
AN EMPIRICAL COMPARISON OF

PRIORITY-QUEUE AND

EVENT-SET IMPLEMENTATIONS

DOUGLAS W. JONES

1



Basic Priority Queue Operations

� Enqueue (Insert)

– Places an item in the priority queue

� Dequeue (Delete-min)

– Removes and returns the highest priority item
from queue

2



Relation to Simulation

� Priorities represent event times in discrete event
simulation

– Enqueue Schedules Events

– Dequeue Finds Next Pending Event (lowest
numbered time)

3



Measuring Performance

� Hold Method

– Based on simple discrete-event simulation

– All events cause scheduling of one new event

� Keeps constant queue size

� Direct measure of queuesize
per f ormance

� Random priority value, like next-event sim-
ulation

– Repeatedly dequeue and enqueue items

– Divide by total time by number of trials

4



Measuring Performance (Cont.)

� 5 priority increment distributions were used

� Measurements based on 1000 trials

Distribution Expression to compute random values

1. Exponential � ln
�
u �

2. Uniform 0.0-2.0 2 � u

3. Biased 0.9-1.1 0 � 9 � 0 � 2 � u

4. Bimodal 0 � 95238 � u � if u � 0 � 1
then 9 � 5238 else 0

5. Triangular 1 � 5 � u0 � 5

u is a Uniform(0,1) call

5



Implementations

� Linear List

� Implicit Heaps

� Leftist Trees

� Two List

� Henriksen’s

6



More Implementations

� Binomial Queues

� Pagodas

� Skew Heaps

� Splay Trees

� Pairing Heaps

7



Linear List

� Singly linked list searching from the head at inser-
tion

� Favors LIFO behavior

� Minimizes storage requirements

– Only one pointer per item

� O � n � sequential search for enqueue, 0 � 1 � dequeue

� Best implementation for 10 or less item queues

8



Implicit Heaps

� O(log n) performance

� Fast, but many newer queue implementations faster

� Represented as binary tree with heap invariant

� Any item has higher priority than its children

� Stored as an array

– Location 1 is root

– 2i and 2i � 1 are children of location i

9



Implicit Heaps (Cont.)

� Enqueue operation

– Search begins from leaf at upper bound of
heap

– Search toward root

– Passed items are demoted to make space for
new item

� Dequeue operation

– Returns the root

– Promotes other items while searching for new
place for the most distant leaf.

10



Leftist Trees

� Heap structure explicitly represented with point-
ers from parents to their children

� Enqueue operation

– Item initialized as one node tree

– Then merged with original tree

� Dequeue operation

– Root returned

– Right and Left subtrees then merged

11



Leftist Trees (cont.)

� Merge operation

– Merge rightmost branches of the 2 trees

– Distance to the nearest leaf is recorded for
each item

– 2 children sorted so that path to nearest leaf
is always through the right child

– This guarantees O � log n � bound

� About 30% slower than implicit heaps in tests

12



Queues Favoring Discrete-Event
Simulation

� Two List and Henricksen’s implementations

� Stable queue behavior

– 2 events scheduled to occur at same time are
FIFO

� Most other priority queues cannot guarantee this

13



Two List

� One short sorted list of items near the head of the
queue

� One long unsorted list of more distant events

� Enqueued item compared with a threshold priority
to determine correct list to put it in

� Dequeued items just removed from sorted list

� When sorted list is empty

– Advance threshold and search unsorted list
for items to move to sorted list

– Keeps an average of n0 � 5 items in sorted list

14



Two List (cont.)

� Average enqueue time of O � n0 � 5 �

� Worst-case dequeue O � n � , but most are done in
O � 1 � time

� Average dequeue of 0 � n0 � 5 �

� Good performance for queues up to a few hun-
dred items

� Very poor with Bimodal distribution

15



Henriksen’s

� Uses Simple linear list

� Auxiliary array of pointers into list

� Allows O � log n � binary search to find range of en-
tries where enqueued items should be placed

� Significant cost of maintaining array and search-
ing subsection of list pointed to by array entry

� Average performance bounded by O � n0 � 5 �

� Performed well comparatively

16



Binomial Queues

� A forest of binomial trees where the number of
elements in each tree is an exact power of 2

� Height n Binomial Tree

– Root has n � 1 children

– Children are binomial trees with heights n � 1,
n � 2, ..., 0

� Performs extremely well

� Varies for small queue size changes based on bi-
nary representation of size

B B B B0 1 2 3

Binomial trees of heights 0, 1, 2, and 3.

17



Pagodas

� Based on heap ordered binary trees

� Primary pointers lead from leaves toward root

� Secondary pointers point down to item’s left- and
rightmost descendants

18



Pagodas (cont.)

� Enqueue and dequeue operations

– Merge the right branch of one pagoda with left
branch of another

� Insertions occur in constant time

� No balancing effort made, resulting in infinite se-
quences of O � n � per operation

� Arbitrary deletions occur in O � log n � time

– All branches circularly linked

� Performs about as well as Binomial Queues

19



Skew Heaps

� Similar to leftist tree, but no record of path length
to nearest leaf

� Children of each item visited on the merge path
are exchanged to randomize the tree structure

� Per operation cost never exceeds O � log n � over a
sufficiently long sequence of operations

� Performs faster than implicit heaps

20



Splay Trees

� Set up as binary search trees

– All items in left subtree smaller than root

– All items in right subtree larger than root

� Dequeue operation simply removes the leftmost
item

� Blindly performs pointer rotations

– The basic balancing operation

– Avoids keeping and testing balancing records

– Causes increased number of rotations

21



Splay Trees (cont.)

� Stable - Equal priority items are FIFO

� Like Henriksen’s performed exceptionally well for
the biased distribution

� Overall faster than Henriksen’s implementation

� In a sense optimal

22



Pairing Heaps

� Heap-ordered tree

� Constant time Enqueue

– Can make new item root

– Or adds new item as additional child of root

� Dequeue returns root then searches for new root

� Key to pairing heaps is method of finding new root

� Link successive children of old root in pairs, then
link each pair to the last pair produced

23



Pairing Heaps (cont.)

� Combining two pairing heaps

– Adds heap with lower priority root as child of
other heap

� Performed about the same as bottom-up skew
heap

� Ran especially well on the biased distribution

24



Conclusions

� Linked list is best implementation for � 10 items

� Two-list performs well up to a couple hundred items
except for some distributions

� Leftist trees don’t perform well enough for any ap-
plication

� Henricksen’s acceptable for all queue sizes

� Splay trees challenge it where stable behavior is
required

25



Conclusions (cont.)

� Implicit Heaps one of worst for less than 20 items

� Binomial queues are erratic and most complex to
code

� Skew heaps, pairing heaps, and pagodas all al-
most as good as splay trees

� Top-down skew heap is very simple

� When other operations are needed like arbitrary
deletions or priority changes

– Bottom-up skew heaps, splay trees, and pair-
ing heaps are best alternatives

26



Summary

Implementation Relative Speed

Linked list 11

Implicit heap 8

Leftist tree 9 � 10

Two List 9 � 10

Henriksen’s 1 � 7

Binomial Queue 1 � 7

Pagoda 4 � 8

Skew heap 4 � 7

Splay Tree 1 � 3

Pairing Heap 3 � 6

1 is fastest; 11 is slowest

27


