
Deep Learning Code Fragments for Code Clone Detection

Martin White, Michele Tufano, Christopher Vendome, and Denys Poshyvanyk
Department of Computer Science

College of William and Mary
Williamsburg, Virginia, USA

{mgwhite, mtufano, cvendome, denys}@cs.wm.edu

ABSTRACT

Code clone detection is an important problem for software
maintenance and evolution. Many approaches consider ei-
ther structure or identifiers, but none of the existing detec-
tion techniques model both sources of information. These
techniques also depend on generic, handcrafted features to
represent code fragments. We introduce learning-based de-
tection techniques where everything for representing terms
and fragments in source code is mined from the repository.
Our code analysis supports a framework, which relies on
deep learning, for automatically linking patterns mined at
the lexical level with patterns mined at the syntactic level.
We evaluated our novel learning-based approach for code
clone detection with respect to feasibility from the point
of view of software maintainers. We sampled and manually
evaluated 398 file- and 480 method-level pairs across eight
real-world Java systems; 93% of the file- and method-level
samples were evaluated to be true positives. Among the true
positives, we found pairs mapping to all four clone types. We
compared our approach to a traditional structure-oriented
technique and found that our learning-based approach de-
tected clones that were either undetected or suboptimally
reported by the prominent tool Deckard. Our results affirm
that our learning-based approach is suitable for clone detec-
tion and a tenable technique for researchers.

CCS Concepts

•Software and its engineering → Reusability;

Keywords

code clone detection, machine learning, deep learning, neu-
ral networks, language models, abstract syntax trees

1. INTRODUCTION
Abstraction is the most important word in software en-

gineering (SE). Accordingly, software repositories are replete
with abstractions, which give software engineers the ability

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASE’16, September 03-07, 2016, Singapore, Singapore

c© 2016 ACM. ISBN 978-1-4503-3845-5/16/09. . . $15.00

DOI: http://dx.doi.org/10.1145/2970276.2970326

to manage complexity by separating concerns and handling
different details at different levels. Abstractions at all levels
of granularity are complemented by implementations. These
implementations can be developed from scratch, or they can
be cloned from existing code fragments [1,2]. If existing code
provides a reasonable starting point for the implementation,
then a software engineer may clone the code by copying and
pasting the fragment. Another way that clones can be intro-
duced in a software system is when an engineer unknowingly
develops an implementation that is similar to an existing
one. Copying and pasting code and subsequently modifying
the copied fragment may yield textually similar code frag-
ments where the similarities can be characterized by their
syntax. On the other hand, when an engineer unknowingly
develops an implementation that is similar in intent to some-
thing that already exists, she may create clones that are
functionally similar yet syntactically different.

Detecting clones is an important problem for software
maintenance and evolution. Although prior work has demon-
strated several adverse impacts of code cloning [3–5], cloning
is not necessarily harmful [6, 7]. Nor should clones neces-
sarily be refactored [8, 9]. Nonetheless, the ability to au-
tomatically detect that two fragments are similar is criti-
cal in many applications [10], e.g., detecting library candi-
dates [11, 12], aiding program comprehension [13], detect-
ing malicious software [14], detecting plagiarism or copy-
right infringement [15, 16], detecting context-based incon-
sistencies [17–19], and searching for refactoring opportuni-
ties [20–22]. Roy and Cordy [10] classified clone detection
techniques by their “internal source code representation,”
synthesizing a taxonomy of text-, token-, tree-, graph-, and
metrics-based techniques. In this paper, our newfangled ap-
proach to mining internal source code representations gives
way to a new, learning-based paradigm.

The clone detection process begins by transforming in
situ code into representations suitable for assessing similar-
ity [10,23]. For instance, to represent fragments, traditional
tree-based clone detection tools depend on handcrafted

features that are tightly coupled to generic programming
constructs. In this respect, the domain information that is
rooted in identifiers [24–27] is discarded, breaking the link
between information that can be learned at both the lexical
level and syntactic level. Moreover, declaring features (e.g.,
the occurrence counts of programming constructs) applies a
great deal of prior knowledge to how we can automatically
represent fragments. However, it is reasonable to expect that
software systems from different application domains and at
different stages of development yield unique patterns in

source code that would be revealing for problems like code
clone detection. Yet these patterns are not necessarily cap-

tured using approaches that establish a generic feature space,
and the only way these useful, latent features can be descried
is by using perspectives of code that are learned, i.e., learn-
ing the representations themselves. Automatically learning
the representations, or “representation learning” [28,29], re-
laxes the prior knowledge used to transform raw data like
source code into suitable representations, automating what
has been a manual step in the detection process. Mining ef-
fective source code features, analyzing the language of iden-
tifiers in source code, analyzing syntactic patterns, and engi-
neering approaches that can adapt to changing repositories
are fundamental SE research problems. Engineering a clone
detection approach that considers all of these concerns is
what motivates our work. Our key result is a new set of
techniques that fuse and use. We fuse information on struc-
ture and identifiers in code and use the data in repositories
to automate the step of specifying transformations.

Our key insight to representing code fragments for code
clone detection is two-fold. First, our approach maps the
terms in fragments to continuous-valued vectors such that
terms used in similar ways in the source code repository map
to similar vectors (Sec. 3.1). This transformation from terms
to vectors is fundamentally different than the token abstrac-
tion used by token-based techniques (Sec. 2.1). Second, our
representation learning-based approach is designed to learn
discriminating features for fragments at different levels of
granularity (Sec. 3.2) rather than depend on intuitive (yet
limited) features that are designed around the structural el-
ements of a language like tree-based techniques (Sec. 2.1).

The essence of our approach goes back to abstraction

and handling different details at different levels in SE. We
propose exploiting this guiding principle in software con-
struction, so our techniques for modeling source code exploit
empirically-based patterns in structures of terms in code just
as language modeling has exploited patterns in sequences of
terms. To this end, we pair lexical analysis with recurrent
neural networks (Sec. 3.1) and syntactic analysis with re-
cursive neural networks (Sec. 3.2). The purpose of coupling
the front end of the compiler with deep neural networks and
deep learning (Sec. 2.3) is to provide a framework for link-
ing patterns mined at the lexical level (by modeling how
terms are used) with patterns mined at the syntactic level
(by modeling how fragments are composed). Clone detection
is one important application of this framework.

2. BACKGROUND AND RELATED WORK
A code fragment (or fragment) is a contiguous segment

of source code, specified by the source file and the lines where
the segment begins and ends [30]. Code clones (or clones)
are two or more fragments that are similar with respect to
a clone type [30]. A candidate is a clone pair reported
by a clone detector [31]. We introduce learning-based de-
tection techniques where everything for representing terms
and fragments is mined from the source code repository. In-
deed, our approach aims to move clone detection from the

art of feature engineering to the science of automated dis-

covery. To substantiate our progress against this goal, con-
sider the following difference. The related work (Sec. 2.1)
uses handcrafted feature vectors to represent fragments. In
our work (Sec. 3), this handcrafting is supplanted by meth-
ods for automatically discovering empirically-based features.

This supplantation is evidenced by the fact that feature vec-
tors in traditional approaches generally lend themselves to
interpretation. A feature may correspond to the occurrence
count of a programming construct in a tree-based technique
or a measure of central tendency in a metrics-based tech-
nique, etc. Alternatively, our feature vectors do not lend
themselves to interpretation. Why? We use a special type of
machine learning (Sec. 2.3) that shifts our clone detection
approach from an imperative style Here is how I want to rep-

resent fragments to a declarative style Here is what I want

to represent. Hence, our work does not replace existing tech-
niques but rather provides a completely new perspective.

2.1 Code Clone Detection
Generally, there are four clone types. Type I: Identical

fragments except for variations in comments and layout [10].
Type II: Identical fragments except for variations in iden-
tifier names and literal values in addition to Type I differ-
ences [10]. Type III: Syntactically similar fragments that
differ at the statement level. The fragments have statements
added, modified, or removed with respect to each other, in
addition to Type II differences [10]. Type IV: Syntactically
dissimilar fragments that implement the same functional-
ity [10]. Type I, II, and III clones indicate textual similarity
whereas Type IV clones indicate functional similarity.

Recall that detection techniques generally begin by repre-
senting code before measuring similarity, and these tech-
niques can be classified by their source code representa-
tion. Text-based techniques [32–35] apply slight transforma-
tions to code and measure similarity by comparing sequences
of text. Consequently, text-based techniques are limited in
their ability to recognize two fragments as a clone pair even
if the difference between them is as inconsequential as a sys-
tematic renaming of identifiers.

Token-based techniques [5, 15, 36–38] mollify the scrupu-
lous text-based rule by operating at a higher level of ab-
straction. These techniques lexically analyze the code to pro-
duce a stream of tokens and compare subsequences to detect
clones. Matching subsequences of tokens generally improves
the recognition power, but the token abstraction has a ten-
dency to admit more false positives [23]. Our learning-based
approach differs from token-based techniques in at least two
ways. First, the token abstraction maps each term to a (dis-
crete) class, which effectively bins the terms, whereas our ap-
proach maps terms to continuous-valued vectors in a feature
space where similarities are encoded as distances. Second,
our approach incorporates context (e.g., syntax) beyond the
token abstraction as tree-based techniques do.

Tree-based techniques [3,39–41] measure the similarity of
subtrees in syntactic representations. Our primary related
work is the influential work by Jiang et al. [41] who presented
Deckard, which transforms parse trees into “characteristic
vectors”and clusters similar vectors (using Locality Sensitive
Hashing [42]) to detect clones. We use abstract syntax trees
(ASTs) rather than parse trees, and while Deckard distin-
guishes between “relevant” and “irrelevant” nodes, we regard
every nonempty node in an AST as relevant. Designating a

subset of nodes as relevant amounts to handcrafting an ab-

straction for fragments. Each component of a characteristic
vector represents the occurrence count of relevant nodes in
the corresponding subtree, so the vector’s dimension is the
number of tree patterns deemed relevant to approximate a
given tree [43]. This feature engineering represents a funda-

mental point of divergence in our work where we learn dis-
criminating features from the data as opposed to declare a
priori a number of specific features. Moreover, characteristic
vectors approximate structural information while neglecting
domain information rooted in identifiers [22]. In fact, there
is generally no special treatment for identifiers and literal
types in AST-based approaches [10]. Our work operates on
identifiers and literal types.

Graph-based techniques [43–47] use static program anal-
ysis to transform code into a program dependence graph
(PDG), an intermediate representation of data and con-
trol dependencies [48]. Gabel et al. [43] augmented Deckard
with semantic information derived from PDGs; they mapped
subgraphs to related structured syntax (defining significant
nodes to be those that descend from the parent statement
class) and then detected clones using Deckard. Chen et al.
[47] used a “geometry characteristic” of dependency graphs
to measure methods’ similarities before combining method-
level similarities to detect application clones in Android mar-
kets. They began by extracting methods from Android ap-
plication packages and transforming each method to a con-
trol flow graph (CFG). They compute a “centroid” for each
method by mapping every CFG node to a three-dimensional
point where the dimensions represent structures. Our work
uses more resolution by operating on AST nodes rather
than basic blocks. They only use the CFG part of the PDG
whereas our approach is designed to learn models of how
terms are composed at any level of granularity. By map-
ping methods in a three-dimensional space of engineered
features, Chen et al. place an extraordinarily strong prior
on the source code representation [47]. They imply the def-
inition of the centroid can be extended so the centroid can
be impacted by the invoke statement, but this augmen-
tation constitutes more feature engineering designed to im-
prove the performance for the specific application of Android
app clone detection. Our unique approach obviates the need
to engineer this kind of feature, since handcrafting is time-
consuming and limited [49].

Other detection approaches include the following. Davey
et al. [11] ignored identifiers and operators and instead con-
sidered the frequency of keywords, indentation pattern, and
length of each line to represent fragments. These feature vec-
tors were passed to a self-organizing map to detect clones.
Marcus and Maletic [25] examined identifiers and comments
to identify implementations of similar high-level concepts.
Nguyen et al. [50–52] extracted structural features from gen-
eric, graph-based representations to build characteristic vec-
tors. Lee et al. [53] measured structural similarities like Deck-
ard and proposed a multidimensional indexing structure to
support fast inference. Kim et al. [54] proposed a semantic
detection technique that compared programs’ abstract mem-
ory states. Hermans et al. [55] proposed a text-based algo-
rithm for detecting clones in spreadsheets. Finally, Jiang and
Su [56] presented EqMiner, a novel approach to identifying
functionally equivalent fragments. EqMiner runs fragments
with random inputs and defines functional equivalence in
terms of I/O behavior. Our work aims to detect both tex-
tual and functional similarity at compile time.

2.2 Language Modeling
Our approach is based in part on language models. A sta-

tistical language model is a probability distribution over
sentences in a language [57]. Traditionally, statistical lan-

guage models have been effective abstractions for natural
language processing (NLP) tasks. Recently, their effective-
ness has suffused SE tasks such as code suggestion [58–60],
deriving readable string test inputs to reduce human ora-
cle cost [61], predicting comments to improve search over
code bases and code categorization [62], improving error re-
porting [63], generating feasible test cases to improve cov-
erage [64], improving stylistic consistency to aid readability
and maintainability [65], code migration [66–68], synthesiz-
ing API completions [69], code review [70], fault localiza-
tion [71], and suggesting method and class names [72].

A statistical language model is a tractable representation
of sentences (e.g., lines of code or traces of method invoca-
tions) in a language. Tractability is realized by decomposing
a joint distribution and analyzing probabilistic automata,
e.g., n-grams: p(s) =

∏m

i=1 p(wi|w
i−1
1) ≈

∏m

i=1 p(wi|w
i−1
i−n+1).

However, n-grams suffer apparent limitations [73, 74]. For
example, since they are simply smoothed counts of term
co-occurrences, they are limited in their ability to general-
ize beyond the explicit features observed in training [29,75–
77]. They are also limited by the amount of context they
consider [75], yet the novel approach of casting applications
in terms of “naturalness” in SE contexts has spawned many
applications of this technology to new problems. We enlist
a particular type of language model to map the terms in
source code to continuous-valued vectors called embeddings

(Sec. 3.1). To the best of our knowledge, we are the first to

propose language models and embeddings for clone detection.

2.3 Deep Learning
Compositional learning algorithms typify deep learn-

ing [29,78], a nascent field of machine learning. These state-
of-the-art learning algorithms have seeded new approaches
in computer vision and NLP. NLP in particular has realized
substantial improvements applying deep learners, e.g., the
recurrent neural network (RtNN) [79–83], to corpora. Our
prior work considered the limitations of n-grams and aimed
to improve the representation power of the abstractions (e.g.,
software language models) we use in SE research by exam-
ining RtNNs on software corpora for a code suggestion en-
gine [84]. While RtNNs are powerful architectures for mod-
eling sequences of terms, their generalization—the recursive

neural network (RvNN) [85]—is capable of modeling arbi-
trary structures to, for instance, predict the sentiment of
natural language sentences [86, 87]. In our work, we cast
clone detection as a recursive learning procedure designed
to adequately represent fragments that serve as constituents

of higher-order components. Of course, recursive learning
is inherently compositional, which gives way ipso facto to
deep learning. Hence, the purpose of deep learning in this
new application is to synchronize the source code represen-
tation that we use in the clone detection process with the
manner in which the code is conceptually organized. To the

best of our knowledge, we are the first to propose a deep,

compositional, learning-based detection approach capable of

inducing representations at different levels of granularity.

3. DEEP LEARNING CODE FRAGMENTS
In this section, we specify our learning-based approach

(Fig. 1) in two parts. The first part (Sec. 3.1) describes how
we use a particular type of language model, an RtNN, to
map each term in a fragment to an embedding. We rely on
related work from the NLP community [79–83] and SE lit-

lexicalsystem syntactic

combine

method
RtNN

RvNN ast2binembeddings

match clones

greedy

ast-based

Figure 1: Coupling deep learners to front-end stages

erature [84] for some of the technical details behind training
and evaluating these models. The second part (Sec. 3.2) de-
scribes how we use the language’s grammar and a recursive
learning procedure, implemented as an RvNN, to encode ar-
bitrarily long sequences of embeddings to characterize frag-
ments. We are not going to specify the features for modeling
these fragments at different levels of granularity; the purpose

of using deep learning is to automate this manual step.

3.1 Deep Learning Code: Lexical Level
An RtNN (Fig. 2) is a deep learner that is well suited for

modeling sequences of terms in a source code corpus with
vocabulary V where |V| = m terms. Let n, a user-specified
hyperparameter [78], be the number of hidden units. An
RtNN comprises an input layer x ∈ R

m+n, a hidden layer z ∈
R

n, and an output layer y ∈ R
m (assuming away heuristics

such as class-based output layers [76, 83, 88–90]). Adjusting
n regulates the model’s capacity [28, 91]. The depth of an
RtNN is attributed to the recurrence [29, 92–95] where the
hidden state is copied back to the input layer, so the input
layer in an RtNN agglutinates the current term t(i) and the
previous state z(i− 1):

x(i) = [t(i); z(i− 1)] (1)

This input vector is multiplied by a matrix [α, β] ∈ R
n×(m+n)

and passed to a nonlinear vector function f , i.e.,

z(i) = f(αt(i) + βz(i− 1)) (2)

This state vector is multiplied by another matrix γ ∈ R
m×n

and normalized to compute a posterior over terms,

y(i) = p(t|x(i)) = softmax(γz(i)) (3)

Eq. (1)–(3) specify an RtNN. Eq. (4) highlights its depth by
making its composition a bit more explicit to show how its
output is a highly nonlinear function of its previous inputs:

y(i) = softmax(γf(αt(i) + βf(αt(i− 1) + β(· · ·)))) (4)

The model θ = {α, β, γ} is trained using a cross entropy
criterion [96] but we omit the technical details here [83,
97]. In software language modeling, the model’s output y(i)
can be used to predict the next term in a line of code as
argmaxk yk(i) [84]. However, deep learners are not simply
useful for their output; their internal components are useful
too. In this work, the most important component of RtNN-
based software language models is the matrix of embeddings

α

β
γ

int foo = 42 ;

Figure 2: RtNN. White nodes are one-hot term vectors;

black nodes are continuous-valued states; gray nodes are

posterior distributions. We extract the matrix of embed-

dings represented by the red arc.

α ∈ R
n×m in Eq. (2). Each column of α corresponds to a

term. The column space of α comprises semantic represen-
tations [29, 72, 84] for every term in V such that the model
imputes similar vectors to terms used in similar ways in
the corpus [29]. Given that each term is one-hot encoded
when presented to the model, the matrix-vector product αt
in Eq. (2) amounts to mapping any term in V to a column
in α thereby mapping sequences of terms in fragments to
sequences of embeddings. Thus, to represent fragments, we
encode arbitrarily long sequences of embeddings.

3.2 Deep Learning Code: Syntactic Level
Our learning-based archetype diverges from traditional

techniques. Given a fragment, information will flow up from
the terminal nodes through the nonterminal nodes to the
root of a hierarchical structure (Fig. 3–4). This bottom-up
flow of information is like the procedures for computing char-
acteristic vectors in traditional structure-oriented techniques
or computing metrics in metrics-based techniques. However,
we mine vector representations for terminal nodes (Sec. 3.1),
and the features for nonterminal nodes are not indicator-
based occurrence counts (Sec. 2.1). The feature space is in-
duced by learning to discriminate fragments (Sec. 3.2.2). Fur-
thermore, after information is synthesized in a bottom-up
traversal to compute characteristic vectors or metrics, tra-
ditional techniques terminate and pass the source code rep-
resentations to a match detection algorithm to find similar
fragments. In a way, we regard the bottom-up flow of infor-

mation as necessary—but not sufficient—to adequately rep-

resent fragments. Hence, our termination condition is fun-
damentally different. In our approach, the procedure for
mining representations terminates when the model has con-
verged to a solution such that it can adequately represent
programming constructs at different levels of granularity
(Eq. (5)–(7)). This criterion where information at the lexi-
cal level is transmitted from terminals to a structure’s root
and a supervised signal is broadcasted from the root back
through the structure [85] lies at the heart of our approach.

3.2.1 From ASTs to Full Binary Trees

The front end of a compiler decomposes a program into
constituents and produces intermediate code according to
the syntax of the language [98]. These constituents are called
programming constructs, and a context-free grammar spec-
ifies the syntax of programming constructs [98]. The AST
is one type of intermediate code that represents the hier-
archical syntactic structure of a program [98]. Ultimately,
our goal is to specify learning-based techniques for encod-
ing arbitrarily long sequences of lexical elements. Since the
nonterminal nodes in ASTs subsume sequences of lexical el-
ements [98], suppose each AST node has a special attribute

repr that stores a vector representation, a code1 that char-
acterizes the node and, by extension, the sequence of lexical
elements the node subsumes. We mine the codes in such a
way that similar sequences have similar codes. One learning-
based technique is based on the AST, a tree representa-
tion that can have an arbitrary number of levels compris-
ing nodes with an arbitrary number of children, but herein
lies the problem. Our learner only accepts fixed-size inputs
(Sec. 3.2.2), so we transform the AST to a full binary tree to
fix the size of the input, and we apply the learner recursively
to model the structure at different levels.

The degree [99] of an AST node is either zero, one, two, or
greater than two. By definition, AST nodes with degree zero
or two satisfy the property of nodes in a full binary tree [99],
but subtrees rooted at nodes with degree one (Case I) or
greater than two (Case II) must be transformed in order to
refashion the local subtree into a full binary tree. The first
step of our transformation is to scan the AST and delete
metadata (e.g., Javadoc nodes in ASTs for Java fragments)
as well as nodes for empty anonymous class declarations,
empty array initializers, empty blocks, empty classes, empty
compilation units, and empty statements. As we scan the
AST for empty nodes, we also look for sequences of iden-
tical literal types with the same parent. The learner will
encode pairwise combinations of AST nodes; therefore, we
avoid encoding pairs of the same literal type by visiting non-
terminal nodes, inspecting their children, and collapsing ad-
jacent, identical literal types to one instance. For example,
true true, true true true, etc. all become true. Collapsing
these sequences also helps control the depth of the binary
tree at the risk of losing some resolution.

Next, to obtain a binary tree, subtrees rooted at Case II
nodes (i.e., nodes with degree greater than two) need to
be reorganized so the children are suitably arranged. We
defined a grammar-based approach, for each nonterminal
type, to systematically reorganize the children of Case II
nodes. For example, IfStatement instances can have either
two or three children. For this nonterminal type, we defined a
new grammar that only produces binary subtrees (assuming
away the syntax of Expression and Statement nodes) since
every production body has either one or two constructs. To
do so, we augmented the language’s grammar by introducing
new artificial nonterminal types such as Branches:

〈IfStatement〉 ····= 〈Expression〉 〈Branches〉

〈Branches〉 ····= 〈Statement〉 [〈Statement〉]

For nonterminal types with arbitrary maximum degree (e.g.,
Block nodes) we organized their children into binary lists.
Since the children of Block nodes are represented by a se-
quence of statements, we replaced the original production

〈Block〉 ····= { 〈Statement〉 }

with a new production where Block nodes can have the form
of a recursive list of statements:

〈Block〉 ····= 〈StatementList〉

〈StatementList〉 ····= 〈Statement〉 [〈StatementList〉]

After we transform each Case II instance using the new
grammar, we obtain a binary tree from the original AST, but

1
We use code to refer to source code, intermediate code, and repre-

sentations. The context will always disambiguate the term.

the binary tree may or may not be a full binary tree since
nodes may have one and only one child. In other words,
we need to handle Case I nodes (i.e., nodes with degree
one). We traverse the binary tree in a top-down manner,
and when we reach a Case I node, we merge the node and
its child into one node. Then we recursively continue the
transit from the new merged node. The top-down visit en-
sures that instances of parent nodes with one and only one
child are eventually merged into one node. Our merging
procedure is governed by a precedence list that assigns a
value to each nonterminal type. When merging two nodes,
the precedence value is used to decide whether to assign
the current node type or the child type to the new node.

Table 1: Precedence

TypeDeclaration
MethodDeclaration
OtherType
ExpressionStatement
QualifiedName
SimpleType
SimpleName
ParenthesizedExpression
Block
ArtificialType

Tab. 1 shows the precedence list
we defined where types higher
in the list have higher prece-
dence. When two nodes have the
same precedence value—which
may be the case with two Oth-

erType nodes—the merge keeps
the parent node. This design de-
cision comes from the observa-
tion that the parent node is typ-
ically more expressive and repre-

sentative of the programming construct than the child node.
We determined the list upon several empirical observations.
In particular, with this order, we ensure the following.

• Certain levels of granularity are protected and never
overwritten by other nodes.

• When merging two nodes, more expressive types are
preferred over more general types such as Parenthe-
sizedExpression and Block.

• Artificial nonterminal nodes, created in the previous
step to handle Case II nodes, will never replace non-
terminal types in the original grammar.

The implications for protecting certain levels of granular-
ity are apparent in SE applications such as clone detection
where (for example) our approach is capable of represent-
ing and thereby reporting clones at well-defined abstraction
boundaries to better support software maintainers.

3.2.2 From Full Binary Trees to Olive Trees

Now we describe how we transform a full binary tree to
what we informally call an olive tree, which is the result of
converting intermediate code to a full binary tree and then
annotating this tree with mined representations. Consider
the statement int foo = 42;. The AST for this statement
is already a full binary tree depicted in Fig. 3 (1)–(5). Sup-
pose again that each AST node has a special attribute repr,
e.g., 2.repr stores the representation for the SimpleName (2)
in Fig. 3. We initialize this attribute for each terminal by us-
ing its lexical element to select the corresponding column in
the matrix of embeddings α (Fig. 2). For example, if the
lexical element int maps to the jth column of α, then repr
for the PrimitiveType (1) in Fig. 3 is initialized such that
1.repr = α·j . This attribute is initialized to null for nonter-
minal nodes such as the VariableDeclarationFragment (4)
and the VariableDeclarationStatement (5) in Fig. 3. At this
juncture, we have used patterns mined at the lexical level
(Sec. 3.1) to initialize a sequence of embeddings. Next, we
use an autoencoder to combine embeddings. The canonical

1 2 3

4

5 2̂ 3̂

εℓ

εℓ εr

εr
δℓ δr

int foo 42

Figure 3: AST-based

1 2 3

44

5

εℓ εr

εr
εℓ

int foo 42

Figure 4: Greedy

form of an autoencoder is a neural network with one input
layer x, one hidden layer z, and one output layer y

z = g (εx+ βz) (5)

y = h (δz + βy) (6)

where ε = [εℓ, εr] ∈ R
n×2n is the εncoder; δ = [δℓ; δr] ∈

R
2n×n is the δecoder; βz ∈ R

n and βy ∈ R
2n are βiases.

The tie that binds patterns mined at the lexical level with
patterns mined at the syntactic level is n, which is the same
n that governed the size of the hidden layer z in Eq. (2). g
is a nonlinear vector function, and h is typically the iden-
tity function. In Sec. 3.2.1, we claimed that our learner only
accepts fixed-size inputs, which prompted the transforma-
tion of ASTs to full binary trees. Concretely, the input to
the autoencoder is a vector of two sibling nodes’ codes, i.e.,
x = [xℓ;xr] ∈ R

2n. For example, to compute the represen-
tation for the VariableDeclarationFragment (4) in Fig. 3,
we would present x = [2.repr; 3.repr] to the model. Con-
stricting the size of the hidden layer (i.e., |z| = n < 2n)
coerces the model into learning a compressed representa-
tion of its input. This compression, z in Eq. (5), serves as
the mined representation that we store in the nonterminal
node’s repr attribute. Essentially, the model embeds the in-
put in a lower-dimensional feature space just as the language
model embedded one-hot term vectors (Sec. 3.1). In other
words, the language model transforms lexical elements to
embeddings, and the autoencoder compresses any two em-
beddings to a vector with the same dimensions as a term
embedding. The output y = [x̂ℓ; x̂r] ∈ R

2n is referred to as
the model’s reconstruction of the input. Training the model
involves measuring the distance between the original input
vector and the reconstruction:

E(xℓ, xr; ε, δ, βz, βy) = ||xℓ − x̂ℓ||
2
2 + ||xr − x̂r||

2
2 (7)

If the model can effectively learn discriminating features of
the input, then it will be able to generalize and faithfully
reconstruct any input vector sampled from the domain.

We just demonstrated how conventional autoencoders can
compress modest sequences of two lexical elements, but to
support clone detection, we learn codes formuch more. Since
the code for every node in the tree has the same size, we
can apply the autoencoder recursively, an RvNN, to model
the full binary tree at different levels. The autoencoder that
we used to compress the SimpleName (2) and NumberLit-
eral (3) in Fig. 3 can be applied recursively insofar as the
code for the VariableDeclarationFragment (4) is coalesced
with the code for the PrimitiveType (1) and presented to
the same model to compute the code for the VariableDecla-
rationStatement (5): 5.repr = g([εℓ, εr][1.repr; 4.repr] + βz).
As before, to train the model, we decode the representa-
tion (i.e., y = h([δℓ; δr][5.repr] + βy)) and compare the re-
construction to the input (i.e., x = [1.repr; 4.repr]) to ad-
just the weights. But now the error is a (weighted) sum

of all reconstruction errors where larger programming con-
structs will have more influence on shaping the represen-
tation for the fragment. For example, the VariableDeclara-
tionFragment (4) has a greater influence on tuning 5.repr
than the PrimitiveType (1). After computing the code for
each nonterminal node in a forward pass, the backpropa-
gation through structure algorithm [85] computes partial
derivatives of the (global) error function with respect to the
model’s components. Then the error signal is optimized us-
ing standard methods. Once the deep learner has converged
after a number of epochs, we inlay the full binary tree with
the representations to produce an olive tree.

Why is deep learning a good approach for clone detection?
Techniques that analyze identifiers generally use Latent Se-
mantic Analysis (LSA) [100]. Deep learning has three appar-
ent advantages over LSA. First, autoencoders are nonlinear

dimensionality reducers. Second, recursively applying an au-
toencoder operates on input with several nonlinear transfor-
mations as opposed to using one linear decomposition of the
input. Third, the recursion considers the order of terms. On
the other hand, techniques that analyze structure discard
identifiers, which we use as prior knowledge. Rather than use
generic structural elements, our learning framework bases its
representation on the discriminative power of identifiers and
literal types, so even when the syntax is only weakly similar,
deep learning can still recognize similarities among terms.

Socher et al. [86] applied recursive autoencoders to nat-
ural language sentences for sentiment analysis. The novelty
in Socher’s work was the semi-supervised augmentation de-
signed to train the model to classify the sentiment of sen-
tences using sentence-level labels. We use recursive autoen-
coders to learn representations, instantiated as syntactic-
level attributes, of arbitrary sized code fragments. One fi-
nal remark on the nature of the attributes that we use: in
compiler parlance, an attribute (i.e., a quantity associated
with a programming construct) is said to be “synthesized”
or “inherited” [98], but the attribute we mine in this work
is technically neither. A synthesized attribute for a node is
computed from the attribute values for the node and the
node’s children whereas an inherited attribute is computed
from the node, its parent, and its siblings [98]. However, in
our work, attributes are synthesized in a bottom-up traver-
sal, but then the training algorithm will adjust the attributes
in a top-down manner as the errors for general programming
constructs are divvied up among their constituents.

3.2.3 Olive Trees for Clone Detection

Once the model is trained, inference is straightforward.
Recognizing a clone pair amounts to comparing the repre-
sentations for two fragments, which can be at different levels
of granularity. Specifically, given a fragment, we build the
AST and then transform the AST to a full binary tree. If
there are k terminal nodes in the full binary tree, then there
will be k − 1 nonterminal nodes. As a result, encoding the
sequence requires k − 1 matrix-vector multiplications each
followed by the application of a vector function to derive the
representation for the fragment. Naturally, the topology of
the full binary tree governs the order in which the nodes’
representations are combined. For the specific application of
code clone detection, all that is required is a threshold for
comparing two representations to determine whether their
propinquity classifies them as a clone pair; the threshold
completes the clone detection specification.

3.2.4 Greedy Combinations for Clone Detection

Here we draw from an approach proposed by Socher et
al. [86] for combining pairwise representations in a greedy
manner. First, we summarize the training procedure. For
each fragment, we build the AST, but rather than transform
the AST as before, we encode each pair of adjacent terminal
nodes. Then we select the pair with the lowest reconstruc-
tion error (Eq. (7)) to encode first. For example, in Fig. 4,
the first iteration derives two codes; the model does a better
job at reconstructing [1.repr; 2.repr] rather than the Vari-
ableDeclarationFragment [2.repr; 3.repr]. The next iteration
substitutes the chosen pair with their new parent and then
computes the pairwise reconstruction errors again, selecting
the pair with the minimum error. If there are k terminal
nodes covering the fragment, then this procedure repeats
until a representation has been computed for k − 1 nonter-
minal nodes. Once the ad hoc tree is in place, the model is
trained as before with the backpropagation through struc-
ture algorithm and a standard optimization method.

Once the model is trained, inference again is straightfor-
ward. Given a fragment, we build the AST and then greedily
encode nodes until deriving a code for a node that subsumes
the fragment. This code is compared to other greedily en-
coded fragments using a threshold to detect code clones. One
important note on the training and inference procedures for
greedily encoding nodes is that we do not need to build the
AST. In fact, since the language model stores an embedding
for every term in the corpus, we can operate directly on the
concrete fragment. The reason we build the AST is to filter
lexical elements such as punctuation to control the depth of
the tree that we use for training and inference.

There are some remarkable differences between the two
combining methods. First, for the AST-based method, the
clone granularity is generally “fixed,” i.e., it combines frag-
ments within syntactic boundaries [23]. On the other hand,
for the greedy method, the clone granularity is generally

“free,” i.e., it combines fragments without syntactic bound-
aries [23]. Second, training requires more computational re-
sources for the greedy method than the AST-based method.
The AST-based method has k−1 matrix-vector products to
compute whereas the greedy method has k − 1 (generally)
dense matrix-matrix products to compute. Third, since the
greedy method is trained without explicit knowledge of the
syntax, it does not need to build the AST, so the model
may better handle syntactically invalid fragments. Despite
the differences, the methods together reify a new, learning-
based paradigm for code clone detection.

4. EMPIRICAL VALIDATION
The goal of our empirical study was to analyze our source

code representations for the purpose of evaluating them
for code clone detection with respect to feasibility from
the point of view of software maintainers in the context

of Ph.D. students and real-world Java systems [101]. Our
intent for establishing feasibility as the quality focus was
twofold. First, we are not only presenting an innovative ap-
proach to transforming source code but also introducing the
idea of framing clone detection as a robust learning prob-
lem. Hence, we seek to provide some understanding of the
practical relevance of this new perspective. Second, given a
new approach to clone detection, the evaluation in and of it-
self is a formidable task beset by undecidable problems and
variable human judgment [30,102–108]. Roy et al. [23] high-

Table 2: Subject Systems’ Statistics

System Files LOC Tokens |V|

ANTLR 4 514 104,225 701,807 5,826
Apache Ant 1.9.6 1,218 136,352 888,424 16,029
ArgoUML 0.34 1,908 177,493 1,172,058 17,205
CAROL 2.0.5 184 12,022 80,947 2,210
dnsjava 2.0.0 196 24,660 169,219 3,012
Hibernate 2 555 51,499 365,256 5,850
JDK 1.4.2 4,129 562,120 3,512,807 45,107
JHotDraw 6 984 58,130 377,652 4,803

light a number of factors that make evaluating and compar-
ing detection tools challenging, including—but not limited
to—the diverse nature of detection techniques, the lack of
standard similarity definitions, the absence of benchmarks,
the diversity of target languages, and the sensitivity of tun-
ing parameters. Further, many clone detection tools are not
available. Indeed, the community’s knowledge of code clone
detection tools’ performances on real-world systems is lim-
ited [30]. In this respect, our experimental design, analysis,
and reporting are consistent with current studies in the field.
We discuss limitations of our empirical study in Sec. 4.2 and
consolidate threats to the validity of our work in Sec. 6.

Notwithstanding the challenges, we aimed to determine
whether the idea of learning representations for fragments
can be relevant for clone detection and a tenable technique
for researchers. We examined the following questions.

RQ1 Are our representations suitable for detecting frag-
ments that are similar with respect to a clone type?

RQ2 Is there evidence that our compositional, learning-
based approach is capable of recognizing clones that
are undetected or suboptimally reported by a tradi-
tional, structure-oriented technique?

Considering our goal and questions, we intended to estimate
the precision of our approach at different levels of gran-
ularity to answer RQ1 and to synthesize qualitative data
on code clones across two detection techniques for RQ2.
Judging code clones is inherently difficult (even among ex-
perts [102,104,107]) because of imperfect definitions [10,106]
and the lack of oracles [107], so we developed a research in-
strument [109] to support consistent evaluations and control
construct threats. We describe the guidelines used to man-
ually examine candidates in Sec. 4.2.

4.1 Data Collection Procedure
Our subject systems included eight real-world Java sys-

tems (Tab. 2) used in previous studies [10]. We used ANTLR
to tokenize the source code and the RNNLM Toolkit [80] to
train several RtNNs for each system, varying hidden layer
sizes and depths [84]. We selected the highest quality model
for each system, using perplexity [57] as a proxy for qual-
ity, and extracted the matrix of embeddings (Fig. 2). Re-
searchers have not established a correlation between intrin-
sic evaluation [57] metrics such as perplexity and the quality
of model components like the matrix of embeddings. How-
ever, anecdotally, we have observed interesting patterns in
good models induced from Java corpora where embeddings
for similar terms are collocated in feature space. For each
system except CAROL, we used a hidden layer size of 500,
i.e., z ∈ R

500 in Eq. (2). For CAROL, our simplest system
in terms of tokens and vocabulary size, we used 400.

Next, we used the Eclipse Java development tools to build
the AST for each file in every system. Each AST node repre-
sents a programming construct, and we relied on the visitor

design pattern to traverse ASTs, identify nodes’ types, and
implement ast2bin (Sec. 3.2.1). Empirically, we found 25 dif-
ferent programming constructs that have at least one Case II
instance, so we implemented productions (using 30 different
artificial types) to handle each construct and verified that
our ast2bin procedure transformed the 9,688 ASTs across
our eight systems to full binary trees. The roots in all but 17
of these trees were CompilationUnit nodes. The others were
rooted at TypeDeclaration nodes. To generate method-level
corpora, we used a MethodVisitor, collecting methods with
10–50 LOC. We only considered methods with no more than
50 LOC to focus the method-level evaluation on small code
fragments and complement the coarse, file-level evaluation.

Given the embeddings, we induced an ad hoc, annotated,
full binary tree for each file using the greedy method. Then
we used the embeddings and the AST-based full binary trees
to induce an olive tree for each file. Our experimental de-
sign planned to compare results from our approach to the
state-of-the-practice, so we ran Deckard on our systems. To
configure Deckard, we used the settings proposed by Jiang
et al. [17], setting minT to 50, stride to ∞, and similarity
to 1.0, which correspond to standard choices in other tools.

4.2 Analysis Procedure
RQ1. After running the AST-based and greedy methods,
the next step in the clone detection process [10,23] (and the
first step in our analysis procedure) was to select a similar-
ity metric and threshold. We selected the ℓ2 norm to mea-
sure the similarity of fragments’ codes. For the AST-based
method, we used the same file-level threshold 1.0e-5 for each
system. For the greedy method, the distances were dispersed
across several orders of magnitude, so we selected file-level
thresholds such that the number of candidates was approx-
imately equal to the number proposed by the AST-based
method for each project. Likewise, we used general thresh-
olds for methods. Our selections were not optimized—in ac-
cordance with our goal of evaluating feasibility rather than
improving effectiveness. In other words, we are studying the
feasibility of a new, learning-based paradigm for code clone
detection; improving the effectiveness of learning-based tech-
niques by tuning project-dependent hyperparameters such
as the size of the embeddings or the threshold for classifica-
tion constitutes a different problem.

Given the lack of oracles for our systems, we set out to
manually examine random samples of candidates. To provide
a reasonable scope for the manual evaluation, we settled on
assaying file- and method-level candidates using two-author
agreement. Two Ph.D. students evaluated file- and method-
level samples for each combining method and every system.
If our approach performed well on several hundred oracled
pairs at multiple levels of granularity, then it is sensible to
conclude that our source code representations are suitable
for clone detection. To support consistent evaluations, we
adapted the taxonomy of editing scenarios designed by Roy
et al. [23] to model clone creation and be general enough to
apply to any level of granularity. In our scenario-based eval-
uation, both participants were presented with samples and
instructed to compare them systematically—i.e., top-down
from Scenario I to Scenario IV where clones created by the
scenarios correspond to one of the four clone types—to as-
sess each sample as a true positive or false positive. After in-
dependently evaluating the samples, authors’ disagreements
were discussed and resolved.

In addition to providing a reasonable scope for the man-
ual evaluation, another reason why we examined file-level
samples is we expected the coarse granularity (a mixture
of compilation units and types) to be harder for our re-
cursive learning procedure, which amounts to applying the
chain rule for partial derivatives. Larger fragments yield
deeper trees, but training deep architectures is notoriously
difficult [28, 78, 91–93]. Consequently, if the RvNN is capa-
ble of producing good results at coarse granularity, then it
is reasonable to expect its representations at lower levels
of granularity are effective, and we substantiate this claim
with our method-level evaluation. Moreover, empirical stud-
ies [31, 110, 111] have underscored several practical uses for
file-level clone detection to include, inter alia, detecting sim-
ilar projects and measuring third-party library reuse. Sec. 5
reports estimates of the precision of our approach.

Measuring recall is a common limitation to many clone de-
tection studies. We considered using a synthetic clone bench-
mark, but our approach is based on learning from how terms
are used in a corpus. By using a mutation-analysis proce-
dure, we would increase our control over estimating recall,
but we would reduce the degree of realism, which risks set-
ting real influential factors (e.g., patterns mined at the lex-
ical level) outside the scope of the study [109].
RQ2. Our second research question was intended to frame
an exploratory study on our results as compared to state-of-
the-practice results where differences may admit important
practical impacts and theoretical advances. From a software
maintainer’s point of view, a detection technique that is ca-
pable of reporting clones at fixed levels of granularity is use-
ful [23]. For example, given an oracled pair of file clones, it
would be ideal for a detection technique to report the files as
clones rather than splinter the compilation units and report
their constituents as clones. Structure-oriented techniques
like Deckard try to account for similar code of any size with
ad hoc, user-provided input, e.g., the width of a sliding win-
dow [41], but automated support for this practical concern
is not designed into the approach as it is in our work. Au-
tomatically reporting clones at a fixed level without requir-
ing input from the user (beyond specifying the level) would
be a notable strength of our compositional, learning-based
paradigm where information is communicated between gen-
eralized constructs such as types and specialized constructs
such as statements to train the model. To provide a reason-
able scope for the exploratory study, we settled on file-level
pairs. Sec. 5 synthesizes qualitative data from the study.

5. EMPIRICAL RESULTS
Our RvNN implementation forked Socher et al. [86], which

used L-BFGS to optimize costs in batch mode. We trained
each model for at least 30 epochs on one compute node serv-
ing two Intel Xeon E5-4627 v2 processors at 3.3 GHz. Tab. 3
reports the average training time (in seconds) per epoch.
Once a model is trained, inference at any level of granu-
larity amounts to matrix multiplications, so Tab. 3 reports
the average time (in seconds) to infer the representation of
a file. These results contained outliers, so we also report
the median time in parentheses. Sec. 6 summarizes lessons
learned from training these models on source code.
RQ1. Sampling candidates for each combining method and
system, Tab. 4 reports the ratio of true positives as well as
the total number of samples used to build the estimate. Al-
together, we sampled and manually evaluated 398 file-level

Table 3: Performance Results

System
Training (sec) Inference (sec)

AST-based Greedy AST-based Greedy

ANTLR 443 3,516 3.21 (1.18) 33.36 (1.96)
Apache Ant 813 3,476 3.31 (1.76) 25.20 (3.10)
ArgoUML 1,018 3,868 2.58 (1.24) 16.35 (1.80)
CAROL 34 116 0.88 (0.48) 4.87 (0.95)
dnsjava 148 1,169 3.63 (2.16) 30.67 (4.30)
Hibernate 277 1,077 2.49 (1.17) 17.70 (1.70)
JDK 2,977 14,965 3.46 (1.19) 35.06 (1.80)
JHotDraw 336 792 1.67 (0.93) 6.40 (1.19)

pairs from a pool of 1,573 candidates and 480 method-level
pairs from a pool of 60,474 candidates. 93% of the file-level
samples were evaluated to be true positives where 16 of
the 27 false positives came from one configuration (dnsjava,
AST-based). Then we applied the model that was trained on
the file corpus to the method corpus. 93% of the method-
level samples were evaluated to be true positives. Once more,
neither file- nor method-level thresholds were optimized. For
systems that had less than or equal to 30 candidates (after
applying the generic threshold), we manually evaluated ev-
ery candidate. For instance, Hibernate (AST-based) only
had 13 file-level pairs with distances below the threshold,
and all 13 candidates were true positives. For systems that
had more than 30 candidates, we sampled 30 of them. In
one case (CAROL, AST-based), the threshold on file-level
pairs was too strict. Nonetheless, Tab. 4 provides empiri-
cal evidence that our learning-based paradigm is feasible for
real-world systems. Among the file-level true positives, we
found pairs mapping to all four clone types: I (43), II (191),
III (132), and IV (5). As expected, the distances were near
zero for Type I clones, and there was more dispersion for the
other types. Four of the five Type IV clones were found by
the AST-based method. We placed several examples of true
positives and false positives in our online appendix [112].
RQ2. For a traditional, structure-oriented technique, we se-
lected the prominent tool Deckard [41]. For the exploratory
study, we queried the file-level true positives and filtered
them to remove pairs with at least one file that had less
than 50 tokens and to remove Type I and Type II pairs. We
focused the exploratory study on how Deckard reported frag-
ments in the remaining pairs, and we found evidence that
pairs were either undetected or suboptimally reported.
Undetected. In Hibernate, our approach detected NonUni-
queObjectException and WrongClassException, which were
evaluated to be Type III clones. Both classes have the same
private fields and implement the same methods using simi-
lar syntax. Discounting Type I and Type II variations, the
few notable differences are reordered data independent state-
ments in the constructors, minor syntactic differences in
a getter, and one class overloads its constructor. Deckard
did not report any similar fragments for this pair. Another
Hibernate pair, NonstrictReadWriteCache and ReadOnly-
Cache, implement the same interface, but the placement
of their methods is noticeably different. Deckard detected
the similarity from the package declarations through the
field declarations, but these classes share many more points
of commonality. In ArgoUML, our approach detected Go-
NamespaceToDiagram and GoProjectToStateMachine. Both
classes extend AbstractPerspectiveRule, which implements
PerspectiveRule. Two of the three methods in the interface
are Type I clones. For the third method, one class defines an
ArrayList wrapped as a List and iterates through a list of
Diagrams, conditionally adding Diagrams to the List. The
other class defines an ArrayList wrapped as a Collection

Table 4: Precision Results

System
File-level Method-level

AST-based Greedy AST-based Greedy

ANTLR 97% (30) 100% (30) 100% (30) 100% (30)
Apache Ant 92% (24) 93% (30) 100% (30) 100% (30)
ArgoUML 90% (30) 100% (30) 100% (30) 100% (30)
CAROL 100% (1) 100% (10) 100% (30) 100% (30)
dnsjava 47% (30) 100% (30) 73% (30) 87% (30)
Hibernate 100% (13) 100% (20) 53% (30) 70% (30)
JDK 90% (30) 100% (30) 100% (30) 100% (30)
JHotDraw 100% (30) 100% (30) 100% (30) 100% (30)

and iterates through a list of Models, adding Models to
the Collection where conditional checks appear to be ab-
stracted away. Deckard only reported similarity between the
package declarations and import statements. Similarly, in
Apache Ant, Deckard detected similarities in the front mat-
ter of Difference and Intersect, but the classes have more
similarity. Both classes extend BaseResourceCollectionCon-
tainer with their main functionality in the method getCol-
lection. The first seven lines of getCollection are Type II
clones, but then the classes differ on how they populate the
collection. Difference uses a for loop to iterate over a list of
ResourceCollections whereas Intersect uses a while loop. Our
approach detected the clone pair despite the classes using
distinctly different control statements. Finally, our approach
detected MINFORecord and SRVRecord in dnsjava. Despite
some syntactic differences, there are evident similarities, yet
Deckard did not report any similar fragments between these
classes. In sum, our approach detected pairs with strong
and weak syntactic similarity that were undetected by Deck-
ard; we placed several examples in our online appendix [112].
Suboptimally reported. In JHotDraw, our approach de-
tected two instances of ConnectionTool, which were evalu-
ated to be Type III clones. The two instances share most
of their source code (with identical syntax) except for small
numbers of additional lines (in some cases one line) in dif-
ferent locations throughout the files. These were larger files,
which indicates that our approach is capable of handling
gaps throughout a pair of large files and detecting their sim-
ilarity. Deckard reported nearly 20 clone pairs that covered
most of the files; however, from a software maintainer’s point
of view, this fragmentation makes it difficult to detect these
strong Type III file clones.

6. DISCUSSION
Internal validity. We acknowledge the confounding con-
figuration choice problem [107]. We did not adopt arbitrary
configurations and tried to justify each configuration in our
approach. We also tried to justify our Deckard configuration.
External validity. From the point of view of software main-
tainers, two Ph.D. students conducted the evaluation on
eight real-world software systems. Thus, we believe every-
thing to be representative.
Construct validity. We recognize that analytical studies
such as our empirical validation cannot adequately evaluate
the behavior of the developers while using a tool based on
our approach [105]. We do not infer developer behavior from
our results and understand that humans must be observed
while using the approach [105]. Finally, to mitigate mono-
method bias, two judges used a uniform set of guidelines to
measure the similarity of code fragments.
Lessons learned. While our results affirm that deep learn-
ing is suitable for clone detection, reducing training times is
one area that needs more attention. To this end, we iden-
tified some corrective action. First, we removed files with

ANTLR Apache Ant ArgoUML CAROL dnsjava Hibernate JDK JHotDraw

●

●

●

●
●●
●
●●
●
●●
●
●

●

●
●
●●●

●●
●●●●●●

●●●
●●●

●●
●●●●●

●●●●●●●●●●●
●●●●●●●

●●●
●●●

●
●

●

●

●

●●●
●

●

●

●
●●●●●●●●●

●
●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●

●

●●
●●●●●

●●●
●
●
●●●●

●

●

●

●
●●●

●
●●●

●●●
●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●
●

●

●

●●
●

●

●

●●
●●●●

●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●
●●●●●●●

●

●

●●●●●

●
●

●

●●●

●

●

●

●
●
●●●

●●●●●●
●●
●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●

●

●

●

●
●

●

●

●
●●●●●

●

●●●●●●●●●●●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●
●
●

●

●●

●

●

●●

●
●

●
●●

●
●●●●

●●
●

●●
●

●●
●

●

●

●

●
●

●

●

●●

●

●

●●●●●●●
●

●
●●

●●●●●
●●

●

●

●●
●●

●●

●

●

●
●
●●

●●●●●
●●●

●
●●●●●

●
●●●●●●●●●●●●●

●
●●●●

●
●
●
●
●

●●

●

●

●
●●●

●
●
●●

●●●●

●
●●

●●●
●
●●●

●
●●●●●●●●●●●●●●●●●●●●

●
●●●

●

●●

●

●
●
●●●●●●●●●

●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●●●●

●

●
●

●

●

●
●

●

●

●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●
●●●

●●
●
●

●●●

●●●●

●●

●

●

●●
●●●●●

●●
●●
●

●

●

●●
●●●●

●●
●●●

●

●

●

●

●

●
●●

●●●●
●

●

●

●

●

●

●●●●●

●●●

●

●

●

●●
●●●●●

●●
●●●●●●●●

●●●●●
●●●●

●●●●●●●
●●●●●●●●●●

●●
●●●●●●●●●

●●
●●
●●●

●●
●
●

●●●

●●●●

●●

●

●

●●
●●
●●●

●
●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●
●●●●

●
●●●

●●●●●●

0.00

0.05

0.10

0.15

0.20

0.00

0.05

0.10

0.15

0.20

A
S

T
−

b
a

s
e

d
G

re
e

d
y

−0.05 0.00 0.05 −0.05 0.00 0.05 −0.05 0.00 0.05 −0.05 0.00 0.05 −0.05 0.00 0.05 −0.05 0.00 0.05 −0.05 0.00 0.05 −0.05 0.00 0.05

Figure 5: Relative frequency histograms of file-level features

more than 4,000 lexical elements from the training set, but
we should have been more aggressive with this cutoff. Ex-
tremely large files significantly bogged down training times,
and they may not be effective examples for the recursive
learning algorithm. Second, we should have sorted files by
their size before feeding the training set to the learning algo-
rithm to improve worker utilization. Since we optimize the
objective in batch mode, the order used to process examples
is inconsequential to learning, yet the order can significantly
impact times when training for several epochs. Third, train-
ing RvNNs is embarrassingly parallel, so we are modifying
the implementation to run on a cluster of compute nodes.

7. FUTURE WORK
On scaling deep learning for clone detection. Here,
we draw from work in the machine learning community on
semantic hashing [113] and show how a seemingly innocuous
machine learning detail in a deep learner can have important
practical impacts in SE. In Sec. 3.2.2, we casually described
g (Eq. (5)) as a nonlinear vector function. g is called an
“activation” function [96], and there are a number of ac-
tivation functions used in practice, e.g., g ··= tanh. Mod-
els are initialized with small random weights, which im-
plies the “pre-activation,” e.g., εx + βz in Eq. (5), would
lie in the (approximately) linear part of tanh [114]. As the
model trains, weights increase, drawing pre-activations away
from zero and introducing nonlinearities [114]. When us-
ing tanh activations, weights may be directed positively or
negatively away from zero. For instance, we initialized our
RvNNs by sampling from (approximately) unif(−0.08, 0.08)
and used tanh activations. After the models were trained,
we encoded each file in every system. Fig. 5 shows the rel-
ative frequency histograms of features; we used weight de-
cay [114] for regularization. Distributions across the 16 con-
figurations reveal an interesting bimodal structure. Suppose
we select some λ ∈ R so features greater than λ map to 1
and features less than or equal to λ map to 0. λ transforms
continuous-valued feature vectors into binary codes, allow-
ing us to measure the similarity of fragments in a different
metric space. Thus, given a fragment, clones can be detected
by looking in small Hamming balls around the fragment for
other fragments in the repository, a computation that can
be optimized by fast algorithms on modern computer ar-
chitectures [113, 115]. Not only would the binary codes en-
able fast search because measuring similarity amounts to
finding fragments that only differ by a few bits but they
would also require less memory [113,115]—a key concern for
massive repositories. While conducting our empirical study,
we noticed a significant amount of Type I and II cloning
in JHotDraw, so we transformed JHotDraw’s (greedy) file-
level feature vectors using λ = 0. 14 of 30 (47%) samples
were evaluated to be true positives (all Type III clones),

which was noticeably worse than measuring similarity with
ℓ2. To tune models for binary feature vectors, we plan to
experiment with different learning heuristics. Salakhutdinov
and Hinton [113] reported that semantic hashing (with their
generative-based approach) was much faster than LSH in
their experiments hashing natural language documents.
Type prediction. Fig. 6 shows how the original model
{ε, δ, βz, βy} can be augmented with another decoder δτ
trained to predict the type τ of a programming construct or
fragment given its code (z in Eq. (5)). Socher et al. [86] used
a similar design to analyze sentiment in a semi-supervised
way with manually generated multinomial distributions.

1 2 3

4

5 2̂ 3̂

τ̂εℓ

εℓ εr

εr
δℓ δr

δτ

int foo 42

Figure 6: τ Decoder

Our augmentation would not
require manually generated,
coarse-grained labels like the
sentiment task because the
types here are automatically
imputed by the compiler. For
example, in Fig. 6, if we
present [2.repr; 3.repr] to the
model, then we expect τ̂ =
VariableDeclarationFragment.
The only change to the criterion (Eq. (7)) is adding an ex-
pression to compute (cross-entropy) misclassification costs.

8. CONCLUSION
We introduced a completely new way to detect code clones.

Our learning-based paradigm diverges from traditional struc-
ture-oriented techniques in at least two important ways.
First, terms—including identifiers—influence how fragments
at different levels of granularity are represented. Second, our
techniques are designed to automatically discover discrimi-
nating features of source code whereas traditional structure-
oriented and metrics-based techniques use fixed transfor-
mations. Our results indicate that learning how to repre-
sent fragments for clone detection is feasible. We found that
our techniques detected file- and method-level pairs map-
ping to all four clone types and evidence that learning is
robust enough to detect similar fragments with reordered
data independent declarations and statements, data depen-
dent statements, and control statements that have been re-
placed [23]. Our online appendix is publicly available [112].

9. ACKNOWLEDGMENTS
We thank Lingxiao Jiang from Singapore Management

University and Massimiliano Di Penta from the University
of Sannio for their insightful comments that improved the
paper. We thank Jeffrey Svajlenko and Chanchal Roy from
the University of Saskatchewan for sharing data from their
study [30]. This material is based upon work supported by
the National Science Foundation under Grant No. 1525902.

10. REFERENCES

[1] M. Kim, L. Bergman, T. Lau, and D. Notkin. An
ethnographic study of copy and paste programming
practices in oopl. ISESE’04.

[2] M. Gabel and Z. Su. A study of the uniqueness of source
code. FSE’10.

[3] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and L. Bier.
Clone detection using abstract syntax trees. ICSM’98.

[4] A. Monden, D. Nakae, T. Kamiya, S. Sato, and
K. Matsumoto. Software quality analysis by code clones in
industrial legacy software. METRICS’02.

[5] Z. Li, S. Lu, S. Myagmar, and Y. Zhou. Cp-miner:
Finding copy-paste and related bugs in large-scale
software code. TSE, 32(3), 2006.

[6] C. Kapser and M. Godfrey. “Cloning considered harmful”
considered harmful: Patterns of cloning in software.
EMSE, 13(6), 2008.

[7] F. Rahman, C. Bird, and P. Devanbu. Clones: What is
that smell? EMSE, 17(4-5), 2012.

[8] M. Kim, V. Sazawal, D. Notkin, and G. Murphy. An
empirical study of code clone genealogies. ESEC/FSE’05.

[9] D. Cai and M. Kim. An empirical study of long-lived code
clones. FASE/ETAPS’11.

[10] C. Roy and J. Cordy. A survey on software clone detection
research. Technical report, Queen’s University, 2007.

[11] N. Davey, P. Barson, S. Field, R. Frank, and D. Tansley.
The development of a software clone detector. IJAST,
1(3/4), 1995.

[12] J. Bailey and E. Burd. Evaluating clone detection tools for
use during preventative maintenance. SCAM’02.

[13] M. Rieger. Effective clone Detection Without Language
Barriers. PhD thesis, 2005.

[14] A. Walenstein and A. Lakhotia. The software similarity
problem in malware analysis. Dagstuhl Seminar
Proceedings, 2007.

[15] B. Baker. On finding duplication and near-duplication in
large software systems. WCRE’95.

[16] R. Brixtel, M. Fontaine, B. Lesner, C. Bazin, and
R. Robbes. Language-independent clone detection applied
to plagiarism detection. SCAM’10.

[17] L. Jiang, Z. Su, and E. Chiu. Context-based detection of
clone-related bugs. ESEC/FSE’07.

[18] Lucia, D. Lo, L. Jiang, and A. Budi. Active refinement of
clone anomaly reports. ICSE’12.

[19] X. Wang, Y. Dang, L. Zhang, D. Zhang, E. Lan, and
H. Mei. Can i clone this piece of code here? ASE’12.

[20] Y. Dang, D. Zhang, S. Ge, C. Chu, Y. Qiu, and T. Xie.
Xiao: Tuning code clones at hands of engineers in
practice. ACSAC’12.

[21] N. Milea, L. Jiang, and S. Khoo. Scalable detection of
missed cross-function refactorings. ISSTA’14.

[22] N. Milea, L. Jiang, and S. Khoo. Vector abstraction and
concretization for scalable detection of refactorings.
FSE’14.

[23] C. Roy, J. Cordy, and R. Koschke. Comparison and
evaluation of code clone detection techniques and tools: A
qualitative approach. SCP, 74(7), 2009.

[24] B. Caprile and P. Tonella. Nomen est omen: Analyzing
the language of function identifiers. WCRE’99.

[25] A. Marcus and J. Maletic. Identification of high-level
concept clones in source code. ASE’01.

[26] F. Deissenbock and M. Pizka. Concise and consistent
naming [software system identifier naming]. IWPC’05.

[27] D. Lawrie, C. Morrell, H. Feild, and D. Binkley. What’s in
a name? a study of identifiers. ICPC’06.

[28] Y. Bengio, A. Courville, and P. Vincent. Unsupervised
feature learning and deep learning: A review and new
perspectives. CoRR, abs/1206.5538, 2012.

[29] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning.
Nature, 521(7553), 2015.

[30] J. Svajlenko and C. Roy. Evaluating clone detection tools
with bigclonebench. ICSME’15.

[31] K. Hotta, J. Yang, Y. Higo, and S. Kusumoto. How
accurate is coarse-grained clone detection?: Comparison
with fine-grained detectors. IWSC’14.

[32] J. Johnson. Identifying redundancy in source code using
fingerprints. CASCON’93.

[33] J. Johnson. Visualizing textual redundancy in legacy
source. CASCON’94.

[34] J. Johnson. Substring matching for clone detection and
change tracking. ICSM’94.

[35] S. Ducasse, M. Rieger, and S. Demeyer. A language
independent approach for detecting duplicated code.
ICSM’99.

[36] B. Baker. A program for identifying duplicated code. In
Computer Science and Statistics, 1992.

[37] B. Baker. Parameterized pattern matching: Algorithms
and applications. JCSS, 52(1), 1996.

[38] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: A
multilinguistic token-based code clone detection system
for large scale source code. TSE, 28(7), 2002.

[39] W. Yang. Identifying syntactic differences between two
programs. SPE, 21(7), 1991.

[40] R. Koschke, R. Falke, and P. Frenzel. Clone detection
using abstract syntax suffix trees. WCRE’06.

[41] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard:
Scalable and accurate tree-based detection of code clones.
ICSE’07.

[42] A. Gionis, P. Indyk, and R. Motwani. Similarity search in
high dimensions via hashing. VLDB’99.

[43] M. Gabel, L. Jiang, and Z. Su. Scalable detection of
semantic clones. ICSE’08.

[44] R. Komondoor and S. Horwitz. Using slicing to identify
duplication in source code. SAS’01.

[45] J. Krinke. Identifying similar code with program
dependence graphs. WCRE’01.

[46] C. Liu, C. Chen, J. Han, and P. Yu. Gplag: Detection of
software plagiarism by program dependence graph
analysis. KDD’06.

[47] K. Chen, P. Liu, and Y. Zhang. Achieving accuracy and
scalability simultaneously in detecting application clones
on android markets. ICSE’14.

[48] J. Ferrante, K. Ottenstein, and J. Warren. The program
dependence graph and its use in optimization. TOPLAS,
9(3), 1987.

[49] I. Arel, D. Rose, and T. Karnowski. Research frontier:
Deep machine learning–a new frontier in artificial
intelligence research. CIM, 5(4), 2010.

[50] H. Nguyen, T. Nguyen, N. Pham, J. Al-Kofahi, and
T. Nguyen. Accurate and efficient structural characteristic
feature extraction for clone detection. FASE’09.

[51] N. Pham, H. Nguyen, T. Nguyen, J. Al-Kofahi, and
T. Nguyen. Complete and accurate clone detection in
graph-based models. ICSE’09.

[52] H. Nguyen, T. Nguyen, N. Pham, J. Al-Kofahi, and
T. Nguyen. Clone management for evolving software.
TSE, 38(5), 2012.

[53] M. Lee, J. Roh, S. Hwang, and S. Kim. Instant code clone
search. FSE’10.

[54] H. Kim, Y. Jung, S. Kim, and K. Yi. Mecc: Memory
comparison-based clone detector. ICSE’11.

[55] F. Hermans, B. Sedee, M. Pinzger, and A. van Deursen.
Data clone detection and visualization in spreadsheets.
ICSE’13.

[56] L. Jiang and Z. Su. Automatic mining of functionally
equivalent code fragments via random testing. ISSTA’09.

[57] D. Jurafsky and J. Martin. Speech and Language
Processing. 2 ed., 2009.

[58] A. Hindle, E. Barr, Z. Su, M. Gabel, and P. Devanbu. On
the naturalness of software. ICSE’12.

[59] Z. Tu, Z. Su, and P. Devanbu. On the localness of
software. FSE’14.

[60] C. Franks, Z. Tu, P. Devanbu, and V. Hellendoorn.
Cacheca: A cache language model based code suggestion
tool. ICSE’15.

[61] S. Afshan, P. McMinn, and M. Stevenson. Evolving
readable string test inputs using a natural language model
to reduce human oracle cost. ICST’13.

[62] D. Movshovitz-Attias and W. Cohen. Natural language
models for predicting programming comments. ACL’13.

[63] J. Campbell, A. Hindle, and J. Amaral. Syntax errors just
aren’t natural: Improving error reporting with language
models. MSR’14.

[64] P. Tonella, R. Tiella, and D. Nguyen. Interpolated
n-grams for model based testing. ICSE’14.

[65] M. Allamanis, E. Barr, C. Bird, and C. Sutton. Learning
natural coding conventions. FSE’14.

[66] A. Nguyen, T. Nguyen, and T. Nguyen. Lexical statistical
machine translation for language migration.
ESEC/FSE’13.

[67] A. Nguyen, T. Nguyen, and T. Nguyen. Migrating code
with statistical machine translation. ICSE Companion’14.

[68] A. Nguyen, H. Nguyen, T. Nguyen, and T. Nguyen.
Statistical learning approach for mining api usage
mappings for code migration. ASE’14.

[69] V. Raychev, M. Vechev, and E. Yahav. Code completion
with statistical language models. PLDI’14.

[70] V. Hellendoorn, P. Devanbu, and A. Bacchelli. Will they
like this? evaluating code contributions with language
models. MSR’15.

[71] B. Ray, V. Hellendoorn, Z. Tu, C. Nguyen, S. Godhane,
A. Bacchelli, and P. Devanbu. On the “naturalness” of
buggy code. CoRR, abs/1506.01159, 2015.

[72] M. Allamanis, E. Barr, C. Bird, and C. Sutton. Suggesting
accurate method and class names. FSE’15.

[73] R. Rosenfeld. Two decades of statistical language
modeling: Where do we go from here? 88(8), 2000.

[74] A. Mnih and Y. Teh. A fast and simple algorithm for
training neural probabilistic language models. ICML’12.

[75] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A
neural probabilistic language model. JMLR, 3, 2003.

[76] F. Morin and Y. Bengio. Hierarchical probabilistic neural
network language model. AISTATS’05.

[77] H. Schwenk and J. Gauvain. Training neural network
language models on very large corpora. HLT’05.

[78] Y. Bengio. Learning deep architectures for AI. FTML,
2(1), 2009.

[79] T. Mikolov, M. Karafiát, L. Burget, J. Černocký, and
S. Khudanpur. Recurrent neural network based language
model. INTERSPEECH’10.

[80] T. Mikolov, S. Kombrink, A. Deoras, L. Burget, and
J. Cernocký. Rnnlm - recurrent neural network language
modeling toolkit. ASRU’11.

[81] T. Mikolov, S. Kombrink, L. Burget, J. Cernocký, and
S. Khudanpur. Extensions of recurrent neural network
language model. ICASSP’11.

[82] T. Mikolov, A. Deoras, D. Povey, L. Burget, and
J. Cernocký. Strategies for training large scale neural
network language models. ASRU’11.

[83] T. Mikolov. Statistical Language Models Based on Neural
Networks. PhD thesis, 2012.

[84] M. White, C. Vendome, M. Linares-Vásquez, and
D. Poshyvanyk. Toward deep learning software
repositories. MSR’15.

[85] C. Goller and A. Küchler. Learning task-dependent
distributed representations by backpropagation through
structure. ICNN’96.

[86] R. Socher, J. Pennington, E. Huang, A. Ng, and
C. Manning. Semi-supervised recursive autoencoders for
predicting sentiment distributions. EMNLP’11.

[87] R. Socher, A. Perelygin, J. Wu, J. Chuang, C. Manning,
A. Ng, and C. Potts. Recursive deep models for semantic
compositionality over a sentiment treebank. EMNLP’13.

[88] J. Goodman. Classes for fast maximum entropy training.
CoRR, cs.CL/0108006, 2001.

[89] A. Mnih and G. Hinton. Three new graphical models for
statistical language modelling. ICML’07.

[90] Y. Shi, W. Zhang, J. Liu, and M. Johnson. Rnn language
model with word clustering and class-based output layer.
EURASIP, 1, 2013.

[91] Y. Bengio. Practical recommendations for gradient-based
training of deep architectures. CoRR, abs/1206.5533, 2012.

[92] I. Sutskever, J. Martens, and G. Hinton. Generating text
with recurrent neural networks. ICML’11.

[93] I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the
importance of initialization and momentum in deep
learning. ICML’13.

[94] M. Hermans and B. Schrauwen. Training and analysing
deep recurrent neural networks. NIPS’13.

[95] R. Pascanu, C. Gulcehre, K. Cho, and Y. Bengio. How to
construct deep recurrent neural networks. CoRR,
abs/1312.6026, 2013.

[96] C. Bishop. Pattern Recognition Machine Learning. 2006.
[97] P. Werbos. Backpropagation through time: what it does

and how to do it. 78(10), 1990.
[98] A. Aho, M. Lam, R. Sethi, and J. Ullman. Compilers:

Principles, Techniques, and Tools. 2 ed., 2006.
[99] T. Cormen, C. Leiserson, R. Rivest, and C. Stein.

Introduction to Algorithms. 3 ed., 2009.

[100] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and
R. Harshman. Indexing by latent semantic analysis.
JASIS, 41(6).

[101] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell,
and A. Wesslén. Experimentation in Software
Engineering: An Introduction. 2000.

[102] A. Walenstein, N. Jyoti, J. Li, Y. Yang, and A. Lakhotia.
Problems creating task-relevant clone detection reference
data. WCRE’03.

[103] R. Koschke. Survey of research on software clones.
Dagstuhl Seminar Proceedings, 2007.

[104] R. Koschke. Frontiers of software clone management.
FoSM’08.

[105] J. Carver, D. Chatterji, and N. Kraft. On the need for
human-based empirical validation of techniques and tools
for code clone analysis. IWSC’11.

[106] D. Chatterji, J. Carver, and N. Kraft. Claims and beliefs
about code clones: Do we agree as a community?: A
survey. IWSC’12.

[107] T. Wang, M. Harman, Y. Jia, and J. Krinke. Searching for
better configurations: A rigorous approach to clone
evaluation. ESEC/FSE’13.

[108] J. Svajlenko, J. Islam, I. Keivanloo, C. Roy, and M. Mia.
Towards a big data curated benchmark of inter-project
code clones. ICSME’14.

[109] P. Runeson and M. Höst. Guidelines for conducting and
reporting case study research in software engineering.
EMSE, 14(2), 2009.

[110] Y. Sasaki, T. Yamamoto, Y. Hayase, and K. Inoue.
Finding file clones in freebsd ports collection. MSR’10.

[111] J. Ossher, H. Sajnani, and C. Lopes. File cloning in open
source java projects: The good, the bad, and the ugly.
ICSM’11.

[112] https://sites.google.com/site/deeplearningclone/.
[113] R. Salakhutdinov and G. Hinton. Semantic hashing. IJAR,

50(7), 2009.
[114] T. Hastie, R. Tibshirani, and J. Friedman. The Elements

of Statistical Learning. 2 ed., 2009.
[115] A. Krizhevsky and G. Hinton. Using very deep

autoencoders for content-based image retrieval.
ESANN’11.

