
Automated Tagging of Software Projects using
Bytecode and Dependencies

Santiago Vargas-Baldrich
Universidad Nacional de Colombia

svargasb@unal.edu.co

Mario Linares-Vásquez
The College of William and Mary

mlinarev@cs.wm.edu

Denys Poshyvanyk
The College of William and Mary

denys@cs.wm.edu

Abstract—Several open and closed source repositories group
software systems and libraries to allow members of particular
organizations or the open source community to take advantage
of them. However, to make this possible, it is necessary to
have effective ways of searching and browsing the repositories.
Software tagging is the process of assigning terms (i.e., tags
or labels) to software assets in order to describe features and
internal details, making the task of understanding software easier
and potentially browsing and searching through a repository
more effective. We present Sally, an automatic software tagging
approach that is able to produce meaningful tags for Maven-based
software projects by analyzing their bytecode and dependency
relations without any special requirements from developers. We
compared tags generated by Sally to the ones in two widely used
online repositories, and the tags generated by a state-of-the-art
categorization approach. The results suggest that Sally is able
to generate expressive tags without relying on machine learning-
based models.

I. INTRODUCTION

Several open- and closed-source software repositories are
available for developers to take advantage of preexisting soft-
ware assets that address particular needs that their projects
may have. However, in order to be able to take advantage
of a repository, there should be ways for efficiently locating
assets in it [1]. Assigning tags or categories to projects, that
describe features of the projects such as application domain,
programming language, operating system, etc., is a commonly
used approach for improving the browsing, searching and
retrieval processes in large repositories. Categories represent
high-level concepts that help group similar assets together
and apply to a wide range of them, (e.g. testing, framework,
bytecode analysis, etc.) while tags represent more specific
concepts that often relate directly to implementation details
(e.g., xml, grammar, servlet, java, etc.).

The assignation of tags and categories could be performed
manually, for example, by asking developers to categorize their
projects upon uploading them to a repository by selecting from
a predefined list of categories or by allowing them to enter
free text. However, both cases could lead to misclassification
or the developer can just avoid the category selection. The
categorization task could be delegated to repository adminis-
trators or curators, however, the size and rapid pace at which
repositories keep growing can render this manual approach
impractical.

Automatic software categorization/tagging has progres-
sively gained importance because of the benefits that can
span from its use. Research progress has been made on

various approaches and methods that rely on machine learning
techniques for classification. Most of these approaches utilize
identifiers extracted from source code, assuming there is full
access to the repository [2]–[4]. This situation is not com-
mon in closed-source environments; it is known that many
companies often work under high security practices to protect
organizational secrets, which restricts the access to source
code, thus limiting applications of such a categorization model
that relies on sensitive information to work. Also some libraries
are published as JAR files without the source code, as in the
case of some Maven-based projects. To address this concern,
a number of approaches relying on Application Programming
Interface (API) calls and identifiers extracted from bytecode
have been proposed and evaluated [5]–[7].

In software categorization, the category labels are mostly
created manually by domain experts [8] or selected from a
set of previously defined categories [5], [6]. These approaches
rely mostly on supervised learning [9], thus, the approaches
require a previously categorized set of projects to be used as
training data. Supervised categorization assumes that the set of
predefined categories is sufficient to classify any new project
that enters the repository although that may not necessarily
be the case. Also, a predefined set of categories is limited by
the knowledge of available domain experts or by the decisions
made by repository administrators.

In some cases, category labels are created automatically by
analyzing the information in hosted projects [2], [3], [10]. This
automatic generation of category labels has the advantage of
relying only on information mined from the source code, thus
decoupling category names from specific knowledge of the
available domain experts. However, closed source repositories
can not be categorized using approaches relying on source code
[5], [6], since the source code may not always be available as
in the case of projects in Maven repositories.

With those issues in mind, we developed Sally, a novel,
multi-label and unsupervised approach for automatic tagging
of closed-source projects, in particular Maven-based software.
By extracting identifiers from bytecode and harnessing the de-
pendency relations between projects, Sally is able to produce a
set of expressive tags and present them in a useful way to users.
Additionally, it is is capable of dealing with common problems
that previous work on automatic software categorization have
faced. In particular, Sally has the following contributions over
competitive approaches:

1) Sally does not need access to source code in order
to work. This makes the approach a feasible alterna-

tive for closed-source and organizational repositories
where access to information is restricted due to
security reasons;

2) Tags are not predefined but rather obtained from
identifiers and project dependencies. This way we
reduce the possibility of missclasification that could
be derived from predefined tags;

3) Besides generating tags based on identifiers and de-
pendency relations, Sally is able to produce a measure
of how relevant is a tag for a given project;

4) By relying on filtering process based on tags from
StackOverflow, Sally is able to provide descriptive
information about the projects in a repository. Ad-
ditionally, by mining information from widely used
sources, definitions for the presented labels can be
obtained;

5) By extracting information from dependency relations
among projects, Sally is able to produce tags that not
only describe projects by themselves, but the context
on which they are used.

II. RELATED WORK

Most of the previous work on software categorization
has predominantly relied on machine learning algorithms and
mainly differ in the way how and which features are extracted
and the specific classification algorithm employed.

Source code [2], [3], [10], comments [10], readme files
[4], online repository profiles [7], [11] and API calls [5],
[6] have been used as input for feature extraction. Besides
source code, Ugurel et al. [4] include comments and readme
files, finding that comments can have a negative effect on the
classification for some languages. Kawaguchi et al. [2], [3]
extract identifiers only from source code arguing that the use
of design documents, build scripts or other software artifacts
is not convenient because although these artifacts can contain
highly abstracted information, their quality can vary greatly
from project to project thus affecting the categorization results.
Later on, Tian et al. present an approach that also takes into
account comments in source code and has a more strict filtering
scheme for identifiers [10].

In [5], [6], the authors ignore source code and make use
of API calls for feature extraction acknowledging the cases
in which the availability of source code cannot be counted
on. By using their approach, closed-source and organizational
software repositories can be subject to automatic software cat-
egorization. More recently, bytecode was used in conjunction
with online software profiles to extract data from projects
and construct and unsupervised categorization model based
on a Dirichlet Process clustering algorithm [7]. Approaches
that make use of inputs different to source code are relevant
since it is known that several companies work under highly
restricted environments to protect organizational secrets, a
practice that limits access to source code. Software tags and
online profiles have been used to perform tasks such as
finding similar applications given a query [12] and perform
hierarchical categorization of software projects [11]. Al-Kofahi
et al. [13] explore automatic tagging using fuzzy sets theory
and propose TagRec, a tag recommendation tool that also uses
evolutionary information extracted from the systems’ history.

For classification, most of the approaches use textual cate-
gorization, which considers software projects as documents.
After extracting identifiers, Ugurel et al. [4] use Expected
Entropy Loss to select the most important features, Support
Vector Machines are used to categorize projects by program-
ming language and application topic. In [2], the authors use
Decision Trees for categorization with a reported error rate of
less than 5%. To deal with the need of predefined categories
required to use Decision Trees (and in general any supervised
learning algorithm), the authors propose the use of LSA as a
way to obtain similarities between software systems and to use
this information for classification. Their work is extended in
[3] where MUDABlue is proposed: after obtaining similarities
between projects, MUDABlue uses cluster analysis to find sets
of related software systems. Tian et al. propose in [10] a
similar approach that uses LDA as a way to obtain topics
and also applies cluster analysis to determine the software
clusters. In [6], the authors use Decision Trees, Naive Bayes
and Support Vector Machines (SVM) for classification, finding
the SVM approach to be the most effective. Wang et al. also
propose in [14] an approach based on similarity of software
systems and clustering using these similarities to build a
taxonomy for 40,744 projects from Freecode.

III. OUR APPROACH

Sally is composed of four main steps depicted in Figure 1.
First, identifiers are extracted from bytecode and filtered using
a scheme that leverages tags from StackOverflow. In parallel,
dependency relations between projects are analyzed in order to
obtain metrics that serve as input in the tagging process. The
filtered identifiers and dependency metrics are then used to
generate primary and secondary tags for each of the projects.
The final step is to produce a tag cloud that gives visual clues
about how relevant each tag is for the projects they have been
assigned to as well as easy access to the definition of the
concept described by the tag.

A. Identifier Extraction and Filtering

Extraction: The ASM Bytecode Manipulation Framework
is used to obtain class names, class fields, method names and
method arguments from bytecode [15]. To prepare the obtained
identifiers for further computations, they are splitted by camel
case and stemmed using Apache Lucene [16].

Filtering: The first part of the filtering process removes
identifiers that appear in more than 50% of the projects,
identifiers comprised of less than three characters (to keep
important concepts such as XML, POM, RSS) and stop-words.
Then, identifiers are filtered by using tags from StackOverflow
(SO), a popular Q&A site where programmers with a wide
range of experience share knowledge by asking and answering
questions. It means that identifiers that are not in the tags
list from SO are discarded. Tags in the SO site represent
concepts related to software development, computer science,
programming languages, algorithms, etc., that allow to group
similar questions together and are maintained by the commu-
nity, which makes them a diverse and curated set of categories,
concepts and terms that we consider to be valid descriptors for
the projects to be tagged. In the same way a tag on a question in
SO can give a reader an idea about the subject of the question,

identifier 1
identifier 2

…

1.1 Identifiers

1.2 Dependencies

2. Primary tags

tag 1
tag 2
tag ...

3. Secondary Tags

tag N

4. Tag Cloud

0. Bytecode

4.1 Definition sources

Fig. 1: The Sally approach for automatic tagging of software

we expect it to give information about the software projects it
is assigned to.

B. Resolving Dependencies

Software reuse can be seen as the inclusion/adaptation of
previously developed software artifacts into new projects with
the intent of using their functionality; this inclusion creates
a dependency relation between projects. More formally, it is
considered that a project u depends on a project v when
there is at least one method invocation, object instantiation
or inheritance relation from classes in u to classes in v. We
refer to these cases that create dependencies as dependency
calls.

If projects are modeled as nodes and dependency rela-
tions as edges, a dependency graph can be obtained from a
repository. Furthermore, a weighted graph can be obtained if
each edge is labeled with the number of dependency calls
between the projects connected by it. The dependency reso-
lution process uses DepFind [17] to find dependency relations
between projects and creates a weighted dependency graph
from the repository. Finally, a Dependency Metric for each
pair of connected vertices is computed; the metric is defined
as:

Duv =
dc(u, v)∑i=n
i=1 dc(u, i)

where dc(x, y) is the number of dependency calls made from
project x to y and n is the number of projects x depends on.

C. Assigning Tags to Projects

For each project, a set of tags is found and assigned to it.
Each tag is defined as a tuple (name, relevance) where name
is the name of the tag and relevance is a value between 0
and 1 that describes how relevant is the tag for the particular
project. For example, if we were examining the project JUnit,
we would expect to have tags whose names are related to
testing with high relevance measures. Sally uses identifiers and
dependencies extracted from bytecode to identify two types of
tags: primary and secondary.

Primary Tags: These tags stem from the analysis of a
particular project by itself, i.e., only taking into account the
identifiers extracted from the bytecode and ignoring dependen-
cies. To obtain the primary categories, Gensim [18] is used to

compute TF-IDF [19] values for the identifiers which are then
used to obtain relevance measures for each one of the terms.
The relevance measure is calculated as:

tfidf(ti)∑m
k=1 tfidf(tk)

where tfidf(ti) is the TF-IDF value for identifier i and m
is the number of identifiers obtained from the project. Finally,
identifiers are sorted in descending order by relevance and their
roots (recall that identifiers are stemmed after being extracted)
become the primary tags.

Secondary Tags: The secondary tags of a project are the
primary tags of its direct dependencies1 with their relevance
measures scaled using the dependency measure that was
previously computed. The secondary tags are also sorted in
descending order by their relevance values. The number of
tags that are obtained for each project can be customized either
by the number of required tags or by establishing a relevance
threshold, e.g., only tags with a relevance measure > 15%.

D. Displaying Tags Definition

Depending on the background and programming experi-
ence of repository users, it is possible that tags generated by
Sally could be perceived as irrelevant. To deal with this, given a
tag, Sally is able to obtain definitions from various information
sources. Currently, SO, Wikipedia, Wiktionary and TechTarget
are the supported sources for concept definition.

Having an automatic way to obtain these definitions aids
repository users and developers to get a better understanding of
the tags. However, the main reason for developing the defini-
tion module is that although the selected identifiers are related
to the application domains of projects, they are not necessarily
enough to describe them; this is because using identifiers as
tags can present low-level information about projects, e.g.,
frameworks, communication protocols, related programming
languages, technologies, etc. In order for a user to find the
concepts that describe what a project’s application domain
is, it is necessary to go beyond the details embedded in the
identifiers by relating them to more general concepts. Future
work will be devoted to automatic definition of concepts. Our
current implementation, links tags to definitions; we expect
definitions to be the bridge between identifiers and the complex
concepts that serve to describe the application domains of
software projects.

E. Tag Cloud Output

In order to visually present the obtained information in a
useful way, Sally’s user interface presents the extracted tags
and their relevance measures as a tag cloud, where the size
of each tag is directly related to the relevance of the tag for
the project that is being visualized. The intention behind this
decision is to provide visual aid to users in finding the most
relevant tags for a particular project, i.e., although all extracted
tags are related to a project in one way or another, there are
some of them that are more relevant than the others.

1A deeper exploration of the dependency graph (i.e. using transitive depen-
dencies) was tried, but for most of the projects, results were not satisfactory.

0.58

0.42

Primary Tags

emulated 0.51
enable 0.54
encode 0.11
engine 0.21
english 0.01
enhanced 0.41
enter 0.51
entities 0.01

Primary Tags

opacity 0.51
open 0.54
option 0.11
order 0.21
ordinal 0.01
orient 0.41
origin 0.51
orphans 0.01
outer 0.54

emulated

open

0.51
 x

 x
0.54

Secondary Tags

emulated 0.29
open 0.12
enable …
opacity …
encode …
option …
engine …
order …
english …
 … …

Fig. 2: Propagation of primary tags

F. Sally: The application

Sally is composed by two main components, one is respon-
sible for core functionality and the other is in charge of making
the information obtained by the core component available to
users. All modules in charge of information extraction (i.e.
identifier extraction / filtering, dependency resolution, category
generation, definition mining) were developed as a Java Maven
project that makes use of Python and Bash scripts. The
web application was developed using the Meteor Javascript
platform and all information is stored in a MongoDB database.
Sally is currently available at http://sally.meteor.com.

IV. EXPERIMENT 1: SALLY VS. SOURCEFORGE AND
MVNREPOSITORY

We compared Sally to the categorization/tagging ap-
proaches of two widely used online resources for brows-
ing Java projects published as JAR files: SourceForge,
an open source repository, and MVNRepository, a search
engine for Maven projects. 68 Maven projects from the
net.sourceforge groupId were selected randomly using
MVNRepository and all transitive dependencies were resolved
to obtain a set of 167 jar files for the evaluation.

SourceForge is an open source project hosting site with
over 3.7 million registered users and is one of the most widely
used alternatives by developers to publish their projects. After
creating a project, a developer is presented with options to
manually add tags to describe its features and also to choose
from a predefined set of topics that serve as categories.

MVNRepository is a search tool for Maven projects. By
providing only a groupId or artifactId, users can get the GAV
coordinates (i.e., GroupId, ArtifactId and Version) of matching
projects. The site also displays information such as related
books and the content of the description tag in the POM
file (if available). Projects in MVNRepository are labeled
with both tags and categories; tags are extracted from text
in the POM file and the categories are assigned manually. To
distinguish categories from tags in the following section, the
same convention from MVNRepository is used: categories are
presented with initial capital letters and tags are shown in lower
case.

A. Experiment setup

Our goal was to compare the tags generated by Sally to
those from SourceForge and MVNRepository in terms of their
availability (whether the approaches have tags for all of the

projects in the corpus) and how descriptive (how good are the
terms at describing the application domains and purpose of the
projects they are assigned to) they are. Therefore, the following
research questions were addressed in this experiment:

• RQ1: How do the tags generated by Sally and the
ones assigned by developers in SourceForge compare
in terms of their descriptiveness?

• RQ2: How do the tags generated by Sally and the ones
assigned by MVNRepository compare in terms of their
descriptiveness?

• RQ3: How do Sally, SourceForge and MVNRepository
compare in terms of the availability of tags?

In order to answer RQs, categories and tags were manually
obtained from the SourceForge and MVNRepository and Sally
was used to generate five primary and five secondary tags
for each project. One of the authors manually compared the
categories/tags assigned by each approach.

B. Results

1) RQ1 (Sally vs. SourceForge): 106 of the analyzed
167 projects were present in SourceForge. Categories in
SourceForge are selected manually by developers, which al-
lows them to have some control over the indexing of their
projects on the site. However, this allows also for ambigu-
ous categorizations and assignation of categories that do not
correspond to the real purpose or domain application of
projects. Also, since the set of categories is predefined, there
are categories in the site that are too broad to give useful
information, (e.g., software development, framework, libraries,
etc.). It is important to keep in mind that SourceForge is not
commonly used to host libraries that depend on each other
as the Maven Central repository does, it is rather oriented
towards hosting standalone applications or self-contained li-
braries. This is evidenced by two particular facts. Firstly,
even though all the projects declared as dependencies in
the pom file that was used to form the corpus belonged to
the net.sourceforge groupId, a large amount (37%) of
transitive dependencies were not available in SourceForge.
This subject is mentioned in depth in the discussion of RQ3.
Secondly, since Maven software projects are generally divided
into modules that have particular functions inside the project,
by using the SourceForge categorization scheme (e.g., ignoring
these modules) all modules get classified under the same
category although this is not necessarily correct and could lead
to overly broad categories for projects.

We identified 41 projects out of the 106 projects from the
repository present in SourceForge (39%) as being categorized
under an overly broad category. For 38 out of these 41 projects,
Sally was able to produce more specific tags than those
given by SourceForge. In most of the cases where developers
assigned appropriate and specific categories, Sally was able to
generate tags closely related to them. However, for standalone
applications that are categorized under a specialized category
in a manual fashion, we can not say that Sally produces
better tags because there are high-level concepts that can not
be abstracted only by looking at information obtained from
bytecode.

TABLE I: Number of projects without categories per approach.

Sally MVNRepository SourceForge
Primary Secondary Categories Tags Categories

2 71 94 67 23
1.20% 42.51% 56.29% 40.12% 21.70%

2) RQ2 (Sally vs. MVNRepository): MVNRepository as-
signs tags to projects by extracting information from their pom
file2. Unlike SourceForge, MVNRepository is focused solely
on Maven projects, this allows us to do a better comparison
with Sally. Manual examination showed that in most cases,
Sally is able to generate tags that are at least as descriptive as
those generated by MVNRepository.

For 27 out of the 167 analyzed projects (16%), at least
one of the tags generated by Sally exactly matched one or
more tags from MVNRepository. Additionally, there are 67
projects (≈ 40%) for which MVNRepository does not have
any tag assigned but Sally does. Moreover, there is only one
project for which MVNRepository has a tag and Sally does
not: javax.inject-1.jar and the assigned tag is javax, which is
filtered by Sally because we do not consider file names to be
valid tags (e.g., project activation.jar can not have a tag named
activation).

When available, tags assigned by MVNRepository were
mostly considered appropriate for the projects they were
assigned to. However, since these tags depend on the
description tag from the pom file while the ones generated
by Sally do not, in the majority of cases Sally was able
to produce more descriptive tags for Maven projects than
MVNRepository.

3) RQ3: Availability of categories/tags: In order to measure
category availability, we counted the number of projects that
were indexed on the sites but had no categories or tags
assigned. Table I depicts these stats. The number of projects
that were not tagged by Sally is minimal as compared to the
number of projects without categories or tags assigned by the
other approaches. This is a direct consequence of the fact that
Sally does not have special requirements for developers such
as manually categorizing or describing their projects.

Since both SourceForge and MVNRepository need a cer-
tain set of conditions to be met in order to be able to categorize
a project (i.e., manual categorization for SourceForge and a
descriptive pom file for MVNRepository), we can conclude
that the availability of categories of Sally is superior than those
of SourceForge and MVNRepository.

C. Summary of Experiment 1

We compared Sally to two popular online tools with differ-
ent categorization schemes and found that both SourceForge
and MVNRepository have weaknesses that our proposed ap-
proach does not. The success of the categorization made by
SourceForge strongly depends on developers carefully choos-
ing categories for their projects. On the other hand, the success
of the categorization scheme applied by MVNRepository de-
pends on developers adding a description of their projects on
the pom files; neither of the requirements can be guaranteed to
be fulfilled at all times. Results obtained from this experiment

2We do not include categories in the comparison because we do not have
information about how they are assigned to projects

TABLE II: Computed tags for project stringtemplate-3.2

Sally MVNRepository SourceForge
test - 0.41 token - 0.26 Template Engines Missing

templates - 0.36 ast - 0.26
expr - 0.08 grammar - 0.17

region - 0.08 gen - 0.17
group - 0.06 antlr - 0.14

show that Sally can produce competitive results without the
need for any special requirements from developers.

As an example, Table II shows a summary of the tags
generated by Sally for project stringtemplate-3.2 [20], which is
described as follows: StringTemplate is a java template engine
for generating source code, web pages, emails, or any other
formatted text output. StringTemplate is particularly good at
code generators, multiple site skins, and internationalization /
localization. StringTemplate also powers ANTLR. The example
shows how both primary and secondary categories found
by Sally contain terms associated to regular expressions and
grammars, which directly relate to the application domain of
the project under analysis. MVNRepository has a relevant
category as well, however it does not present any automatically
generated tags. The project is not available in SourceForge.

Comparing tags generated by Sally to those from
MVNRepository and SourceForge, it is apparent that Sally
can produce competitive and in many cases superior
results in terms of descriptiveness of generated tags.

V. EXPERIMENT 2: EVALUATING SALLY VS. MUDABLUE
WITH PROFESSIONAL DEVELOPERS

MUDABlue [3] is an unsupervised categorization approach
for software projects based on Latent Semantic Analysis (LSA)
[21]. We consider it as a good baseline for comparison given
the fact that both Sally and MUDABlue are unsupervised, thus,
both approaches do not need a set of predefined categories/tags.
The MUDABlue approach works by extracting and filtering
identifiers obtained from source code and building an term-
document matrix from them. LSA is applied and cosine
similarity metrics are used to cluster identifiers and software
projects together.

A. Empirical Study

To compare Sally and MUDABlue, we conducted a survey
in which 14 professional developers were asked to rate the Ex-
pressiveness and Completeness of the categories/tags presented
by both approaches for 50 randomly selected projects from the
same corpus as experiment 1. We refer to the expressiveness
of a set of categories as the measure of how good is the set
at describing the application domain of the software project
it is assigned to; and completeness refers to whether the set
of categories is able to fully describe the projects’ application
domain.

1) Research Questions:

• RQ4: How do the tags generated by Sally compare
to the tags generated by MUDABlue in terms of
completeness?

1 2 3 4 5

0

20

40

10.4
13.2

27.5

32.1

16.8

44.6

26.8

16.1

11.4

1.1E
va

lu
at

io
ns

(%
)

Sally MUDABlue

(a) Expressiveness

1 2 3 4 5

0

20

40

10

17.9

30
27.1

15

45.7

28.2

15.4

9.3

1.4E
va

lu
at

io
ns

(%
)

(b) Completeness

Fig. 3: Amount of evaluations per rating for both approaches

• RQ5: How do the tags generated by Sally compare
to the tags generated by MUDABlue in terms of
expressiveness?

Both RQs directly aim at comparing the categories/tags
generated by the approaches. To answer them, we asked devel-
opers to rate — using a 5-point Likert scale where 1 represents
the lowest possible score for completeness/expressiveness and
5 the highest— ten terms generated by MUDABlue and ten
terms generated by Sally for each of the 50 projects. The
tags obtained from Sally correspond to five primary tags and
five secondary tags. When no secondary tags were available,
ten primary tags were extracted. All tags were presented to
developers without the relevance measure to avoid negative
effects on the validity of the study.

B. Results

Figures 3a and 3b depict the ratings given by developers
to the categories/tags presented by both approaches. It can
be seen that Sally obtained the lowest score possible (1) for
both Expressiveness and Completeness on close to 10% of the
evaluations, while MUDABlue obtained it on approximately
45% of them. Sally obtained a score greater or equal to 3
on 76% for Expressiveness and 72% for Completeness versus
29% and 26% for MUDABlue. Finally, Sally obtained top
scores on 16.8% and 15% while MUDABlue was below 2%.

In general, developers perceived the tags by Sally to be
superior to the category names generated by MUDABlue
regarding both expressiveness and completeness.

VI. CONCLUSION

We proposed Sally, and automated tagging approach for
generating useful tags for software projects by analyzing infor-
mation obtained from bytecode, which makes it also applicable
to closed-source repositories. Additionally, Sally makes use of
information obtained not only from projects by themselves but
from their dependencies, which allows to produce tags that
describe the projects as well as the context in which they are
used. Sally is able to work without the need for predefined tags
nor any special requirements from developers, making it an
attractive approach for automatically tagging software projects
in large repositories. In addition to the approach, we developed
a web-based application that presents the generated tags in an
intuitive way that provides information about how each tag is
relevant for a given project.

Acknowledgements. This work is supported in part by
the NSF CCF-1525902 and NSF CCF-1253837 grants. Any
opinions, findings, and conclusions expressed herein are the
authors’ and do not necessarily reflect those of the sponsors.

REFERENCES

[1] J. Guo and Luqi, “A survey of software reuse repositories,” in ECBS’00.
[2] S. Kawaguchi, P. Garg, M. Matsushita, and K. Inoue, “Automatic

categorization algorithm for evolvable software archive,” in IWPSE’03.
[3] ——, “Mudablue: an automatic categorization system for open source

repositories,” in APSEC’11, Nov 2004, pp. 184–193.
[4] S. Ugurel, R. Krovetz, and C. L. Giles, “What’s the code?: Automatic

classification of source code archives,” in KDD’02, 2002, pp. 632–638.
[5] M. Linares-Vásquez, C. McMillan, D. Poshyvanyk, and M. Grechanik,

“On using machine learning to automatically classify software applica-
tions into domain categories,” EMSE 19/3, pp. 582–618, 2014.

[6] C. McMillan, M. Linares-Vasquez, D. Poshyvanyk, and M. Grechanik,
“Categorizing software applications for maintenance,” in ICSM’11.

[7] J. Escobar-Avila, M. Linares-Vásquez, and S. Haiduc, “Unsupervised
software categorization using bytecode,” in ICPC’15, 2015.

[8] G. Di Lucca, M. Di Penta, and S. Gradara, “An approach to classify
software maintenance requests,” in ICSM’02, 2002, pp. 93–102.

[9] E. Alpaydin, Introduction to machine learning. MIT press, 2004.
[10] K. Tian, M. Revelle, and D. Poshyvanyk, “Using latent dirichlet

allocation for automatic categorization of software,” in MSR’09.
[11] T. Wang, H. Wang, G. Yin, C. Ling, X. Li, and P. Zou, “Mining software

profile across multiple repositories for hierarchical categorization,” in
ICSM’13, Sept 2013, pp. 240–249.

[12] F. Thung, D. Lo, and L. Jiang, “Detecting similar applications with
collaborative tagging,” in ICSM’12, Sept 2012, pp. 600–603.

[13] J. Al-Kofahi, A. Tamrawi, T. T. Nguyen, H. A. Nguyen, and H. A.
Nguyen, “Fuzzy set approach for automatic tagging in evolving soft-
ware,” in ICSM’10, Sept 2010, pp. 1–10.

[14] S. Wang and L. J. Lo, D., “Inferring semantically related software terms
and their taxonomy by leveraging collaborative tagging,” in ICSM’12.

[15] [Online]. Available: http://asm.ow2.org/
[16] [Online]. Available: https://lucene.apache.org/
[17] [Online]. Available: http://depfind.sourceforge.net/
[18] R. Řehůřek and P. Sojka, “Software Framework for Topic Modelling

with Large Corpora,” in LREC’10, May 2010, pp. 45–50.
[19] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Informa-

tion Retrieval. Cambridge University Press, 2008.
[20] [Online]. Available: http://www.stringtemplate.org/index.html
[21] T. K. Landauer, P. W. Foltz, and D. Laham, “An introduction to latent

semantic analysis,” Discourse processes 25/2-3.

