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Fine-grained data parallelism is increasingly common in the form of longer vectors integrated with main-
stream processors (SSE, AVX) and various GPU architectures. This article develops support for exploiting
such data parallelism for a class of nonnumeric, nongraphic applications, which perform computations while
traversing many independent, irregular data structures. We address this problem by developing several
novel techniques. First, for code generation, we develop an intermediate language for specifying such traver-
sals, followed by a runtime scheduler that maps traversals to various SIMD units. Second, we observe that
good data locality is crucial to sustained performance from SIMD architectures, whereas many applications
that operate on irregular data structures (e.g., trees and graphs) have poor data locality. To address this
challenge, we develop a set of data layout optimizations that improve spatial locality for applications that
traverse many irregular data structures. Unlike prior data layout optimizations, our approach incorporates
a notion of both interthread and intrathread spatial reuse into data layout. Finally, we enable performance
portability (i.e., the ability to automatically optimize applications for different architectures) by accurately
modeling the impact of inter- and intrathread locality on program performance. As a consequence, our model
can predict which data layout optimization to use on a wide variety of SIMD architectures.

To demonstrate the efficacy of our approach and optimizations, we first show how they enable up to a 12X
speedup on one SIMD architecture for a set of real-world applications. To demonstrate that our approach
enables performance portability, we show how our model predicts the optimal layout for applications across a
diverse set of three real-world SIMD architectures, which offers as much as 45% speedup over a suboptimal
solution.
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1. INTRODUCTION

Fine-grained data parallelism is becoming increasingly prevalent in mainstream pro-
cessors, such as x86 and ARM, as the length of vector instructions is increasing.1 The
most common fine-grained data-parallel hardware, the Steaming SIMD Extensions
(SSE), has been part of x86 since 1999 and is widely used in graphics [Ide et al. 2000],
image, video, and signal processing [Franchetti and Puschel 2002], as well as scientific
and engineering applications [Garca et al. 2003; Rognes and Seeberg 2000]. As such
fine-grained data parallelism becomes a ubiquitous processor feature with increasing
performance, it is desirable to exploit this feature for irregular computations as well.

However, programs that rely on irregular, pointer-based data structures benefit little
from SIMD execution because of the mismatch between the strict, lockstep behavior of
SIMD parallelism and the dynamic, data-driven behavior of programs that manipulate
irregular data structures. This article starts to bridge this gap by demonstrating an ap-
proach to speeding a class of applications that involve independent traversals of many
instances of a pointer-based data structure. Examples of the class of applications we
target include prediction using a collection of decision trees [Breiman 2001], matching
with regular expressions [Vasiliadis et al. 2009], parsing XML documents [Nicola and
John 2003], and frequent pattern mining [Han et al. 2007], including finding common
subgraphs in a set of graphs [Yan and Han 2002]. These applications arise in do-
mains as diverse as machine learning, compilation, intrusion detection, Web services,
databases, and data mining.

These applications traverse independent data structures for two reasons. First, ap-
plications can manipulate a large number of logically independent data structures.
For example, the forest of decision trees produced by a machine learner or the set of
alternative patterns used in an intrusion detection system such as Snort [Roesch 1999]
represent independent computations that can proceed in parallel. Second, applications
can traverse a single irregular data structure, but do so with many independent in-
puts. The approach in this work handles both cases. Although applications of this type
can easily be parallelized across multiple cores, SIMD within each core can provide a
multiplicative improvement in performance.

Effective parallelization of independent traversals of irregular data structures on
a SIMD unit requires addressing multiple challenges. One such challenge is related
to the uneven amount of work that each SIMD unit might have to perform while
traversing different structures. Another challenge is that these applications involve
branch operations, which cannot be parallelized on SIMD units. Memory latency while
traversing pointer-based data structures is another issue.

This article develops techniques to address these problems. Moreover, we offer a
solution to programmers interested in developing SIMD parallelized implementations
of these applications, by developing an intermediate language and a runtime sched-
uler. The intermediate language exposes several types of operations, which can be used
to specify the traversal involved in the application. We implement several optimiza-
tions in our runtime scheduler, including a stream compaction method, several layouts
that reduce memory latency (while also allowing branch operations to be replaced by
arithmetic operations).

In addition to code generation for SIMD, a key architectural feature that program-
mers need to optimize is the memory hierarchy. In sequential applications, a program-
mer need only consider locality from the viewpoint of a single thread (e.g., intrathread
locality). However, for modern SSE-based processors, multicore, or SIMD architectures,
the memory hierarchy is shared by multiple threads, so locality, shared among different

1For example, the Intel Sandybridge processor doubled its vector length to 256 bits.
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threads (interthread locality), can dominate an application’s performance [Meng et al.
2010; Unkule et al. 2012].

Clearly, it would be desirable for a code generator to automatically optimize an appli-
cation’s locality for a given architecture, thereby removing the burden of performance
portability from the programmer. This work demonstrates how to enable performance
portability across a wide variety of SIMD architectures. Overall, we present a domain-
specific optimization framework that targets a variety of architectures that use SIMD
parallelism. This includes an x86 system with SSE instructions, and two generations
of NVIDIA GPUs. Each of these architectures differs significantly in their memory
hierarchies and width of SIMD units. Our optimization framework includes a family
of data layout optimizations that help achieve interthread spatial locality, intrathread
spatial locality, or a combination of the two.

We find that the relative performance among different layouts depends on an appli-
cation’s characteristics (e.g., whether all trees are processed with equal likelihood, or if
probability of taking all branches is the same or not), as well as architectural charac-
teristics (e.g., features of memory hierarchy and degree of SIMD parallelism). Thus, we
develop a detailed performance model that can help select an appropriate layout for a
given application/architecture combination. The key insight of our model—and why we
are able to accurately model real-world applications running on diverse machines—is
that for the applications in our restricted domain, the number of L2 cache misses turns
out to be an effective predictor of performance.

Overall, the contributions of this work are:

—Identification of an opportunity to exploit fine-grain data parallelism in important,
latency critical algorithms widely used in production software.

—An approach that exploits fine-grained parallelism when traversing pointer-based
data structures, with a specific emphasis on trees and graphs.

—Three novel data layout optimizations that are designed to extract intra- and/or
interthread locality from applications that traverse a large number of irregular data
structures on SIMD hardware.

—An analytic model that removes the burden of performance portability from the
programmer by accurately modeling which of our data layout optimizations to use
on a particular architecture.

—An illustration of the practicality of our approach by demonstrating significant single-
core speedups of three applications that use irregular data structures on one SIMD
architecture with 9X, 12X, and 5X speedup, respectively. Similarly, we demonstrate
the efficacy of our data layout optimizations and cache analytic model by showing
significant speedups of two real-world applications with different input datasets on
three diverse SIMD architectures. Our experimental results show that our model is
able to capture the affect factors of performance from both the architecture side and
application side, which provides optimized configurations for the users’ program and
offers as much as around 45% speedup compared to the suboptimal solution.

2. ANATOMY OF THREE IRREGULAR PROGRAMS

This section introduces three common algorithms that manipulate a large number of
irregular data structures—random forest, B+ trees, and regular expression matching.
All of these algorithms have a significant amount of task-level parallelism, as both
traverse a large number of independent, irregular trees or graphs.

2.1. Random Forest

Random forests are a data mining technique used to classify an input—or a set of
features—into a fixed number of categories [Breiman 2001]. A random forest is a
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Fig. 1. An example of B+ tree structure.

collection of binary decision trees. To classify an input, each tree is traversed, comparing
features of the input against threshold values, and producing a result as its categorical
membership for that input. The input is then classified according to the category with
the most votes. The intuition behind a random forest is that if each tree’s vote is slightly
better than a random guess, a large number of trees will be able to—on average—
correctly classify an input.

To be more concrete, consider a random forest made of two simple trees, shown next.
Each tree can classify one input, made of three features ( f0, f1, and f3), into one of four
classes (classa, classb, classc, and classd):

Each node in the two trees performs one of two actions. If a node is an internal
node, it compares one feature of the input against a constant threshold and branches
accordingly to a left or right child depending on the result of the comparison. If the
node is a leaf node, it simply stores the class label for that tree into a global counter.

Random forests usually contain many trees, and each tree has far more nodes than
in this simple example. Each traversal is a unique task, independent of other traver-
sals, and can execute in parallel. For example, given the preceding example, we could
evaluate each tree independently on a different core of a multicore machine.

2.2. B+ Tree

B+ tree is a popular indexing structure used in databases (e.g., for indexing) and data
servers (e.g., for file systems) [Comer 1979]. The basic B+ tree operations are as follows:
for an internal node, a comparison operation is performed between the input value and
the key values, and for a leaf node, an output operation is performed to generate the
searched record.

Consider the simple B+ tree example in Figure 1. For an input query with an integer
number as its key, we compare its key against the key values in an internal node and
perform a branch operation. This process is repeated until we arrive at the leaf node,
where the information about the searched record is output. A single B+ tree can be
represented as a hashing function in conjunction to a large number of independent
subtrees.2 The hashing function represents the logic of the first n levels of the tree—
that is, it is a mechanism by which we can quickly reference any one of the 2n subtrees.

In a database or data server where a B+ tree is deployed, it is common to have
a heavy query workload, with several independent inputs at any given time, which
makes the application suitable for exploiting parallelism. After the hashing function
is applied to each input, there can be independent queries on different subtrees. These

2http://publib.boulder.ibm.com/infocenter/idshelp/v117/index.jsp?topic=%2Fcom.ibm.perf.doc%2Fids prf
763.htm.
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are analogous to independent traversal of different weak classifiers for a single input
in random forests, with one key difference—not all subtrees might be concurrently
processed at any given time. We refer to this traversal pattern as sparse buckets
accesses. Overall, this application is distinct from random forest because parallelism
is arising from processing of different inputs, and yet, the issues in efficient SIMD
execution are almost the same, as we elaborate next.

2.3. Regular Expression Matching

Regular expressions are a common way to match patterns against large bodies of text
or binary data. In this article, we use a nondeterministic finite automaton (NFA) to
simulate a regular expression, similar to Thompson’s original regular expression com-
piler [Thompson 1968]. To simulate an NFA, we walk—or traverse—a graph, moving
node to node in the graph depending on the type of action required at a node. Consider
the NFA, or graph, for a simple regular expression a(bb) + ba:

To evaluate this regular expression, we traverse the NFA, starting at node s0. If the
traversal ever reaches node s5, the regular expression matches the input string. To
traverse from one node to another, we compare the input character to the character
on that node’s outgoing edge. If the input character matches the edge character, we
follow that edge to the next node and move forward one character in the input. If it is
not a match, then we stop the traversal, as the input string is not a match. If the edge
character is ε, we traverse the edge without advancing the input.

Traversing the graph has one added complication—nodes may have two edges. When
walking the graph, if our traversal comes to a node with two outgoing edges, then we
must follow both edges. That is, we try both paths at the same time, reading the input
only once. The result of the traversal is the union of both traversals. For example,
suppose that we are in node s3, then due to the edge labeled ε, we start our multinode
traversal in node s1 and s3 simultaneously. If the next input is a “b”, both traversals
advance. If the next input is an “a”, the set of active traversals narrows down to a single
traversal.

2.4. Challenges to Efficient Execution

These applications—and many like them that traverse irregular data structures—face
two significant challenges that limit efficient execution.

Fine-grained parallelism. The programs we described earlier clearly have a large
amount of coarse-grained parallelism. For example, simultaneous traversals of a large
number of trees can be easily divided between several cores of a multicore machine.
However, these programs also have a significant amount of fine-grained parallelism—
for example, every internal node executes a compare. Exploiting fine-grained paral-
lelism (e.g., via SIMD in SSE or GPUs) is complementary to coarse-grained parallelism
and can speed each core’s processing of its portion of the set of nodes. However, mapping
this fine-grained parallelism to SIMD hardware is nontrivial.

Memory locality. Programs that traverse a large number of irregular data structures
likely have no temporal reuse and poor spatial locality. For example, if nodes of a
tree are allocated on the heap (i.e., using memory allocators like malloc), there is no
assurance as to where a node’s children are allocated with respect to the parent. Even
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if a programmer is smart and linearizes the irregular data structure into a dense block
of memory, high spatial reuse may not occur. Assuming a balanced tree, there are 2n

nodes at the level n of any given tree, among which only one node will be accessed
during any traversal. Thus, once we reach a level where the nodes at the level occupy
more than one cache line, we will not see any spatial reuse. As a consequence, it is
common for a program that uses irregular data structures to be stalled on memory,
which in turn negates any possible benefits from parallelism.

This article focuses on these two important challenges: SIMD code generation and
execution, and locality. To address the first challenge, we have developed an interme-
diate language for specifying the irregular traversals, followed by a runtime scheduler
that maps traversals to SIMD units. To address the second challenge, we have designed
a set of data layouts, with enabling interthread and/or intrathread data locality, and
an analytical model that allows us to automatically choose the right layout for a given
architecture.

3. SIMD TRAVERSAL OF FINE-GRAINED TASKS

We now focus on the problem of executing irregular applications, like regular expres-
sions or decision/B+ trees, on SIMD hardware. Our work targets both SSE-like SIMD
hardware, as well as a variant seen in modern GPUs, which is also referred to as the
Single Instruction Multiple Threads (SIMT) architecture. SIMT is a more relaxed ar-
chitecture in the sense that it can manage divergence between threads at the hardware
level. Therefore, our approach is described using the SSE architecture. The work has
been extended to GPU architectures without many modifications.

Returning to our target class of applications, when these programs visit an internal
node, they optionally perform an operation on it, and might also include evaluating an
expression to select the next node to visit. On visiting a leaf node, a different operation
is performed (e.g., storing the result), as there is no new node to be visited. We denote
the operation(s) performed at a leaf node n as W(n) and the computations at the nonleaf
node as T (n).

As a concrete example, consider the decision trees in Section 2.1 and a typical se-
quential single decision tree traversal. Each node of this tree is either an internal node
or a leaf node. When we traverse to an internal node n, we compare feature values and
branch to the left or right child, depending on the result. When we reach a leaf node
n, we update the ranking and terminate the traversal. Thus, for this application, the
former is T (n) and the latter is W(n).

3.1. High-Level Approach to SIMD Execution

Now, suppose that we want to traverse a set of trees on SIMD hardware. We can first
execute T (n) for all root nodes n, which gives us a set of successor nodes ns. Next,
assuming that all tree traversals are of the same length, we can evaluate T (n) for all n
in ns, and so on, until we reach a leaf node. At a leaf node n, we evaluate W(n) for all
trees.

However, in practice, and unlike a typical array-based computation, the different
traversals likely have different lengths. Therefore, at a certain level, a mixture of T
and W computations will be needed. Thus, we must execute each operation type for
each stage and mask the results of operations whose types are not represented by the
current operation. What we are doing is essentially emulating MIMD with SIMD, a
topic that has been studied in the past [Hanxleden and Kennedy 1992; Dietz and Cohen
1992; Blelloch et al. 1994; Hardwick 1996]. However, none of this work has considered
pointer-based traversals.

The second problem is that SIMD execution requires that addressing children is
branchless; otherwise, we are unable to parallelize the T (n) expressions on SSE-like
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ALGORITHM 1: Interpreter (byte codes, task queue)
1: result = 0
2: � Initialize task queue by adding root-level tasks
3: task queue = Initialize(roots)
4: for n ∈ task queue by SIMD-Width do
5: � Process traversal operations in SIMD
6: ns = T (bytecodes, n)
7: � Identify finished traversals
8: isLeaf = findIsLeaf(ns)
9: � Strip out finished traversals
10: ns = streamcompact(ns,isLeaf )
11: task queue.push back(ns)
12: � Process W operations according to isLeaf
13: result = W(bytecodes, isLeaf )
14: end for
15: return result

architectures. To address this problem, we design a layout generation process to or-
ganize data structure elements in the memory in a systematic way. We can provide
a uniform interface so that the details of the memory layout are transparent, but we
must be able to address left and right children of a node with arithmetic operations.
Specifically, suppose that a node has zero, one, or two children. If a node has two chil-
dren, we store the left child contiguous to the right in memory. This organization works
well for SIMD addressing, as we can use a simple arithmetic operation to address the
left and right children of a node. We require that all T (n) expressions return a 0 to
branch to the left child and a −1 to branch right. Thus, for a given node n, if the ns
field stores the location of the left child, the next node to visit is ns−T (n). In effect, this
turns the addressing of children from a control dependence into a data dependence.

Formalizing this, we can put our approach together as an general method
(Algorithm 1). Besides the solutions to the two key problems listed earlier, there are a
couple of additional issues that we addressed in this algorithm. In some applications,
it is necessary to dynamically fork, or start, new fine-grained tasks at a particular step.
This operation needs to be (i) efficient and (ii) parallelizable in SIMD. For example, in
our regular expression engine, we create a new fine-grained task whenever we traverse
an ε node in a NFA. To fork a task, we introduce a fork instruction that starts a child
fine-grained task at the location of its left child and continues the parent task at the
location of the right child.

Further, because not all tasks finish at the same time, we need to remove tasks from
processing when they reach a leaf node. Like stated previously, removing tasks must
be efficient and not require complicated control flow. To efficiently remove tasks from
processing, we use a data parallel technique called stream compaction [Chatterjee et al.
1990]. We discuss details of this optimization in Section 3.3.

3.2. A General Solution for Multiple Applications

SIMD parallelization of each individual application following the methodology de-
scribed earlier can be extremely hard. The programmers need to pay attention to a
number of details and can easily write unoptimized and/or even incorrect code. To
help development of applications, we have developed an intermediate language and a
runtime scheduler or interpreter.

Our solution can be viewed as a virtual machine, where instructions from an inter-
mediate language, or bytecodes, are executed on SIMD units. The bytecodes that we
currently support are listed in Table I. Each bytecode is one of the two types: T (n)
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Table I. Bytecodes Supported by Our Interpreter and Their Semantics

Bytecode Arg Type Description
match None W(n) Found a match; record position; terminate task.
nomatch None W(n) Found no match; terminate task.
store float W(n) Store the arg part of current bytecode to results.
cmp char/float T (n) Advance PC according to the comparison result.
dot None T (n) Advance PC by 1 on any input; if input is null, set PC to nomatch.
jmp char T (n) Set PC to argument.
fork char T (n) Fork a thread: advance parent PC by 1 and set child PC to arg.

Table II. Random Forest Using the Bytecodes

Nodes Type Bytecode Sequence
Internal cmp a;
Leaf store

Table III. NFA Regex Using the Bytecode

Regular Expression Bytecode Sequence
C(a) cmp a;
C(.) dot;
e1e2 C(e1); C(e2);
e1|e2 fork L2; C(e1); jmp L3; L2: C(e2); L3: . . . ;
e? fork L2; C(e); L2: . . . ;
e∗ L1: fork L2; C(e); jmp L1; L2: . . . ;
e+ L1: C(e); fork L1;

and W(n), representing nonleaf and leaf operations, respectively. Any application that
can be implemented using this operation can be mapped to SIMD hardware by our
interpreter.

To show the generality of our approach, we have implemented all of the decision
forest, B+ tree, and regular expression matching applications using our interpreter.
Table II shows the translation from a tree structure to our bytecodes from a subset of
bytecodes that we listed in Table I. For SIMD execution for NFA regular expressions,
the specific method that we use is along the lines of Cox’s NFA engine [Cox 2007],
which in turn is based on Thompson’s work [Thompson 1968]. This approach has an
asymptotic complexity of O(nm), where n is the number of fine-grained tasks and m is
the size of the input string. This is far better than a naive NFA interpreter, which can
at worst run in O(n2). Table III shows how the implementation handles different cases,
using the bytecode from Table I.

Now, returning to how our interpreter works, we summarize the sequential and
SSE implementations of our virtual machine in Algorithms 2 and 3, respectively. Algo-
rithm 2 interprets the bytecodes of all trees/graphs level by level (LL) sequentially. In
each level, it fetches bytecodes indexed by the task queue and processes either a T (n)
operation or a W(n) operation for each tree/graph according to the type of the bytecode.
Considering a more general situation that different portions of input may be required
for different bytecodes dynamically, and the input pointer may be advanced as line 6 of
Algorithm 2, such as the regular expression application, we maintain two task queues
(lists)—that is, clist and nlist—in which clist is to handle the current portion of input,
and nlist is to handle the next portion. Especially for applications like random forest,
the required input index is predecided by bytecodes, and we do not need to move the
input pointer, so clist and nlist can be simply merged as one task queue. After each
iteration, we update either clist or nlist according to the bytecodes, especially T (n)
operations generate either one or two (task expansion) new tasks, and W(n) operations
generate zero tasks.
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ALGORITHM 2: SeqInterpreter (byte codes, input)
1: � Initialize the result accumulator and task queue
2: result = 0 {*Accumulator for results*}
3: vector<> clist = Initialize(roots) {*Current list of PCs*}
4: while input! = NULL do
5: � If necessary, advance the input pointer
6: input += AppShift
7: vector<> nlist = Initialize(NULL) {*Next list of PCs*}
8: while (!clist.empty()) do
9: � Get the bytecode indexed by clist
10: pc = clist.pop back() {*Pop a PC to execute*}
11: op = byte codes[pc]
12: � Process T (n) and W(n) operations
13: if op.type == Bytecode :: cmp then
14: nextPC = cmp(input, op.arg)
15: nlist.push back(nextPC)
16: else if op.type == Bytecode :: dot then
17: nlist.push back(pc + 1)
18: else if op.type == Bytecode :: jmp then
19: clist.push back(op.arg)
20: else if op.type == Bytecode :: f ork then
21: clist.push back(pc + 1)
22: clist.push back(op.arg)
23: else if op.type == Bytecode :: match then
24: result += 1
25: else if op.type == Bytecode :: nomatch then
26: result += 0
27: else if op.type == Bytecode :: store then
28: result += op.arg
29: � Jump to return statement
30: end if
31: end while
32: swap(clist, nlist)
33: end while
34: return result

The SIMD interpreter described in Algorithm 3 is a SIMD parallel version of
Algorithm 2, and a more detailed implementation of the overall method introduced
in Algorithm 1. The basic logic of the SIMD execution part (line 14 to line 40) is as
follows. We fetch multiple bytecodes indexed by the task queue elements according to
the width of SIMD lanes and then load identical parts of multiple bytecodes into the
same SIMD register, such as the highBits part identifying the type of bytecodes and
the args part storing the address of next PC or output value. We next calculate various
flags from types of bytecodes according to the highest bits to be able to mask invalid
results. Finally, we process both T (n) and W(n) operations for all SIMD tasks and strip
out the invalid results by the bytecode type flags calculated before. In the last stage, a
stream compaction operation is used to remove the finished tasks, and thus to compact
the task queues.

3.3. Light-Weight Stream Compaction for SSE Architecture

When different SIMD units are processing paths of different length, stream compaction
is an important optimization to ensure SIMD efficiency. The basic idea is as follows.
Suppose that we start off by needing to process 16 tree traversals concurrently. If the
SIMD width is 4, processing the root level requires four iterations. Following that,
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ALGORITHM 3: SIMDInterpreter (byte codes, input)
1: � Initialize the result accumulator and task queue
2: m128 results = mm setzero ps()
3: results index = 0
4: clist[] = Initialize(roots)
5: clist index = Initialize(roots)
6: while (input != NULL) do
7: input += AppShift
8: nlist[] = Initialize(NULL)
9: nlist index = 0
10: while (clist index > 0) do
11: � Copy clist for task creations
12: tmplist = Initialize(clist)
13: tmplist index = clist
14: for (i = 0; i < clist length; i += SIMDWidth) do
15: � Get bytecodes indexed by clist in parallel
16: m128i PCIndexes = SIMDLoadPCIndexes(clist, i)
17: m128i ops = SIMDLoadCodes(byte codes, PCIndexes)
18: � Get different parts of bytecodes parallel
19: m128i args = SIMDLoadArgs(ops) {*Args part*}
20: m128i highBits = SIMDLoadHiBits(ops){*High bits*}
21: � Decide types of ops in current SIMD lane by High bits
22: m128i isDot = SIMDcmp(ops, mm set1 epix(1))
23: m128i isJmp = SIMDcmp(highBits, jmpFlag)
24: m128i isFork = SIMDcmp(highBits, f orkFlag)
25: m128i isMatch = SIMDcmp(ops, mm setzero si128())
26: m128i isStore = SIMDcmp(highBits, storeFlag)
27: � Process T (n) operations and prepare new task queues
28: � 1. Execute the compare operation
29: m128i cmpResults = SIMDcmp(input, args)
30: � 2. Get addresses of nextPCs by types of operations
31: m128i address = SIMDcmp(highBits, ops)
32: � 3. Mask out the invalid nextPCs by isFork and isJmp
33: m128i nextAddress = SIMDcmp(isFork, isJmp, address)
34: � 4. Strip out finished nlist tasks, store rests to the proper position, advance nlist index
35: nlist index += streamCompaction(cmpResults, isDot, nlist, nlist index)
36: � 5. Similar operation on tmplist
37: tmplist index + = streamCompaction(isJmp, isFork, nextAddress, tmplist, tmplist

index)
38: � Process W(n) operations in parallel
39: results index += streamCompaction(isMatch/isStore, results, results index)
40: end for
41: swap(tmplist, clist)
42: clist index = tmplist index
43: end while
44: swap(clist, nlist)
45: clist index = nlist index
46: end while
47: return results

suppose that the list of nodes to be processed next is stored in an array of length 16,
with a value of 0 denoting that the traversal is over. As an example, assuming that 5
traversals have been completed, whereas the other 11 traversals are still active, a sim-
ple execution mechanism may require four iterations to process these 11 traversals, as
four consecutive values from the array are scheduled in one iteration. A more advanced
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Fig. 2. An example of stream compaction for SIMD efficiency.

strategy might be to compact the nonzeroes in the array and use only three iterations
to process the 11 nonzero entries.

We now explain our stream compaction method with the help of an example, shown
in Figure 2. In this example, at first we have eight tasks in the initial task queue,
and the SIMD lane width allows processing four tasks concurrently. Tasks c1, e1, f1,
and g1 are leaf nodes, and after the first iteration of evaluation, we get one 0 in the
corresponding position of c1. Without stream compaction, a bubble task left in the
SIMD lane undermines the utilization of parallelism. So, we utilize a shuffle operation
to move the completed bubble tasks to the end of the SIMD lane, store the reordered
tasks into the beginning position of the new task queue (store position initialized as 0),
and change store position to 3. A similar operation is applied for the second iteration
of evaluation, and the new generated tasks are stored into store position (3), and the
new store position is increased to 4. If our application does not require task creation,
we may use only one task queue to hold both the old and new tasks, since the number
of new generated tasks is always smaller than or equal to the old ones, and it is
impossible for the new generated tasks to overlap the unhandled old ones. However,
for an application that involves task creation, we need to use two task queues to hold
old tasks and new ones, respectively, and we swap them at the end of the evaluation of
the same level of tasks.

Stream compaction can clearly improve the performance of our method by reducing
the number of SIMD evaluation iterations of deeper levels with finished bubble tasks.
For example, in Figure 2, without stream compaction, two iterations are required
for level 2 evaluation, whereas with it, only one iteration is needed. Moreover, an
interesting aspect of our implementation is that we can remove tasks from processing
without complicated control flow (line 10 in Algorithm 1). Thus, we maintain parallel
efficiency with only a small scheduling overhead.

3.4. Discussion: Extension to Other Architectures

Although our preceding description targeted the SSE architecture, the methods have
been implemented on the GPU (SIMT) architectures as well. NVIDIA GPU architecture
consists of multiple streaming multiprocessors (SMs), and each SM contains multiple
streaming processors (SPs). SIMT parallelism is available within each SM—that is, all
SPs must execute the same instruction in any given cycle. For example, Tesla C2050
(the Fermi architecture) has 14 SMs and 32 SPs per SM. Tasks are executed as warps,
and each warp comprises threads running on the same SM. Thus, effectively, the SIMD
width is 32.

To map our target class of applications onto a GPU, first we apply tiling to parti-
tion the bytecodes of irregular structures into multiple bags, where each bag contains
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bytecodes of 32 trees or graphs. For each input, such as a feature vector for the random
forest application, each bag of bytecodes is treated as a warp and is evaluated by multi-
ple threads with the same SM. The basic idea for interpreting each warp is as described
in Algorithm 1 (i.e., starting from all root nodes n), we need to execute both T (n) and
W(n) operations for each level of the irregular structure to find the next level, store
the valid results, and strip out the invalid results. During the interpretation, we use
Algorithm 3 to handle the control flow dependency—that is, performing computations
for all threads and masking out the invalid results. Alternatively, because SIMT is a
more relaxed model than SIMD (i.e., branches can be handled by the hardware unlike
in SSE-based processors), we can leverage the hardware support from GPU itself to
handle the branches. These two approaches turn out to be equivalent to each other with
the same overall performance in our test, and we use the latter in our implementation
and experiments due to its simplicity. At the same time, multiple warps can also run on
different SMs of a GPU concurrently, giving us a two-level or hierarchical parallelism.

There are two other implementation differences between our CPU and GPU imple-
mentations that we want to emphasize. One difference is that the GPU has its own
memory hierarchy, so we need to transfer the bytecodes to the GPU before interpreting
any inputs. The applications we evaluate in this article all involve evaluating thou-
sands of inputs on a stable set of bytecodes, so we can amortize the cost of transferring
the bytecodes to the GPU across many executions. Another significant difference is
with respect to the stream compaction approach. Particularly, we do not have an effi-
cient shuffle operation on the GPU architectures, since they have much wider SIMD
lanes (32-way), as compared to 4 or 8-way lanes on SSE. Thus, we considered two al-
ternatives. The first was the traditional Prefix Sum-based [Harris et al. 2007] stream
compaction, and the second involved statically, at compile time, reordering the position
of irregular structures according to the average traversal path lengths, and grouping
the ones with similar access levels together. The first strategy introduced relatively
large overheads, and thus we use the latter in our experiments. After reordering, 32
irregular structures with a similar access levels are grouped as one bag and assigned
to one SM.

4. INTELLIGENT DATA LAYOUTS

A naive implementation of these applications, as well as other pointer-based appli-
cations, can be easily limited by the latency of the memory subsystem. For example,
if every node of a tree or a graph is allocated using a library like malloc, there will
likely be no spatial reuse, in addition to the fact that there is no temporal reuse in the
application. Thus, improving memory efficiency is critical toward obtaining benefits
from SIMD parallelize.

In this section, we present a number of layouts that not only linearize pointer-based
irregular data structures into dense arrays but also improve spatial locality. The goals
here include co-locating nodes (in the same cache line) that are likely to be accessed
concurrently by different threads (interthread locality) and/or co-locating threads that
are accessed in successive steps by the same thread (intrathread spatial locality).

First, we note that linearization also compresses a data structure. For example, a
simple depth-first (DF) or breadth-first (BF) layout linearizes nodes of a tree based on
the order they are visited in a DF or BF traversal (e.g., DF or BF in Figure 3(a)). By
linearizing in a DF or BF layout, we can reduce the size of the irregular data structures;
instead of two pointers, we only require a single pointer for each node in both linearized
arrays.

However, both DF and BF linearize each tree independently of other trees and can-
not improve interthread locality. While discussing various layouts, we use the notion of
loading distance to measure interthread data locality. Specifically, the loading distance
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Fig. 3. (a) Memory layout with different schemes. (b) Cache-conscious (CC) layout for a single tree.

is the average distance between memory locations accessed at the same time, by con-
secutive threads. Clearly, as the loading distance increases, interthread data locality
decreases. In DF or BF, the average loading distance between any two neighboring
lanes is the number of nodes in the first of the two trees.

4.1. Improving Interthread Locality

To improve interthread locality, we introduce a layout that interleaves nodes across
trees (shown as LL in Figure 3(a)). To be concrete, we first lay out the root nodes—the
first tree’s root node is followed by the second tree’s root node, followed by the third,
and so on. Then, we move on the next level. We co-locate a node’s left and right children
next to each other in memory. This allows us to use a single pointer to reference both
children nodes, thus reducing the size to store the set of irregular data structures.

Interthread locality improvements through the use of this method is easy to see.
For example, at the root level, nodes have large spatial locality; when we access the
first tree’s root node, we pull in the second tree’s root node. If we have a complete and
balanced binary tree, the loading distance is 2l, where l corresponds to the depth of the
tree. If the depth of each tree is k, then the loading distance varies between 1 and 2k.
In comparison, the loading distance for the BF and DF layouts are nearly 2k+1. Thus,
on the average, the loading distance is reduced, although more so for the initial levels
of the tree than the lower levels.

Although the preceding LL scheme has several advantages, it does not utilize any
possible bias in the traversal pattern. In many applications, there can be a greater
likelihood of visiting one child above the other, and if this bias is known in advance,
the more likely child can always be made the left child.

The next layout introduced is referred to as sorted level by level (SLL) and exploits
such a bias to decrease the loading distance by a factor of up to two. An example of
this layout is shown as the array SLL in Figure 3(a). In this layout, we divide the
nodes of each tree at each level as left children and right children sets starting from
the third level, in which all sibling nodes are still put together to support branchless
addressing. We allocate the nodes in the left children set together followed by right
ones for each level. For example, in the third level of Figure 3(a), we store the nodes in
the left children set, ((C0, D0), (C2, F2)), at first, followed by ((D1, G1), (D3, E3)). When
a tree is biased, we realize a reduced loading distance for each level of the tree.

4.2. Improving Intrathread Locality

Improving cache performance of pointer-traversing applications has been studied in
the context of single-threaded programs [Chilimbi et al. 1999; Rao and Ross 2000],
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Fig. 4. Comparison of last-level (L2) cache misses and execution time for LL and SLL layouts (a) and CC
and hybrid layouts (b).

with the main outcome being a cache-conscious (CC) data layout. In a CC layout, we
partition a single tree into blocks according to the size of L1 or L2 cache line. For
example, in Figure 3(b), if the cache line size is 16 bytes, and each node takes 4 bytes,
we can put three nodes together into a single block (e.g., the dotted triangles). In each
block, when the parent node is fetched into the cache, a cache hit occurs whether the
left or the right child is accessed next, leading to spatial reuse.

However, for multithreaded or SIMD memory accesses, traditional CC layout does
not work well, as it completely ignores interthread spatial reuse. If we have multiple
trees organized with the CC layout, the loading distance for each level is still the entire
tree. In our work, we slightly modify the traditional CC layout by organizing all root
nodes next to each other by an LL layout, since it is obvious to improve the memory
performance on SIMD architecture. We also apply the SLL strategy to organize the CC
blocks into separated left and right groups. We show our CC layout in Figure 3(a) and
use this version in our experiments.

4.3. Hybrid Layout

From our previous discussion, we can observe that while processing of the earlier levels
of the tree gives opportunity for significant interthread spatial reuse, the loading dis-
tance increases beyond the size of a cache line after a certain level, and only intrathread
locality can be exploited. Based on this observation, we design a hybrid layout schema
to combine the benefit of interthread data locality of SLL for top levels and the benefit
of intrathread data locality of CC layout for deeper levels. The hybrid layout is param-
eterized by a switching parameter, which denotes the level where we shift from an SLL
layout to a CC layout.

To further validate our reasoning about relative performance of different layouts
and the motivation behind the hybrid layout, we conducted several experiments. We
use the B+ tree application on the Fermi architecture as an example to examine the
cache behavior of different layouts. The last-level (L2) cache misses and real execution
times of different layouts are shown in Figure 4. Profiling data is collected using CUDA
Visual Profiler 4.1. Solid lines show the L2 cache misses, and dotted lines show the
actual execution time of various versions. By comparing Figure 4(a) and Figure 4(b),
we can see that for top levels, the last-level cache misses of LL and SLL layouts are
lower than those with the CC layout. However, they increase rapidly, and starting
from a certain level, the CC layout outperforms LL and SLL layouts. Further, we show
the L2 cache misses and execution time of the hybrid layout in Figure 4(b). We can
see that the overall performance of the hybrid layout is better than both SLL and CC
layouts.
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Fig. 5. Correlation between last-level (L2) cache misses and execution time (different layouts).

5. CACHE ANALYSIS MODEL FOR AUTOMATIC SELECTION OF LAYOUT

For a given application and architecture, selecting the best layout from among the ones
we introduced in the previous section is a challenging problem, yet automating the
selection is critical for performance portability. For example, for a given application,
choosing the balance between inter- and intrathread locality is a very difficult task for
the application developer, even for one architecture. For a programmer (or just a user)
to achieve this balance while porting the application to another architecture is even
more daunting. Application parameters like the number of bytes needed for one node
of the tree, possible bias in traversing one child of the tree over others, and whether
all trees are accessed with equal probability or not can all impact the choice of the
layout to use. Similarly, architectural characteristics, like the size of a cache line, cache
miss penalties, and degree of SIMD parallelism can impact how one layout may result
in better performance over another. Driven by this motivation, we have developed a
model that aids programmers in selecting the best memory layout for their application
on a particular SIMD architecture.

The model is designed to be used in the following fashion. The programmer is ex-
pected to develop an application using a generic interface, where the details of the data
layout are abstracted. All data layout implementations are available in a library suite.
Once the optimal layout (and/or the parameters, like the switching level) are chosen
by the model, the right layout is used by the application.

In general, modeling computer systems and predicting performance of a given ap-
plication on a given architecture is very hard. However, by focusing on a restricted
domain, we simplify the problem. For our target class of applications, the number of
L2 (and L1) cache misses is an effective predictor of execution time. Figure 5 shows
the relationship between L2 cache misses and execution times with the use of different
layouts. We can see a very high correlation even across different layouts. More detailed
profiling data (not included here) further shows that L1 cache misses can also play
an important role. Based on these observations, our model captures L1 and L2 cache
misses.

To understand the key insight behind our model, suppose that the tree nodes are
organized by the LL layout. As we traverse through a number of trees, for the root
(zero-th) level, one load from main memory is sufficient to bring in many trees (as
many as fit in a cache line). Thus, the loading efficiency is 1. For the first level of the
tree, we will use only 50% of the elements we have loaded (i.e., the loading efficiency
is 1/2). Similarly, for the second level, the efficiency is 1/4. If only four tree nodes can
be stored in one cache line, the loading efficiency remains 1/4 for subsequent levels.
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Table IV. Model Parameters

Parameter Type Explanation Value
N App No. of levels of each tree. B+ tree N = 9
B App No. of trees to evaluate. 32
T1 Arch L1 cache access latency. Assume 1 clock cycle.
T2 Arch L2 cache access latency (L1 cache

miss penalty).
Assume T2 = 4T1.

TM Arch Memory access latency (L2 cache
miss penalty).

Assume TM = 8T1.

L Both L1 and L2 cache line size, in no. of
tree nodes.

Node size = 8 bytes, GPU: L = 128/8 = 16,
SSE: L = 64/8 = 8

G Both In CC layout, the no. of levels of
nodes can be held by one cache
block: G = log2 L.

GPU: G = log2 16 = 4,
SSE: G = log2 8 = 3

x User Switch Level, i.e., start using CC
from it.

However, a different choice of layout or any bias (e.g., to left or right children) can
complicate the calculations of cache misses.

5.1. Parameters and Assumptions

Parameters. The parameters used in this model are explained in Table IV. The GPU
here implies Fermi, the Tesla 10-series architecture, which does not have L1 or L2
cache, will be explained separately later. L is the cache line size in terms of the number
of tree nodes, and we load L nodes into L1/L2 cache in each access. G is a parameter
used for the CC layout. Recall that in the CC layout, we partition a single tree into
blocks with L nodes per block in a triangular fashion. G, which is also log2 L, indicates
the number of levels of nodes that fit in each block. For example, if L = 16, we group
G = log2 (16) = 4 levels of nodes into a block. The parameter G has another significance
for the LL layout. Considering root as the level 0, G is the level at which the loading
efficiency decreases to 1/L and cannot reduce any further.

Assumptions. All data is in main memory initially and both L1 and L2 cache are
empty. The tree data is too big to fit into either L1 or L2 cache, or even a combination of
shared memory (on GPUs) and the cache. There is no temporal reuse while executing
application once. We also assume that the tree is perfectly balanced. Furthermore,
the detailed calculations assume a binary tree, although only a trivial modification is
needed to capture a general k-ary tree.

Initially, we focus on the hybrid layout—that is, we use either the LL or SLL layouts
to exploit interthread data locality for upper levels of the tree, and use CC layout to
explore intrathread data locality for the lower levels, switching at level x. Assuming
that there is no bias in accessing left/right child and all trees are accessed with the
same probability, our objective will be to find the proper switch level, x.

5.2. Basic Model for Balanced Accesses

Our first observation is that while using the hybrid layout with LL at initial levels, the
switch to the CC layout must be made latest by the level G, because there will not be
any spatial reuse with LL layout level G onward (i.e., only one node from a cache line
will be read).

The memory access times for processing B trees, as a function of the switch level x,
is

T (x) = (T1 + T2 + TM) × B
L

× (2x − 1) +
[

T1 × (N − x) +
⌈

(N − x)
G

⌉
× (T2 + TM)

]
× B.

(1)
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The two preceding terms capture the memory access times for up to the level x − 1
and levels x through N, respectively. For the part of the trees that are organized using
the LL layout, we have a total of 2x − 1 nodes for each tree, or B× (2x − 1) nodes for the
B trees we are processing, which correspond to B/L × (2x − 1) cache lines. While using
the CC layout, recall that G levels fit in one cache line, which means that there is a G
times reuse of a single cache line. Thus, the number of cache misses for processing the
last N − x levels is � (N−x)

G �.
To get the value of x where this term is minimized, we take a derivative, resulting

in

T ′(x) = (T1 + T2 + TM) × 2x ln 2 × B
L

−
[

T1 + 1
G

× (T2 + TM)
]

× B. (2)

For T ′(x) in Equation (2) to be zero, we need

x = log2
L
(
T1 + 1

G × (T2 + TM)
)

ln 2 × (T1 + T2 + TM)
. (3)

Using SLL for upper levels. We now show how the previous analysis can be extended
to the SLL layout. Recall that in an SLL layout, we store the left and right parts of the
trees separately. Thus, depending on the traversal, it may be possible to better exploit
interthread data locality for more levels. Our model formally captures this through
a deferring factor, which we empirically determine in an architecture-independent
fashion. Using λ to denote such an empirically determined deferring factor, we modify
the execution time expression for LL as follows:

T (x) = (T1 + T2 + TM) × B
L

× (2x−λ − 1 + λ)

+
[

T1 × (N − x) +
⌈

(N − x)
G

⌉
× (T2 + TM)

]
× B. (4)

Similarly, by taking the derivative of T in terms of x, and checking when it becomes
zero, we have

x = log2
L
(
T1 + 1

G × (T2 + TM)
)

ln 2 × (T1 + T2 + TM)
+ λ. (5)

Equation (5) shows that λ also affects the split level. By analysis of performance with
datasets that have bias, we have found that λ = 1 is quite effective, so we use this value
in all of our experiments.

5.3. Capturing Biased Accesses

In many cases, probability of accessing different children of any node is different.
Without loss of generality, we assume that the child more likely to be accessed is
organized to the left.

We introduce a bias metric β to indicate the percentage of inputs falling into the
left-most path of all trees. Then, if T 1(x) (defined shortly) is the time spent when an
input involves all left-most paths and if T 2(x) is the time spent for all other inputs, we
have

T (x) = T 2(x) × (1 − β) + T 1(x) × β. (6)

T 2 can be calculated using Equation (4). For calculating T 1, we perform the following
analysis. If all queries fall into the left-most path of each tree, the SLL layout is
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preferred and then the loading time of a bag of trees is

T (x) = (T1 + T2 + TM) × B
L

× (1 + 2(x − 1))

+
[

T1 × (N − x) +
⌈

(N − x)
G

⌉
× (T2 + TM)

]
× B. (7)

An analysis of the preceding expression shows that when x = N, T 1(x) is the mini-
mum. We choose x to find the minimum value, where the weighted sum of T 1(x) and
T 2(x) is minimized. Intuitively, we can see that if there is more bias, we can better
exploit interthread locality. Thus, either an SLL layout or a hybrid layout with SLL at
the top several levels is optimal.

β is an architecture independent parameter, which depends on the application, and
more particularly, the dataset. To obtain the value of β, we employed the following
strategy. First, we randomly sample 5% of the input data. We process these inputs and
calculate the probability of reaching each leaf node (denoted as Pi for the leaf node
i). We then estimate β as the sum of the probability of reaching the K left-most leaf
nodes—that is, β = ∑K

i=1 Pi—in which K = Numtotal leaf × 5%.

5.4. Impact of Sparse Buckets Accesses

As we discussed previously, in an application like B+ tree forest, each tree can have
an imbalanced number of inputs in that tree’s bucket. This situation, which we refer
to as sparse buckets accesses, can change the relative performance if we use different
layouts.

Let us revisit Equation (1) and see how to modify it to handle this particular situation.
If the probability of accessing any particular tree is high, each of the blocks at the upper
level still need to be loaded into memory. However, at the lower levels, when we are
using the CC layout, not all blocks will be loaded. Thus, we can simply apply a scaling
factor θ , θ < 1, to the second part of Equation (1). Analyzing when this expression is

minimized, we now get the value of x as log2
L(T1+ 1

G ×(T2+TM))×θ

ln 2× (T1+T2+TM) . Thus, it is preferable to
focus on intrathread spatial reuse starting with even earlier levels.

To summarize, θ is a dataset-dependent parameter, which we can estimate by ran-
domly sampling from the said dataset.

5.5. Modeling a System without L1/L2 Cache

Our discussion so far has assumed presence of an L1 and L2 cache. An architecture like
that of the Tesla 10-series GPU does not have L1 or L2 cache, although it does have
support for coalesced accesses—that is, simultaneous access to consecutive memory
locations by different threads are faster than random accesses.

Our model can also be applied to such an architecture with small modifications.
Particularly, we set G = 1, and L is used to show the coalesced access block size.
By applying similar calculations to Equations (1) and (2), we get T ′(x) = 0 when
x > log2 L (log2 L is the last level where it is possible to utilize coalesced accesses for
LL layout). This implies that we can only utilize interthread data locality for such an
architecture, and our hybrid layout does not provide any further benefits for deeper
levels. Furthermore, with the SLL layout, it is possible to further exploit the inter-
thread data locality for a few additional levels.

6. EXPERIMENTAL RESULTS

In this section, we describe our experimental results. We had the following goals in
our experiments: (1) examining the speedups obtained using SIMD parallelism for our
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Table V. Characteristics of Datasets Used in Our Experiments

Dataset #Tree #Ave_Node Path_Leng Ave_Path_Leng Bias
B+ tree 3,584 513 8–11 9.0 various
Poker 3,584 249 4–10 7.3 0.51
Shuttle 3,584 217 4–10 7.5 0.55
Abalone 3,584 333 5–12 8.0 0.52
Satellite 3,584 353 4–12 8.2 0.55
Microsoft 3,372 239 1–45 11.34 0.8

target class of applications, (2) understanding the relative performance with different
layouts, and (3) validating the analytical model that we have developed.

Platforms. We conduct our experiments on the following three machines: (1) C2050
GPU with the Fermi architecture, connected to an Intel Xeon E5630 CPU (2.53GHz fre-
quency); (2) Quadro FX 5800 GPU with the Tesla architecture, connected to Quad-Core
AMD Opteron(tm) Processor 2380 (2.49GHz frequency); and (3) Intel Xeon E5420 CPU
(2.5GHz frequency) with Streaming SIMD Extension 4 (SSE-4). Sequential and CUDA
codes are compiled by g++ and nvcc, respectively, with O3 optimizations, whereas SSE
codes are compiled with Intel ICC (Intel Parallel Composer 2011) compiler to fully
utilize the SSE unit. We run all programs 30 times, and speedup numbers include the
mean and 95% confidence interval of the mean. For CUDA versions, the execution time
difference across different runs is very small, and therefore we omit the error bars.

Methods. For the random forest application, we used trees and datasets from two
different sources. The first is a popular open source numerical analysis and data pro-
cessing library, ALGLIB, with which we used four datasets distributed by the UCI
Machine Learning Repository—Poker, Shuttle, Abalone, and Satellite. The second is
an internal random forest created for a large Microsoft product that has its own associ-
ated datasets. For the B+ tree application, our evaluation was based on the experiments
reported in the literature [Wu et al. 2010]. Based on this study, we establish a tree forest
with different degrees of left bias input datasets: unbiased (50% bias), 62.5% bias, 75%
bias, and 87.5% bias. Table V summarizes the basic information of tree forests used for
both our B+ tree and random forest applications. For regular expression, we search the
King James Bible for up to 10 different regular expressions. Each regular expression
follows the pattern . ∗ ab, where the characters a and b are unique for each regular ex-
pression. To match N regular expressions, we combine them using the choice operator.

For both Tesla 10 and Fermi architectures, we used the available shared memory as
a buffer to hold input features and evaluation task queues. For the Fermi architecture,
we used 48KB shared memory (and thus, a 16KB L1 cache) to hold both the evaluation
buffer and also some of the top-level nodes of the trees.

Baselines. In both random forest and B+ tree applications, we use a sequential,
pointer-based CPU implementation as a baseline. We wrote our own sequential B+-
tree baseline, and in the random forest application, we use either the ALGLIB original
sequential implementation or the Microsoft sequential implementation. To focus on
speedups obtained using SIMD parallelism, we also created locality optimized sequen-
tial versions. This version uses a linearized layout, with a DF traversal, and uses
bagging or tiling to organize B trees together into a single bag. This version is referred
as DF_Seq in our description. The value of B that leads to the best performance was
empirically determined and used in our sequential version. For regular expression
application, we compare our approach to GNU grep, which is chosen for two rea-
sons. First, like our regular expression engine, it counts matches and matches regular
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Fig. 6. B+ tree (two datasets) and random forest (three datasets) on Fermi GPU. (a) Speedups of different
versions over sequential baselines. (b) Speedups from SIMD parallelization (same layout used for sequential
execution, i.e., LL shows the speedup of SIMD parallel with LL over sequential with LL, and so on).

expressions from the POSIX Extended Regular Expression syntax. Second, GNU grep
is known to be fast.3

6.1. Speedups and Performance with Different Layouts

In this section, we demonstrate the efficacy of our different layouts. In particular, we
demonstrate that our layouts are able to (1) significantly increase the performance of
these irregular applications and (2) enable the use of SIMD architecture for this class
of application.

6.1.1. B+ Tree. We evaluated the B+ tree application on both the Fermi GPU and the
SSE architecture. Results from two datasets, the unbiased traversal and the 87.5%,
are reported here. In Figure 6(a), we show the speedups of different versions over the
sequential baseline on Fermi GPU architecture. We see that using SIMD execution,
we gain around 25X to 36X speedup over the sequential baseline for the unbiased
traversal, and 15X to 29X speedup for the biased traversal. To separate the speedup
from GPU’s parallelism from linearization of the structures, in Figure 6(b) we show
the speedup of CUDA versions over the sequential version with the same layout. For
unbiased traversal, the Fermi GPU architecture enables 9X to 13X speedup, whereas
for biased traversal, 6X to 11X speedups are seen. Considering the irregular nature of
these applications, we consider these speedups to be substantial, and the use of GPUs
toward accelerating this application is justified.

From Figure 6(a), we also see that the SLL and hybrid layouts are better than LL
and CC. For unbiased traversal, the hybrid layout shows the best performance, since it
allows benefits from interthread spatial reuse at earlier levels, and intrathread spatial
reuse at later levels. For biased traversal, SLL layout allows benefits from interthread
reuse for deeper levels as well and has the best speedups. It should all be noted that
for the 87.5% bias case, the switch level used is not optimized for bias, which cause
the hybrid layout to perform worse. Overall, up to a factor 2X difference in perfor-
mance can be seen from the choice of layout from among the four layouts that we have
developed.

The same experiments were repeated on the SSE architecture, and the results are
shown in Figure 7. Similar trends can be seen, and the only difference is that the

3In a recent post to the freebsd mailing list, entitled “Why GNU grep Is Fast,” the author of GNU grep
describes why his implementation is fast; GNU grep uses the Boyer-Moore [Moore and Boyer 1977] algorithm
for sublinear search. It also uses a DFA-based graph traversal once it finds a position in the input string to
match against text.
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Fig. 7. B+ tree (two datasets) and random forest (three datasets) on SSE. (a) Speedups of different ver-
sions over sequential baselines. (b) Speedups from SIMD parallelization (same layout used for sequential
execution, i.e., LL shows the speedup of SIMD parallel with LL over sequential with LL, and so on).

optimization of memory layouts brings relatively smaller benefits on SSE than on the
Fermi GPU. There are two reasons for this: (1) the SIMD lane width of SSE is much
narrower (i.e., only four-way parallelism is possible), and thus the data requirements
in each cycle are modest, and (2) the modern CPU memory hierarchy is more advanced
than GPU, with better prefetching as well as prediction strategies, which makes it
possible to avoid some of the cache misses.

6.1.2. Random Forest. We also conducted similar experiments on the random forests of
ALGLIB and Microsoft. Due to the space limitation, we only show the results from two
datasets for ALGLIB random forest: Poker and Shuttle, as the trends from Abalone
and Satellite almost exactly match the trends for these two.

In Figure 6(a) and Figure 7(a), we show the speedups of different versions over the
baseline on GPU and SSE, whereas in Figure 6(b) and Figure 7(b), we show the speedup
of GPU and SSE versions over corresponding best sequential versions. The speedups
are very similar to those we obtained from B+ tree. One notable difference is that the
random forest of Microsoft shows only 8X speedup from the GPU. This is because in the
dataset used, the input feature vector is very large (2,648 float numbers), and shared
memory cannot be used in the same fashion as in the UCI datasets. Among different
layouts, the best performance is obtained from the hybrid layout for Poker and Shuttle,
and SLL for Microsoft. Considering that Poker and Shuttle is almost unbiased and
Microsoft has a significant bias, these results are consistent with what we saw with
the two datasets of B+ tree.

6.1.3. Regular Expression Matching. We now investigate the performance of our SIMD
interpreter on regular expression matching. For this application, we use a simple LL
layout because the graphs generated by our regular expressions are small and fit
easily in L1, so memory optimizations are not as important as in the random forest
application. We also only report the experiment results for SSE architecture for this
application, because in recent years, there have been many application-specific works
that have heavily optimized the GPU’s implementation of this application [Cascarano
et al. 2010; Zu et al. 2012]. Note that because we can pack instructions into a byte, our
SIMD interpreter can traverse up to 16 graphs in parallel for this application.

Figure 8 shows the speedup of our approach. A bar on this graph (x, y) gives the
speedup over GNU grep (y), varying the number of regular expressions, or fine-grained
tasks, executed. GNU grep at 1.0 is the baseline. It is very fast for the first two regular
expressions, as it uses Boyer-Moore to perform a sublinear search over the input string.
However, after three or more regular expressions, GNU grep cannot use Boyer-Moore,
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Fig. 8. Speedup of the SIMD interpreter over GNU grep regular expressions.

Fig. 9. Stream compaction. (a) Speedup improvements—random forest using five datasets. (b) Reduction in
workload—Poker and Microsoft datasets.

as the resulting regular expression gets too complicated. After three parallel regular
expressions, the sequential interpreter is 1.7X faster than GNU grep. This is due to
the regular LL access pattern of our interpreter. However, the speedup for the SIMD
interpreter linearly increases as we add fine-grained tasks. The SIMD interpreter is
anywhere from 3X to 5X faster when searching for three or more parallel regular
expressions.

6.1.4. Improvements from Stream Compaction for SSE Implementation. In this part, using one
of the applications (random forest), we quantify the gains from our light-weight stream
compaction optimization on SSE architecture.

Figure 9(a) shows the comparison of execution times among the SIMD code with
and without stream compaction for each of the five datasets. The results show that
for datasets with a smaller variation in path lengths, such as Poker and Shuttle, the
stream compaction method gives around 30% speedup over the unoptimized version.
For the dataset that has a larger variation in path lengths (i.e., the Microsoft dataset),
stream compaction gives more than 70% speedup.

To further study the reasons for these speedups, in Figure 9(b) we show the workload
reduction by the stream compaction method using two representative datasets: Poker
and Microsoft. Specifically, Poker represents the case with a smaller variation in path
lengths, whereas Microsoft involves a much larger variation in path lengths. The x-
axis here is the evaluation level, and the y-axis is the cumulative number of SIMD
evaluation iterations (i.e., the workload on the SIMD lanes). We can see that for the
Poker dataset, our stream compaction method is able to reduce around 40% of the
workload, with most gains seen from levels 8 through 12. For the Microsoft dataset,
the benefits are seen even at earlier levels of the tree and, overall, add up to 80% of
the number of iterations needed. By comparing the workload reduction (80% and 40%)
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Fig. 10. Real and predicted execution times with different layouts and architectures. (a) B+ tree forest with
unbiased traversal. (b) Random forest with satellite dataset.

and the execution time reduction (70% and 30%), we see that stream compaction only
introduces a 10% overhead.

6.2. Model Validation

Our model is accurate and thus enables performance portability for this class of appli-
cation on SIMD hardware. In this section, we demonstrate our model’s accuracy on a
wide variety of SIMD architectures. Our model, as described in the previous section,
only calculates the memory access times. For a more direct comparison with real exe-
cution times, the predicted values were normalized to execution times by using linear
regression with a small number of sample values.

6.2.1. Choosing Layouts on Different Architectures. Our analytical model is designed to sup-
port automatic optimization, with the goal of performance portability across different
architectures. Thus, to evaluate its effectiveness, we first examine its ability to choose
best layout for two different applications on three different architectures. In Figure 10,
we compare observed and predicted execution time with four different layouts on
two GPU architectures: Fermi (Tesla C2050) (with L1/L2 caches) and Tesla (Quadro
FX5800) (without caches), and the SSE architecture with a sophisticated cache hierar-
chy. The left and right y-axes correspond to measured and model predicted execution
times. The solid bars report measured performance, whereas the dotted line shows the
model predicted times.

Figure 10(a) reports results from the B+ tree application, using a dataset where
there is no bias. We can see that for all three architectures, our model is able to
predict the layout that will result in the lowest execution time. Moreover, we can
even predict the relative execution times for the four layouts on all architectures.
Particularly noteworthy is that the relative performance trends are very different for
Fermi and Tesla, yet they can be captured by our model. On Fermi architecture, the
hybrid layout results in the best performance, around 35%, 25%, and 10% faster than
LL, SLL, and CC, respectively. On the Tesla architecture without cache hierarchy, the
SLL layout shows the best performance, whereas CC shows the worst, since we cannot
exploit any intrathread locality here. The trends on SSE are quite similar to those on
Fermi, although the relative differences between different layouts are much smaller.
This is because of support for aggressive prefetching and limited degree of parallelism,
both of which reduce the performance impact due to spatial reuse.

We can see that our model does not always predict the precise execution time. This
is because we are using a simple model, which only captures memory access times.
Factors related to degree of parallelism in the application are not captured. However,
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Fig. 11. Comparing real execution and model predicted times. (a) For each level of the tree: LL and CC
layouts, B+ tree on Fermi. (b) For different degrees of Sparse Accesses.

our simple model is able to achieve our goal of predicting the relative performance with
different layouts.

We repeat the same experiment on the random forest application, using the ALGLIB
library tree with the Satellite dataset from the UCI repository. The results are shown
in Figure 10(a), which present similar trends. Again, our model is able to predict which
layout will result in the best performance in each case.

To further examine the efficacy of the analytical model, we carefully studied how
it predicts the evaluation time for different levels of trees. The results are shown in
Figure 11(a). The x-axis is the evaluation level of the tree, and the left and right y-axes
are the measured and the predicted times, respectively. Note that in all double-y-axis
figures of this section, the solid lines correspond to the left y-axis, and the dotted lines
correspond to the right y-axis. We have compared two contrasting layouts: LL and
CC. For LL, both the measured and the model predicted times show an exponential
increased, followed by a linear behavior. The model predicted times follow the shape
of the curve of the measured times even though there are differences in the absolute
values. Again, with the CC layout, the predicted execution time curve matches the
shape of the curve of the measured execution times, and both show stage-increasing
behavior. Similarly, the level at which the CC starts outperforming LL (level 4) can be
correctly predicted by our model.

6.2.2. Handling Application Characteristics. Besides performance portability across differ-
ent architectures, another goal of our analytical model is to be able to choose the
appropriate layout for applications that have different characteristics. We now show
how the model is able to predict performance when there can be bias in traversal or
sparse accesses.

An important factor that impacts the relative performance of different layouts is
the bias degree of the traversal in each tree. Particularly, the SLL layout can be more
effective when there is a bias, and similarly, in using the hybrid layout, it helps to switch
at a deeper level when there is a bias. We now examine how our prediction model can
help choose the appropriate layout, reporting the results in Figure 12, looking at an
unbiased case and three different levels of bias. We consider the hybrid layout and
vary the switch level—that is, the level at which we start using the CC layout. Again,
we can see that the shape of curves for the real and predicted times match well. The
performance obtained at the switch level predicted by the model is either the best, or
very close to the best, performance observed experimentally.

Another important application factor is the sparsity level—that is, the probability
that any given tree will not be accessed during one execution. We have again compared
the observed and predicted times. In Figure 11(b), we show the cases with sparsity
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Fig. 12. Comparing real and predicted execution times with different bias levels: B+ tree on Fermi GPU.

levels varying from 0% to 75%. Again, we use the hybrid layout and vary the switch
level. By comparing the measured and predicted times, we see that the corresponding
curves match very well, and the switch level leading to the best performance can be
correctly predicted.

The parameters and factors that we consider in this section include ones that are
specific to the architecture (and independent of the application) and those that depend
on the application (but independent of the architecture). The latter parameters are
easy to obtain from the architecture’s description. In contrast, application parameters
can be more difficult to obtain. Application-specific parameters include (1) whether or
not there is bias, or whether or not all trees are equally likely to be accessed, and
(2) specific levels of bias or sparsity in accesses. The former is readily available to
application developers since it depends on the underlying algorithm. Sampling and/or
offline profiling could be used for the latter, although it may still be inaccurate. From
the results presented in this section, we can observe that modest changes in bias or
sparsity do not impact our model’s choice of the layout, and thus some inaccuracies in
obtaining these parameters are tolerable. For example, in Figure 12(b), for both 62.5%
and 87.5% bias, the best performance is obtained with 5 as the switch level. Moreover,
our framework still allows large speedups over the baseline even if a nonoptimal switch
level is chosen.

7. RELATED WORK

This section compares our work with related research efforts from other groups, espe-
cially the work of parallelizing irregular data structures on various SIMD architectures
and the efforts of increasing irregular data locality in both single-core and multicore
environments.

7.1. Execution of Irregular Data Structure Traversal Algorithms on Parallel Architectures

Earlier work had used very sophisticated compiler analysis to automatically determine
parallelism in pointer-based programs [Ghiya et al. 1998]. More recently, the Galois
project has extensively considered parallelization of irregular applications [Kulkarni
et al. 2009; Méndez-Lojo et al. 2010]. Their focus is coarse-grained or MIMD paral-
lelism, whereas our focus is SIMD execution.

There are also many efforts focusing on manual optimization of this class of appli-
cations on SIMD and vector units. Key recent efforts include the work by Sewall et al.
[2011] and Kim et al. [2010]. This work considers simultaneously processing multiple
inputs on a single data structure. We are focusing on processing one input point across
multiple pointer-based data structures and focus on a more general interpretation
system.
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Execution of tree and graph traversal algorithms on SIMD (mostly GPU) has been
a popular topic in recent years. As GPGPUs were emerging, Harish and Narayanan
[2007] designed a set of algorithms to map graph algorithms to the GPU architecture.
More recently, many others have worked on this problem with many efforts focusing on
BF traversals [Luo et al. 2010; Agarwal et al. 2010; Hong et al. 2011; Merrill et al. 2012],
which is a key kernel in many applications, and others focusing on single source shortest
path or other interesting graph algorithms [Delling et al. 2011; Solomon et al. 2010].
Our work is distinct in several ways. First, we consider traversals over a collection of
trees, which leads to a different set of challenges for memory locality. Second, our focus
is on performance portability, which has not been the topic of prior studies.

More closely related to the class of applications we study in our work, tree forest
applications like decision trees and suffix trees have also been studied on GPUs [Sharp
2008; Schatz et al. 2007; Trapnell and Schatz 2009]. Especially, Sharp [2008] has par-
allelized decision tree and forest traversal on GPUs. The work is based on using a
GPU’s texture memory and does not apply to the SSE units we have considered. More-
over, none of them have carefully studied the effect of different memory organizations
architecture—that is, they usually implement one specific layout. In addition, this prior
work does not use any form of analytical modeling to achieve performance portability.

Similarly, regular expression traversal has been implemented on GPUs [Vasiliadis
et al. 2009] and Cell processor [Scarpazza and Russell 2009]. Cascarano et al. [2010]
also designed an NFA-based regular expression engine focusing on the GPU’s archi-
tecture, which has been further improved by Zu et al. [2012]. Our work is distinct in
considering SSE parallelism and locality issues related to modern uniprocessors. Prior
to the interest in SIMD or many-core execution, many efforts focused on vectorization
of pointer-based applications. Lars and Hernquist [1990] and Junichiro and Makino
[1990] vectorized tree traversals but considered only a single tree.

More recently, Burtscher et al. [2012] conducted a quantitative study of various
irregular programs on GPUs in which they define two measures of irregularity at
the warp level called control-flow irregularity and memory-access irregularity, and
discuss the effect and trade-off between them on kernel performance. The focus of our
work is on designing a virtual machine technique to address challenges of irregular
applications.

Another class of irregular applications involve sparse matrices and/or indirection
arrays. SIMD and GPU parallelization and optimization of these applications has been
studied in recent years. For example, Kim and Han [2012] proposed a code generation
method to vectorize indirection of array-based loops, and Zhang et al. [2011] designed
a set of strategies to optimize such irregular applications on the GPU’s architecture.

Processing of MIMD tasks on SIMD machines has received considerable attention in
the past. For example, Hanxleden and Kennedy [1992] developed loop transformation
techniques (focused on array-based programs) to achieve this goal. Prins and Palmer
[1993] had a similar focus but targeted vectorization. Dietz and Cohen [1992] described
a more general scheme. Blelloch et al. [1994] and Hardwick [1996] focused on exploiting
nested data parallelism, similar in spirit to our use of data parallelism to handle
irregular applications. Our work has considered specific challenges arising for pointer-
based traversals, which have not been considered in the past. We have also developed
optimizations that are critical for performance on today’s processors (e.g., locality, as
more applications have become memory bound over time).

7.2. Improving Data Locality of Irregular Data Structures

Improving memory locality of irregular data structures has also been studied in the
past. Chilimbi et al. [1999] developed a set of CC structures, and Rao and Ross [2000]
proposed a CC B-tree structure. This early work considered sequential (single thread)
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execution and forms the basis for the one of the layouts we will consider while optimiz-
ing for SIMD execution. Kim et al. [2010] designed an architecture-sensitive binary
search tree for both CPUs and GPUs. They did not consider the processing of multiple
trees concurrently and thus faced a distinct set of data locality issues.

In a recent effort, Jo and Kulkarni [2011, 2012] designed a tiling-like transformation
to improve the performance of irregular data structure traversal, and more recently, Jo
et al. [2013] applied this dynamic reordering transformation as a scheduling for SIMD
execution and achieved good performance. Their primary focus was on temporal reuse,
which is complementary to our work on spatial locality.

7.3. Exploring Interthread Data Locality in Multithreaded Environment and Cache Modeling

There have also been many efforts on exploiting interthread data locality in multi-
threaded environments. In this area, Meng et al. [2010] designed a symbiotic affinity
scheduling (SAS) algorithm to maximize the cache locality of the threads on the same
core. Che et al. [2011] proposed an API, Dymaxion, to help programmers reorganize
the data to achieve better data locality in a heterogeneous environment. Zhang et al.
[2010] proposed a method to transform programs in a cache-sharing-aware manner
to improve the performance, whereas Jang et al. [2011] provided a set of techniques
to transform the data according to different memory access patterns to improve the
performance on both AMD and NVIDIA GPUs. Considering performance fairness in
multiprocessor environments, Zhou et al. [2009] designed a mechanism to share the
cache among concurrent applications. Ding et al. [2011] proposed a runtime library,
User Level Cache Control, for programmers to explicitly manage and optimize the
last-level cache for datasets in multithreaded programs. More recently, Unkule et al.
[2012] presented a software framework to analyze and restructure the GPU kernels
to explore interthread data locality. The distinct aspects of our work are as follows:
(1) we are focusing on improving inter-thread spatial reuse across concurrent threads
from the same application, whereas most of the preceding work considers capacity and
conflict misses from different applications, and (2) our focus is on detailed analytical
modeling of one application with the goal of performance portability.

Cache behavior modeling and analysis is widely used as part of restructuring compil-
ers that focus on scientific (array-based) programs. Earlier work in this area includes
that of Porterfield [1989] and McKinley [1998]. More recently, Cascaval and Padua
[2003] proposed a machine independent model to estimate cache misses during com-
pile time based on stack algorithms. Zhong et al. [2004] developed a model based on
Whole Program Reference Affinity. Our work is distinct in considering a different class
of applications and combining intrathread reuse with interthread reuse for SIMD.

8. CONCLUSION AND FUTURE WORK

This article explains how to extract SIMD parallelism from applications that traverse
irregular data structures such as trees and graphs. As SIMD execution units become
more common and capable in the near future, it becomes increasingly pressing to find
general techniques to exploit the power of this hardware in new and broader contexts.
Our work describes one such approach, which is to traverse and compute on multiple,
independent, irregular data structures in parallel using a targeted virtual machine
running on various SIMD architectures. By scheduling operations from the virtual
machine and implementing a number of optimizations, we have shown substantial
speedups on three latency-critical applications.

Moreover, optimizing an application on any one particular architecture is a chal-
lenging task—optimizing that application for several architectures is a daunting, if
not impossible, task. In other words, it is difficult for programmers to guarantee an
application’s performance portability.
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For SIMD architectures, the memory hierarchy is often the bottleneck to peak per-
formance. In this article, we introduce data layout optimizations for a common class of
memory-bound applications designed to balance intra- and interthread spatial locality.
Further, to remove the burden on a programmer from deciding which data layout to
choose for which SIMD architecture, we have developed an accurate model that en-
ables performance portability for these applications, and extensively validate it across
different applications and architectures. Our experiments’ results show that our model
is able to capture the affect factors of performance from both the architecture and
application sides, which provides optimized configurations for the users’ program and
offers as much as around 45% speedup compared to the suboptimal solution. Although
our work has been in context of a specific class of applications, the main underlying
idea of analytically choosing and/or combining intra- and interthread locality is broadly
applicable, especially as multicore and many-core architectures become more popular.

Our work can be extended in multiple directions. One of the challenges will be
handling applications where graphs or trees may change over time. Similarly, although
we can target both SSE and GPUs, coupled CPU+GPU architectures may provide new
opportunities and challenges for our work. We also need to systematically evaluate the
programmability of our system.
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