Simulation techniques for parameter estimation in tumor related stochastic processes

E. Neely Anderson, Robert Bartoszynski, Barry W. Brown and James R. Thompson M.D. Anderson Hospital and Tumor Institute and Rice University Houston, Texas

Presented By:
Marshall Thompson
College of William and Mary
26 February 2002

Introduction

Purpose of the paper:

- Represent tumor related processes in a computerbased simulation
- Analyize simulation data as compared to population data

Hypothesis

1. For each patient, each tumor originates froma single cell, and grows exponentially at a rate of α.
2. The probability of systematic occurrence of a tumor in ($t, t+\Delta$) equals $\lambda \Delta+o(\Delta)$ independent of the prior history of the patient.
3. The probability that a tumor, not previously detected, will be detected and removed in ($t, t+\Delta$) is $b Y_{j}(t) \Delta+o(\Delta)$
4. Until the removal of the primary tumor, the probabilty of a metastatis in $(t, t+\Delta)$ is $\beta Y_{0}(t)(\Delta)+$ $o(\Delta)$. Here $Y_{0}(t), Y_{1}(t), \cdots$ denote the sizes of the primary and secondary tumors at t, the subscript representing the order in which they originated.

Input Parameters

$$
\alpha=\text { tumor growth rate }
$$

$$
\lambda=\text { systemic rate }
$$

$b=$ detection rate

$\beta=$ metastic rate

Random Variables

$P_{D}=$ time of detection of primary tumor
$M_{T}=$ time of origin of first metastatis
$S_{T}=$ time of origin of first systemic tumor
$R_{T}=$ time of origin of first recurrence
$R_{d}^{*}=$ time from R_{T} to detection of first recurrence
$R_{D}=$ time from P_{D} to detection of first recurrence

Generation of Random Variables

$$
\begin{aligned}
F_{P_{D}}(t) & =1-\exp \left(\frac{b c}{\alpha}\left[1-e^{\alpha t}\right]\right) \\
F_{M_{T}}(t) & =1-\exp \left(\frac{\beta c}{\alpha}\left[1-e^{\alpha t}\right]\right) \\
F_{S_{T}}(t) & =1-e^{\lambda t} \\
F_{R_{d}^{*}}(t) & =1-\exp \left(\frac{b c}{\alpha}\left[1-e^{\alpha t}\right]\right)
\end{aligned}
$$

where c is the volume of one cell $\left(10^{-9} \mathrm{cc}\right)$.

Note: These formulas in the paper were incorrect.

Algorithm

Input: $\alpha . \lambda, b, \beta$
Repeat until $R_{D}>0$

> Generate P_{D}, M_{T}
> If $\left(M_{T}>P_{D}\right)$ then $M_{T} \leftarrow \infty$

Generate S_{T}

$$
R_{T} \leftarrow \min \left\{M_{T}, S_{T}\right\}
$$

Generate R_{d}^{*}

$$
R_{D} \leftarrow R_{T}+R_{d}^{*}-P_{D}
$$

End Repeat

Return R_{D}

