AN EMPIRICAL COMPARISON OF
PRIORITY-QUEUE AND
EVENT-SET IMPLEMENTATIONS

DOUGLAS W. JONES



Basic Priority Queue Operations

e Enqueue (Insert)

— Places an item in the priority queue

e Dequeue (Delete-min)

— Removes and returns the highest priority item
from queue



Relation to Simulation
e Priorities represent event times in discrete event
simulation
— Enqueue Schedules Events

— Dequeue Finds Next Pending Event (lowest
numbered time)



Measuring Performance

e Hold Method
— Based on simple discrete-event simulation

— All events cause scheduling of one new event

+ Keeps constant queue size

gueuesize

+ Direct measure of o+arance

+x Random priority value, like next-event sim-
ulation

— Repeatedly dequeue and enqueue items

— Divide by total time by number of trials



Measuring Performance (Cont.)

e 5 priority increment distributions were used

e Measurements based on 1000 trials

Distribution Expression to compute random values
1. Exponential —In(u)
2. Uniform 0.0-2.0 2% U
3. Biased 0.9-1.1 0.940.2xu
4. Bimodal 0.95238x u+if u < 0.1
then 9.5238 else 0
5. Triangular 1.5 % u0>

uis a Uniform(0,1) call



Implementations

Linear List

Implicit Heaps

Leftist Trees

Two List

Henriksen’s



More Implementations

Binomial Queues

Pagodas

Skew Heaps

Splay Trees

Pairing Heaps



Linear List

Singly linked list searching from the head at inser-
tion

Favors LIFO behavior

Minimizes storage requirements

— Only one pointer per item

O(n) sequential search for enqueue, 0(1) dequeue

Best implementation for 10 or less item queues



Implicit Heaps

O(log n) performance

Fast, but many newer queue implementations faster

Represented as binary tree with heap invariant

Any item has higher priority than its children

Stored as an array
— Location 1 is root

— 21 and 21 + 1 are children of location i



Implicit Heaps (Cont.)

e Enqueue operation

— Search begins from leaf at upper bound of
heap

— Search toward root
— Passed items are demoted to make space for
new item
e Dequeue operation
— Returns the root
— Promotes other items while searching for new

place for the most distant leaf.

10



Leftist Trees

e Heap structure explicitly represented with point-
ers from parents to their children

e Enqueue operation
— Item initialized as one node tree

— Then merged with original tree

e Dequeue operation
— Root returned

— Right and Left subtrees then merged

11



Leftist Trees (cont.)

e Merge operation
— Merge rightmost branches of the 2 trees

— Distance to the nearest leaf I1s recorded for
each item

— 2 children sorted so that path to nearest leaf
Is always through the right child

— This guarantees O(log n) bound

e About 30% slower than implicit heaps in tests

12



Queues Favoring Discrete-Event
Simulation

e Two List and Henricksen’s implementations

e Stable queue behavior

— 2 events scheduled to occur at same time are
FIFO

e Most other priority queues cannot guarantee this

13



Two List

One short sorted list of items near the head of the
gueue

One long unsorted list of more distant events

Enqueued item compared with a threshold priority
to determine correct list to put it in

Dequeued items just removed from sorted list

When sorted list is empty

— Advance threshold and search unsorted list
for items to move to sorted list

— Keeps an average of n%° items in sorted list

14



Two List (cont.)

Average enqueue time of O(n%-)

Worst-case dequeue O(n), but most are done in

O(1) time

Average dequeue of 0(n%-)

Good performance for queues up to a few hun-

dred items

Very poor with Bimodal distribution

15



Henriksen’s

Uses Simple linear list

Auxiliary array of pointers into list

Allows O(log n) binary search to find range of en-
tries where enqueued items should be placed

Significant cost of maintaining array and search-
Ing subsection of list pointed to by array entry

Average performance bounded by O(n%°)

Performed well comparatively

16



Binomial Queues

e A forest of binomial trees where the number of
elements in each tree is an exact power of 2

e Height n Binomial Tree
— Root has n— 1 children

— Children are binomial trees with heights n— 1,
n—-2,..,0

e Performs extremely well

e Varies for small queue size changes based on bi-
nary representation of size

B, B, B, B,
O
Binomial trees of heights 0, 1, 2, and 3.

17



Pagodas
e Based on heap ordered binary trees
e Primary pointers lead from leaves toward root

e Secondary pointers point down to item’s left- and
rightmost descendants

O

18



Pagodas (cont.)

e Enqueue and degqueue operations

— Merge the right branch of one pagoda with left
branch of another

e Insertions occur in constant time

e No balancing effort made, resulting in infinite se-
quences of O(n) per operation

e Arbitrary deletions occur in O(log n) time

— All branches circularly linked

e Performs about as well as Binomial Queues

19



Skew Heaps

Similar to leftist tree, but no record of path length
to nearest leaf

Children of each item visited on the merge path
are exchanged to randomize the tree structure

Per operation cost never exceeds O(log n) over a
sufficiently long sequence of operations

Performs faster than implicit heaps

20



Splay Trees

e Set up as binary search trees
— All items in left subtree smaller than root
— All items in right subtree larger than root
e Dequeue operation simply removes the leftmost
item
e Blindly performs pointer rotations
— The basic balancing operation

— Avoids keeping and testing balancing records

— Causes increased number of rotations

21



Splay Trees (cont.)

Stable - Equal priority items are FIFO

Like Henriksen'’s performed exceptionally well for
the biased distribution

Overall faster than Henriksen’s implementation

In a sense optimal

22



Pairing Heaps

Heap-ordered tree

Constant time Enqueue
— Can make new item root

— Or adds new item as additional child of root

Dequeue returns root then searches for new root

Key to pairing heaps is method of finding new root

Link successive children of old root in pairs, then
link each pair to the last pair produced

23



Pairing Heaps (cont.)

e Combining two pairing heaps

— Adds heap with lower priority root as child of
other heap

e Performed about the same as bottom-up skew
heap

e Ran especially well on the biased distribution

24



Conclusions

Linked list is best implementation for < 10 items

Two-list performs well up to a couple hundred items
except for some distributions

Leftist trees don’t perform well enough for any ap-
plication

Henricksen'’s acceptable for all queue sizes

Splay trees challenge it where stable behavior is
required

25



Conclusions (cont.)

Implicit Heaps one of worst for less than 20 items

Binomial queues are erratic and most complex to
code

Skew heaps, pairing heaps, and pagodas all al-
most as good as splay trees

Top-down skew heap is very simple
When other operations are needed like arbitrary

deletions or priority changes

— Bottom-up skew heaps, splay trees, and pair-
Ing heaps are best alternatives

26



Implementation

Summary

Relative Speed

Linked list
Implicit heap
Leftist tree

Two List
Henriksen’s
Binomial Queue
Pagoda

Skew heap
Splay Tree
Pairing Heap

1 is fastest; 11 is slowest

11
8

© ©
|
ol
o O

S R N N
I
o W N 00 NN

27



