity of high quality, general purpose software for precon-
ditioned eigensolvers. On the other hand, such applications can have staggering
storage demands as the iteration vectors must be stored for computing eigenvector
approximations. Restarting techniques can be employed so that approximations
are obtained from a search space of limited size, see for example thick restart-
ing [Stathopoulos et al. 1998] and the theoretically equivalent implicit restarting
[Sorensen 1992]. However, this is at the expense of convergence.

Recently, iterative methods have been developed [Sleijpen and van der Vorst 1996;
Stathopoulos and Saad 1998; Knyazev 2001; Simoncini and Eldén 2002; Notay 2002;
Stathopoulos 2007; Stathopoulos and McCombs 2007] that can use effectively the
large arsenal of preconditioners for linear systems and converge near optimally to
an eigenpair under limited memory requirements. When seeking many eigenpairs,
it is unclear whether optimality can be achieved under limited memory. Restarting
techniques cannot maintain near optimal convergence for more than a small window
of eigenvalues. Similarly, preconditioned methods typically correct for a particular
eigenvector and so repeat the work for each required eigenvalue.

In our research, and in the development of PRIMME, we have focused on methods
that do not allow their memory requirements to grow unbounded. With precondi-
tioning this is the only realistic alternative. Without preconditioning it still offers a
practical alternative to the Lanczos method. Lanczos requires storage for all itera-
tion vectors or a second pass to recompute them. Moreover, in machine arithmetic,
it produces spurious eigenvalues and must resort to expensive orthogonalization or
post-processing techniques [Parlett 1998; Cullum and Willoughby 1985]. Finally,
the computational expenses for the tridiagonal matrix grow significantly, and in-
volved locking or block implementations are needed for multiple eigenvalues (see
[Cullum and Donath 1974; Golub and Underwood 1977; Gutknecht 2005] and [Mc-
Combs and Stathopoulos 2006] for extensive bibliography on block methods).

2.1 Current state of Hermitian eigenvalue software

Iterative methods have gained notoriety as very difficult to include in general pur-
pose software, not so much because of library interfaces and data structures, but
because different problems may require different iterative solvers and precondition-
ers for robustness and/or efficiency. This has led a group of experts to produce the
popular series of “Templates for the solution of linear systems” [Barrett et al. 1994],
and “eigenvalue problems” [Bai et al. 2000]. Since then, the area of symmetric eigen-
problems has seen some remarkable progress [Stathopoulos 2007; Stathopoulos and
McCombs 2007; Notay 2005; Absil et al. 2006; Notay 2002; Geus 2002; Lundström
and Eldén 2002; Golub and Ye 2002; Knyazev 2001; Baglama et al. 2003].

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

4 · A. STATHOPOULOS and J. R. McCOMBS

This recent progress is reflected in the large number of codes for symmetric
eigenproblems. The survey of eigenvalue codes, [Hernandez et al. 2006], lists 20
eigenvalue codes that have become available since 1998. Eighteen of these are for
symmetric eigenproblems. We are aware of only one additional eigensolver code
produced since the survey, JADAMILU [Bollhöfer and Notay 2007]. There are
13 codes that implement preconditioned eigensolver methods. Only one of these
was publicly available before 1998; the Davidson code in [Stathopoulos and Fischer
1994] which is now superseded by PRIMME. Most of these codes do not provide
the robustness and efficiency required in a general purpose software, and therefore
we refer the reader to [Hernandez et al. 2006] for more details. Instead, we discuss
three notable software efforts that relate to some key characteristics of PRIMME.

Anasazi [Baker et al. 2009] is a well engineered package, with several features that
enhance robustness and efficiency. Developers can use the Anasazi framework to
develop their own eigensolvers. Anasazi also implements three methods: A version
of the LOBPCG method [Knyazev 2001] with orthogonalization to avoid stability
issues [Hetmaniuk and Lehoucq 2006; Stathopoulos and McCombs 2007]; A block
Davidson method (what we refer to as Generalized Davidson) for solving standard
and generalized real symmetric and Hermitian eigenvalue problems; An implicit
Riemannian Trust-Region method [Absil et al. 2006] has been added recently which
shares some of the properties of our JDQMR. Block methods are used to increase
robustness for obtaining multiple eigenvalues [McCombs and Stathopoulos 2006]
and to take advantage of the increased data locality in block matrix-vector, pre-
conditioning, and BLAS operations. Although the total number of matrix-vector
multiplications increases, for appropriate block sizes this effect is usually balanced
by better cache performance [Arbenz et al. 2005]. Anasazi is part of the Trilinos
framework that includes highly optimized linear algebra operations, although users
may define their own matrix, preconditioner, or basic multivector operations.

Currently, Anasazi does not include the near-optimal GD+k method and the
trust-region method cannot be used for interior eigenvalues. The difference in
convergence of GD+k over LOBPCG and GD can be substantial, if the precondi-
tioner is not powerful enough to converge in a few iterations [Stathopoulos 2007;
Stathopoulos and McCombs 2007; Stathopoulos and Saad 1998]. This is also evi-
dent in the comparisons in Section 5. Also, despite the high quality implementation
of Anasazi, some users may be reluctant to use it because it is tightly coupled with
the much larger Trilinos framework and its C++ object classes, or because some
algorithmic options need to be implemented by the end user. PRIMME offers the
alternative of a stand-alone design with a multitude of ready-to-use features and a
choice of several near-optimal methods.

SLEPc [Hernandez et al. 2005] is a library rather than an implementation of
a single method. As an extension to the popular PETSc toolkit [Balay et al.
1999], SLEPc inherits a variety of tuned data structures, multivector operations,
matrix-vector and preconditioning operators, but it cannot run as stand-alone with
applications that do not use PETSc. SLEPc implements several basic and some ad-
vanced methods for solving standard and generalized Hermitian and non-Hermitian
eigenvalue problems. An interesting feature is SLEPc’s interface to several external
packages, specifically: ARPACK, BLZPACK, TRLAN, BLOPEX, and PRIMME.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

PRIMME · 5

Currently, SLEPc does not support preconditioning or finding interior eigenvalues,
even if these functionalities are available in the underlying package. When these
features are included, SLEPc can be a powerful experimentation testbed.

JADAMILU is a FORTRAN77 implementation of JDCG [Notay 2002] that ex-
tends it with elements of our JDQMR method and couples it with the MILU precon-
ditioner [Bollhöfer and Saad 2006]. JADAMILU appeared shortly after PRIMME
and was the second package to implement a nearly optimal method. It is distributed
in a pre-compiled library format for certain Unix architectures. Its distinct feature
is that it is tightly coupled with the MILU preconditioner which is computed dy-
namically as the iteration accrues more eigen-information. While the combination
can be powerful, it is also less general as some applications may require different
preconditioners. It also makes it difficult to compare against other software.

The Anasazi and SLEPc packages come close to a robust, efficient, general pur-
pose code, but they do not offer all the state-of-the-art methods and could be bet-
ter viewed as platforms for further development. In JADAMILU the near-optimal
method comes constrained by a provided preconditioner and a distribution which
is far less general purpose. Our goal in this software project has been to bring
state-of-the-art methods and expertise from “bleeding edge” to production.

3. DEVELOPING ROBUST, NEAR-OPTIMAL METHODS AND SOFTWARE

We first outline the ideas behind the two near-optimal methods that form the
basis for the PRIMME framework. Theoretical details and further comparative
discussion can be found in [Stathopoulos 2007; Stathopoulos and McCombs 2007].

3.1 The JDQMR and GD+k methods

For eigenvalue problems, the Newton method for minimizing the Rayleigh quotient
on the Grassmann manifold is equivalent to Rayleigh Quotient Iteration (RQI)
[Edelman et al. 1998]. When the linear system at every step is solved iteratively
beyond some level of accuracy, the overall RQI time increases. Inexact Newton
methods attempt to balance good convergence of the outer Newton method with
an inexact solution of the Hessian equation, but this is not straightforward for RQI
(see [Simoncini and Eldén 2002] and references therein).

A more appropriate representative of the inexact Newton minimization is the
Jacobi-Davidson method [Sleijpen and van der Vorst 1996]. Given an approximate
eigenvector u

(m) and its Ritz value θ(m), the JD method obtains an approximation
to the eigenvector error by solving approximately the correction equation:

(I − u
(m)

u
(m)T)(A − ηI)(I − u

(m)
u

(m)T)t(m) = −r
(m) = θ(m)

u
(m) − Au

(m), (1)

where η is a shift close to the wanted eigenvalue. The next Newton iterate is then
u

(m+1) = u
(m)+t

(m). This pseudoinverse is preferable because it avoids stagnation
t
(m) = u

(m) when η = θ(m), and singularity when η ≈ λ. Moreover, it applies not
on u

(m) but on the residual which is the gradient of the Rayleigh quotient. See
[Absil et al. 2006] for some theoretical differences between Newton variants.

We differentiate the Generalized Davidson (GD) as the method that obtains the
next iterate t

(m) = K−1
r
(m) with a preconditioner K ≈ A−ηI. Although t

(m) can
be thought of as an approximate solution to (1), we follow prevalent nomenclature
and refer to GD as the application of a given preconditioner to the residual.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

6 · A. STATHOPOULOS and J. R. McCOMBS

The challenge in JD is to identify the optimal accuracy to solve each correction
equation. In [Notay 2002], Notay proposed a dynamic stopping criterion based
on monitoring the growing disparity in convergence rates between the eigenvalue
residual and linear system residual of CG. The norm of the eigenresidual was mon-
itored inexpensively through a scalar recurrence. In [Stathopoulos 2007], we pro-
posed JDQMR that extends JDCG by using symmetric QMR (QMRs) [Freund and
Nachtigal 1994] as the inner method. The advantages are:

—the smooth convergence of QMRs allows for a set of robust and efficient stopping
criteria for the inner iteration.

—it can handle indefinite correction equations. This is important when seeking
interior or a large number of eigenvalues.

—QMRs, unlike MINRES, can use indefinite preconditioners, which are often needed
for interior eigenproblems.

We argued that JDQMR converges less than three times and typically significantly
less than two times slower than the optimal method. As optimal we consider the
unrestarted GD method with the same preconditioner — without preconditioning
this is the Lanczos method in exact arithmetic. JD methods are typically used
with subspace acceleration, where the iterates t

(m) are accumulated in a search
space from which eigenvector approximations are extracted through some projec-
tion technique [Paige et al. 1995; Morgan 1991; Jia 1998]. This further improves
convergence, especially when looking for many eigenpairs. Overall, JDQMR has
proved one of the fastest and most robust methods for numEvals = 1.

When seeking many eigenvalues, applying the Newton method on the numEvals
dimensional Grassmann manifold, computes directly the invariant subspace [Sameh
and Tong 2000; Absil et al. 2002]. Practically, this is just a block JD method
[Stathopoulos and McCombs 2007]. The open computational question is how to
solve numEvals linear systems in block JD most efficiently and whether to use
a block method at all. Block methods that solve all the correction equations si-
multaneously do not consistently improve the overall runtime [Geus 2002]. In our
experience with block JD methods, single-vector versions outperform their block
counterparts both in execution time and matvecs. Only the block JDQMR seems
to be close to its single-vector version. This is because the more interior eigenvalues
in the block converge slower, and therefore their correction equations need to be
solved less accurately than the more extreme ones. The dynamic stopping criteria
of JDQMR realize this early, saving several unnecessary matvecs.

Yet, a block size larger than one may be needed for robustness, especially in the
presence of multiplicities, because JDQMR may converge out of order. Alterna-
tively, to avoid stopping early and thus missing eigenvalues, one may ask for a few
more eigenvalues than needed.

With large numEvals, the near-optimal convergence of the JDQMR has to be
repeated numEvals times; each for an independent inverse iteration run. Larger
subspace acceleration does not improve the convergence rate of QMR but approx-
imates better the nearby eigenpairs to be targeted next. In the extreme, the op-
timal unrestarted GD relies only on subspace-acceleration and no inner iterations.
This can be considered a full-memory quasi-Newton method which is computation-

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

PRIMME · 7

ally impractical. Instead, variants of the non-linear Conjugate Gradient (NLCG)
method have been popular for decades [Edelman et al. 1998].

However, it is natural to consider a method that minimizes the Rayleigh quo-
tient not only along the conjugate direction but on three dimensions. The method:
u

(m+1) = RayleighRitz
(

{u(m−1),u(m), r(m)}
)

is often called locally optimal Con-
jugate Gradient [D’yakonov 1983; Knyazev 1991], or LOBPCG if used with multi-
vectors, and seems to consistently outperform other NLCG type methods.

Because of the non-linearity of the eigenproblem, LOBPCG is not optimal. In
[Stathopoulos 2007] we argued that subspace acceleration speeds up LOBPCG sim-
ilarly to the way that quasi-Newton methods speed up NLCG by using the iterates
to incrementally construct an approximation to the Hessian [Gill et al. 1986]. In
the extreme, the need for a three-term recurrence is obviated if all iterates are
stored. Therefore, we could view the LOBPCG recurrence not as driving the itera-
tion but as a means to remember the appropriate subspace information when thick
restarting methods such as Lanczos or GD. This is the basis for the GD+k method
[Murray et al. 1992; Stathopoulos and Saad 1998; Stathopoulos 2007].

GD(mmin, mmax)+k uses a basis of maximum size mmax. When mmax is reached,
we compute the mmin smallest (or required) Ritz values and their Ritz vectors,

u
(m)
i

, i = 1, mmin, and also k of the corresponding Ritz vectors from step m − 1:

u
(m−1)
i

, i = 1, k. A basis for this set of mmin + k vectors, which can be made or-
thonormal in negligible time, becomes the restarted basis. A JD+k implementation
is identical. If we use GD/JD with block size b, it is advisable to keep k ≥ b to
maintain good convergence for all block vectors. Note also that the special case of
block GD(b, 3b)+b is mathematically equivalent to LOBPCG with block size b.

As we showed in [Stathopoulos 2007], convergence of the GD+k is appreciably
faster than LOBPCG for one eigenpair, even with a small subspace, and often

indistinguishable from optimal. For large numEvals the convergence gains over
LOBPCG are even greater [Stathopoulos and McCombs 2007]. Yet, higher costs
per iteration than JDQMR make it less competitive for very sparse operators. When
seeking many eigenvalues, we have found block size b = 1 to always provide the
smallest number of matrix-vector/preconditioning operations. Apparently, conver-
gence to an eigenvalue is so close to optimal that the synergy from other block
vectors cannot improve the subspace acceleration benefits. This may also explain
why slower methods tend to benefit more from a larger block size. Nevertheless,
for both robustness and data locality reasons, general purpose software must im-
plement methods with a block option.

3.2 Building a flexible multimethod framework in PRIMME

In [Stathopoulos 2007] we argued that most eigenvalue methods can be implemented
using the basic iterative framework of GD. Algorithm 3.1 depicts a version of the
block GD+k algorithm as implemented in PRIMME. For concise notation we use
the abbreviations of Table I instead of the parameter names appearing in the soft-
ware. The GD(mmin, mmax)+k algorithm finds eigenpairs (λi,xi) with smallest or
largest eigenvalues, or closest to a set of user provided shifts. Vectors without sub-
scripts are considered multivectors of variable block size between 1 and b. Vectors
with subscripts are single vectors in the designated location of their array. The

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

8 · A. STATHOPOULOS and J. R. McCOMBS

Table I. The meaning of the parameters used in Algorithms 3.1–3.4
numEvals the number of required eigenvalues
mmax the maximum basis size for V (array n × mmax)
mmin the minimum restart size of the basis V
b the maximum block size
k the number of vectors from the previous step retained at restart
m the current basis size for V
l the number of locked eigenpairs
blockConv the number of vectors converged in the current block
numConv the number of vectors converged since the last iteration
q the number of vectors converged since last restart
gq the number of initial guesses replacing locked eigenvectors
V the basis [v0, v1, . . . ,vm] for the search space
W W = AV array to save an extra matvec
H H = V T AV the projection matrix in Rayleigh-Ritz
S, Θ the eigenvectors and eigenvalues of H
X on input any initial guesses, on output the eigenvectors xi

transposition symbol T denotes Hermitian transpose.
Although PRIMME can be used both with and without locking, Algorithm 3.1

presents only the locking option to avoid further complicated indexing and book-
keeping. PRIMME includes a host of other features and handling of special cases for
basis size, block size, irregular eigenvalue convergence, the handling of multiple user-
defined shifts, and many others which are impractical to describe in one algorithm.
Section 3.3 describes the most important and innovative ones.

Algorithms 3.2–3.4 describe the PRIMME implementation of three important
components of GD+k: convergence checking and forming the target block, restart-
ing, and locking converged eigenpairs. The restart procedure in particular (Algo-
rithm 3.3) combines thick restarting [Stathopoulos et al. 1998] with the +k locally
optimal restarting (steps (7) to (16)). Note that steps (7) to (12) apply on vectors
of size mmax, and therefore the cost of the GD(mmin, mmax)+k implementation is

the same as that of the thick restarted GD(mmin + k, mmax). In fact, GD+k is
typically less expensive per iteration, because k = 1 or k ≤ b is not only sufficient
but also obviates the use of larger mmin [Stathopoulos and Saad 1998].

What characterizes Algorithm 3.1 is its flexibility. It allows for complete freedom
on how to expand the space, how to extract approximations from it, and how to
restart it. In PRIMME, all these choices are available by setting certain parameters.
The price for this flexibility is that, at every step, it needs to compute eigenresiduals,
orthogonalize new vectors against all current ones in the basis V , and maintain a
work array for W = AV .

Step (10) is the one differentiating between most eigenmethods. When the al-
gorithm returns t

(m) = r
(m) (and with k = 0), it is equivalent to an expensive

IRL implementation. With k ≥ 0, however, GD+k should be preferable to IRL.
When the preconditioner is applied directly on the residual we have the classical
GD and GD+k methods. By considering multivectors, the algorithm yields the
equivalents of block (implicitly restarted) Lanczos [Baglama et al. 2003; Parlett
1998], subspace iteration (without preconditioning) [Clint and Jennings 1970], and
preconditioned subspace iteration [Bai et al. 2000]. We also derive the classical

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

PRIMME · 9

Algorithm 3.1. The Generalized Davidson(mmin, mmax)+k algorithm

/* Initialization */

(1) Initial guesses are in X. Let m = min(mmin, size(X, 2)), v0:m−1 = X0:m−1

Build (mmin − m) Lanczos vectors to get basis V = [v0, ...,vmmin−1]
(2) Set W = AV , H = V T W , m = nmv = mmin, q = l = 0
(3) Compute eigendecomposition H = SΘST with θ0, θ1, . . . , θm−1 sorted

according to user defined criteria (smallest, largest, interior)
/* Repeat until convergence or max number of matvecs */

(4) while (l < numEvals and nmv < max num matvecs)
/* Repeat until basis reaches max size or it spans the whole space */

(5) while (m < mmax and m < n − l)
(6) Reset b, if needed, so that m + b ≤ mmax

(7) u(m) = V s0:b−1 , θ(m) = diag(θ0:b−1),

w(m) = Ws0:b−1, r(m) = w(m) − u(m)θ(m)

(8) Check convergence and determine target block. See Algorithm 3.2

(9) if (l + q ≥ numEvals), break

(10) Precondition the block of residuals: t(m) = Prec(r(m))

(11) Orthonormalize t(m) among themselves and against v0:m−1 and x0:l−1

(12) Update vm:m+b−1 = t(m), wm:m+b−1 = Avm:m+b−1, nmv = nmv + b
(13) Update Hi,m:m+b−1 = vT

i
wm:m+b−1 for i = 0, . . . , m + b − 1

(14) Store Ritz vector coefficients: sold
i

= si, i = 0, . . . , max(b, k) − 1
(15) m = m + b
(16) Compute eigendecomposition H = SΘST with θ0, θ2, . . . , θm−1 sorted

according to user defined criteria (smallest, largest, interior)
(17) end while

(18) Restart the basis and reset variables. See Algorithm 3.3

(19) Lock the q flagged Ritz pairs into λ and X. See Algorithm 3.4

(20) end while

Algorithm 3.2. Check convergence and determine target block

(1) numConv = 0
(2) repeat

(3) blockConv = Number of converged vectors in block r(m)

consider also practically converged vectors (see Algorithm 3.5)
(4) numConv = numConv + blockConv
(5) q = q + blockConv. Flag these Ritz vectors as converged

(6) Find the next blockConv unconverged Ritz vectors u
(m)
i

and their

residuals r
(m)
i

to replace the blockConv ones in the block
(7) Swap converged vectors after the block to maintain block locality
(8) until (b unconverged residuals are in the block or not enough available)
(9) if (not enough unconverged residuals) reduce block size

block GD and the block GD+k methods [Liu 1978; Stathopoulos and Fischer 1994;
Geus 2002; Stathopoulos and Saad 1998]. GD(b,3b)+b is a numerically stable im-
plementation of LOBPCG that maintains full orthogonality of the basis for only
5% more floating point operations per iteration [Stathopoulos 2007; Hetmaniuk and
Lehoucq 2006]. A smaller b can be chosen independently from numEvals to obtain
locking implementations of LOBPCG, while variations such as GD(b, mb)+b are

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

10 · A. STATHOPOULOS and J. R. McCOMBS

Algorithm 3.3. The Restart procedure

(1) Decide the order in which to keep Ritz vectors (dynamic/thick restarting)
(2) Let (nx) the indices of unflagged Ritz vectors in the desired order

Let (q, ix) the number and indices of flagged converged Ritz vectors
Let g the number of remaining initial guesses in X
/* Steps 3-6 guarantee mmin vectors are in the basis after locking */

(3) gq = min(q, g)
(4) if (gq ≥ mmin) mu = max(0, mmin − q)
(5) else mu = max(0, mmin − gq)
(6) Consider the first mu unconverged AND the q converged Ritz vectors

These correspond to coefficient vectors: [snx(0), . . . , snx(mu−1)] and six

/* Steps 7-16 include the coefficients of the previous step vectors */

(7) Orthonormalize the k Ritz vector coefficients from the previous step: sold

among themselves, against [snx(0), . . . , snx(mu−1)], and against six

(8) Compute Hsub = (sold)T Hsold (k × k submatrix)
(9) Compute eigendecomposition of Hsub = Y ΦY T

(10) Set s = [snx(0), . . . , snx(mu−1), sold
0 , . . . , sold

k−1, six]

(11) Set Θ = [θnx(0), . . . , θnx(mu−1), φ0, . . . , φk−1, θix]

(12) m = mu + k + q
(13) vi = V si , wi = Wsi , i = 0, . . . , m − 1
(14) H = 0. Then Hii = θi, for i = 0 : mu − 1 and i = mu + k : m − 1
(15) H(mu : mu + k − 1, mu : mu + k − 1) = Hsub

(16) s = Im. Then s(mu : mu + k − 1, mu : mu + k − 1) = Y

Algorithm 3.4. The Locking procedure

/* Called immediately after restart. Flagged vectors at the end of V */

(1) Recompute residuals ri = wi − viθi, i = m − q : m − 1 of flagged vectors
(2) Set (q, ix) to the number and index of flagged vectors remaining converged
(3) Flagged vectors that became unconverged stay in the basis V

(4) λl:l+q−1 = θ
(m)
ix

(5) gq = min(q, g), update remaining initial guesses g = g − gq

(6) Swap the next gq initial guesses Xl:l+gq−1 with the converged vix(0:gq−1)

(7) Lock the rest Xl+gq :l+q−1 = vix(gq :q−1)

(8) m = m − q + gq

(9) l = l + q
(10) Orthonormalize new guesses among themselves and against V and x0:l−1

(11) Update Wm−gq :m−1 = Avm−gq :m−1, nmv = nmv + gq

(12) Update Hi,m−gq :m−1 = vT
i
wm−gq :m−1 for i = m − gq, . . . , m − 1

(13) Compute eigendecomposition H = SΘST with θ0, θ2, . . . , θm−1 sorted
according to user defined criteria (smallest, largest, interior)

(14) Reset Flags, q = 0

also plausible.
Step (10) can also return a JD correction vector. Without inner iterations, a

preconditioner K can be inverted orthogonally to the space Q = [X,u(m)] and
applied to the residual. The pseudoinverse of this preconditioner can be written as:

(

(I − QQT)K(I − QQT)
)+

= K−1(I − Q(QT K−1Q)−1QT K−1)(I − QQT).(2)

The above is known as Olsen’s method [Olsen et al. 1990]. “Robust shifting”

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

PRIMME · 11

[Stathopoulos et al. 1995] can be used as an approximation to Olsen’s method to
avoid the computation of the pseudoinverse. This applies the preconditioner on
r
(m) + δθ u

(m), where δθ is an approximation to the eigenvalue error.
When the preconditioner (2) is used in an iterative method on (1), we obtain

the classical inner-outer JD variants. In [Fokkema et al. 1998; Sleijpen and van der
Vorst 1996] it is shown that JD methods can be implemented with one projection
with Q per iteration. If the inner iteration solves (1) accurately, we obtain subspace
accelerated Inverse Iteration (for a given η) or RQI (for η = θ(m)). The true
flexibility of JD is that it converges even when (1) is solved approximately.

For the reasons described in Section 3.1, at step (10) of the underlying GD+k
outer method, PRIMME calls the symmetric, right preconditioned QMRs as a
robust inner solver for all JD variants. The JDQMR’s particular scalar recurrences
for monitoring the eigenvalue residual and the dynamic stopping criteria have been
described in detail in Algorithms 3.1 and 3.2 in [Stathopoulos 2007].

3.3 Special techniques in PRIMME

The state-of-the-art algorithms and the myriad of their combinations are comple-
mented by several techniques that provide additional efficiency and robustness.

3.3.1 Avoiding the JD oblique projectors. The classical JD requires extra stor-
age for K−1Q to avoid doubling the number of preconditioning operations. In
[Stathopoulos and McCombs 2007] we have shown that the pseudoinverse (2) with
only Q = [u(m)], without X , is sufficient. Intuitively, projecting out u

(m) from a
very accurate preconditioner helps avoid the problem where the correction is almost
completely in the direction of u

(m) [Notay 2005]. By projecting out X one would
hope for a better conditioned correction equation. Instead, our analysis showed
that the correction equation without the X-projected pseudoinverse is often better.

For large numEvals, avoiding the X projection yields significant storage savings,
effectively halving the memory required by JD. PRIMME follows this strategy as
a default, but it also implements all possible combinations of different projector
and pseudoinverse strategies, for both u

(m) and X . Assume that the JD projectors
for u

(m) are included in the notation of A and K. Define the orthogonal projector
P = I − QQT , and for any matrix B the skew projector:

PB = (I − BQ(QT BQ)−1QT), (3)

and note that the correction equation preconditioned with (2) can be written as:

PAP (PKP)+ = PAPK−1K−1 = PAK−1PT

K−1 . (4)

Table II summarizes several variants of a projected operator based on whether we
operate with a projector on the left, and/or on the right of A, and whether we relax
the requirement for a right skew projector, replacing it with P . For example, the
case PAPK−1K−1 = PAK−1PT

K−1 , which corresponds to notation (111), requires
one orthogonal and one skew projection per QMR step. The suggested implementa-
tion by the JD authors is APK−1K−1 = AK−1PT

K−1 , or (011). Our default strategy
with preconditioning is (100), or PAK−1, with only one left orthogonal projection.

An important benefit occurs when K has the same eigenvectors as A (e.g., if K
is a polynomial of A or K = I). Then, the QMR iterates stay in X⊥ invariant

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

12 · A. STATHOPOULOS and J. R. McCOMBS

Table II. Projection alternatives to the classical JD correction equation (with right precondition-
ing). The 0/1 string characterizes whether there is a projection on the left of A, on the right of
A, and whether the right projection is skew projection or not. Theoretically JD corresponds to
(111) although it is typically implemented as (011). All options are available in PRIMME, with
(100) the default for preconditioning and (000) the default for unpreconditioned cases.

(Left Skew Right) Operator (Left Skew Right) Operator

111 PAPK−1K−1 011 APK−1K−1

101 PAPK−1 001 APK−1

100 PAK−1 000 AK−1

space without orthogonalization. Floating point arithmetic and the approximate
computation of X eventually introduce X components that QMR has to remove by
additional iterations. However, this is a small price to pay for removing the limiting
factor O(numEvals2n) of orthogonalization. In our experience, unpreconditioned
JDQMR-000 achieves an almost linear scaling with numEvals, both in convergence
and in time, which is the best we can currently achieve under limited memory.

3.3.2 Avoiding stagnation because of locking. Locking is a stable form of defla-
tion, where an eigenvector x is removed from the search space of an eigensolver and
all subsequent vector operations are performed orthogonally to x. Locking usually
provides a better mechanism than non-locking for identifying eigenvalues that are
highly clustered or of very high multiplicity [McCombs and Stathopoulos 2006].

However, locking introduces a subtle numerical, but not floating point, problem.
Specifically, a large number of locked, approximate eigenvectors, that have con-
verged to tol residual accuracy may impede convergence to tol accuracy for some
subsequent eigenvector. This problem is described in our report [Stathopoulos
2005]. Before that report, occurrences of the problem have been mainly anecdotal,
and not well documented. Yet, many practitioners were well aware of the problem,
but had no good solution to it, other than to stop the method, perform a subspace
projection with all converged vectors, and then continue with new initial guesses
and the already computed eigenvectors.

The problem is rather rare and it tends to surface when hundreds of eigenpairs are
computed, but its existence undermines the reliability of any numerical software
that implements locking. In [Stathopoulos 2005] we have provided an algorithm
that identifies the problem when it occurs. Its variant as implemented in PRIMME
appears in Algorithm 3.5. The interesting theoretical result is that a “practically
converged” eigenvector can still be locked, because enough of its missing compo-
nents are in X and can be recovered by a single Rayleigh-Ritz projection at the end.
The resulting Ritz vector will have residual norm less than the required tolerance.

3.3.3 Dynamic method selection. Many users commonly invoke the complexity
of tuning the parameters of the JD method as the main reason for choosing an
alternative method. The self-tuned inner-outer iteration of JDQMR has all but
removed such reasons. The remaining choices of block size and basis size are com-
mon to most other methods. More importantly, both GD+k and JDQMR display
remarkable robustness for a wide variety of choices for these parameters.

One choice remains: the choice between GD+k and JDQMR. GD+k converges

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

PRIMME · 13

Algorithm 3.5. Identify a locking stagnation problem

l is the number of locked vectors
tol is the convergence tolerance for residual norms
mxTol is the maximum residual norm of any locked eigenvector
E is the guaranteed attainable tolerance without stagnation

In step (2) of the Convergence procedure (Algorithm 3.2) include:

Set E =
√

l mxTol

if (‖r(m)‖ < tol) Flag u(m) as converged to be locked, break

if (‖r(m)‖ < E)

Compute ‖rd‖ = ‖(I − XXT)r(m)‖, β =
√

‖r(m)‖2 − ‖rd‖2

if
(

β > tol and ‖rd‖ < tol2/(2‖r(m)‖)
)

Flag u(m) as “practically converged” to be locked
endif

endif

In step (2) of the Locking Procedure (Algorithm 3.4) include:
Check if a recomputed norm remains “practically converged”

if (‖r(m)‖ ≥ E) Unflag u(m). It has become unconverged again

elseif (‖r(m)‖ < tol) Lock u(m) as converged
else

Lock u(m) as “practically converged”

Update mxTol = max(mxTol, ‖r(m)‖)
endif

almost identically to the optimal method, while JDQMR may repeat some informa-
tion in the QMRs of different outer steps. In our extensive experience, JDQMR is
usually between 1.1 and 1.7 times slower than optimal1, but the cost per iteration
of JDQMR is significantly lower than GD+k. The crossover point between the two
methods depends on the expense of the matrix and preconditioner operators, on
numEvals, and on the slowdown of the JDQMR convergence relative to GD+k.

In [Stathopoulos and McCombs 2007], besides an asymptotic comparative anal-
ysis, we provided cost models for the time complexity of GD+k and JDQMR as a
function of certain parameters and procedural components, rather than flop counts.
Such components include the operators, the outer GD+k iteration, which is com-
mon to all methods, and the inner QMRs iteration. The parameters are the number
of inner/outer iterations and the convergence slowdown experienced by JDQMR.
This enables a dynamic prediction of the execution time of GD+k and JDQMR
based on runtime measurements of the parameters and the cost of the components.

It is beyond the current scope to describe the exact averaging we use over succes-
sive iterations to update the measured statistics. Instead, we outline in Algorithm
3.6 and motivate the extensions needed to Algorithm 3.1 to achieve a dynamic
method selection between GD+k and JDQMR. For this, the following problems
have to be addressed.

1The actual convergence is usually closer to optimal, but QMRs, like most iterative methods for
linear systems, takes one more matvec before it exits the inner iteration, which can add up if only
a few inner iterations are required.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

14 · A. STATHOPOULOS and J. R. McCOMBS

First, by running solely with GD+k we cannot measure the cost or predict the
convergence rate of JDQMR. By running solely with JDQMR, we can still update
the GD+k cost but not its convergence rate. Therefore, at least one switch between
the two methods is necessary. Because initially the search space may not contain
good eigenpair approximations, which is important for JD methods, we start with
GD+k and after a certain time we force a switch to JDQMR so that statistics for
both methods are obtained.

Second, because convergence rates and even the runtime cost of various com-
ponents may change since they were last measured, more than one switch may
be necessary. Deciding on the frequency of switching depends on numEvals. If
numEvals is large, we can afford to have each method converge alone to one eigen-
pair, and thus collect better convergence statistics to evaluate what method to use
for the following eigenpair. For small numEvals, methods must be evaluated much
more frequently because the software should adapt quickly to avoid solving almost
the whole problem with the wrong method.

Third, the two methods need to be evaluated at different points. For GD+k
a reasonable evaluation point is at every restart. At that point, the method has
completed a full cycle, so all components have been measured, and mmax − mmin

iterations provide a good update for estimating its convergence rate. JDQMR,
however, should not be evaluated at restarts because it converges to an eigenpair
in a small number of outer iterations (often less than mmax − mmin). Moreover,
JDQMR may perform a large number of inner iterations. If it is clear that JDQMR
should not be used further, e.g., because of an expensive matrix operator, our dy-
namic algorithm should not solve another correction equation. Therefore, we must
evaluate JDQMR at every outer step, just before calling the correction equation.

Fourth, in addition to the above, if some eigenpairs converged during the current
outer iteration, the algorithm has to update the convergence statistics. Finally,
before exiting, PRIMME can use the obtained statistics to recommend a method
to the user, in case similar problems need to be solved repeatedly. Algorithm 3.6
summarizes these decisions for dynamic method switching.

We have observed that this dynamic, completely automated meta-method runs
usually within 5% of the fastest of GD+k and JDQMR. More surprising was that in
certain cases where JDQMR was the fastest method, the dynamic method improved
the JDQMR timing. This is because it has the freedom to switch between GD+k
and JDQMR when this is beneficial. The method may choose GD+k during the
early stages of convergence when JDQMR takes too few inner iterations and switch
later. Similarly, for large numEvals, GD+k could be preferable up to a certain
number of eigenvalues, beyond which JDQMR should be used. Finally, we note
that our dynamic method responds even to external, system load changes.

3.3.4 Orthogonalization stability and efficiency. Orthogonalization is the single
most important component of an eigenvalue iterative solver. If there is orthogonal-
ity loss in the V basis, methods cannot converge to the required accuracy and may
even stagnate or produce spurious “eigenpairs”. PRIMME uses a variation of the
classical Gram-Schmidt with iterative reorthogonalization [Daniel et al. 1976]. If
after two iterations an additional orthogonalization is needed, the vector has lost
all significant components of the original direction and we replace it with a random

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

PRIMME · 15

Algorithm 3.6. Basic algorithm for Dynamic Method Choice

When dynamicMethod = 1, 3, current method is GD+k
When dynamicMethod = 2, 4, current method is JDQMR
For numEvals < 5, we alternate between 1, 2, evaluating GD+k every restart,

and JDQMR every outer step or when an eigenpair converges
For numEvals ≥ 5, we alternate between 3, 4,

evaluating GD+k and JDQMR only when an eigenpair converges

Extensions to Algorithm 3.1
(3.1) if (dynamicMethod > 0)

initializeModel(CostModel)
/* Start always with GD+k. Switch to JDQMR later: */

if (numEvals < 5)
dynamicMethod = 1; /* switch to 2 at first restart */

else

dynamicMethod = 3; /* switch to 4 after first pair converges */

endif

(9.1) if (dynamicMethod > 0)
Measure and accumulate time spent in correction equation
/* if some pairs converged OR we evaluate JDQMR at every step */

if (numConv > 0 or dynamicMethod = 2)
/* update convergence statistics and consider switching */

Update statistics(CostModel)
switch (dynamicMethod)

case 1: break /* for few evals evaluate GD+k only at restart */

case 3: Switch from GDpk(CostModel); break;
case 2: case 4: Switch from JDQMR(CostModel);

end switch

endif

endif

(19.1) if (dynamicMethod = 1)
Measure outer iteration costs
Update statistics(CostModel)
Switch from GDpk(CostModel)

endif

(20.1) if (dynamicMethod > 0)
ratio = ratio of estimated overall times for JDQMR over GD+k

if (ratio < 0.96) For this problem recommend method: JDQMR
else if (ratio > 1.04) For this problem recommend method: GD+k
else Ratio is too close to 1. Recommend method: DYNAMIC

endif

vector. This also guards against vectors that are zero or close to machine precision.

On parallel computers, one of the factors limiting scalability is the presence of
several dot products in Gram-Schmidt. We have implemented a not so well known
strategy that typically removes one dot product per Gram-Schmidt iteration. Sim-
ilar techniques have been used for Gram-Schmidt in various contexts [Stathopoulos
and Fischer 1993; de Sturler and der Vorst 1995; Hernandez et al. 2007]. Let r be
the vector to be orthogonalized against V and s0 = ‖r‖. After orthogonalization
r
′ = (I −V V T)r, we reorthogonalize if s1 = ‖r′‖ < 0.7071s0. It is possible to avoid

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

16 · A. STATHOPOULOS and J. R. McCOMBS

the expense of the dot product to compute s1 and its synchronization. Note that:

s2
1 = ‖(I − V V T)r‖2 = (rT − (rT V)V T)(r − V (V T

r)) = s2
0 − (V T

r)T (V T
r).

The (V T
r) is a byproduct of the orthogonalization, and because it is a small vector

of size m, not n, all processors can compute (V T
r)T (V T

r) locally and inexpensively.
If s1 ≥ 0.7071s0, the resulting vector can be normalized as r

′/s1, and the process
exits. Otherwise, we set s0 = s1 and reorthogonalize.

This process hides a numerical danger; s1 may be computed inaccurately if V
and r are almost linearly dependent. Although the normality of r

′ is not important
at this stage, this can cause the second reorthogonalization test to fail and return
a vector that is neither unit-norm nor orthogonal. A simple error analysis of the
computation provides the following interesting (and to our knowledge new) result:

|s1 − ŝ1|
|s1|

= O

(

(
s0

s1
)2 ǫmachine

)

,

where ŝ1 is the floating point representation of s1 as computed by our algorithm.
This result suggests that our algorithm is safe to use, with no loss of digits in s1,
if s1 > s0

√
ǫmachine. If this test is not satisfied, our algorithm computes explic-

itly the norm s1 = ‖r′‖ and continues. Experiments with many ill-conditioned
sets of vectors have confirmed that the numerical danger is real and that our test
restores robustness and results in improved efficiency. Having ensured that Gram-
Schmidt produces a numerically orthonormal V , V will stay orthonormal through-
out PRIMME. This is because the only other place that modifies V is restarting,
V = V s, which involves orthonormal matrices and thus it is stable.

3.3.5 A verification iteration. PRIMME can be used without locking, when the
number of required eigenvectors fit in the basis: mmax > numEvals ≥ mmin.
Converged eigenvectors remain in V but are flagged as they converged, so that
they are excluded from the target block. Still, they participate in the Rayleigh-
Ritz at every step and therefore improve as additional information is gathered in
V . Typically overall convergence is faster. However, it is possible that a Ritz vector
xi that was flagged converged becomes unconverged during later iterations. This
could occur if eigenpairs converge out of order or have very high multiplicities.

PRIMME implements an outer verification loop that includes steps (2) through
(20) of Algorithm 3.1. Before exiting, PRIMME verifies that all flagged Ritz vectors
satisfy the convergence tolerance. If they do not, the basis V is orthonormalized,
W = AV and H are recomputed, all flags are reset, and the algorithm starts again
trying to find all eigenpairs. Usually a small number of outer iterations is enough
to recover the small deficiencies that have caused some eigenvectors to become
unconverged. This verification is repeated until all required eigenvectors converge.

3.4 Computational requirements

3.4.1 Memory. The memory requirements for the GD, JD, and symmetric QMR
methods are established in the literature [Barrett et al. 1994; Bai et al. 2000].
The combination of these basic methods in PRIMME through various parameter
choices determines the actual memory requirements. PRIMME requires that the
user provides an array where the computed eigenvectors will be placed. Without

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

PRIMME · 17

locking, and for those methods that do not use the expensive skew JD projections,
the user may set the eigenvector array to be at the start of the work array in the
primme data structure. This significantly reduces storage. For general users, we
do not yet recommend this undocumented feature. The table below outlines the
memory footprint of the basic outer, GD+k method:

2mmaxn storage for V and W
2m2

max storage for H and S
mmaxk storage for the sold

max(k2, mmaxk, 2b(numEvals + mmax)) general storage shared by
various components

The above storage is clearly dominated by 2mmaxn for the arrays V and W . With
the use of locking, mmax can be kept small (e.g., 10–15 for extreme eigenvalues),
but we can still compute a large number of eigenpairs.

The basic QMR method requires storage for five long vectors (5n) and a small
work space of 2numEvals + mmax + 2b. JDQMR with skew projection on u

(m)

(i.e., methods JDQMR-000, -100, -001, and -101 in Section 3.3.1) requires one addi-
tional vector (n). JDQMR with skew projector on both u

(m) and X (i.e., methods
JDQMR-110, -011, and -111) requires storage for n + (numEvals + mmax)(n +
numEvals + mmax). The latter can be a limiting factor for applications that seek
hundreds or thousands of eigenvectors, and we do not recommend it. Considering
also the outer iteration, our default JDQMR-000 and JDQMR-100 methods require
storage for O((2mmax + 5)n) and O((2mmax + 6)n) elements, respectively.

Storage for other methods is derived from the above. For example, classical RQI
requires mmax = 2 for a total memory of O(9n). Similarly, implementing LOBPCG
as GD(b,3b)+b requires a total memory of O(6bn).

3.4.2 Complexity. The complexity of any method in PRIMME is the sum of the
complexities of the outer and the inner iteration components. The only additional
parameter is the relative frequency that a method spends in each component. A de-
tailed complexity analysis was carried out in [Stathopoulos 2007; Stathopoulos and
McCombs 2007]. For completeness, we present the resulting model based on floating
point operation counts for GD+k and JDQMR. Considering the complexity of each
PRIMME component at some basis size m, we average over m = mmin . . . mmax

and by setting µ = mmin

mmax
, we have the average cost per outer step:

GD cost = O

(

7 + 4µ − 7µ2

1 − µ
nmmaxb +

11 + 2b + µ

1 − µ
nb + 8nbl + 1/3m3

max

)

.

With b = 1, these are mostly BLAS level 2 and some BLAS level 1 operations.
With b > 1, PRIMME uses mainly BLAS level 3 operations. Clearly, for a large
number of locked vectors, l, the orthogonalization dominates the iteration costs.

Currently, the correction equation for each block vector is solved independently,
so it suffices to obtain the cost for each QMR step, that includes also two projections
with u

(m). For JDQMR-000 the cost is 25n, and for JDQMR-100 (25n + 4nl).
Note that the QMRs Algorithm has 24n operations but includes non traditional

vector updates, which when implemented as BLAS level 1 routines, give 26n. We

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

18 · A. STATHOPOULOS and J. R. McCOMBS

have managed to reduce it to 25n by alternating between buffers. The projectors
against X are BLAS level 2 operations. Everything else is strictly BLAS level 1
operations. A similar implementation of JDCG as described in [Notay 2002] would
cost 24n operations, but the slightly additional cost of JDQMR is justified by the
increased robustness, flexibility, and ability to derive better stopping criteria.

4. THE PRIMME SOFTWARE

Our target is an eigenvalue code that is as close as possible to “industrial strength”
standards. We have described a long list of methods, techniques, and specialized
algorithms that have been implemented in a unified framework in PRIMME. In
this section, we address implementation efficiency, rich functionality, and a flexible
but simple user interface.

4.1 Choice of language and implementation

The underlying ideas for the basic structure of PRIMME have evolved starting from
the FORTRAN 77 code DVDSON [Stathopoulos and Fischer 1994] and are loosely
based on our early FORTRAN version of GD+k/Jacobi-Davidson, DJADA, which
we circulated in 2000. A project of this proportion needed to be engineered around
a more flexible language, for this reason we have chosen the C language.

Our primary reasons for choosing C are: the flexibility it allows for the user inter-
face and parameter passing, its interoperability, its cleaner memory management,
and its efficiency. A PRIMME type structure contains all the required information,
such as function pointers to the matrix-vector multiplication and preconditioning
operators, pointers to arbitrary data the user would like to pass to these oper-
ators, pointers to interprocess communication primitives, pointers to work space
that may be already available, as well as a wide range of parameters. A judicious
setting of defaults within PRIMME presents an uncluttered interface to the user.
Being the primary language for systems programming, C easily interoperates with
C++, FORTRAN 77, Fortran 90, Python, and many other scripting languages and
environments (such as MATLAB and Mathematica), and thus could help PRIMME
achieve a broader impact in the community. We have opted not to use C++ which
might have been a better choice if PRIMME were tightly coupled with a broader
problem solving environment, as opposed to being a stand alone, general purpose
package. Finally, if properly implemented, C codes are as efficient as any other
language, although the brunt of computation in PRIMME is handled by calls to
BLAS and LAPACK functions which are typically machine optimized.

On the technical side of the implementation, users can poll PRIMME for the re-
quired memory and provide their own workspace or let PRIMME allocate memory
internally. To avoid allocate/free overheads, PRIMME allocates all required mem-
ory as one contiguous work array upon initialization and subdivides the work array
by assigning pointers to different portions of the array. For example, the pointer
Vptr for the basis V points at the beginning of this work array, the pointer Wptr for
W = AV points at nmmax elements later, and so on. After all variables that are
present in the algorithm have been accounted for, the remaining memory is shared
among functions as temporary storage. We have also ensured that the allocated
memory is aligned with a page boundary. There are two reasons for this. First,
we wanted natural memory alignment for our double precision and double complex

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

PRIMME · 19

data types (8 and 16 bytes respectively). Although in many systems malloc will
align in multiples of 8 bytes, this is not guaranteed in general, and depending on
the memory/bus architecture it may not be sufficient for our double complex data.
Second, neither memalign or posix memalign are portable, so we were led to use
the older but still widely available valloc. The use of valloc is not often recom-
mended because when allocating small amounts of data it may waste large fractions
of a page. In the case of PRIMME this is not an issue because memory allocation
occurs only once and for very large sizes.

The PRIMME code is both sequential and parallel. By this we mean that a
parallel SPMD application can invoke the same PRIMME code, providing the local
vector dimensions on each processor. As with all SPMD iterative methods, vector
updates are performed in parallel while dot products require a global summation of
the reduced value. PRIMME includes a wrapper function for performing the global
sum. In sequential programs, this wrapper defaults to a sequential memory dcopy.
In parallel programs, the user must provide a pointer to a global sum function,
such as a wrapper to MPI Allreduce() or pvmfreduce(). Hence, PRIMME is
independent from the communication library. To minimize communication and the
number of parallel primitives the user has to provide, we assume a homogeneous
parallel machine where identical computations on each processor are expected to
yield exactly the same floating point number. Heterogeneous processors would
have required in addition a broadcast function. PRIMME can also benefit from
multithreading or special purpose hardware by linking to BLAS and LAPACK
libraries that are optimized appropriately. Finally, the user must provide a parallel
matrix-vector multiplication and parallel preconditioning functions.

The PRIMME library adheres to the ANSI C standard so it should be widely
portable to all current platforms. We have tested our code with the following
operating systems: SUSE Linux 2.6.13-15.12 (both 32 and 64 bit), CentOS Linux
2.6.9-22 (64 bit), Darwin 8.8.0 – 9.7.1 on PowerPC and Intel, SunOS 5.9, and AIX
5.2. Macros have been used to resolve name mangling issues when interfacing with
FORTRAN libraries and functions. We have also provided macros for “extern”
declarations for allowing the library to be compiled with C++ compilers.

4.2 A multi-layer interface

A full documentation on how to install and run PRIMME is included in the dis-
tribution in text, html, and pdf formats. Despite PRIMME’s complexity, we have
provided a multi-layer interface that hides this complexity from the users to the level
determined by their expertise. Our premise has been that the beginner end-user
would probably be unaware not only of various techniques and tuning parameters,
but also of the names of the methods. More experienced users should be able to
use additional functionality to match their specific needs. PRIMME caters also
to expert users who might also use the code to experiment with new techniques,
combinations of methods, etc. Such combinations involve only adjusting an exten-
sive set of parameters rather than implementing new components, which would be
primarily the case with the Anasazi/SLEPc frameworks.

Figure 1 shows a minimal interface required by PRIMME. Users must declare
a parameter of type primme params that holds all solver information and is used
for input and some output. Although not strictly required, a call to our initializa-

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

20 · A. STATHOPOULOS and J. R. McCOMBS

#include "primme.h"

primme_params primme;

primme_initialize(&primme);

primme.n = n;

primme.matrixMatvec = Matvec_function;

primme_set_method(DYNAMIC, &primme);

ierr = dprimme(evals, evecs, rnorms, &primme);

Fig. 1. A minimal user-interface to PRIMME. Method is set to DYNAMIC. Other self-
explanatory method choices are DEFAULT MIN MATVECS, and DEFAULT MIN TIME. The function point-
ers Matvec function and Precon function are provided by the user.

tion function is strongly recommended to avoid undefined parameters. A required
field is the dimension of the matrix primme.n and the matrix vector multiplica-
tion function. The user can then set the desired method and call dprimme to
solve the problem. For non-expert users, we provide three generic method choices
DEFAULT MIN MATVECS (which defaults to GD+k), DEFAULT MIN TIME (defaults to
JDQMR ETol), and DYNAMIC (dynamically finds the best of the first two). If a
preconditioning operator is available, it should be set before setting the method as:

primme.applyPreconditioner = Precon_function;

primme.correctionParams.precondition = 1;

The preconditioner and matrix-vector functions should have the following interface:

void (*function_name)

(void *x, void *y, int *blockSize, struct primme_params *primme);

where x is the input multivector, y is the output (result) multivector, blockSize is
the number of vectors in the multivectors, and primme is passed so that any solver or
external data (as the matrix or the preconditioner) can be available in the function.
A wrapper with this interface can be easily written around existing, complicated,
or legacy functions. The multivectors store individual vectors consecutively in
memory. To allow a common interface across C and FORTRAN languages and
between different precisions we use by reference (void *) arguments.

The minimal PRIMME interface makes heavy use of defaults. For example, the
above segment of code will find one, smallest algebraic eigenvalue and its eigen-
vector, with residual norm ‖r‖ < 10−12 ∗ ‖A‖, while estimating ‖A‖ internally. It
will alternate between GD+k and JDQMR, using mmin = 6, mmax = 15, b = 1,
and k = 1. We emphasize that, despite the simplicity of the interface, the defaults
and the methods reflect expertly tuned, near-optimal methods. In fact, the above
code segment for finding the smallest eigenvalue of difficult problems has matched
or outperformed all other software we are aware of.

Users can have far more control over the eigenvalue problem than this minimal
interface provides. This control is achieved through a detailed interface that al-
lows the user to specify parameters for the problem to be solved: the number of
eigenvalues, where these eigenvalues are located (extreme or interior), the exact

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

PRIMME · 21

residual norm convergence tolerance, the number of available initial guesses, the
maximum number of matvecs, and the operators. None of the above parameters
determines any algorithmic features, so these are parameters that an end-user is
well qualified to use. The user can then request the default PRIMME strategy for
yielding minimum time and solve the given problem.

PRIMME provides several preset methods, including various versions of Jacobi
and Generalized Davidson, RQI, Inverse iteration, LOBPCG, and subspace itera-
tion. The different versions of the methods differ on how they employ precondition-
ing, deflation, subspace acceleration, locking, and block size. We briefly describe
the default methods that set PRIMME apart from other eigensolvers.

The method GD Olsen plusK, which serves as the DEFAULT MIN MATVECSmethod,
is the usual GD+k with the preconditioner applied to the “robustly shifted” r

(m) +
δθ u

(m) as described in Section 3.2. The JDQMR ETol method, which serves as
the DEFAULT MIN TIME method [Stathopoulos 2007; Stathopoulos and McCombs
2007], improves performance over JDQMR by terminating the solve of the correction
equation when the eigenvalue residual (not the linear system residual) is reduced
by an order of magnitude. This method avoids recomputing QMRs information
between outer steps which often causes an increase in run time of the original
JDQMR solver. The DEFAULT MIN MATVECS method typically yields the smallest
number of matvec operations over all methods, and the DEFAULT MIN TIME method
spends the least amount of time in the eigensolver while its number of matvecs
is usually within a factor of 1.5 of DEFAULT MIN MATVECS. The DYNAMIC method
alternates between the above two according to Algorithm 3.6.

If not provided, PRIMME picks defaults for maximum basis size mmax, restart
size mmin, b, etc. Maximum basis size is by default 15 for extreme eigenvalue
problems and 35 for interior ones. When only mmax is provided, mmin = 0.4mmax

for extreme eigenvalue problems and mmin = 0.6mmax for interior ones. When
the user sets the block size, but not the mmax and mmin, these are chosen such
that b divides mmax −mmin − k. Depending on the method, the above parameters
may change further. A few users may opt to set a preset method and then modify
various parameters manually, or even not to set a preset method at all.

To facilitate portability and usability, we have provided a FORTRAN 77 interface
that allows FORTRAN users to set all the members of the primme structure, set
methods, and call the PRIMME interface functions. For a detailed explanation of
the solver parameters, supported methods, and the FORTRAN interfaces, we refer
the reader to the distributed documentation.

4.3 Additional special features

We briefly mention a few features that improve robustness and usability of the code,
and although some can be found in other software packages, they have never been
incorporated in the same package.

First, users can find eigenvalues in five different ways. Users may select to target
the smallest or largest eigenvalues, or they may target interior eigenvalues in one
of three ways with respect to a set of shifts: closest in absolute value to the shifts,
closest to and greater than or equal to the shifts (≥), or closest to and less than
or equal to the shifts (≤). User provided shifts are also used in the JD correction
equation as approximations to the target eigenvalues until additional eigenvalue in-

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

22 · A. STATHOPOULOS and J. R. McCOMBS

formation is obtained. We note that the functionality of the last two options (≥ and
≤), which is useful in certain applications, cannot be obtained from the “Smallest
Magnitude” option that is common in packages such as Anasazi. In principle, these
options could be programmed in Anasazi through its abstract sorting interface, but
the implementation burden would be on the user.

Second, the primme structure supplies an array of shifts (the robustly shifted Ritz
values λ̃i, i = 1, b) corresponding to the vectors in the block to be preconditioned.
Many applications can afford to invert the preconditioner at every step. Examples
include diagonal matrix preconditioners, such as the FFT transform of the Laplace
operator in planewave space, or when the preconditioner is an iterative method. In
these cases, it is preferable to use (K − λ̃iI)−1 ≈ (A − λ̃iI)−1. Providing robust
shifts to the user to improve the preconditioner is a unique feature of PRIMME.

Third, PRIMME explicitly provides for a set of orthogonality constraints, i.e.,
it can solve for the nonzero eigenvalues of (I − QQT)A(I − QQT), where Q are
previously computed eigenvectors. PRIMME assumes Q is included in the first
vectors of the evecs input array. Computed eigenvectors will be placed after Q.
This is cleaner and more stable than expecting the user to use a deflated matrix.

Finally, we mention that PRIMME includes two simultaneously callable libraries
for real and complex matrices, a thorough parameter checking of user inputs for
consistency and correctness, a calling tree traceback report for tracing errors if
any occur, and five levels of output reporting, so that convergence history and
algorithmic choices can be monitored or plotted. Such a level of reporting is required
for meeting the standards of industrial strength software.

5. SAMPLE EXPERIMENTAL RESULTS

In [Stathopoulos 2007] and [Stathopoulos and McCombs 2007] we have presented
performance results for one of the most extensive comparisons between sparse Her-
mitian and real symmetric eigensolvers in the literature. PRIMME was compared
with three other software packages: JDBSYM, BLOPEX, and ARPACK’s dsaupd
function, significantly outperforming them when looking for a few eigenvalues. For
several hundreds of eigenvalues, PRIMME even outperformed ARPACK, the de-
fault benchmark for unpreconditioned cases, when the matrix is sufficiently sparse.
The results testified not only for the quality of the algorithms but also for the
efficiency of the implementation.

In this paper, we provide only a sample update of experimental results by compar-
ing with the Anasazi package, as a representative of another state-of-the-art code,
and showing the effectiveness of two of PRIMME’s unique features: finding interior
eigenvalues (≥ shift) and the dynamic method. We do not perform comparisons
with SLEPc methods as they do not natively implement any near-optimal methods,
nor with JADAMILU because it is tightly coupled with the MILU preconditioner.
We plan to make such comparisons in the future.

5.1 Anasazi comparisons for exterior and interior eigenvalues

We use the DEFAULT MIN TIME (JDQMR) and DEFAULT MIN MATVECS
(GD+k) methods with the default parameters provided by PRIMME and no other
fine tuning. This yields a basis size of 15 for both methods. We look for five al-
gebraically smallest eigenvalues. For convergence we require a residual tolerance

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

PRIMME · 23

Table III. The matrices used in the experiments.
Matrix n nonzero Source Matrix n nonzero Source
Lap7p1M 941192 6530720 nd3kf 9000 3279690 [Yang et al. 2001]
Andrews 60000 760154 [Davis] or56f 9000 2890150 [Yang et al. 2001]
finan512 74752 596992 [Davis] Fillet13K A 13572 632146 [Adams 2002]
cfd1 70656 1825580 [Davis] Cone A 22032 1433068 [Adams 2002]
cfd2 123440 3085406 [Davis] Plate33K A 39366 914116 [Adams 2002]

Table IV. PRIMME (top two) and Anasazi (bottom four) methods for finding 5 smallest eigen-
values without preconditioning. For each matrix, matrix vector multiplications and run time is
reported. LOBPCG uses b = 5 and LOBPCG1 and BD1 use b = 1. 2 block size of 2 was needed to
avoid missing one of the three multiple eigenvalues. 3 stopped with orthogonalization problems.

matrix: Andrews Cone A Lap7p1M Plate33K A finan512

method MV Sec MV Sec MV Sec MV Sec MV Sec
JDQMR 768 4.1 793 3.7 2442 171 1431 6 1109 5
GD+k 568 7.8 588 4.3 2237 2418 1065 10 936 15
IRTR 2620 25.3 3140 11.9 4630 582 4800 27 5340 56
LOBPCG 1360 22.6 1765 11.8 2850 644 2945 31 2260 45
LOBPCG1 2291 28.2 2435 17.6 4478 793 4256 36 5228 72
BD1 2742 34.6 3012 21.6 5680 908 41556 509 3538 49

matrix: cfd1 cfd2 nd3kf or56f

method MV Sec MV Sec MV Sec MV Sec
JDQMR 4650 35 23107 299 7821 70 7616 60
GD+k 4383 81 21221 668 8124 90 6760 68
IRTR 29090 320 107140 1852 31415 147 39810 170
LOBPCG 10610 209 59085 2045 —3 14570 88
LOBPCG1 17724 282 62289 1768 100009 1081 27913 273
BD1 65762 1033 294101 7783 294100 3486 294100 3197

of ‖A‖F 10−10, where ‖A‖F is the Frobenius norm of A. For Anasazi we use three
methods: IRTR, LOBPCG, and BD (block Davidson). Convergence thresholds
are also ‖A‖F 10−10 without a relative tolerance requirement. We can only control
the basis size of BD which is set to 50 vectors. LOBPCG and BD use locking,
LOBPCG uses full orthogonalization, and restarting is performed in-situ for BD.
We run experiments on a 2.8 GHz Intel Core 2 Duo MacBook Pro with 6MB of L2
cache and 4 GB of memory. The suite of gcc-mp-4.2, g++-mp-4.2 and gfortran-
mp-4.2 compilers is used for both packages with -O3 optimization flag. We link
with Apple’s vecLib library which includes optimized versions of BLAS/LAPACK.
We experiment with ten matrices shown in Table III. Lap7p1M is a 7 point finite
difference Laplacian on the unit 3-dimensional cube with Dirichlet conditions.

Table IV shows the results from finding five algebraically smallest eigenvalues
of nine of the above matrices without preconditioning. Even though the IRTR
is based on the same optimality principles as JDQMR, its implementation details
as well as the fact that it requires b ≥ numEvals make it substantially slower in
convergence. The PRIMME methods yield also by far the shortest times and make
the solution of even very tough problems feasible. Because of fast convergence,
the default PRIMME methods may find exact multiple eigenvalues out of order.
Although this is rare, we include one example (Lap7p1M) when it occurs for GD+k.
In this case, a block size of two is sufficient to resolve the triplet eigenvalue.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

24 · A. STATHOPOULOS and J. R. McCOMBS

Table V. Finding interior eigenvalues on the right of σ for two diagonal matrices.
JDQMR GD+k IRTR

Diagonal with 1-D Laplace evals MV Sec MV Sec MV Sec
5 evals ≥ 0.01 34702 198 27355 1292 N/A
10 abs smallest of (A − 0.01I) 34452 206 39069 1932 N/A
10 smallest of (A − 0.01I)2 749557 2080 835724 16892 4469920 68370

Diagonal with denser evals on left MV Sec MV Sec MV Sec
4 evals ≥ 10.015 50521 47 24771 169 N/A
14 abs smallest of (A − 10.015I) 146734 122 57161 438 N/A
14 smallest of (A − 10.015I)2 292418 70 282474 641 679742 1022

In the second experiment, we look for interior eigenvalues of two artificial diagonal
matrices. The first contains the eigenvalues (4 sin(kπ

(2(n+1)))) of the 1-D Laplacian

of dimension 100000. We look for five eigenvalues on the right of σ = 0.01. For
PRIMME, we can use the option for ≥ σ. Alternatively, the five required eigen-
values can be obtained if we find the 10 eigenvalues closest in absolute value to σ.
Finally, we can look for the 10 smallest eigenvalues of (A−σI)2, but with tolerance
‖A‖F 10−14 which is needed to distinguish the squared eigenvalues.

The second matrix contains diagonal entries: Aii = i0.01, if i ≤ 1000 and Aii =
1+(i− 1000)0.03, if 1000 < i ≤ 10000. We look for four eigenvalues on the right of
σ = 10.015. Because of the asymmetrical eigenvalue distribution on either side of
σ, we need 14 eigenvalues if we instead opt to find the ones closest in absolute value
to σ or the smallest of (A − σI)2. For this matrix, (A − σI)2 has the additional
complication that all required eigenvalues coincide as multiples with certain ones
from the left side. As before, we require ‖A‖F 10−15 convergence tolerance except
for IRTR which overconverges and thus a tolerance of ‖A‖F 10−11 yields comparable
results to PRIMME. The results are shown in Table V.

We observe that when the eigenvalues on one side of σ are denser than on the
other side (which is often the case in some problems in materials science), our
interior ≥ σ option is better than the traditional ’SM’ option; otherwise it is com-
petitive. We also confirm that the matvec optimality of GD+k does not fully carry
over to interior eigenvalues. Yet, both JDQMR and GD+k are significant improve-
ments over IRTR on the (A − σI)2 matrix — the only way we could use Anasazi
for this problem as IRTR could not be used to find interior eigenvalues, and the
LOBPCG and BD methods did not converge with the ’SM’ option.

5.2 Dynamic method behavior

We tested the dynamic method in Algorithm 3.6 for switching between the GD+k
and JDQMR-000 without preconditioning on the Fillet 13K matrix. In Figure 2
the results are shown in three graphs to keep the plots from being compressed by
scale. For a small number of eigenvalues, GD+k and JDQMR-000 cross over numer-
ous times, but the dynamic method adapts and remains close to the best-performing
method at all times. For larger numbers of eigenvalues, the times for GD+k and
JDQMR-000 begin to diverge and the dynamic method performs consistently with
the best one.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

PRIMME · 25

2 4 6 8 10 12 14
0

5

10

15

20

25

30

Number of smallest eigenvalues found

T
im

e
in

 s
ec

on
ds

Matrix Fillet_13K: Dynamic matches best method

GD+k
JDQMR
Dynamic

16 18 20 22 24 26 28 30 32 34
20

40

60

80

100

120

140

160

180

200

220

Number of smallest eigenvalues found

T
im

e
in

 s
ec

on
ds

Matrix Fillet_13K: Dynamic matches best method

GD+k
JDQMR
Dynamic

36 38 40 42 44 46 48 50
150

200

250

300

350

400

450

Number of smallest eigenvalues found

T
im

e
in

 s
ec

on
ds

Matrix Fillet_13K: Dynamic matches best method

GD+k
JDQMR
Dynamic

Fig. 2. Results with dynamic method switching between GD+k and JDQMR-000.

6. CONCLUSIONS AND FUTURE WORK

The PRIMME software is a unique implementation that incorporates numerous
methods and features for computing selected eigenvalues of sparse Hermitian ma-
trices. In particular, PRIMME features the state-of-the-art near-optimal methods
JDQMR and GD+k. The success of these methods to perform near-optimally has
been well documented. This paper has focused on the research that was necessary
to realize this in a highly efficient and robust way without compromising ease of
use. We have detailed the multimethod framework and described several new algo-
rithmic techniques that contribute equally to achieving robustness and efficiency. A
new locking technique avoids a classic stagnation problem, a new orthogonalization
scheme reduces synchronization and computation in a provably stable way, a ver-
ification component ensures that converged eigenvectors are returned, and a new
algorithm dynamically identifies and adapts to the fastest method for a particular
problem. Finally, we have outlined the design and features of a multi-layer user
interface that addresses the needs of both end-users and experts. Supplementing
our previous extensive list of numerical evidence, a few new experiments confirm
the efficiency and rich functionality of PRIMME.

PRIMME version 1.1 was publicly released in October 2006 and distributed with

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

26 · A. STATHOPOULOS and J. R. McCOMBS

a Lesser GPL license. After more than 200 unique downloads, no bugs have been
reported in the library code. A list of on-going and future projects includes gener-
alized eigenvalue problems, an SVD interface, implementing the full functionality
of the Iterative Validation algorithm [McCombs and Stathopoulos 2006], and in-
corporating a promising new algorithm from [Stathopoulos and Orginos 2007].

Acknowledgement

The authors are indebted to the referees for their extensive, thoughtful, and helpful
suggestions, and to Profs. Bai and Gladwell for their excellent editorial work.

REFERENCES

Absil, P.-A., Baker, C. G., and Gallivan, K. A. 2006. A truncated-CG style method for
symmetric generalized eigenvalue problems. J. Comput. Appl. Math. 189, 1–2, 274–285.

Absil, P.-A., Mahony, R., Sepulchre, R., and Dooren, P. V. 2002. A Grassmann-Rayleigh
quotient iteration for computing invariant subspaces. SIAM Review 44, 1, 57–73.

Adams, M. F. 2002. Evaluation of three unstructured multigrid methods on 3D finite element
problems in solid mechanics. International Journal for Numerical Methods in Engineering 55,
519–534.

Arbenz, P., Hetmaniuk, U. L., Lehoucq, R. B., and Tuminaro, R. S. 2005. A comparison
of eigensolvers for large-scale 3D modal analysis using AMG-preconditioned iterative methods.
International Journal of Numerical Methods in Engineering 64, 204–236.

Baglama, J., Calvetti, D., and Reichel, L. 2003. IRBLEIGS: A MATLAB program for com-
puting a few eigenpairs of a large sparse Hermitian matrix. ACM Transaction on Mathematical

Software 29, 5, 337–348.

Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., and van der Vorst, H., Eds. 2000. Templates
for the Solution of Algebraic Eigenvalue Problems: A Practical Guide. Software Environ. Tools
11, SIAM, Philadelphia.

Baker, C. G., Hetmaniuk, U. L., Lehoucq, R. B., and Thornquist, H. K. 2009. Anasazi
software for the numerical solution of large-scale eigenvalue problems. ACM Transactions on
Mathematical Software 36, 3. http://trilinos.sandia.gov/packages/anasazi.

Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F. 1999. PETSc home page.
http://www.mcs.anl.gov/petsc.

Barrett, R., Berry, M., Chan, T., Demmel, J., Donato, J., Dongarra, J., Eijkhout, V.,
Pozo, R., Romine, C., and van der Vorst, H. 1994. Templates for the solution of linear
systems: Building blocks for iterative methods. SIAM, Philadelphia, PA.

Bollhöfer, M. and Notay, Y. 2007. JADAMILU: a software code for computing selected
eigenvalues of large sparse symmetric matrices. Comput. Phys. Commun. 177, 12, 951–964.

Bollhöfer, M. and Saad, Y. 2006. Multilevel preconditioners constructed from inverse-based
ilus. SIAM J. Sci. Comput. 27, 5, 1627–1650.

Clint, M. and Jennings, A. 1970. The evaluation of eigenvalues and eigenvectors of a real
symmetric matrix by simultaneous iteration. Computer J. 13, 76–80.

Cohen, M. L. and Chelikowsky, J. R. 1989. Electronic Structure and Optical Properties of
Semiconditors, 2nd ed. Springer-Verlag, New York, Berlin, Heidelberg.

Cullum, J. and Donath, W. 1974. A block Lanczos algorithm for computing the q algebraically
largest eigenvalues and a corresponding eigenspace of large, sparse, symmetric matrices. In
Proc. 1974 IEEE Conference on Decision and Control. 505–509.

Cullum, J. and Willoughby, R. A. 1985. Lanczos algorithms for large symmetric eigenvalue
computations. Progress in Scientific Computing; v. 4, vol. 2: Programs. Birkhauser, Boston.

Daniel, J. W., Gragg, W. B., Kaufman, L., and Stewart, G. W. 1976. Reorthogonalization
and stable algorithms for updating the Gram-Schmidt QR factorization. Math. Comp. 30, 136
(October), 772–795.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

PRIMME · 27

Davis, T. University of Florida sparse matrix collection. Tech. rep., University of Florida. NA

Digest, vol. 92, no. 42, October 16, 1994, NA Digest, vol. 96, no. 28, July 23, 1996, and NA
Digest, vol. 97, no. 23, June 7, 1997.

de Sturler, E. and der Vorst, H. V. Oct 1995. Reducing the effect of global communica-
tion in GMRES(m) and CG on parallel distributed memory computers. Applied Numerical
Mathematics 18, 4, 441–59.

D’yakonov, E. G. 1983. Iteration methods in eigenvalue problems. Math. Notes 34, 945–953.

Edelman, A., Arias, T. A., and Smith, S. T. 1998. The geometry of algorithms with orthogo-
nality constraints. SIAM Journal on Matrix Analysis and Applications 20, 2, 303–353.

Fischer, C. F. 1977. The Hartree-Fock Method for Atoms: A numerical approach. J. Wiley &
Sons, New York.

Fokkema, D. R., Sleijpen, G. L. G., and van der Vorst, H. A. 1998. Jacobi-Davidson style QR
and QZ algorithms for the reduction of matrix pencils. SIAM J. Sci. Comput. 20, 1, 94–125.

Foley., J., Juge, K. J., O’Cais, A., Peardon, M., Ryan, S., and Skullerud, J.-I. 2005. Prac-
tical all-to-all propagators for lattice qcd. Comput. Phys. Commun. 172, 145–162.

Freund, R. W. and Nachtigal, N. M. 1994. A new Krylov-subspace method for symmetric
indefinite linear systems. Tech. rep., AT&T Bell Laboratories, Murray Hill, NJ.

Geus, R. 2002. The Jacobi-Davidson algorithm for solving large sparse symmetric eigenvalue
problems with application to the design of accelerator cavities. Ph.D. thesis, ETH, Zurich,
Switzerland. Thesis. No. 14734.

Gill, P. H., Murray, W., and Wright, M. H. 1986. Practical Optimization. Academic Press.

Golub, G. H. and Underwood, R. 1977. The block Lanczos method for computing eigenvalues.
In Mathematical Software III, J. R. Rice, Ed. Academic Press, New York, 361–377.

Golub, G. H. and Ye, Q. 2002. An inverse free preconditioned Krylov subspace methods for
symmetric generalized eigenvalue problems. SIAM J. Sci. Comput. 24, 312–334.

Grimes, R. G., Lewis, J. G., and Simon, H. D. 1994. A shifted block Lanczos algorithm for
solving sparse symmetric generalized eigenproblems. SIAM J. Matrix Anal. Appl. 15, 1, 228–
272.

Gutknecht, M. H. 2005. Block Krylov space solvers: A survey. http://www.sam.math.ethz.ch/
∼mhg/talks/bkss.pdf.

Hernandez, V., Roman, J. E., and Tomas, A. 2007. Parallel arnoldi eigensolvers with enhanced
scalability via global communications rearrangement. Parallel Computing 33, 521–540.

Hernandez, V., Roman, J. E., Tomas, A., and Vidal, V. October, 2006. A survey of software
for sparse eigenvalue problems. Tech. Rep. SLEPc STR-6, Unversidad Politecnica de Valencia.

Hernandez, V., Roman, J. E., and Vidal, V. 2005. SLEPc: A scalable and flexible toolkit for
the solution of eigenvalue problems. ACM Transactions on Mathematical Software 31, 3 (sep),
351–362.

Hetmaniuk, U. and Lehoucq, R. B. 2006. Basis selection in LOBPCG. J. Comp. Phys. 218,
324–332.

Jia, Z. 1998. A refined iterative algorithm based on the block Arnoldi process for large unsym-
metric eigenproblems. Lin. Alg. Appl. 270, 171–189.

Johnson, S. G. and Joannopoulos, J. D. 2001. Block-iterative frequency-domain methods for
Maxwell’s equations in a planewave basis. Opt. Express 8, 3, 173–190.

Knyazev, A. V. 1991. Convergence rate estimates for iterative methods for symmetric eigenvalue
problems and its implementation in a subspace. International Ser. Numerical Mathematics 96,
143–154. Eigenwertaufgaben in Natur- und Ingenieurwissenschaften und ihre numerische Be-
handlung, Oberwolfach, 1990.

Knyazev, A. V. 1998. Preconditioned eigensolvers - an oxymoron? Electr. Trans. Numer. Anal. 7,
104–123.

Knyazev, A. V. 2001. Toward the optimal preconditioned eigensolver: Locally Optimal Block
Preconditioned Conjugate Gradient method. SIAM J. Sci. Comput. 23, 2, 517–541.

Lehoucq, R. B., Sorensen, D. C., and Yang, C. 1998. ARPACK User’s guide: Solution of Large
Scale Eigenvalue Problems with Implicitly Restarted Arnoldi Methods. SIAM, Philadelphia, PA.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

28 · A. STATHOPOULOS and J. R. McCOMBS

Liu, B. 1978. Numerical algorithms in chemistry: Algebraic methods, eds. C. Moler and I. Shavitt.

Tech. Rep. LBL-8158, Lawrence Berkeley Laboratory.

Lundström, E. and Eldén, L. 2002. Adaptive eigenvalue computations using Newton’s method
on the Grassmann manifold. SIAM J. Matrix Anal. Appl. 23, 3, 819–839.

McCombs, J. R. and Stathopoulos, A. 2006. Iterative validation of eigensolvers: A scheme
for improving the reliability of Hermitian eigenvalue solvers. SIAM J. Sci. Comput. 28, 6,
2337–2358.

Morgan, R. B. 1991. Computing interior eigenvalues of large matrices. Lin. Alg. Appl. 154–156,
289–309.

Murray, C. W., Racine, S. C., and Davidson, E. R. 1992. Improved algorithms for the lowest
eigenvalues and associated eigenvectors of large matrices. J. Comput. Phys. 103, 2, 382–389.

Notay, Y. 2002. Combination of Jacobi-Davidson and conjugate gradients for the partial sym-
metric eigenproblem. Numer. Lin. Alg. Appl. 9, 21–44.

Notay, Y. 2005. Is Jacobi-Davidson faster than Davidson? SIAM J. Matrix Anal. Appl. 26, 2,
522–543.

Olsen, J., Jörgensen, P., and Simons, J. 1990. Passing the one-billion limit in full configuration-
interaction (FCI) calculations. Chem. Phys. Lett. 169, 6, 463–472.

Paige, C. C., Parlett, B. N., and Van der Vorst. 1995. Approximate solutions and eigenvalue
bounds from Krylov spaces. Num. Lin. Alg. Appl. 2, 115–133.

Parlett, B. N. 1998. The Symmetric Eigenvalue Problem. SIAM, Philadelphia, PA.

Sameh, A. and Tong, Z. 2000. The trace minimization method for the symmetric generalized
eigenvalue problem. J. Comput. Appl. Math. 123, 155–175.

Simoncini, V. and Eldén, L. 2002. Inexact Rayleigh quotient-type methods for eigenvalue com-
putations. BIT 42, 1, 159–182.

Sleijpen, G. L. G. and van der Vorst, H. A. 1996. A Jacobi-Davidson iteration method for

linear eigenvalue problems. SIAM J. Matrix Anal. Appl. 17, 2, 401–425.

Sorensen, D. C. 1992. Implicit application of polynomial filters in a K-step Arnoldi method.
SIAM J. Matrix Anal. Appl. 13, 1, 357–385.

Stathopoulos, A. 2005. Locking issues for finding a large number of eigenvectors of Hermitian
matrices. Technical Report WM-CS-2005-09.

Stathopoulos, A. 2007. Nearly optimal preconditioned methods for Hermitian eigenproblems

under limited memory. Part I: Seeking one eigenvalue. SIAM Journal on Scientific Comput-
ing 29, 2, 481–514.

Stathopoulos, A. and Fischer, C. F. 1993. Reducing synchronization on the parallel Davidson
method for the large,sparse, eigenvalue problem. In Supercomputing ’93. IEEE Comput. Soc.
Press, Los Alamitos, CA, 172–180.

Stathopoulos, A. and Fischer, C. F. 1994. A Davidson program for finding a few selected
extreme eigenpairs of a large, sparse, real, symmetric matrix. Computer Physics Communica-
tions 79, 2, 268–290.

Stathopoulos, A. and McCombs, J. R. 2006. PRIMME: PReconditioned Iterative Multimethod
Eigensolver. http://www.cs.wm.edu/∼andreas/software/.

Stathopoulos, A. and McCombs, J. R. 2007. Nearly optimal preconditioned methods for
Hermitian eigenproblems under limited memory. Part II: Seeking many eigenvalues. SIAM
Journal on Scientific Computing 29, 5, 2162–2188.

Stathopoulos, A. and Orginos, K. June 12, 2008 (original version July 1, 2007). Com-
puting and deflating eigenvalues while solving multiple right hand side linear systems
with an application to quantum chromodynamics. Tech. Rep. arXiv.org 0707.0131v2.
http://arxiv.org/pdf/0707.0131v2, accepted in SIAM J. Sci. Comput.

Stathopoulos, A. and Saad, Y. 1998. Restarting techniques for (Jacobi-)Davidson symmetric
eigenvalue methods. Electr. Trans. Numer. Anal. 7, 163–181.

Stathopoulos, A., Saad, Y., and Fischer, C. F. 1995. Robust preconditioning of large, sparse,
symmetric eigenvalue problems. J. Comput. Appl. Math. 64, 197–215.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

PRIMME · 29

Stathopoulos, A., Saad, Y., and Wu, K. 1998. Dynamic thick restarting of the Davidson, and

the implicitly restarted Arnoldi methods. SIAM J. Sci. Comput. 19, 1, 227–245.

Yang, C., Peyton, B. W., Noid, D. W., Sumpter, B. G., and Tuzun, R. E. 2001. Large-scale
normal coordinate analysis for molecular structures. SIAM J. Sci. Comput. 23, 2, 563–582.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.

