Materials Modeling
— An Illustration with Magnetism

Shiwei Zhang
Department of Physics

Outline:

Ferromagnetism in Fe, Ni, etc. (existence of T_c)
Can we develop a simple model for it?

• Phase transitions
• A bit of statistical mechanics
 - Boltzmann distribution
• The Ising model for ferromagnetism
• Grown-up’s π game
 - Allows actual calculations based on Boltzmann distribution
• Simulating the Ising model
PHASE TRANSITIONS

(1) Percolation

- Each site of lattice is occupied with probability p
- There exists p_c at which a *spanning* cluster first appears
 - For 2-D square lattice, $p_c \approx 0.593$
- At p_c, a phase transition occurs
 - *Fundamentally* different behaviors at $p > p_c$ and $p < p_c$,
 e.g., conductivity in materials
- An example to see that p_c is special — forest fire model:
 * Occupied site \rightarrow a tree
 * All trees at one edge catch fire at $t_0 = 0$
 * In each clock cycle, all trees adjacent to burning
 trees will start to burn
 * Trees burning at t_{n-1} will burn out at t_n

 Q: What is the time it takes for entire fire to burn out?
Phase transitions

(2) ice \iff water

(3) Ferromagnetism in materials such as iron

\[
\begin{array}{cc}
\text{ferromagnetic} & \text{non-ferromagnetic} \\
T_c & \sim 1000 \text{ K for iron}
\end{array}
\]

In both 2 and 3:

- Interactions between particles play a key role
- Phase transition occurs as a function of temperature T

In all cases, 1, 2, and 3, tuning of a parameter is involved, as opposed to self-organized critical phenomena.
THE BOLTZMANN DISTRIBUTION

- For a system in equilibrium at temperature T, the probability for finding the system in any particular state α is

 $$P_\alpha \propto e^{-E_\alpha/kT},$$

 — E_α is the energy of a (microscopic) state α
 — k is a universal constant (Boltzmann’s constant)

- Any macroscopic quantity of the system is given by the weighted average of microscopic states, e.g.,

 $$E = \sum_\alpha P_\alpha E_\alpha = \frac{\sum_\alpha E_\alpha e^{-E_\alpha/kT}}{\sum_\alpha e^{-E_\alpha/kT}}$$

Note:

- state \longleftrightarrow 'snapshot'
- energy E_α comes from particle interaction
- As T is lowered, high-energy states are occupied less and less
THE ISING MODEL FOR FERROMAGNETISM

The Ising model:

- Square lattice of magnetic moments (think of as atoms with spin)
- Each lattice site has one spin
- Each spin can have one of two possible values \(s_i = \pm 1 \) (↑ or ↓)
- *Near-neighbor* spins interact

\[
E_\alpha = -J \sum_{\langle ij \rangle} s_i s_j
\]

\(\langle ij \rangle \): a pair of *near-neighbor* spins \(i \) and \(j \)

\(J > 0 \): a known constant

- Periodic boundary condition is imposed

Qualitatively:

- Aligned spins lower the energy
- High \(T \), random;
 - low \(T \), aligned
GROWN-UP’S π GAME

Goal:

To generate a *uniform* distribution of stones inside (big) square

Algorithm:

1. Throw stone in random direction
2. If stone landed *inside* square,
 walk to stone, take out a new one from bag, and repeat 1
 otherwise (stone landed *outside* square),
 take out a new stone from bag and drop it at current position;
 take out (yet another!) new stone and repeat 1

What’s the point?

It’s possible to create a Markov chain random walk with simple rules whose asymptotic distribution is the desired PDF

Note:

- Kids’ game is *always* the better algorithm
- Specific drawbacks of grown-up’s game:
 - requires equilibration time
 - successive samples are correlated (memory effect)
- But, unlike in this simple case, often there is no algorithm to *directly* sample a complicated, many-dimensional PDF
- Grown-up’s game contains the essence of a *general* solution

— the Metropolis Algorithm
Extension of the grown-up’s game

Another example:

How to sample x from the PDF $f(x) = e^{-x}$ where x is on $(0, \infty)$?

“Kids’ algorithm”: $x = -\log(\text{rand}())$

The following algorithm also works: — Metropolis algorithm

0. Start random walk at any position $x > 0$

1. Propose to move x to a new position x',
 where x' is selected randomly and uniformly
 inside a 1-d box of length L centered at x.

2. Compute $p = f(x')/f(x)$.

3. If $p \geq 1$,
 accept x', i.e., set $x = x'$
 otherwise
 accept x' with probability p
 accept: $x = x'$
 not accept: $x = x$

4. Repeat from 1.

- How to choose L?
Simulating the Ising Model

What exactly is it that we want to do?

- to generate states α from the Boltzmann distribution $P_\alpha \propto e^{-E_\alpha/kT}$

Given states distributed according to the PDF P_α, macroscopic quantities can be computed, e.g., the total energy:

$$E_{\text{tot}} = \sum_\alpha P_\alpha E_\alpha$$

weighted average

is given by the average of E_α w.r.t. the samples
(Monte Carlo integration)

The Metropolis Algorithm — grown-ups’ game

0. Start random walk at any state $\alpha = \{s_1, s_2, \ldots, s_N\}$

1. Propose to move current state α to a new state α' by
 (a) randomly selecting a site (say, i)
 (b) flipping its spin (i.e., letting $s'_i = -s_i$)

2. Compute $p = P_{\alpha'}/P_\alpha$.

3a. If $P_{\alpha'}/P_\alpha \geq 1$, accept α' as new state, i.e., set $\alpha = \alpha'$;
 otherwise, accept α' with probability $P_{\alpha'}/P_\alpha$.
 — if accept, set $\alpha = \alpha'$
 — if not accept, set $\alpha = \alpha$

3b. Accumulate measurements (e.g., E_α).

4. Repeat from 1.
Simulating the Ising Model

Note:

1. In proposing new state:
 - $N = L \times L$ attempted flips is considered one step
 - sweeping thru lattice also ok (vs. random site selection)

2 a. Computation of $p \equiv P_\alpha / P_\alpha$ is fast (local interaction).

Actual Simulation — and what can we learn from it?

http://bartok.ucsc.edu/peter/java/ising/keep/ising.html
SUMMARY:

- Phase transitions are common and important.
- Statistical mechanics provides framework to relate microscopic quantities to equilibrium macroscopic properties.
 - Boltzmann distribution
 - Phase transitions, as well as other equilibrium phenomena, directly arise from this framework
- The Ising model — a simple microscopic model for magnetism
 - Has applications in magnetism, binary alloys, liquid-gas transitions, etc.
 - Has played an important role in furthering our understanding of the quantitative aspect of phase transitions
- The algorithm of Metropolis et. al.
 - A Markov chain random walk which generates random variables according to essentially any PDF.
 - Provides a general approach to simulating systems in thermal equilibrium, and allows detailed calculations according to the laws of statistical physics.
 - Is widely applied in many disciplines — problems include polymers, protein folding, quantum electronics, etc.