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Introduction

e Fitting standard univariate parametric probability distributions
with an input modeling package.

— Typically fits several distributions to a data set

— Uses goodness-of-fit statistics to determine the distribution
with the best fit

— What if an appropriate input model is not part of the pack-
age?

e Using a prototype Maple-based probability language, known as
APPL (A Probability Programming Language) for input mod-
eling. This language allows an analyst to:

— Specify a standard or non-standard distribution for an input
model and have derivations performed automatically

— Compute parameter estimates

— Plot empirical and fitted CDFs

— Perform goodness-of-fit tests



About APPL

APPL’s data structures and algorithms were initially developed to
solve probability problems.

e ['inds the distribution of

— Order statistics

— The sum of independent random variables

— The product of independent random variables
— The transformation of a random variable

— Mixtures of random variables

e Calculates

— Cumulative distribution functions
— Expected values
— Quantiles of a distribution

— Maximum likelihood estimators



Probability theory examples using APPL
Example 1. X3, Xs, ..., Xgiid U(0, 1). Find

7 11
P X;
r(2<z <2>

The two standard methods for approzximating the probability:

e Central limit theorem: only yields one digit of accuracy for this
particular problem

e Monte Carlo simulation

— requires custom coding

— needs 100-fold increase in computation time for next addi-
tional digit of accuracy

The APPL statements

n := 8;

X := UniformRV(0, 1);

Y := ConvolutionIID(X, n);
CDF(Y, 11 / 2) - CDF(Y, 7 / 2);

yield the exact solution
3580151

5160960

This may be coded up more compactly as

Y := ConvolutionIID(UniformRV(0, 1), 8);
CDF(Y, 11 / 2) - CDF(Y, 7 / 2);



Example 2. X ~ triangular(1,2,3) and Y ~ U(1,2). Assume
X and Y are independent. Find the distribution of V' = XY

The APPL statements

X := TriangularRV(1, 2, 3);
Y := UniformRV(1, 2);
V := Product(X, Y);

return the PDF of V as

(v —In(v) — 1 l<v<2
3y 4+4ln(w)+4-5In(2) 2<v <3
—%v—{—ln(g—;fu)%—l 3<v<4

| 5v—31In(v) —3+1n(216) 4 <v <6.

fv(v) =

Example 3. Let X be a random variable with the distribution
associated with the Kolmogorov—Smirnov test statistic in the all pa-
rameters known case for sample size n = 5. Let Y be a Kolmogorov—-

Smirnov random variable with n = 3. If X and Y are independent,
find Var [max {X,Y}].

The APPL statements

X := KSRV(5);
Y := KSRV(3);
Z := Maximum(X, Y);
Variance(Z);
yield

10368751452319387558371671
667392326753906250000000000

or approximately 0.0155362



Example 4. Let X ~ triangular(a,b,c). Find the CDF of X.

The APPL statements

X := TriangularRV(a, b, c);
CDF (X) ;

yield the CDF of X as

’

0 <
(z — a)? o
F(x)=<(c_a)gb:a;2 <z<b
L e—a)e—b) b<z=<c
. T >c

Example 5. X;, Xy, ..., X7 ~ Weibull(%, 2) with PDF
1 2

fx(z) = éaf;e_flix z > 0.

Calculate the mean of the second order statistic.

The APPL statements

X := WeibullRV(1 / 2, 2);
Y := OrderStat(X, 7, 2);
Mean(Y) ;

return the mean of the second order statistic as

7 6
5 6mr — ?\/ 7m = 1.0456613



3r—1

Example 6. X ~ geometm'c(i) with PDF fx(x) = i'Z ,

x =1,2,.... Calculate the median of the maximum order statistic
when n = b items are sampled with replacement.

The APPL statements

X := GeometricRV(1l / 4);
Y := OrderStat(X, 5, 5);
IDF(Y, 0.5);

return the median of the distribution as 8

Example 7. Let the random variable T" have hazard function

A 0<t<1
hﬂﬁ_{At t>1

for A > 0. Find the survivor function S(t) = Pr(T > t).

Input the hazard function for 7" as a list of three sublists:

assume (lambda > 0);

T := [[t -> lambda, t -> lambda * t],
[0, 1, infinityl,
[‘Continuous‘, ‘HF‘]];

SF(T) ;

The survivor function is returned as

e M 0<t<l1
St(t) = { oA +1)/2 t>1



Example 8. (Hogg and Craig, 1995, page 287) Let X; and X5 be
iid observations drawn from a population with PDF

f(z) = 0271 0<z<l,

where 8 > 0. Test Hy: 6 = 1 versus Hy: 8 > 1 using the test
statistic X7 X5 and the critical region C' = {(X7, X3)| X1 X2 > 3/4}.
Find the significance level o and power function for the test.

The APPL statements to compute the power function are

n := 2;

crit := 3 / 4;

assume (theta > 0);

X := [[x => theta * x ~ (theta - 1)],
[0, 1], [‘Continuous‘, ‘PDF‘]l];

T := ProductIID(X, n);

power := SF(T, crit);

which yields
Pr(rejecting Holf) = 1 — (3/4)? + 6(3/4)" In(3/4)
The significance level of the test is computed with the statement

alpha := subs(theta = 1, power);
The result is o = 1/4 4+ 3/41n(3/4) = 0.0342

Plotting the power function requires the additional statement

plot(power, theta = 0 .. 4);



Example 9. Let U; ~ U(0,1) and Uy ~ U(0,1). The Box-Muller
algorithm for generating a single standard normal deviate V' can be

coded in one line (Devroye, 1996) as

V < v/—2InUj cos(2nUs),

where U; and U, are independent random numbers.

The PDF of V', shown below, is computed with the statements:

U1l
U2
gl
X1
g2
X2
g3
X3
hi
Y1
h2
Y2

V :

:= UniformRV(0, 1);

:= UniformRV(0, 1);

= [[x -> 1In(x)], [0, infinityl];

:= Transform(Ul, gl);

= [[x -> -2 * x], [-infinity, infinityl];
:= Transform(X1, g2);

= [[x -> sqrt(x)], [0, infinity]l];

:= Transform(X2, g3);

:= [[x -> Pi x x], [-infinity, infinity]];
:= Transform(U2, hil);

= [[x -> cos(x)], [-infinity, infinityl];
:= Transform(Y1, h2);

= Product (X3, Y2);

( v 0 6—02/(2x2)

dx —oo<v <0

/=12 2
o) =4 T zey1l—x
) =14 | e )

\;;A;xQ\/l——w2

dx O0<v< o0

This form is mathematically equivalent to

1
h(v) = e/ —00 < v <0




Example 10. Use the K-S test for assessing model adequacy
(goodness-of-fit) for the prime modulus multiplicative linear congru-
ential random number generator:

Zix1 = az; mod m

for i = 0,1,..., where 2 is a seed, a = 7° = 16,807, and m =
231 — 1 = 2,147,483, 647 (Park and Miller, 1988).

If the seed zy = 987,654, 321 is used, the first five random numbers

generated are
1,605,065, 384 1,791, 818,921 937,423, 366

2,147,483,647  2,147,483,647 2, 147,483, 647
1,334, 477,970 252,032, 522

2,147,483, 647 2,147,483, 647
or, approximately

0.7474168 0.8343807 0.4365218
0.6214147 0.1173618

Let Sample contain the five random numbers generated above. The
APPL statements required to plot the empirical CDF of Sample and
the theoretical U(0, 1) CDF are
n :=5; a:=7 "~ b;
seed := 987654321; m :=2 - 31 - 1;
Sample := [];
for j from 1 to n do
seed := a * seed mod m:
Sample := [op(Sample), seed / m]:
od;
U := UniformRV(O, 1)
PlotEmpVsFittedCDF (U, Sample, [], 0, 1);
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Let F'(z) be the hypothesized CDF and F;(z) be the empirical CDF.
The Kolmogorov—Smirnov test statistic,

Ds = sup |F'(z) — F5(z)|,
is computed with the statement
TestStat := KSTest(U, Sample, []1);
The approximate value of the test statistic for the five random num-

bers is 0.2365.

Since large values of the test statistic indicate a poor fit and the CDF
Fp.(y) of the test statistic is (Drew, Glen and Leemis, 2000)

0 i y<11—0
%(10:;6_1) 1464 672 96 £_0§y<3%
—288 24 4240 3 — 184 52 | 6725 96 L<y< s
160 2° — 240 z* + %2:23 + 12 :}:225— @6;5+ 36 5 < <12
5 2% 62 10 >Y <35
—20 25 + T4t — 40 43 4 224 52 T8, 2<y<td
1907 — 6t — B9 4 U2 52, 7 Py <3
504 50 185,30, 175, 5 371, 1 1 3
20y° + 32y o Y+ 35 Y T+ g Y 1 5 Y <z
—8z°+ 222" — Lt + 22+ By — 1 S<y<
20° —102* +202° — 2022 + 10z — 1 s<y<l1

1 y > 1,

the p-value for this particular test is found with the APPL statement

p := SF(KSRV(5), TestStat);
which yields p = 0.8838.



If this process is repeated for a total of 1000 groups of nonoverlapping
consecutive sets of five random numbers, the empirical CDF of the
K-S statistics should be close to the theoretical if the random number
generator is valid.
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Empirical CDF of 1000 Kolmogorov-Smirnov Statistics and the
Theoretical Kolmogorov—-Smirnov CDF for n = 5



Input Modeling
Maple and APPL can easily be adapted for use in input modeling.

Example 11. Model selection. One of the tools for selecting a
suitable input model is a plot of the coefficient of variation (v = o/p)

5
o
After constructing this plot, the sample coefficient of variance and

sample skewness can be plotted for a particular data set to determine
an appropriate distribution for modeling the data.

versus the skewness

v3=FE

The statements necessary to plot the gamma distribution’s coefficient
of variation versus skewness are shown below. The plots for the other
distributions are calculated similarly. The Maple statement used to
display all four plots in one graphic is also provided.

unassign(’kappa’); lambda := 1;

X := GammaRV(lambda, kappa);

c := CoefOfVar(X);

s := Skewness(X);

GammaPlot := plot([c, s, kappa = 0.5 .. 999],
labels = [cv, skew]):

plots[display] ({GammaPlot, WeibullPlot,
LogNormalPlot, LogLogisticPlot},
scaling = unconstrained);
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Coeflicient of Variation, v, Versus Skewness, 3, for the Gamma,
Weibull, Log Normal, and Log Logistic Distributions



Example 12. The following n = 23 service times were collected to
determine an input model in a discrete-event simulation of a queuing
system. The service times in seconds are

105.84 2892 98.64 ©55.06 128.04 45.60

67.80 105.12 4848 51.84 17340 51.96
04.12 68.64 93.12 68.88 84.12 68.64
41.52 12792 4212 17.88 33.00.

[These service times are actually ball bearing failure times borrowed
from the life testing literature (Lawless 1982, page 228)]

Consider fitting an exponential distribution to this data set using
maximum likelihood. The data set, BallBearing, is pre-defined in
APPL. The APPL statements

X := ExponentialRV(lambda) ;
lamhat := MLE(X, BallBearing, [lambda]);

return A 2 0.0138 as the maximum likelihood estimator. The APPL
statement

PlotEmpVsFittedCDF (X, BallBearing,
[lambda = lamhat[1]], 0, 180);

produces a plot of the empirical and fitted CDFs.

To assess model adequacy, either a formal goodness-of-fit test can
be performed, or goodness-of-fit statistics can be compared for com-
peting models. The K-S test statistic is computed with the APPL

statement

KSTest (X, BallBearing, [lambda = lamhat[1]]);
which returns 0.3068, indicating a rather poor fit.



0.8
0.6
CDF |

0.4

0.2

0" 20 40 60 80,100 120 140 160 180

Empirical and Fitted Exponential Cumulative Distribution
Functions for the Ball Bearing Data Set



Example 13. Fit the reciprocal of an exponential random variable
to the service times in the previous example.

The distribution of the reciprocal of an exponential random variable
is found with the statements

X := ExponentialRV(lambda);
g := [[x -> 1/ x], [0, infinity]];
Y := Transform(X, g);

which derives the PDF of Y to be

A
fry) = ?6_”1’ y >0

The MLE )\ 22 55.06 is computed with the additional statement
lamhat := MLE(Y, BallBearing, [lambda]);

Example 14. Fit the inverse Gaussian and Weibull distributions
to the data set.
The statements

X := InverseGaussianRV(lambda, mu) ;
hat := MLE(X, BallBearing, [lambda, mu]l);
KSValue := KSTest(X, BallBearing,

[lambda = hat[1], mu = hat[2]]);

yield an improved fit with A & 231.67, i & 72.22, and a K-S test
statistic of 0.088.

The procedure MLE is able to return the appropriate values because
the maximum likelihood estimators are in closed form for the inverse
Gaussian distribution.
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Example 14 continued. For the Weibull distribution, the state-
ments

Y := WeibullRV(lambda, kappa);
hat := MLE(Y, BallBearing, [lambda, kappal);

fail to return the MLEs. The Maple numerical equation solving
procedure fsolve cannot exploit the structure in the score vector.
MLEWeibull has been written to compute MLEs for the Weibull dis-
tribution.

Fit can be assessed visually using a Q—-Q or P—P plot (Law and
Kelton, 2000, pages 352-358). The APPL statements

QQPlot (Y, BallBearing,
[lambda = hat[1], kappa

PPPlot (Y, BallBearing,
[lambda = hat[1], kappa = hat[2]]);

hat[2]]);

produce the plots for the Weibull distribution.

The K-S test statistic values for various distributions that were fit to
the ball bearing data (in APPL) via maximum likelihood estimation

Model Test statistic
Exponential 0.307
Reciprocal of Exponential 0.306
Weibull 0.151
Gamma, 0.123
Arctangent 0.094
Log normal 0.090
Inverse Gaussian 0.088
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Example 15. Determine an input model for the remission time for
the treatment group in the study concerning the drug 6-MP (Gehan,
1965). An asterisk denotes a censored observation. The remission
times (in weeks) are

6 6 6 6 7 9* 10 10* 11* 13 16
7% 19* 20* 22 23 25% 32*% 32% 34* 35*

MP6 and MP6Censor are pre-defined in APPL. MP6 is simply the 21
data values given above, and MP6Censor is the list

(1, 1,1, 0,1,0,1,0,0,1,1,
0, 0, 0,1, 1, 0, 0, 0, 0, 0]

where 0 represents a censored value and 1 represents an uncensored
value.

The statements used to determine the MLE for an exponential dis-
tribution are

X := ExponentialRV(lambda) ;
hat := MLE(X, MP6, [lambda], MP6Censor);

which yield A = %
The statements used to determine the MLE for a Weibull distribution
are

unassign(’lambda’);
unassign(’kappa’);

Y := WeibullRV(lambda, kappa);

hat := MLEWeibull (MP6, MP6Censor) ;

which yield A 2 0.03 and & = 1.35



The Kaplan—Meier product-limit survivor function estimate for the
MP6 data set, along with the fitted Weibull survivor function are
plotted using the APPL statement

PlotEmpVsFittedSF (Y, MP6,
[lambda = hat[1], kappa = hat[2]],
MP6Censor, 0, 23);

The downward steps in the estimated survivor function occur only
at observed remission times.

T
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Product—Limit Survivor Function Estimate and Fitted Weibull
Survivor Function for the 6-MP Treatment Group



Example 16. A vending machine has capacity for 24 cans of “Pur-
ple Passion” grape drink. The machine is restocked to capacity every
day at noon. Restocking time is negligible. The last five days have
produced the following Purple Passion sales:

14 24 18 20 24.

The demand for Purple Passion at this particular vending machine
can be estimated from the data by treating the 24-can sales figures as
right-censored demand observations. If demand has the geometric
distribution, with probability function

f&)=p(1—p) t=0,1,2,...
find the MLE for p.

Define a geometric random variable with the parameterization used
above in a list of three sublists. The statements

X :=[[x>p* (1-p) - x],

[0 .. infinity],

[‘Discrete‘, ‘PDF‘]];
PurplePass := [14, 24, 18, 20, 24];
PurplePassCensor := [1, 0, 1, 1, 0];
MLE(X, PurplePass, [p], PurplePassCensor);

yield the MLE p = 1%.



Example 17. Ignoring preventive maintenance, twelve odometer
readings (from a certain model of car) associated with failures ap-
pearing over the first 100,000 miles are

12,042 28489 65561 78254 83,639 85,603
88,143 91,809 92,360 94,078 98,231 99,900

Consider fitting a nonhomogeneous Poisson process to the above data
set, where the ending time of the observation interval is assumed to
be 100,000 miles. The data can be approximated by a power law
process (i.e., the intensity function has the same parametric form as
the hazard function for a Weibull random variable).

The following APPL statements return A 2 0.000026317 and /& =
2.56800:

CarFailures := [12942, 28489, 65561, 78254,
83639, 85603, 88143, 91809, 92360, 94078,
98231, 99900];

X := WeibullRV(lambda, kappa);

hat := MLENHPP(X, CarFailures,

[lambda, kappal, 100000);

The statement

PlotEmpVsFittedCIF(X, Sample, [lambda = hat[1],
kappa = hat[2]], 0, 100000);

produces a plot of the empirical cumulative intensity function and
the Weibull cumulative hazard function.
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Example 18. (Larsen and Marx, 2001, page 319) Hurricanes typ-
ically strike the eastern and southern coastal regions of the United
States, although they occasionally sweep inland before completely
dissipating. The U.S. Weather Bureau reported that during the pe-
riod from 1900 to 1969 a total of 36 hurricanes moved as far as the
Appalachian Mountains. The maximum 24-hour precipitation levels
(measured in inches) recorded from those 36 storms during the time
they were over the mountains are

31.00 2.82 3.98 4.02 9.50 4.50
11.40 10.71 6.31 4.95 .64 0.01
13.40 9.72 6.47 10.16 4.21 11.60
4.75 6.85 6.25 3.42 11.80 0.80
3.69 3.10 22.22 7.43 5.00 4.58
4.46 8.00 3.73 3.50 6.20 0.67.

A histogram of the data suggests that the random variable X, which
is the maximum 24-hour precipitation, might be well approximated
by the gamma distribution.

The following statements find the method of moments estimates for
the parameters A and k, where Hurricane is the above data set.

X := GammaRV(lambda, kappa);
hat := MOM(X, Hurricane, [lambda, kappal);

The resulting estimates for the parameters are A = 54000 o ) 994

6052075 4252153
~
4252153 1.64

and kK =



Further Work

e Most distributions containing 3 or 4 unknown parameters (e.g.,
the Johnson distributions) are not going to have closed-form
maximum likelihood estimators

e Some distributions, such as the Erlang distribution, have both a
discrete and a continuous parameter

e Some distributions have their unknown parameters as part of
their support; e.g. X ~ triangular(a,b, c)

e Asymptotic confidence regions for unknown parameters based on
the likelihood ratio statistic can be determined by plotting the
appropriate contour of the log likelihood function
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