CS 420-02: Undergraduate Simulation, Modeling and Analysis

Rahul Simha

Department of Computer Science
College of William & Mary
Williamsburg, VA
Chapter 1

Simulated Annealing

CS 420-02: Undergraduate Simulation, Modeling and Analysis
1.1 Introduction

• Multi-part lecture:
 1. Markov chains.
 2. Statistical physics and the Boltzmann distribution.
 3. Annealing in metallurgy.
 4. Combinatorial problems and local search.
 5. Simulated annealing.
1.2 Markov Chains

- Markov chains via an example: consider the following process:

 1. Draw a bunch of “states” (e.g., 5 states):

 ![Diagram showing states A, B, C, D, E]

 2. Draw directed arcs between some of the states:

 ![Diagram with directed arcs showing transitions between states A, B, C, D, E]

 3. For each state, use a probability distribution over the outgoing arcs:
4. Do this for all states:

5. Pick a start state, e.g. \texttt{start} = \texttt{A}.
6. Execute this algorithm:

\[
\begin{align*}
i & := 1; \\
s & := \text{start}; \\
\text{repeat} & \quad \text{jump to neighbor of } s \text{ using arc probabilities of } s; \\
& \quad i := i + 1; \\
\text{until} & \quad i > n;
\end{align*}
\]

Note: jump probabilities are independent of past history

• Questions of interest:
 - Suppose \(X_n = \text{state you are in after } n\text{-th jump.} \)
 - Q: what is \(P[X_n = A]? \)
 - If I start in A, after how long do I get back to A? (first passage time to A).

• Markov chain theory:
 If these conditions hold:
 1. All states are reachable;
 2. set of states is finite;
 then
 \[
 \lim_{n \to \infty} P[X_n = A]
 \]
 exists and is easy to compute.
 \[
 \lim_{n \to \infty} P[X_n = A] = \text{long term probability of being in A.}
 \]
 Note: limit theorems hold under other conditions as well.

• Simulation:
 - For above example, which state is likely to have the least probability?
• Why Markov chains are useful:
 – Many systems can be modeled as a process evolving on a state space
 – If the “Markov” property holds, these systems can be analyzed quite easily.
 – Many powerful results exist in the theory of Markov chains.

• Why Markov chains are called Markov chains:
 – A.Markov: Russian mathematician who first worked out the mathematics of Markov chains.
 – His examples usually looked like chains:

 ![Markov Chain Diagram]

• Summary:
 – A Markov chain is a process that jumps around from state to state, in a collection of states.
 – The long term probability of being in a state can be computed.
 – First passage time is the average time to return to a start state (hard to compute).
1.3 The Boltzmann Distribution

- Ludwig Boltzmann (Austria, 1844-1906):
 - Prior to Boltzmann, macroscopic laws of gases were discovered and empirically verified, e.g.,
 \[
 \frac{PV}{T} = \text{constant} \tag{Boyle’s law}
 \]
 - Boltzmann was interested in explaining macroscopic properties using microscopic properties.

- Example of a problem Boltzmann was interested in:
 Suppose all molecules are initially in Box A:

 ![Diagram of Box A and Box B with a valve](image)

 Then, the valve is opened and after a while the system is examined:

 ![Diagram of Box A and Box B with molecules](image)

 The molecules appear to be evenly distributed (identitical pressure).
 The system is continuously observed for a long time, yet the initial configuration is never observed again - why?

7
• Markov chain analogy:

Let

\[\begin{align*}
 n &= \text{total \# molecules} \\
 n_A &= \text{\# molecules in A} \\
 n_B &= \text{\# molecules in B}
\end{align*} \]

State of the system = \((n_A, n_B)\).
Initial state = \((n, 0)\).

Observation: first passage time from \((n, 0)\) to \((n, 0)\) is very long.
(average time is longer than the life of the universe, for a large system).

• A simple model:

 – Suppose at every step, each molecule selects a Box at random (with equal probability).

 – Then, \(P[\text{all molecules in A}] = 0.5^n\).

 – In fact, \(P[k \text{ molecules in A}] = \binom{n}{k} 0.5^n 0.5^{n-k}\).

 – Most probable state: \(\left(\frac{n}{2}, \frac{n}{2}\right)\).

 – E.g., \(n=20\):

 * \(P[\frac{n}{2} \text{ molecules in A}] = P[10 \text{ in A}] \approx 0.176\).
 * \(P[n \text{ molecules in A}] = P[20 \text{ in A}] \approx 10^{-6}\).

• Boltzmann’s analysis: key assumptions

 – We cannot account for the behavior of each individual molecule.
 – All configurations with the same energy are equally probable.

• Boltzmann’s analysis:

 – System:
Notation:
* Each configuration of molecules is a state.
* \(S = \text{set of states} = \{s_1, s_2, \ldots, s_m\} \).
* \(E(s) = \text{energy of state } s \).
* \(E_1, E_2, \ldots, E_k = \text{possible energies.} \)

Desired: what is \(P[\text{a state has energy } E_i]? \)

Analysis:
Note that
\[
P[\text{energy is } E_A + E_B] = P[\text{energy in A is } E_A] \times P[\text{energy in B is } E_B].
\]

Thus, the probability distribution has the form
\[
f(x + y) = f(x)f(y).
\]

Note that
\[
e^{-\beta(x+y)} = e^{-\beta x}e^{-\beta y}
\]
and thus \(f(x) = e^{-\beta x} \) is a candidate function.

Fact: \(f \) is necessarily of the form \(f(x) = e^{-\beta x} \).

Thus,
\[
P[\text{a state has energy } E] = (\text{const})e^{-\beta E}.
\]
Recall: we have a finite number of energies. Hence,
\[
P[\text{a state has energy } E_i] = Ze^{-\beta E_i}.
\]

where
\[
Z = \frac{1}{\sum_k e^{-\beta E_k}}.
\]

This is called the Boltzmann distribution.
• The probability of finding the system in energy E.

 – Let $P[E] = P[\text{a state has energy } E] = Ze^{-\beta E}$.

 – Note: $P[E]$ is a decreasing function of E.

 – Let $\Omega(E) = \# \text{ states with energy } E$.

 – Note: $\Omega(E)$ is an increasing function of E.

 – Let $P_{sys}[E] = P[\text{system has energy } E]$.

 Then,

 $$P_{sys}[E] = \Omega(E)P[E].$$

 Example: a plot of $\Omega(E)$, $P[E]$ and $P_{sys}[E]$

 – Q: why does $\Omega(E)$ increase?

• A simple simulation experiment:

 – System (1-dimensional example):
– n molecules.
– Each molecule selects a slot randomly in either Box.
– The energy of a molecule = # neighbors.
– Energy of a configuration = sum of energies of molecules.

• The effect of temperature:
 – By computing macro properties (e.g., pressure), it turns out:
 \[
 \beta \propto \frac{1}{T}.
 \]

 This is usually written as
 \[
 \beta = \frac{1}{\kappa T}
 \]

 where κ is Boltzmann’s constant. Thus,
 \[
 P[E] = Ze^{-E/\kappa T}.
 \]

– Next, consider two states s_1 and s_2 with energies $E(s_2) > E(s_1)$.
 Then,
 \[
 r = \frac{P[E(s_1)]}{P[E(s_2)]} = \frac{Ze^{-E(s_1)/\kappa T}}{Ze^{-E(s_2)/\kappa T}} = e^{[E(s_2) - E(s_1)]/\kappa T}.
 \]

– Q: What happens to r as $T \to \infty$?
– Q: What happens to r as $T \to 0$?
– Thus, low energy states are more probable at low temperatures.
- Simulation example:

• Summary:
 - \(P[\text{a state has energy } E] \propto e^{-E/\kappa T} \).
 - Low energy states are favored at low temperatures.
1.4 **Annealing**

- *Annealing* is a process discovered centuries ago as a technique for improving the strength of metals.

- Key idea: cool metal slowly during the forging process.

- Example: making bar magnets
 - Wrong way to make a magnet:
 1. Heat metal bar to high temperature in a magnetic field:

 ![Diagram of heat](image1)

 2. Cool rapidly (quench):

 ![Diagram of cool](image2)

 - Right way: cool slowly.
• Why slow-cooling works:
 – At high heat, magnetic dipoles are agitated and move around:

 ![Diagram of agitated dipoles](image1)

 – The magnetic field tries to force alignment:

 ![Diagram of forced alignment](image2)

 – If cooled rapidly, alignments tend to be less than optimal (local alignments):

 ![Diagram of rapid cooling](image3)

 – With slow cooling, alignments are closer to optimal (global alignment):

 ![Diagram of slow cooling](image4)

• Summary: slow cooling helps because it gives molecules more time to “settle” into an optimal configuration.
1.5 Combinatorial Optimization Problems

- A **combinatorial optimization problem** is:
 - \(S = \) set of states (potential solutions).
 - \(C \), a cost function over the states:
 \[C(s) = \text{cost of state } s. \]
 - Goal: find state with least cost.
 - Usually \(S \) is too large for exhaustive search.

- Example: the Traveling Salesman problem
 - Informal description:
 We are given a bunch of cities:

 ![Diagram](https://via.placeholder.com/150)

 and the distance between each pair of cities (matrix \(D \)):

 \[
 \begin{array}{ccccc}
 & A & B & C & D & E \\
 A & 0 & 2.7 & 3.1 & 3.6 & 2.9 \\
 B & 0 & 1.8 & 2.1 & 3.4 & \\
 C & 0 & 0.8 & 1.2 & & \\
 D & 0 & & 1.1 & & \\
 E & 0 & & & & \\
 \end{array}
 \]

 We wish to find a tour through the cities (each city occurs only once in a tour) of minimal total length.
– Why is this a combinatorial optimization problem?
 * Does it have a set of states?
 \[S = \{ \text{all possible tours} \} \]
 \[= \{ ABCDE, ABCEA, ABEDA, \ldots, EDCAB \} \quad \checkmark \]
 * Does it have a cost function on the states?
 \[C(ABCD) = D(A, B) + D(B, C) + D(C, D) + D(D, E). \quad \checkmark \]
 * Is the goal to find the minimal cost state?
 Goal: find an ordering of cities \(\alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5 \) such that \(C(\alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5) \) is minimal. \quad \checkmark

• Example: the Bin Packing problem

– Informal description:
 Given a collection of items of sizes \(s_1, \ldots, s_n \)

![Image of a collection of items and bins]

and an unlimited supply of bins each of size \(B \):

![Image of bins]

pack the items into as few bins as possible.

– Formal description:
 * Item sizes: \(s_1, s_2, \ldots, s_n \).
 * Assignment function:
 \[\delta_{ij} = \begin{cases}
 1, & \text{if item } i \text{ is put into bin } j \\
 0, & \text{otherwise}
 \end{cases} \]

 * \(B = \) bin size.
* Goal: minimize k, the number of bins such that

$$\sum_{i=1}^{n} s_i \delta_{ij} \leq B$$

(1)

$$\sum_{i=1}^{k} \delta_{ij} = 1$$

(2)

(3)

- Why is this a combinatorial optimization problem?
 * Set of states: all possible assignments of 0-1 values to the matrix δ.
 * Cost function: number of bins used.

- Example: the Satisfiability problem
 - U is a collection of Boolean variables $\{x_1, x_2, \ldots, x_n\}$.
 - O is a collection of Boolean operators: \land (and), \lor (or) and \lnot (not).
 - B is a Boolean expression using variables in U and operators in O, e.g.,
 $$B = (x_1 \lor x_2) \land (x'_1 \lor x_3 \land x_2)$$
 - Is there an assignment of T and F values to the x_i’s such that B is true?

- Summary: a combinatorial optimization problem is:
 - $S =$ set of states $= \{s_1, s_2, \ldots, s_m\}$.
 - A cost function $C : S \rightarrow R$
 $$C(s_i) = \text{cost of state } s_i.$$
 - Goal: find least-cost state.

- Note:
 - Let $S^* = \{s : C(s) \leq C(s') \text{ for every } s' \in S\}$.
 - Need to find any element in S^*.

17
- Usually size of problem is n (number of cities).
- Size of state space is large (all possible tours).

• Fact: A large class of problems (NP-complete problems) are polynomially equivalent to each other.
 (If you can solve one efficiently, you can solve every one of them).
1.6 Local Search

- **Local search** is a general-purpose algorithm to solve any combinatorial optimization problem.

- **Algorithm:**

```
Algorithm: Greedy-Local-Search

1. s := initial_state; // e.g., initial tour
2. repeat
3. s' := Generate-New-State(s); // new tour
4. if C(s') < C(s) // new tour has less cost
5.     s := s';
6. changed := true;
7. else
8.     changed := false;
9. endif;
10. until not changed;
11. return s, C(s);
```

- How to generate new states?
 e.g., Traveling Salesman problem:
 - Suppose current tour is $s = \alpha_1\alpha_2\alpha_3\alpha_4\alpha_5$.
 - Pick two cities at random, e.g.
 $\alpha_1 \alpha_2 \alpha_3 \alpha_4 \alpha_5$
 $\uparrow \quad \uparrow$
 - Swap the two cities: $s' = \alpha_1\alpha_4\alpha_3\alpha_2\alpha_5$.
• How well does **Greedy-Local-Search** work?
 Ans: not very well on most problems.

 Why?
 Ans: The local structure of the cost *landscape* reveals little about the global structure.

 ![Diagram of local and global minima](image-url)

 • Observation: perhaps we should allow an algorithm to “climb” out of local minima?
1.7 Summary So Far

- Markov chains:
 - A process that jumps from state to state.
 - Long-term probabilities can be computed.

- Boltzmann distribution:
 - Consider a system that can be in one of many states, and where each state has an energy level.
 - Suppose energy values are: E_1, E_2, \ldots, E_m.
 - The Boltzmann distribution:
 \[P[\text{a state has energy } E_i] = Z e^{-\beta E_i}. \]
 where
 \[Z = \frac{1}{\sum_k e^{-\beta E_k}}. \]
 - Small $T \Rightarrow$ low-energy states have higher probability.

- Annealing:
 - Slow cooling (after heating) helps improve properties of materials.

- Combinatorial optimization problem:
 - Set of states and a cost function over the states.
 - Goal: find minimum cost state.

- Local search:
 - Start in any state.
 - Jump to a neighboring state if it’s cheaper.
 - Stop when you can’t go anywhere.
1.8 Simulated Annealing

- Key ideas:
 - Simulated annealing = local search with modifications.
 - Allow jumps to higher cost states.
 - Use a coin flip to determine whether you should jump to a higher cost state (with probability $e^{-[C(s')-C(s)]/\kappa T}$).
 - Decrease the probability as time goes on. (By decreasing the temperature).
 - The hope is:
 * Initially, higher-cost jumps occur with high probability
 \Rightarrow allows exploration of state space.
 * Later, higher-cost jumps occur with low probability
 \Rightarrow decrease the chances of jumping out of low cost states.
Algorithm: **SIMULATED-ANNEALING**

1. \(s := \text{initial_state}; \)
2. \(\text{min}_s := s; \)
3. \(T := \text{initial_temperature}; \)
4. repeat
5. \(s' := \text{GENERATE-NEW-STATE}(s); \)
6. if \(C(s') < C(s) \)
 7. \(s := s'; \)
8. else if \(\text{uniform_random}() < e^{-[C(s')-C(s)]/\kappa T} \)
 9. \(s := s'; \) // even though \(C(s') > C(s) \)
10. else
11. stay in same state;
12. endif;
13. if \(C(s) < C(\text{min}_s) \)
14. \(\text{min}_s := s; \)
15. endif;
16. \(T := \text{NEW-TEMPERATURE}(T); \)
17. until tired;
18. output \(\text{min}_s, C(\text{min}_s); \)
• Note: probability of jump depends on cost difference.
1.9 Mathematics of Simulated Annealing

- Example: Traveling Salesman over 5 cities.
- Consider the state $ABCDE$: where can we jump to from here?

![Diagram of state transitions](attachment:image.png)

What are the jump probabilities?

Next, let $X_n = $ state after n-th jump.
Then, X_n is a Markov chain!
• Fixed-temperature mathematics:

 – Suppose T is constant throughout the execution of the algorithm.
 – It turns out the Markov chain can be solved easily to give:

 \[\lim_{n \to \infty} P[X_n = s] \propto e^{-C(s)/\kappa T} \]

 – the state distribution is the Boltzmann distribution.
 – Consider states s_1 and s_2 such that $C(s_2) > C(s_1)$.
 For large n,

 \[
 r = \frac{P[X_n = s_1]}{P[X_n = s_2]} = \frac{e^{-C(s_1)/\kappa T}}{e^{-C(s_2)/\kappa T}} = e^{-(C(s_1) - C(s_2))/\kappa T}
 \]

 Note:
 * For large T, $r \approx 1$.
 * For small T, $r \approx \infty$.

 – Theoretical result:

 \[
 \lim_{T \to 0} \lim_{n \to \infty} P[X_n \in S^*] = 1.
 \]

 (Recall: S^* = set of optimal states.)
• Decreasing-temperature mathematics:

 - As \(n \to \infty \), \(T \to 0 \).
 - The process is still a Markov chain, but a non-standard Markov chain (non-homogeneous)
 \(\Rightarrow \) difficult to analyze.
 - Theoretical result: If \(T_n \to 0 \) slowly (e.g., \(T_n \geq \frac{\gamma}{\log n} \)) then
 \[
 \lim_{n \to \infty} P[X_n \in S^*] = 1.
 \]
 - Key idea in proof:
 Let \(c = \max_{i,j} [C(s_i) - C(s_j)] \).
 Then,
 \[
 \lim_{n \to \infty} P[X_n \in S^*] = 1
 \]
 if
 \[
 P[\text{stuck in a well}] = 0
 \]
 which is true if
 \[
 \sum_n e^{-c/\kappa T_n} = \infty \quad \text{(Borel-Cantelli lemma)}
 \]
 which is true if
 \[
 \sum_n e^{-(c/\kappa \log n)} = \infty
 \]
 which is true if
 \[
 \sum_n \frac{1}{n} = \infty
 \]
 which is true.
1.10 Simulated Annealing: Summary

• A metaphor from the physics of metals was used to create an algorithm.

• Simulated Annealing is a general purpose algorithm to solve combinatorial optimization problems.

• To solve a particular problem, you need to define a `GENERATE-NEW-STATE(s)` function for that problem.

• The initial temperature will have to be selected depending on the particular instance of the problem.

• The mathematics of simulated annealing involve Markov chains (a construct in probability theory).

• In practice:
 – Simulated annealing is easy to implement.
 – Simulated annealing has been found to work well for approximately bowl-like landscapes.
 – Performance is strongly dependent on good neighborhood functions.
 – Performance can be enhanced if supplemented with other strategies (e.g., use multiple starting points).
 – The theoretical temperature schedule is too slow.
 – Newer algorithms (e.g., TABU search) build on and are better than simulated annealing.