AdaptLoad: effective balancing in clustered web servers under transient load conditions

Alma Riska, Wei Sun, Evgenia Smimi, Gianfranco Ciardo

Computer Science Department
College of William & Mary

Motivation

- Internet
 - Too big, too variable, too heavy-tailed
- Issues
 - Flash crowd effect
 - Sudden fluctuations in arrivals and demands
 - $$$
- Capacity planning
 - Critical for E-commerce sites
- High performance & availability
- But mostly cost effective!

Clustered Web Servers

- Clustering with a single system image
- Front-end: level-7 switch
- Back-end: multiple identical nodes

This Talk: Load Balancing

- Classic solutions
 - Random
 - Round-robin
 - Join the Shortest Queue (JSQ)
- Not effective in such environments!

Why not effective?

- Too diverse workloads
- Heavy-tailed behavior
- Short jobs may get stuck behind extra-long ones in the queue
- Effect: HUGE slowdown
- Idea:
 - Separate long from short jobs!
- Size-based policies then...

What is our workload?

- Must be realistic!!!
- Trace data rather than artificial
- 1998 World Soccer Club
 - 30-low latency platforms
 - 92 days (April 26, 1998 to July 1998)
 - Date & time, size of transferred data
 - Static content
Workload Characterization

- Arrival intensities
 - How often
 - How variable
 - Possible periodic behavior
- Service intensities
 - Assumption: service time linear to file size
 - How variable

Workload Characterization: Arrival Process

- Look at one busy week...

- High variability
- Clear periodicity

Workload Characterization: Service Process

- Keep looking at the same week...

- High variability

Workload Characterization: Service Process (cont.)

- C.V. (i.e., standard deviation / mean)

Workload Summary

- Rapidly changing environment
- Very wide variability in both arrivals and service times
- Load balancing more tricky!
- Challenges
 - Adapt balancing parameters
 - Ensure equal load on all servers

Our solution: AdaptLoad

- Basic idea: tasks of similar sizes to the same server
AdaptLoad (cont.)

- Problem
 - A priori knowledge of the workload
- Solution
 - Use past to predict future
 - On-line observations of limited number of requests
- Evaluation
 - Trace driven simulation

Performance Issues

- Transient overloads
- Fast and slow servers
- Equal load (utilization)
- Fairness
- Scalable
- Improvements?

Transient Overloads

Server Utilization

Fairness: per class slowdown

Improvements?

- Better knowledge?
- Exponentially discounted history
- Two parameters
 - Batch size K
 - Coefficient $0 \leq a \leq 1$
- Exhaustive search for (K, a)
- Sensitivity?
- Robustness?
Summary

- New policy: AdaptLoad
- Simulation-based evaluation
- Use history for future prediction
 - Previous K requests
 - Exponentially discounted history
- Works great!

Future Directions?

- Service differentiation
- Dynamic content
- Time-series analysis
- On-line analytic models
- Prototype implementation