
SIMD Parallelization of Applications

that Traverse Irregular Data Structures

Bin Ren Gagan Agrawal

Dept. of Computer Science and Engineering

The Ohio State University

{ren,agrawal}@cse.ohio-state.edu

James R. Larus Todd Mytkowicz
Tomi Poutanen ∗ Wolfram Schulte

Microsoft Research

{larus,toddm,tomipout,schulte}@microsoft.com

Abstract

Fine-grained data parallelism is increasingly common in

mainstream processors in the form of longer vectors and on-

chip GPUs. This paper develops support for exploiting such

data parallelism for a class of non-numeric, non-graphic

applications, which perform computations while travers-

ing many independent, irregular data structures. While the

traversal of any one irregular data structure does not give op-

portunity for parallelization, traversing a set of these does.

However, mapping such parallelism to SIMD units is non-

trivial and not addressed in prior work.

We address this problem by developing an intermediate

language for specifying such traversals, followed by a run-

time scheduler that maps traversals to SIMD units. A key

idea in our run-time scheme is converting branches to arith-

metic operations, which then allows us to use SIMD hard-

ware. In order to make our approach fast, we demonstrate

several optimizations including a stream compaction method

that aids with control flow in SIMD, a set of layouts that

reduce memory latency, and a tiling approach that enables

more effective prefetching. Using our approach, we demon-

strate significant increases in single-core performance over

optimized baselines for two applications.

Categories and Subject Descriptors D.1.3 [Programming

Techniques]: [Concurrent Programming — Parallel Pro-

gramming]

General Terms Algorithms, Performance

Keywords Irregular Data Structure, Fine Grained Paral-

lelism, SIMD

∗ Affiliation: Microsoft

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

CGO ’13 23-27 February 2013, Shenzhen China.
978-1-4673-5525-4/13/$31.00 c©2013 IEEE. . . $15.00

1. Introduction
Fine-grained, data parallelism is becoming increasingly
prevalent in mainstream processors, such as x86 and ARM,
as the length of vector instructions is increasing1. The most
common fine-grained data-parallel hardware, the Steaming
SIMD Extentions (SSE), has been part of the x86 since
1999 and is widely used in graphics [17], image, video,
and signal processing [9], and scientific and engineering ap-
plications [11, 30]. As such fine-grained data parallelism
becomes a ubiquitous processor feature with increasing per-
formance, it is desirable to exploit this feature for irregular
computations as well.

However, programs that rely on irregular, pointer-based
data structures benefit little from SIMD execution because
of the mismatch between the strict, lockstep behavior of
SIMD parallelism and the dynamic, data-driven behavior of
programs that manipulate irregular data structures. This pa-
per starts to bridge this gap by demonstrating an approach
to speeding a class of applications that involve independent
traversals of many instances of a pointer-based data struc-
ture. Examples of the class of applications we target include
prediction using a collection of decision trees [2], matching
with regular expressions [35], parsing XML documents [26],
and frequent pattern mining [13], including finding common
subgraphs in a set of graphs [36]. These applications arise in
domains as diverse as machine learning, compilation, intru-
sion detection, web services, databases, and data mining.

These applications traverse independent data structures
for two reasons. First, applications can manipulate a large
number of logically independent data structures. For ex-
ample, the forest of decision trees produced by a machine
learner or the set of alternative patterns used in an intrusion
detection system such as Snort [29] represent independent
computations that can proceed in parallel. Second, applica-
tions can traverse a single irregular data structure, but do so
with many independent inputs. The approach in this paper
handles both cases. While applications of this type can easily
be parallelized across multiple cores, SIMD within each core
can provide a multiplicative improvement in performance.

Effective parallelization of independent traversals of ir-
regular data structures on a SIMD unit requires addressing
multiple challenges. One such challenge is related to the un-
even amount of work each SIMD unit might have to perform

1 For example, the Intel Sandybridge processor doubled its vector length to

256 bits.

while traversing different structures. Another challenge is
that these applications involve branch operations, which can-
not be parallelized on SIMD units. Memory latency while
traversing pointer-based data structures is another issue.

This paper develops techniques to address these prob-
lems. Moreover, we offer a solution to programmers inter-
ested in developing SIMD parallelized implementations of
these applications, by developing an intermediate language
and a run-time scheduler. The intermediate language ex-
poses several types of operations, which can be used to spec-
ify the traversal involved in the application. Several opti-
mizations are implemented in the run-time scheduler, includ-
ing a stream compaction method, several layouts that reduce
memory latency (while also allowing branch operations to
be replaced by arithmetic operations), and a tiling scheme.

Overall, the contributions of this work are: 1) identifica-
tion of an opportunity to exploit fine-grain data parallelism
in important, latency critical algorithms widely used in pro-
duction software, 2) an approach that exploits fine-grained
parallelism when traversing pointer-based data structures,
with a specific emphasis on trees and graphs, and 3) an illus-
tration of the practicality of our approach by demonstrating
significant single-core speedups of two applications that use
irregular data structures. We apply our approach to two real
world programs (random forests and regular expressions)
and demonstrate single-core speedups of 17X and 5X, re-
spectively.

2. Anatomy of Two Irregular Programs
This section introduces two common algorithms that manip-
ulate irregular data structures—random forests and regular
expressions. Both algorithms have a significant amount of
task-level parallelism because they traverse independent, ir-
regular data structures.

2.1 Random Forests

Random (decision) forests are a data mining technique used
to classify an input—or a set of features—into a fixed num-
ber of categories[2]. A random forest is a collection of binary
decision trees. To classify an input, each tree is traversed,
comparing features of the input against threshold values, and
producing a result as its categorical membership for that in-
put.

To be more concrete, consider a random forest made of
two simple trees, shown below. Each tree can classify one
input, made of three features (f0, f1, and f3), into one of
four classes (classa, classb, classc, and classd).

f0 ≤ 0.5

classa f1 ≤ 0.1

classc classa

f3 ≤ 0.1

f0 ≤ 0.9

classb classc

classd

Each node in the trees performs one of two actions. If a
node is an internal node, it compares one feature of the input
against a constant threshold and branches accordingly to a
left or right child depending on the result of the comparison.
If the node is a leaf node, it simply stores the class label for
that tree into a global counter.

Opportunities for Parallelism Random forests usually
contain many trees and each tree has far more nodes than

this simple example. Traversing each tree is a unique task,
independent of other traversals, and can execute in parallel.

2.2 Regular Expression Matching

Regular expressions are a common way to match patterns
against large bodies of text or binary data. In this paper we
use a non-deterministic finite automaton (NFA) to simulate
a regular expression, similar to Thompson’s original regular
expression compiler[34]. To simulate an NFA, we walk–or
traverse–a graph, moving node to node in the graph depend-
ing on the type of action required at a node. Consider the
NFA, or graph, for a simple regular expression a(bb) + ba:

s0 s1 s2 s3 s4 s5

a b b

ǫ

b a

In order to evaluate this regular expression, we traverse
the NFA, starting at node s0. If the traversal ever reaches
node s5, the regular expression matches the input string. To
traverse from one node to another, we compare the input
character to the character on that node’s outgoing edge. If
the input character matches the edge character, we follow
that edge to the next node and move forward one character
in the input. If it is not a match, we stop the traversal as the
input string is not a match. If the edge character is ǫ, we
traverse the edge without advancing the input.

Traversing the graph has one added complication–nodes
may have two edges. When walking the graph, if our traver-
sal comes to a node with two outgoing edges, we must fol-
low both edges. That is we try both paths at the same time,
reading the input only once. The result of the traversal is
the union of both traversals. For example, suppose we are in
node s3, then due to the edge labeled ǫ, we start our multi-
node traversal in node s1 and s3 simultaneously. If the next
input is a ‘b’, both traversals advance. If the next input is
an ‘a’, the set of active traversals narrows down to a single
traversal.

Opportunities for Parallelism As we saw above, choices
in NFAs lead naturally to multiple-state traversals. Thus, par-
allelism in regular expression matching is a form of specu-
lation, intrinsic to the regular expression.

3. SIMD Traversal of Fine-Grained Tasks
We now focus on the problem of executing irregular appli-
cations, like regular expressions or decision trees, on SIMD
hardware. When these programs visit an internal node, they
optionally perform an operation on it, might also including
evaluating an expression to select the next node to visit. On
visiting a leaf node, a different operation is performed (e.g.,
storing the result), since there is no new node to be visited.
We denote the operation(s) performed at a leaf node n as
W(n) and the computations at the non-leaf node as T (n).

As a concrete example, consider the decision trees in
Section 2.1 and a typical sequential single decision tree
traversal. Each node of this tree is either an internal node
or a leaf node. When we traverse to an internal node n, we
compare feature values, and branch to the left or right child,
depending on the result. When we reach a leaf node n, we
update the ranking and terminate the traversal. Thus, for this
application, the former is T (n) and the latter is W(n).

3.1 High Level Approach to SIMD Execution

Now, suppose we want to traverse a set of trees on SIMD
hardware. We can first execute T (n) for all root nodes n,
which gives us a set of successor nodes ns. Next, assuming
all tree traversals are of the same length, we can evaluate
T (n) for all n in ns, and so on, until we reach a leaf node.
At a leaf node n, we evaluate W(n) for all trees.

However, in practice, and unlike a typical array based
computation, the different traversals likely have different
lengths. Therefore, at a certain level, a mixture of T and W
computations will be needed. Thus, we must execute each
operation type for each stage, and mask the results of oper-
ations who’s types are not represented by the current opera-
tion. What we are doing is essentially emulating MIMD with
SIMD, a topic that has been studied in the past [1, 8, 14, 15].
However, none of this work has considered pointer-based
traversals.

The second problem is that SIMD execution requires that
addressing children is branch-less, otherwise we are unable
to parallelize the T (n) expressions. In order to address this
problem, we design a layout generation process to organize
data structure elements in the memory in a systematic way.
We can provide a uniform interface, so that the details of
the memory layout are transparent, but we must be able
to address left and right children of a node with arithmetic
operations. Specifically, suppose a node has zero, one, or two
children. If a node has two children, we store the left child
contiguous to the right in memory. This organization works
well for SIMD addressing as we can use a simple arithmetic
operation to address the left and right children of a node. We
require all T (n) expressions return a 0 to branch to the left
child and a −1 to branch right. Thus, for a given node n, if
the ns field stores the location of the left child, the next node
to visit is ns − T (n). In effect, this turns the addressing of
children from a control dependence into a data dependence.

Formalizing this, we can put our approach together as an
general method (Algorithm 1).

Algorithm 1 Interpreter (byte codes, task queue)

1: result = 0

2: ⊲ Initialize task queue by adding root level tasks

3: task queue = Initialize(roots)

4: for n ∈ task queue by SIMD-Width do

5: ⊲ Process traversal operations in SIMD

6: ns = T (bytecodes, n)

7: ⊲ Identify finished traversals

8: isLeaf = findIsLeaf(ns)

9: ⊲ Strip out finished traversals

10: ns = streamcompact(ns,isLeaf)

11: task queue.push back(ns)

12: ⊲ Process W operations according to isLeaf

13: result = W(bytecodes, isLeaf)

14: end for

15: return result

Besides the solutions to the two key problems we listed
earlier, there are a couple of additional issues that we ad-
dressed in this algorithm. In some applications, it is neces-
sary to dynamically fork, or start, new fine-grained tasks at
a particular step. This operation needs to be (i) efficient and
(ii) parallelizable in SIMD. For example, in our regular ex-
pression engine, we create a new fine-grained task whenever
we traverse an ǫ node in a NFA. To fork a task, we introduce

Bytecode Arg Type Description

match None W(n) Found a match; record position; terminate task
nomatch None W(n) Found no match; terminate task
store float W(n) Store the arg part of current bytecode to results
cmp char/float T (n) Advance PC according to the comparison result
dot None T (n) Advance PC by 1 on any input; if input is null, set

PC to nomatch
jmp char T (n) Set PC to argument.
fork char T (n) Fork a thread: advance parent PC by 1 and set child

PC to arg.

Table 1: Bytecodes Supported by our Interpreter and their Seman-

tics

Nodes Type Bytecode Sequence

Internal cmp a;
Leaf store

Table 2: Random Forest Using the Bytecodes

a fork instruction that starts a child fine-grained task at the
location of its left child and continues the parent task at the
location of the right child.

Further, because not all tasks finish at the same time,
we need to remove tasks from processing when they reach
a leaf node. Like above, removing tasks must be efficient
and not require complicated control-flow. To efficiently re-
move tasks from processing, we use a data parallel technique
called stream compaction [5]. We discuss details of this op-
timization in the next section.

3.2 A General Solution for Multiple Applications

SIMD parallelization of each individual application follow-
ing the methodology we described above can be extremely
hard. The programmers need to pay attention to a number
of details, and can easily write unoptimized and/or even in-
correct code. To help development of applications, we have
developed an intermediate language and a run-time sched-
uler or interpreter.

Our solution can be viewed as a virtual machine, where
instructions from an intermediate language or bytecodes are
executed on SIMD units. The bytecodes we currently sup-
port are listed in Table 1. Each bytecode is one of the two
types: T (n) andW(n), representing non-leaf and leaf opera-
tions, respectively. Any application that can be implemented
using this operation can be mapped to SIMD hardware by
our interpreter.

To show the generality of our approach, we have im-
plemented both the decision forest and regular expression
matching applications using our interpreter. Table 2 shows
the translation from a tree structure to our Bytecodes from
a subset of bytecodes we lised in Table 1. For SIMD exe-
cution for NFA regular expressions, the specific method we
use is along the lines of Cox’s NFA engine [7], which in
turn is based on Thompson’s work [34]. This approach has
an asymptotic complexity of O(nm) where n is the number
of fine-grained tasks and m is the size of the input string.
This is far better than a naive NFA interpreter, which can at
worst run in O(n2). Table 3 shows how the implementation
handles different cases, using the bytecode from Table 1.

Regular Expression Bytecode Sequence

C(a) cmp a;
C(.) dot;
e1e2 C(e1); C(e2);
e1|e2 fork L2; C(e1); jmp L3; L2: C(e2); L3: ...;
e? fork L2; C(e); L2: ...;
e∗ L1: fork L2; C(e); jmp L1; L2: ...;
e+ L1: C(e); fork L1;

Table 3: NFA Regex Using the Bytecode

Algorithm 2 SeqInterpreter (byte codes, input)

1: ⊲ Initialize the result accumulator and task queue

2: result = 0 {*Accumulator for results*}
3: vector<> clist = Initialize(roots) {*Current list of PCs*}
4: while input != NULL do

5: ⊲ If necessary, advance the input pointer

6: input += AppShift

7: vector<> nlist = Initialize(NULL) {*Next list of PCs*}
8: while (!clist.empty()) do

9: ⊲ Get the bytecode indexed by clist

10: pc = clist.pop back() {*Pop a PC to execute*}
11: op = byte codes[pc]

12: ⊲ Process T (n) and W(n) operations

13: if op.type == Bytecode :: cmp then

14: nextPC = cmp(input, op.arg)

15: nlist.push back(nextPC)

16: else if op.type == Bytecode :: dot then

17: nlist.push back(pc + 1)

18: else if op.type == Bytecode :: jmp then

19: clist.push back(op.arg)

20: else if op.type == Bytecode :: fork then

21: clist.push back(pc + 1)

22: clist.push back(op.arg)

23: else if op.type == Bytecode :: match then

24: result += 1

25: else if op.type == Bytecode :: nomatch then

26: result += 0

27: else if op.type == Bytecode :: store then

28: result += op.arg

29: ⊲ Jump to return statement

30: end if

31: end while

32: swap(clist, nlist)

33: end while

34: return result

Now, returning to how our interpreter works, we summa-
rize the sequential and SIMD implementations of our virtual
machine in Algorithms 2 and 3, respectively. Algorithm 2
interprets the bytecodes of all trees/graphs level by level se-
quentially. In each level, it fetches bytecodes indexed by the
task queue and processes either a T (n) operation or a W(n)
operation for each tree/graph according to the type of the
bytecode. Considering a more general situation that differ-
ent portions of input may be required for different bytecodes
dynamically, and the input pointer may be advanced as line
6 of Algorithm 2, such as Regular Expression application,
we maintain two task queues (lists), i.e. clist and nlist, in
which, clist is to handle the current portion of input, and
nlist is to handle the next portion. Especially for applica-
tions like Random Forest, the required input index is pre-
decided by bytecodes, and we do not need to move the in-
put pointer, so clist and nlist can be simply merged as one

task queue. After each iteration, we update either clist or
nlist according to the bytecodes, especially, T (n) opera-
tions generate either one or two (task expansion) new tasks,
and W(n) operations generate zero tasks.

Algorithm 3 SIMDInterpreter (byte codes, input)

1: ⊲ Initialize the result accumulator and task queue

2: m128 results = mm setzero ps()

3: results index = 0

4: clist[] = Initialize(roots)

5: clist index = Initialize(roots)

6: while (input != NULL) do

7: input += AppShift

8: nlist[] = Initialize(NULL)

9: nlist index = 0

10: while (clist index > 0) do

11: ⊲ Copy clist for task creations

12: tmplist = Initialize(clist)

13: tmplist index = clist

14: for (i = 0; i < clist length; i += SIMDWidth) do

15: ⊲ Get bytecodes indexed by clist in parallel

16: m128i PCIndexes = SIMDLoadPCIndexes(clist, i)

17: m128i ops = SIMDLoadCodes(byte codes, PCIndexes)

18: ⊲ Get different parts of bytecodes parallel

19: m128i args = SIMDLoadArgs(ops) {*Args part*}
20: m128i highBits = SIMDLoadHiBits(ops){*High bits*}
21: ⊲ Decide types of ops in current SIMD lane by High bits

22: m128i isDot = SIMDcmp(ops, mm set1 epix(1))

23: m128i isJmp = SIMDcmp(highBits, jmpF lag)

24: m128i isFork = SIMDcmp(highBits, forkF lag)

25: m128i isMatch = SIMDcmp(ops, mm setzero si128())

26: m128i isStore = SIMDcmp(highBits, storeF lag)

27: ⊲ Process T (n) operations and prepare new task queues

28: ⊲ 1. Execute the compare operation

29: m128i cmpResults = SIMDcmp(input, args)

30: ⊲ 2. Get addresses of nextPCs by types of operations

31: m128i address = SIMDcmp(highBits, ops)

32: ⊲ 3. Mask out the invalid nextPCs by isFork and isJmp

33: m128i nextAddress = SIMDcmp(isFork, isJmp,

address)

34: ⊲ 4. Strip out finished nlist tasks, store rests to the proper

position, advance nlist index

35: nlist index += streamCompaction(cmpResults, isDot,

nlist, nlist index)

36: ⊲ 5. Similar operation on tmplist

37: tmplist index += streamCompaction(isJmp, isFork,

nextAddress, tmplist, tmplist index)

38: ⊲ Process W(n) operations in parallel

39: results index += streamCompaction(isMatch/isStore,

results, results index)

40: end for

41: swap(tmplist, clist)

42: clist index = tmplist index

43: end while

44: swap(clist, nlist)

45: clist index = nlist index

46: end while

47: return results

The SIMD interpreter described in Algorithm 3 is a
SIMD parallel version of Algorithms 2, and a more detailed
implementation of the overall method introduced in Algo-
rithm 1. The basic logic of the SIMD execution part (line
14 to line 40) is as follows. We fetch multiple bytecodes in-
dexed by the task queue elements according to the width of
SIMD lanes, and then load identical parts of multiple byte-
codes into the same SIMD register, such as highBits part

identifying the type of bytecodes, and args part storing the
address of next PC or output value. We next calculate vari-
ous flags from types of bytecodes according to the highest
bits, to be able to mask invalid results. Finally, we process
both T (n) and W(n) operations for all SIMD tasks, and
strip out the invalid results by the bytecode type flags calcu-
lated before. In the last stage, a stream compaction operation
is used to remove the finished tasks, and, thus, to compact
the task queues.

4. Optimizations for Execution Efficiency
We now describe several optimizations that turn out to be
critical for achieving efficient execution.

4.1 Light-Weight Stream Compaction

shuffle

R = [a2, b2, d2, 0]

R = [a2, b2, 0, d2]

get next buffer

TQ = [a1, b1, c1, d1, e1, f1, g1, h1]

shuffle

R = [h2, 0, 0, 0]

R = [0, 0, 0, h2]

get next buffer

store

TQ = [a2, b2, d2, 0, e1, f1, g1, h1]

store

TQ = [a2, b2, d2, h2, 0, 0, 0, 0]

Evaluate first 4 Tasks

Iteration1:

Evaluate next 4 Tasks

Iteration 2:

Task Queue for Level-1 Evaluation

Task Queue for Level-2 Evaluation

Figure 1: An Example of Stream Compaction for SIMD Efficiency

When different SIMD units are processing paths of dif-
ferent length, stream compaction is an important optimiza-
tion to ensure SIMD efficiency. The basic idea is as follows.
Suppose, we start off by needing to process 16 tree traver-
sals concurrently. If the SIMD width is 4, processing the
root level requires 4 iterations. Following that, suppose the
list of nodes to be processed next is stored in an array of
length 16, with a value of 0 denoting that the traversal is
over. As an example, assuming that 5 traversals have been
completed, whereas the other 11 traversals are still active,
a simple execution mechanism may require 4 iterations to
process these 11 traversals, as 4 consecutive values from the
array are scheduled in one iteration. A more advanced strat-
egy might be to compact the non-zeroes in the array, and use
only 3 iterations to process the 11 non-zero entries. This is
the idea of stream compaction.

We now explain our implementation with the help of an
example, shown in Figure 1. In this example, at first we have
8 tasks in the initial task queue, and the SIMD lane width
allows processing 4 tasks concurrently. Tasks c1, e1, f1 and
g1 are leaf nodes, and after the first iteration of evaluation,
we get one 0 in the corresponding position of c1. Without
stream compaction, a bubble task left in the SIMD lane
undermines the utilization of parallelism. So, we utilize a
shuffle operation to move the completed bubble tasks to the
end of the SIMD lane, store the reordered tasks into the
beginning position of the new task queue (store position
initialized as 0), and change store position to 3. A similar
operation is applied for the second iteration of evaluation,
and the new generated tasks are stored into store position
(3), and the new store position is increased to 4. If our

application does not require task creation, we may use only
one task queue to hold both the old and new tasks, since
the number of new generated tasks is always smaller than
or equal to the old ones, and it is impossible for the new
generated tasks to overlap the unhandled old ones. However,
for an application that involves task creation, we need to use
two task queues to hold old tasks and new ones respectively,
and we swap them at the end of the evaluation of the same
level of tasks.

Stream compaction can clearly improve the performance
of our method by reducing the number of SIMD evaluation
iterations of deeper levels with finished bubble tasks. For ex-
ample, in Figure 1, without stream compaction, two itera-
tions are required for level-2 evaluation, while with it, only
one iteration is needed. Moreover, an interesting aspect of
our implementation is that we can remove tasks from pro-
cessing without complicated control flow (line 10 in Algo-
rithm 1). Thus, we maintain parallel efficiency with only a
small scheduling overhead.

4.2 Reducing Memory Latency with Intelligent Data

Layouts

Effective utilization of fine-grained SIMD parallelism re-
quires that the application not be memory-bound. The naive
implementation of the two applications described earlier, as
well as other pointer-based applications, can be easily lim-
ited by the latency of the memory subsystem. For example,
if every node of a tree or a graph is allocated using a library
like malloc, there is no guarantee of spatial (or temporal)
reuse. To address this problem, we introduce several opti-
mized layouts.

DF:

BF:

LL:

SLL:

DLL:

0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

0 0 0 0 0 1 1 1 1 1 1 1 2 2 2 2 2 3 3 3 3 3

0 1 2 3 0 0 1 1 2 2 3 3 0 0 1 1 2 2 3 3 1 1

0 1 2 3 0 0 1 1 2 2 3 3 2 2 3 3 0 0 1 1 1 1

0 1 2 3 0 0 1 1 2 2 3 3 2 2 3 3 2 2 0 0 1 1

2 2

2 2

2 2

2 2

1 1

Tree 0 Tree 1 Tree 2 Tree 3

Tree 0 Tree 1 Tree 2 Tree 3

Tree 0 Tree 1 Tree 2 Tree 3

Root Level 1 Level 2 Level 3

Root Level 1 Level 2 Level 3

Root Level 1
Tree 0

Rest

Level 3

Left

0

0 0

0 0

1

1 1

1 1

1 1

2

2 2

2 2

3

3 3

3 3

2 2

Tree 1

Rest

Level 2

Left

Figure 2: Memory Layout with Different Schemes

Depth First and Breadth First: A Depth First or Breadth
First layout linearizes nodes of a tree based on the order they
are visited in a depth first or breadth first traversal (e.g. DF or
BF in Figure 2). However, it turns out that these layouts are
not particularly helpful for improving SIMD performance.
To illustrate this, we use the notion of loading distance.
Loading distance gives an intuition as to the amount of data
locality among a group of parallel tasks. Specifically, the
loading distance is the average distance between the memory
locations accessed at the same time, by concurrent threads.

Clearly, as the loading distance increases, the possibility of
benefiting from spatial reuse or prefetching is reduced. In
DF or BF, the average loading distance between any two
neighboring lanes is the number of nodes in the first of
the two trees. Moreover, on the average, the same applies
to concurrent evaluation at any level. In the worst case, it
implies that each of the four concurrent accesses is a cache-
miss.
Level by Level: The prior two layouts linearizes an entire
tree before linearizing the next. We next introduce a layout
that interleaves nodes across trees, level by level (shown as
LL in Figure 2). We co-locate a node’s left and right children
next to each other in memory. This allows us to use a single
pointer to reference both child nodes, thus reducing the size
to store the set of irregular data structures.

If we have a complete and balanced binary tree, the load-
ing distance is 2l where l corresponds to the level of the
tree. If the depth of each tree is k, then the loading distance
varies between 1 and 2k. In comparison, the loading distance
for the breadth first and depth first layouts are nearly 2k+1.
Thus, on the average, the loading distance is reduced, though
more so for the initial levels of the tree than the lower lev-
els. We expect to benefit from spatial locality or the regular
strided access pattern (e.g. for prefetching) while traversing
through the initial levels of the trees.
Sorted Level by Level: While the LL scheme above has
several advantages, it does not utilize any possible bias in
the traversal pattern. As stated above, there can be a greater
likelihood of visiting one child above the other, and if this
bias is known in advance, the more likely child can always
be made the left child. The next layout we introduce is called
Sorted Level by Level (SLL), and exploits such a bias to
decrease the loading distance by a factor of up to two.
An example of this layout is shown as the array SLL in
Figure 2. In this layout, we divide the nodes of each tree at
each level as left children and right children sets. We allocate
the left children together, followed by all right children. By
this arrangement, we are expecting a better loading distance
within each level when the traversal has a bias.

Group 6

Group 4

Group 3

Group 2

Group 1

Group 5

Group 7

Figure 3: Depth First Level by Level Layout for a Single Tree

Depth First Level by Level: The idea of exploiting bias in
the SLL scheme can be taken even further through another
scheme, which we refer to as the Depth-first Level by Level
or DLL scheme. An example of this layout is shown in
Figure 2 as DLL. In this layout, we also put left child and
right child next to each other. So, for the root and the first
levels, it is the same as the LL and SLL layouts. However,
from the second level onwards, we focus on exploiting the
left bias. At the second level, we allocate the left portions

of each tree next to each other, which is the same as SLL.
However, next, we skip the right part of the second level,
and continue to linearize the left part of each tree at the third
level. We repeat this process until we finish the left-most
parts of all the trees, and then we move to the right part of the
second level for each tree. In order to illustrate this idea more
clearly, we use another example, with a single but deeper tree
(Figure 3). The numbers in nodes represent the linearization
order in memory, if we only have this single tree. The dotted
lines are used to organize the nodes into several groups. If
we have multiple trees, we will put the groups with the same
id of each tree together. Within each group, the order of the
nodes is in the Depth-First manner, like the order we have
used within this single tree.

4.3 Tiling of Trees

In our discussion of the last three layouts, we have assumed
that the nodes from all the trees are interleaved. Since only
a small number of trees are processed at the same time, it
may be more reasonable to interleave nodes from a subset of
trees. This is possible through what we refer to as (tiling).
If we choose a tile size of N , we interleave all nodes from
the first N trees using LL, SLL, or DLL approach, and then
repeat the process for each consecutive set of N trees. The
tile size can be chosen to obtain the best performance. We
will study the impact of tile sizes on performance later.

There are a variety of ways to choose how to group trees
into a tile. For example, we could group trees based on
their average traversal path lengths in the hopes that all trees
within a tile finish their traversals at the same time. However,
we found that this grouping provided little benefit when
compared to a much simpler approach: randomly grouping
trees into a tile. We investigated the performance of both
random grouping and average traversal length grouping and
found that because stream compaction efficiently removes
trees when their traversal is over, the random grouping was
just as good as a more sophisticated one. Thus, we advocate
the simpler approach: random allocation of trees to tiles.

5. Experimental Evaluation
In this section, we evaluate the efficacy of our SIMD inter-
preter on the two applications introduced in Section 2.

5.1 Methods

We had the following two goals in our experiments. First, we
want to evaluate the overall speedups obtained on two appli-
cations using our general interpretation approach. Second,
we want to quantify the benefits obtained from the different
optimizations we introduced in the previous section.

Our experiments are conducted on a machine with In-
tel Xeon E5420 CPU (2.5GHz frequency) with Streaming
SIMD Extension 4 (SSE-4). All applications are compiled
with the Intel ICC (Intel Parallel Composer 2011) compiler
to fully utilize the SSE unit. For all of our experiments,
we run the program 30 times; speedup numbers include the
mean and 95% confidence interval of the mean.

5.2 Overall Speedups from SIMD Parallelization

5.2.1 Random Forests

We compare our method of evaluation against the popu-
lar open source numerical analysis and data processing li-
brary, ALGLIB, and a random forest implementation that is
used in a large Microsoft product. While comparing against

DateSet #Tree #Ave Node Path Leng Ave Path Leng Bias

Poker 1280 249 4 - 13 7.3 0.51

Shuttle 1280 217 4 - 10 7.5 0.55

Abalone 1280 333 5 - 12 8.0 0.52

Satellite 1280 353 4 - 12 8.2 0.55

Microsoft 3372 239 1 - 45 11.34 0.8

Table 4: Summary of Datasets for Random Forest

poker shuttle abalone satellite microsoft

0

5

10

15

20

S
p

e
e

d
u

p
 o

ve
r

A
L

G
L

IB
 /

 M
ic

ro
s
ft Baseline

SEQ+DF

SSE+SLL

SSE+LL

SSE+DLL

Figure 4: Speedup with Our Approach (over Baseline Implemen-

tations) - Random Forest

poker shuttle abalone satellite microsoft

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
p

e
e

d
u

p
 o

ve
r

s
e

q
u

e
n

ti
a

l

SLL

LL

DLL

Figure 5: SSE Speedups with Different Data Layouts - Random

Forest

ALGLIB, we use four datasets from UCI Machine Learn-
ing Repository[10]—Poker, Shuttle, Abalone, and Satellite.
While comparing against the Microsoft product, we use pro-
duction data for that product. In both datasets (UCI and Mi-
crosoft), we used the respective libraries to train random
forests. We then transform those trees into our SIMD imple-
mentation. Table 4 provides a set of descriptive information
about the forests we built from these datasets.

The random forests created from the Poker and Abalone
dataset result in traversals without any significant bias, those
from Shuttle and Satellite have a slight left bias, while the
Microsoft dataset has a severe left bias. Lastly, the length of
the paths from roots to leaf nodes varies considerably for all
datasets (i.e. the trees are not balanced).

Using the SIMD interpreter described earlier, we traverse
4 trees in parallel (one for each lane of the SIMD unit). In
Figure 4, a bar gives the speedup (y-axis) of our approach
over ALGLIB and Microsoft, respectively for each of our
five datasets. Each dataset has five bars, one bar for each of

random forest implementation. The baseline (darkest bar per
dataset) is the code that ships with ALGLIB or Microsoft,
respectively. The SEQ+DF bar refers to a sequential inter-
preter evaluated on a depth first layout of the random forest
nodes. The other three bars per dataset refer to the SIMD in-
terpreter run on different data layouts. We do not show the
performance of SSE + Depth First and Breadth First ver-
sions, as they quickly become memory bound and thus do
not see much benefit from SSE units.

From Figure 4, we can see that by our transformed dense
layouts and SIMD optimized interpreter, we can gain more
than 10 times speedup over the baseline implementations
on all 5 datasets. We include the SEQ+DF implementation
because we are interested in showing how much speedup
we get from SIMD after linearization; on the UCI datasets
SIMD increases performance by a factor of 3, while on the
Microsoft dataset SIMD increases performance by a factor
of more than 2.

To understand the performance impact of our SIMD in-
terpreter we compare the run-time of a sequential interpreter
against a SIMD one, holding the layout constant in this com-
parison. We show the results of this experiment in Figure 5.
A bar on this graph shows the speedup (y-axis) of our SIMD
interpreter over the sequential interpreter on the same layout
(SLL, LL, and DLL) for each dataset (x-axis). The speedups
from SIMD (with 4 SIMD lanes) range between 2 and 2.8.

5.2.2 Regular Expression Matching

We now investigate the performance of our SIMD interpreter
on regular expression matching. For this application, we
use a simple level-by-level (LL) layout because the graphs
generated by our regular expressions are small and fit easily
in L1 so memory optimizations are not as important as in the
random forests application.

We compare our approach to GNU grep, which is cho-
sen for two reasons. First, like our regular expression engine,
it counts matches and matches regular expressions from the
POSIX Extended Regular Expression syntax. Second, GNU
grep is known to be fast.2

We search the King James Bible for up to 10 different reg-
ular expressions. Each regular expression follows the pattern
. ∗ ab, where the characters a and b are unique for each reg-
ular expression. To match N regular expressions, we com-
bine them using the choice operator. Note that because we
can pack instructions into a byte, our SIMD interpreter can
traverse up to 16 graphs in parallel for this application.

Figure 6 shows the speedup of our approach. A bar on
this graph (x,y) gives the speedup over GNU grep (y),
varying the number of regular expressions, or fine-grained
tasks, executed. GNU grep at 1.0 is the baseline. It is very
fast for the first two regular expressions, as it uses Boyer-
Moore to perform a sub-linear search over the input string.
However, after 3 or more regular expressions, GNU grep
cannot use Boyer-Moore as the resulting regular expression
gets too complicated. After 3 parallel regular expressions,
the sequential interpreter is 1.7X faster than GNU grep.
This is due to the regular level-by-level access pattern of our

2 In a recent post to the freebsd mailing list, entitled “Why GNU grep is

Fast”, the author of GNU grep describes why his implementation is fast;

GNU grep uses the Boyer-Moore[25] algorithm for sub-linear search. It

also uses a DFA based graph traversal once it finds a position in the input

string to match against text.

1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

of parallel regular expressions

S
p

e
e

d
u

p
 (

ti
m

e
 g

re
p

 /
 t

im
e

 X
) grep

sequential

simd

Figure 6: Speedup of the SIMD interpreter over GNU grep -

Regular Expressions

Poker Shuttle Abalone Satellite Microsoft
0.0

0.2

0.4

0.6

0.8

1.0

1.2

N
o
rm

a
liz

e
d
 E

x
e
c
u
ti
o
n
 T

im
e

 W/OCompact Compact

(a)

0 4 8 12 16 20 24 28 32 36 40 44 48

0

1x10
8

2x10
8

3x10
8

4x10
8

5x10
8

 Poker_W/O_Compact

 Poker_Compact

 Microsoft_W/O_Compact

 Microsoft_Compact

C
u
m

u
la

ti
v
e
 S

IM
D

 E
v
a
lu

a
ti
o
n
 I
te

ra
ti
o
n
s

Evaluation Levels

(b)

Figure 7: Stream Compaction: (a) Speedup Improvements - Ran-

dom Forest Using 5 Datasets and (b) Reduction in Workload -

Poker and Microsoft Datasets

interpreter. However, the speedup for the SIMD interpreter
linearly increases as we add fine-grained tasks. The SIMD
interpreter is anywhere from 3X to 5X faster when searching
for three or more parallel regular expressions.

5.3 Benefits from Optimizations

The speedups we reported above are made possible due to
a number of optimizations we have implemented. Using one
of the two applications (random forest), we now quantify the
gains from each of the optimizations.

5.3.1 Improvements from Stream Compaction

Figure 7 (a) shows the comparison of execution times
among the SIMD code with and without stream compaction,
for each of the five datasets. The results show that for
datasets with a smaller variation in path lengths, such as
Poker and Shuttle, the stream compaction method gives
around 30% speedup over the unoptimized version. For the
dataset that has a larger variation in path lengths, i.e. the
Microsoft dataset, stream compaction gives more than 70%
speedup.

To further study the reasons for these speedup, in Fig-
ure 7 (b), we show the workload reduction by the stream
compaction method, using two representative datasets, Poker
and Microsoft. Specifically, Poker represents the case with
a smaller variation in path lengths, whereas Microsoft in-
volves a much larger variation in path lengths. x-axis here is
the evaluation level, and the y-axis is the cumulative num-
ber of SIMD evaluation iterations, i.e., the workload on the
SIMD lanes. We can see that for Poker dataset, our stream

2e+04 5e+04 2e+05 5e+05 2e+06 5e+06

50

55

60

65

70

75

size of treee (bytes)

p
e
rc

e
n
t
b
a
c
k
e
n
d
 s

ta
lle

d

BF

DF

LL

SLL

DLL

(a)

5 10 20 50 100 200 500 1000

1.0

1.2

1.4

1.6

1.8

2.0

size of tile

ru
n

ti
m

e
 (

n
o

rm
a

liz
e

d
 t

o
 m

in
)

SLL

LL

DLL

(b)

Figure 8: (a) Percent of Time Backend is Stalled (Function of

the Tree Size, for Different Layouts), (b) Benefits of Tiling (Poker

Dataset)

compaction method is able to reduce around 40% of the
workload, with most gains seen from levels 8 through 12.
For the Microsoft dataset, the benefits are seen even at ear-
lier levels of the tree, and overall, add up to 80% of the
number of iterations needed. By comparing the workload
reduction (80% and 40%) and the execution time reduction
(70% and 30%), we see stream compaction only introduces
a 10% overhead.

5.3.2 Detailed Examination of Benefits from

Optimized Layouts

In this section, we further study the performance impact of
our intelligent layouts. As shown in Figure 5, by our intel-
ligent layouts, we can gain 2.0-2.8 times speedup. However,
the speedups from depth-first layout were only between 1.2
and 1.5. This shows that our layouts provide better locality,
and therefore, reduce the impact of memory latency.

In order to study the underlying reason as to how our
intelligent layouts hide memory latency, we conduct a pro-
filing experiment. We create 1000 balanced, unbiased trees
with a varying number of nodes per tree (changing the depth
of each tree from 1 up to 13). Figure 8 (a) illustrates how
often the processor is stalled on memory. We can see that
the microprocessors are often stalled. The plot has five lines,
one for each of our layouts; a point on this graph (x,y) gives
the amount of time the backend is stalled (y) as we change
the size of the tree (reported as the number of bytes it takes
in memory (x)). The DF and BF layouts spend about 70%
of the time stalled on memory references, irrespective of
tree size, since these layouts lack spatial locality. In contrast,
even when the size of trees is larger than the L2 cache size
on our processor (8MB), the LL layout is able to keep the
processor working about 40% of the time, since the LL lay-
out has predictable memory access pattern, and as a result,
the hardware prefetchers are able to predict memory access
so that there are fewer L2 data cache misses.

In both benchmarks, the SLL and DLL layouts do not
perform as well as the LL layout; this is expected as SLL
and DLL are optimized for biased layouts. So we redid these
experiments but with 80% left bias (not shown due to space).
As a result we see SLL and DLL are significantly better than
LL (percent the backend is stalled drops to 54%). Especially,
with severe biased and imbalanced tree access, DLL shows
much better performance than both LL and SLL.

If we compare the three level-by-level layouts in Figure 4
we see that in biased datasets (i.e. Shuttle, Satellite, and
Microsoft), SLL and DLL both show better performance

8 16 32 64 128 256 512 1024

0

2000000

4000000

6000000

8000000

10000000

E
x
e
c
u
ti
o
n
 T

im
e
 (

u
s
e
c
)

Tiling Size (#Trees in Each Bag)

 0 1 2 3

 4 5 6

Figure 9: Execution Time with Changing Tree Levels and Tiling

Sizes - SSE + DLL on Poker

than the LL layout. The improvement in performance with
SLL and DLL is consistent with what we discussed above.
The benefit of DLL is further confirmed by the results from
the Microsoft test case, where there is the most imbalance
and bias. The DLL version now has the best performance,
outperforming SLL by about 15%, and LL by nearly 25%.
For the cases with only a moderate bias, i.e. Shuttle and
Satellite, SLL and DLL are both 5% better than LL.

5.3.3 Impact of Tiling

In this section we evaluate the impact of the tile size on per-
formance. A point (x,y) on Figure 8 (b) shows the execution
time (y-axis), normalized to the minimum execution time for
all tile sizes, as we change the number of trees per tile (x-
axis). We show three lines, one line per level-by-level lay-
out. We use only the Poker dataset as the results generalize
to other datasets. We can see that when there is no tiling (i.e.
1 tree per tile) or when the tile has only a small number of
trees, the performance is up to a factor of 2.0 worse over the
cases when between 50 and 500 trees are put in a single bag
or a tile.

In order to explain this behavior, we carefully observed
the relationship between the evaluation time for the different
tree levels, as a function of tile sizes. We investigated the
run time as a function of tile size for the DLL layout on the
Poker dataset (Figure 9). A point on this graph (x,y) shows
execution time in milliseconds (y-axis) as a function of tile
size (x-axis). Each line provides the amount of time required
to execute all trees up to a certain depth (inclusive running
time). For example, the line corresponding to 0 implies that
we only evaluate the root nodes, 1 implies that we evaluate
the root nodes and the nodes in the first level, and so on.

At the lower levels, the performance improves slightly as
we increase the number of trees in the tile. This is because
the set of memory addresses accessed follow a regular pat-
tern when we process the same level for a larger number of
distinct trees. The same regularity is not seen when we start
processing other levels of the trees. Such regularity, achieved
with a larger tile size, helps achieve better prefetching, and
hence, better performance. At the initial levels of the tree
traversal, there is no loss of performance as we continue to
increase the tile size, though there are not too many gains
either after a size of 64.

With lower levels of the tree, and with DLL layout, there
is also a reduction in performance when the tile size be-
comes very large. This is because the possibility of exploit-
ing spatial locality across consecutive accesses to nodes of
the same tree decreases with increasing tile size. Recall from
our earlier discussion that main advantage of DLL is exploit-
ing such locality, for biased traversals on imbalanced trees.
This advantage is lost with a very large tile size. In compari-
son, there is hardly any change in performance for SLL and
LL layouts, as we continue to increase the tile size.

6. Related Work
There have been several compiler-based efforts to paral-
lelize or enhance the locality of pointer-based data struc-
tures. Chilimbi et al. [6] developed a set of cache conscious
layout schemes based on compiler techniques to improve the
memory performance for pointer-based data structures. Re-
cently, Jo and Kulkarni [18] applied a tiling-like transfor-
mation to applications in which multiple input data points
are used to traverse a single pointer-based data structure. We
also focus on improving locality, but for cases when multiple
pointer-based data structures are traversed together on SIMD
units. Earlier work had used very sophisticated compiler
analysis to automatically determine parallelism in pointer-
based programs [12]. More recently, the Galois project has
extensively considered parallelization of irregular applica-
tions [21, 23]. Their focus is coarse-grained or MIMD paral-
lelism, while our focus is SIMD execution. Thus, our work
is complementary to many prior efforts on coarse-grained
traversals, and we believe many of them, such as automatic
thread extraction methods like DSWP [27] or HELIX [3],
can be applied to further improve the performance of our
SIMD interpreter without major modification.

There are also many efforts focusing on manual optimiza-
tion of this class of applications on SIMD and vector units.
Key recent efforts include the work by Sewall et al. [32] and
Kim et al. [20]. This work considers simultaneously process-
ing multiple inputs on a single data structure. We are focus-
ing on processing one input point across multiple pointer-
based data structures, and focus on a more general interpre-
tation system.

Sharp [33] has parallelized decision tree and forest traver-
sal on GPUs. The work is based on using a GPU’s texture
memory and does not apply to the SSE units we have con-
sidered. Similarly, regular expression traversal has been im-
plemented on GPUs [35] and Cell processor [31]. Cascarano
et al. [4] also designed an NFA based regular expression en-
gine focusing on GPUs architecture, which has been further
improved by Zu et al. [37]. Similarly, parallel graph traversal
on GPUs has also been investigated, with Merrill et al. [24]
and Hong et al. [16] providing state-of-the-art implementa-
tions. Our work is distinct in considering SSE parallelism
and locality issues related to modern uniprocessors. Prior to
the interest in SIMD or many-core execution, many efforts
focused on vectorization of pointer-based applications. Lars
et al. [22] and Junichiro et al. [19] vectorized tree traversals,
but considered only a single tree.

Processing of MIMD tasks on SIMD machines has re-
ceived considerable attention in the past. For example,
Hanxleden and Kennedy [14] developed loop transformation
techniques (focused on array based programs) to achieve this
goal. Prins and Palmer [28] had a similar focus, but targeted

vectorization. Dietz and Cohen described a more general
scheme [8]. Blelloch et al.[1] and Hardwick[15] have fo-
cused on exploiting nested data parallelism, similar in spirit
to our use of data parallelism to handle irregular applica-
tions. Our work has considered specific challenges arising
for pointer-based traversals, which have not been considered
in the past. We have also developed optimizations that are
critical for performance on today’s processors (e.g. local-
ity, as more applications have become memory bound over
time).

7. Conclusions
This paper shows how to extract SIMD parallelism from ap-
plications that traverse irregular data structures such as trees
and graphs. As SIMD execution units become more com-
mon and capable in the near future, it becomes increasingly
pressing to find general techniques to exploit the power of
this hardware in new and broader contexts. This paper de-
scribes one such approach, which is to traverse and compute
on multiple, independent, irregular data structures in paral-
lel using a targeted virtual machine running on a SIMD vec-
tor processor. By scheduling operations from the virtual ma-
chine and implementing a number of optmizations, we have
shown substantial speedups on two applications.

References
[1] G.E. Blelloch, S. Chatterjee, J.C. Hardwick, J. Sipelstein, and M. Zagha. Imple-

mentation of a Portable Nested Data-Parallel Language. Journal of Parallel and

Distributed Computing, 21(1):4–14, apr 1994.

[2] L. Breiman. Random Forests. Machine Learning, 45:5–32, 2001.

[3] S. Campanoni, T. Jones, G. Holloway, V.J. Reddi, G.Y. Wei, and D. Brooks. HE-
LIX: Automatic Parallelization of Irregular Programs for Chip Multiprocessing.
In Proceedings of the Tenth International Symposium on Code Generation and

Optimization (CGO 2012), pages 84–93. ACM, 2012.

[4] N. Cascarano, P. Rolando, F. Risso, and R. Sisto. iNFAnt: NFA Pattern Match-
ing on GPGPU Devices. ACM SIGCOMM Computer Communication Review

(SIGCOMM 2010), 40(5):20–26, 2010.

[5] S. Chatterjee, G.E. Blelloch, and M. Zagha. Scan Primitives for Vector Comput-
ers. In Proceedings of the 1990 ACM/IEEE Conference on Supercomputing (SC

1990), pages 666–675, November 1990.

[6] T.M. Chilimbi, M.D. Hill, and J.R. Larus. Cache-Conscious Structure Layout. In
Proceedings of the 1999 ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI 1999), pages 1–12. ACM, 1999.

[7] Russ Cox. Regular Expression Matching Can Be Simple and Fast.
http://swtch.com/ rsc/regexp/regexp1.html, January 2007.

[8] H.G. Dietz and W.E. Cohen. A Massively Parallel MIMD Implemented by SIMD
Hardware? Technical report, Purdue University, 1992.

[9] F. Franchetti and M. Puschel. In Proceedings of the 2002 IEEE International

Parallel and Distributed Processing Symposium (IPDPS 2002).

[10] A. Frank and A. Asuncion. UCI Machine Learning Repository, 2010.

[11] C. Garca, R. Lario, M. Prieto, L. Piuel, and F. Tirado. Vectorization of Multigrid
Codes Using SIMD ISA Extensions. Proceedings of the 2003 IEEE Inernational

Parallel and Distributed Processing Symposium (IPDPS 2003), 0:58a, 2003.

[12] R. Ghiya, L.J. Hendren, and Y. Zhu. Detecting Parallelism in C Programs with
Recursive Data Structures. In Proceedings of 7th International Conference on

Compiler Construction (CC 1998), pages 159–173. Springer, 1998.

[13] J. Han, H. Cheng, D. Xin, and X. Yan. Frequent Pattern Mining: Current Status
and Future Directions. Data Mining and Knowledge Discovery, 15:55–86, 2007.

[14] R.v. Hanxleden and K. Kennedy. Relaxing SIMD Control Flow Constraints using
Loop Transformations. In PLDI, pages 188–199. ACM, 1992.

[15] J.C. Hardwick. An Efficient Implementation of Nested Data Parallelism for Ir-
regular Divide-and-Conquer Algorithms. In Proceedings of the First Interna-

tional Workshop on High-Level Programming Models and Supportive Environ-

ments (HIPS 1996), pages 105–114, April 1996.

[16] S. Hong, T. Oguntebi, and K. Olukotun. Efficient Parallel Graph Exploration on
Multi-Core CPU and GPU. In Proceedings of the 2011 International Conference

on Parallel Architectures and Compilation Techniques (PACT 2011), pages 78–
88. IEEE, 2011.

[17] N. Ide, M. Hirano, Y. Endo, S. Yoshioka, H. Murakami, A. Kunimatsu, T. Sato,
T. Kamei, T. Okada, and M. Suzuoki. 2.44-GFLOPS 300-MHz Floating-Point
Vector-Processing Unit for High-Performance 3D Graphics Computing. IEEE

Journal of Solid-State Circuits, 35(7):1025 –1033, Jul 2000.

[18] Y. Jo and M. Kulkarni. Enhancing Locality for Recursive Traversals of Recursive
Structures. In Proceedings of the 2011 ACM International Conference on Object

Oriented Programming Systems Languages and Applications (OOPSLA 2011),
pages 463–482. ACM, 2011.

[19] Junichiro and Makino. Vectorization of a Treecode. Journal of Computational

Physics, 87(1):148 – 160, 1990.

[20] C. Kim, J. Chhugani, N. Satish, E. Sedlar, A.D. Nguyen, T. Kaldewey, V.W. Lee,
S.A. Brandt, and P. Dubey. FAST: Fast Architecture Sensitive Tree Search on
Modern CPUs and GPUs. In Proceedings of the 2010 International Conference

on Management of Data (SIGMOD 2010), pages 339–350. ACM, 2010.

[21] M. Kulkarni, M. Burtscher, R. Inkulu, K. Pingali, and C. Casçaval. How Much
Parallelism is There in Irregular Applications? In Proceedings of the 14th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP 2009). ACM, 2009.

[22] Lars and Hernquist. Vectorization of Tree Traversals. Journal of Computational

Physics, 87(1):137 – 147, 1990.

[23] M. Méndez-Lojo, D. Nguyen, D. Prountzos, X. Sui, M.A. Hassaan, M. Kulkarni,
M. Burtscher, and K. Pingali. Structure-Driven Optimizations for Amorphous
Data-Parallel Programs. In PPOPP, pages 3–14. ACM, 2010.

[24] D. Merrill, M. Garland, and A. Grimshaw. Scalable GPU Graph Traversal. In
Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming (PPoPP 2012), pages 117–128. ACM, 2012.

[25] J. S. Moore and R.S. Boyer. A Fast String Searching Algorithm. Communications

of the ACM, pages 762–772, 1977.

[26] M. Nicola and J. John. XML Parsing: a Threat to Database Performance.
In Proceedings of the Twelfth International Conference on Information and

Knowledge Management (CIKM 2003), pages 175–178. ACM, 2003.

[27] G. Ottoni, R. Rangan, A. Stoler, and D.I. August. Automatic Thread Extraction
with Decoupled Software Pipelining. In Proceedings of 38th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO 2005), pages 12–pp.
IEEE, 2005.

[28] J. Prins and D.W. Palmer. Transforming High-Level Data-Parallel Programs into
Vector Operations. In PPOPP, pages 119–128. ACM, 1993.

[29] M. Roesch. Snort - Lightweight Intrusion Detection for Networks. In Proceed-

ings of the 13th USENIX Conference on System Administration (LISA 1999),
pages 229–238. USENIX, 1999.

[30] T. Rognes and E. Seeberg. Six-Fold Speed-up of Smithwaterman Sequence
Database Searches Using Parallel Processing on Common Microprocessors.
16(8):699–706, 2000.

[31] D.P. Scarpazza and G.F. Russell. High-Performance Regular Expression Scan-
ning on the Cell/B.E. Processor. In Proceedings of the 23rd International Con-

ference on Supercomputing (ICS 2009), pages 14–25. ACM, 2009.

[32] J. Sewall, J. Chhugani, C. Kim, N. Satish, and P. Dubey. PALM: Parallel
Architecture-Friendly Latch-Free Modifications to B+ Trees on Many-Core Pro-
cessors. PVLDB, 4(11):795–806, 2011.

[33] T. Sharp. Implementing Decision Trees and Forests on a GPU. In Computer

Vision ECCV 2008, volume 5305 of Lecture Notes in Computer Science, pages
595–608. Springer Berlin / Heidelberg, 2008.

[34] K. Thompson. Programming Techniques: Regular Expression Search Algorithm.
Commun. ACM, 11:419–422, June 1968.

[35] G. Vasiliadis, M. Polychronakis, S. Antonatos, E. Markatos, and S. Ioannidis.
Regular Expression Matching on Graphics Hardware for Intrusion Detection.
In Recent Advances in Intrusion Detection, volume 5758 of Lecture Notes in

Computer Science, pages 265–283. Springer Berlin / Heidelberg, 2009.

[36] X. Yan and J. Han. gSpan: Graph-Based Substructure Pattern Mining. In
Proceedings of the 2002 IEEE International Conference on Data Mining (ICDM

2002), pages 721 – 724. IEEE, 2002.

[37] Y. Zu, M. Yang, Z. Xu, L. Wang, X. Tian, K. Peng, and Q. Dong. GPU-based
NFA Implementation for Memory Efficient High Speed Regular Expression
Matching. In Proceedings of the 17th ACM SIGPLAN symposium on Principles

and Practice of Parallel Programming (PPoPP 2012), pages 129–140. ACM,
2012.

