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Abstract — The paper presents an adaptive approach to 

perform impact analysis from a given change request (e.g., a 

bug report) to source code.  Given a textual change request, a 

single snapshot (release) of source code, indexed using Latent 

Semantic Indexing, is used to estimate the impact set.  

Additionally, the approach configures the best-fit combination 

of information retrieval, dynamic analysis, and data mining of 

past source code commits to produce an improved impact set. 

The tandem operation of the three techniques sets it apart 

from other related solutions.   

I. INTRODUCTION 

Software-change impact analysis, or simply impact 
analysis (IA), has been recognized as a key maintenance 
activity.  IA aims at estimating the potentially impacted 
entities of a system due to a proposed change [6].  In several 
realistic settings, change requests are typically specified in 
natural language (e.g., English).  For example, bug reports 
submitted during the post-delivery maintenance by 
programmers or end users. These change requests may need 
to be resolved with the appropriate changes to relevant 
source code. It is not uncommon in large-scale software 
projects to receive numerous change requests daily that need 
to be resolved in an effective manner (e.g., within time, 
priority, and quality factors) [3, 20].  It is not an uncommon 
maintenance scenario in which a change request, described 
in the natural language, is the only source of information 
available to perform IA and an automatic technique must 
operate in such a situation.  

In this paper, we present a novel approach for IA that 
automatically adapts to the specific maintenance scenario at 
hand.  We consider scenarios in which the change request is 
available at the minimum and is the source of focus with or 
without other forms of additional developer knowledge that 
maybe also available in the context of this change request.  
Two quantifiable forms of the developer knowledge are 
considered: a verified source code entity to start performing 
the change (e.g., relevant source code method) and run-time 
information pertinent to the features in change request (i.e., 
execution trace for a feature specific scenario).  

Our approach uses a scenario-driven combination of 
information retrieval (IR), dynamic analysis, and mining 
software repositories techniques (MSR).  We chose a 
history-based mining technique, as we share a prevalent view 

in MSR that the information in repositories is an extension of 
the collective developer or development knowledge [4].  
Given a textual change request, an IR (e.g., Latent Semantic 
Indexing or simply, LSI) indexed single release of source 
code is used to estimate the impact set.  Should the execution 
information be made available for the same snapshot 
associated with the change request, methods in the trace are 
also obtained.  A combination of IR and dynamic analyses is 
favored over IR to estimate the impact set in such cases. 

Furthermore, should a verified start entity of change be 
available, evolutionary couplings are mined from the 
commits in software repositories that occur before the 
snapshot of code used for IR-based indexing (and dynamic 
analysis).  A combination of IR and evolutionary coupling 
analyses is favored over IR to estimate the impact set in such 
cases. When both forms of additional developer-information 
context are available, a combination of IR, dynamic 
information, and evolutionary couplings supersedes others. 

II. RELATED WORK 

Several IA approaches ranging from classical static and 
dynamic analysis techniques [7, 21, 25, 26, 29, 30] to the 
recent unconventional approaches, such as those based on IR 
[15, 28] and MSR [14, 19, 34], exist in the literature. 

Impact analysis is traditionally performed using static 
program analysis [6, 8], dynamic program analysis [21, 24, 
25], or a combination of these techniques [29]. Static 
program analysis relies solely on the structure of the program 
and the relationship between program elements, at different 
levels of granularity, whereas dynamic program analysis 
takes into account information gathered from program 
execution. Cornelissen et al. [11] provide a comprehensive 
summary on using dynamic analysis to support program 
comprehension including IA. 

IR methods address tasks of extracting and analyzing 
textual information in software artifacts, including change 
impact analysis in source code [9, 19, 28].  Existing 
approaches to IA using IR operate at two levels of 
abstraction: change request [9]  and source code [19, 28]. In 
the first case, the technique relies on mining and indexing the 
history of change requests (e.g., bug reports) [9, 33].  While 
this technique has been shown to be relatively robust in 
certain settings, it is entirely dependent on the history of 
prior change requests. The work in [15] relates to our 



 

approach in the use of lexical (textual) clues from the source 
code to identify related methods. The other set of techniques 
to IA that use IR operates at the source code level and 
requires a starting point (e.g., a source code method that is 
likely to be modified in response to an incoming change 
request) [19, 28]. Our previous work [19] was consistent 
with earlier usages of IR in IA [28]; however, it was limited 
to the source-code level staring point,. Our new adaptive 
approach operates at the change-request level as a starting 
point. IR is a  baseline technique in our adaptive solution. 

The term MSR has been coined to describe a broad class 
of investigations into the examination of software 
repositories (e.g., Subversion and Bugzilla).  Zimmerman et 
al. [34] used CVS logs for detecting evolutionary coupling 
between source code entities.  Association rules based on 
itemset mining were formed from the change-sets and used 
for change-prediction. We refer the interested readers to 
Kagdi et al. [17] literature survey, and Xie’s online 
bibliography and tutorial on MSR

1
. In addition, conceptual 

information has been utilized in conjunction with 
evolutionary data to support other tasks, such as assigning 
incoming bug reports to developers [3, 16], identifying 
duplicate bug reports [32], estimating time to fix incoming 
bugs [33] and classifying maintenance requests [12].  

Traditional techniques largely performed impact analysis 
at the same level of abstraction and that too mostly on source 
code.  Supporting IA at the change request level has been 
suggested only recently [9]; the advent of applied IR and 
MSR methods has renewed interest in cross abstraction IA.   

Our combined approach is different from other previous 
approaches, including those using IR and MSR techniques, 
for IA that rely solely on the historical account of past 
change requests and/or source code change history.  Our 
approach is not dependent on past change requests (e.g., 
repositories of past bug reports, which may not be always 
available), and only requires source code of a single 
complete release of the system, source code change history, 
and access to execution and tracing environment, such as 
Java Platform Debugger Architecture (JPDA) or Test and 
Performance Tools Platform (TPTP).  To the best of our 
knowledge, ours is the only approach that utilizes such a 
combination for performing IA from change request to 
source code without the need for a bug/issue history.  The 
selective use of dynamic and evolutionary information along 
with the textual information has not been used before.  Our 
approach builds on existing solutions, but synergizes them in 
a new holistic technique. 

III. AN INTEGRATED APPROACH TO IMPACT ANALYSIS  

Our framework for impact analysis is based on the 
possible degree of automation and developer augmented 
information that may be available in a given maintenance 
scenario.  In several realistic settings, change requests are 
typically specified in natural language (e.g., English).  It is 
reasonable to assume that change requests, in several cases, 
are the only source of available information to conduct the 
needed maintenance.  In such a situation, a high degree of 
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automation in estimating the impact set can be achieved by 
taking the textual view of source code and applying IR 
techniques, which are an organic fit to automatic text 
analysis.  This component of our framework assumes that 
there is no developer or maintenance environment supplied 
information available.  Our framework operates in this 
default mode, which has the highest degree of automation 
and the least level of developer supplied information.  We 
refer to this default configuration as IR CR. 

The maintenance scenario may not necessarily be as 
austere as depicted in the default IR mode.  In several 
situations, additional pieces of valuable information are also 
available.  We consider two such developer-augmented 
information cases: 1) a developer somehow narrows down to 
at least one verified entity that needs a change (e.g., from 
previous experience of performing similar changes) − seed 
entity, 2) a developer has executed the feature, inferred by 
reading the textual change request, and collected the run-
time information − executed methods, (e.g., to verify if the 
issue that was reported can be replicated or collected from 
the call stack of a failure).  For the first case, our framework 
provides a component Histseed, which mines the past commits 
(change history) of software entities to estimate the impact 
set.  This component provides medium levels of automation 
and human intervention is in selecting a starting point of 
change; then a data mining technique is used to compute the 
impact set automatically.  For the second case, our 
framework provides the component that uses the methods 
executed in the run-time scenario.  This component requires 
the most human involvement and the lowest level of 
automation.  We refer to this component as DynCR. 

Our framework employs the best effort paradigm in an 
adaptive manner − it selectively employs the best-fit 
components depending on the type of developer-supplied 
information before resorting to the default mode.  For 
example, when a seed entity is available along with the 
change request, a combination of the components IRCR and 
Histseed is engaged. Similarly, when the dynamic information 
is available along with the change request, a combination of 
the components IR CR and DynCR is selected.  The premise of 
our approach is that any combination that involves the 
human augmented information and (highest or medium) 
automation would provide a better impact set than those 
based on automated components alone.  

A. Analyzing Textual Information via IR 

Textual information in software repositories (e.g., change 
requests in Bugzilla) and source code, reflected in identifiers 
and comments, encodes problem domain information about a 
software project.  This unstructured information can be used 
to support impact analysis through the use of IR techniques 
[9].  IR works by comparing a set of artifacts (e.g., source 
code files) to a query (e.g., a change request) and ranking 
these artifacts by their relevance to the query.  IRCR follows 
five main steps [22]: (1) building a corpus, (2) natural-
language processing (NLP), (3) indexing, (4) querying, and 
(5) estimating an impact set.  

An example of such a query is the bug #2472 reported in 
ArgoUML v0.22.  The query is formulated from its 



 

description “Wrong keyboard focus in Settings dialog after 
close & reopen […]”. For the input query from the bug 
#2472, the IRCR technique returns a ranked list of methods 
according to their similarity values in descending order.  The 
top methods in this ranked list are considered based on a cut 
point, which establishes the size of the estimated impact set.  
Now, the question is how accurate are these IRCR estimated 
impact sets.  We manually examined the source code 
methods that were changed to address/fix a specific bug, 
which we refer to as a gold set. We identified 16 methods 
that are relevant to the change request for the bug #2472 (i.e., 
gold sets).  When comparing the IRCR estimated impact set 
with its gold set, the relevant methods appeared at positions 
2, 16, 30, 37, 52, 56, 57, and so on.  This example shows that 
although IR can help identify the real impact set, it might 
induce an examination of several candidates; in some cases it 
may not be quite practical (e.g., bug #4349).  

B. Analyzing Evolutionary Information via Data Mining 

Our approach to mining fine-grained evolutionary 
couplings and prediction rules consists of four steps: (1) 
extract commits from software repositories (e.g., 
Subversion), (2) process commits to fine-grained change-
sets, 3) mine evolutionary couplings using 
itemset/association rule mining, 4) estimating an impact set. 

We perform additional processing in an attempt to group 
multiple commits forming a cohesive unit of a high-level 
change.  We use a heuristic, namely author-time, to estimate 
such related commits. The premise is that the change-sets 
committed by the same committer within a time interval 
(e.g., same day) are related and are placed in the same group 
or transaction [18].  Our tool codediff is used to process all 
the files in every change-set for source code differences at a 
fine-grained syntactic level (e.g., method).  

In our approach, evolutionary couplings are essentially 
mined patterns of changed entities.  We employ itemset 
mining [1], a data mining technique to uncover frequently 
occurring patterns or itemsets (co-changed entities such as 
methods) in a given set of transactions (change-
sets/commits).  The frequency is typically measured by the 
metric support or support value, which simply measures the 
number of transactions in which an itemset appears. These 
patterns are used to generate association rules that serve as 
IA rules for source code changes. The evolutionary coupling 

{argouml/model/mdr/FacadeMDRImpl.java/getType, 
argouml/model/mdr/FacadeMDRImpl.java/isAStereotype} 

is mined from the commit history between releases 0.24 
and 0.26.2 of ArgoUML and is supported by three commits 
with ID’s 13341, 12784, and 12810.  In these three commits, 
both getType() and isAStereotype() are found to co-change. 

For any given starting/seed software entity, for impact 
analysis, we compute all the association rules from the mined 
evolutionary couplings where it occurs as an antecedent (lhs) 
and another entity as a consequent (rhs).  Simply put, an 
association rule gives the conditional probability of the rhs 
also occurring when the lhs occurs, measured by a 
confidence value.  That is, an association rule is of the form 

lhs ⇒ rhs.  When multiple rules are found for a given entity, 
they are first ranked by their confidence values and then by 

their support values. Thus, the estimated impact set is the set 
of all consequents in the (user) selected n rules.  From the 
above evolutionary coupling example, the association rule 

{argouml/model/mdr/FacadeMDRImpl.java/getType} ⇒ 
{argouml/model/mdr/FacadeMDRImpl.java/isAStereotype} 

is computed.  This rule has a confidence value of 1.0 
(100%) and it suggests that should the method getType() be 
changed, the method isASteretype() is also likely to be a part 
of the same change with a conditional probability of 100%. 

For the bug #2472, using the seed method 

org.argouml.ui.SettingsDialog.SettingsDialog results in the 

methods in the gold set appearing at positions 1, 4, 5, 7, 11-

17, and so on in the estimated impact set. 

C. Analyzing Execution Information via Dynamic Analysis 

The majority of existing IA techniques rely on post-
mortem execution analysis [21, 25].  In our approach, 
information collected from execution traces is combined 
with textual and evolutionary data.  Execution information is 
combined with other types of information by using it as a 
filter, as in the SITIR approach [22] where methods not 
executed in a feature or bug-specific scenario are clipped 
from the ranked list produced by IRCR. 

We used JPDA and TPTP to collect execution traces 
because they do not require any source code or byte code 
instrumentation.  Using JPDA, we collected marked traces 
(i.e., we manually controlled when to start and stop 
collecting traces), whereas, using TPTP, we collected full 
traces (i.e., the trace contained all the methods from the start 
until the stop of the program).   

D. Combining different techniques 

The main goal of this work is to integrate information 
from orthogonal sources to attain potentially more accurate 
results for change impact analysis.  Our integrated approach 
provides an automated support to software developers in 
different impact analysis scenarios. 

Information Retrieval and Dynamic Analysis. A single 
feature or bug-specific execution trace is first collected. IRCR 

then ranks all the methods in the trace instead of all the 
methods in a software release.  Therefore, the run-time 
information is used as a filter to eliminate methods that were 
not executed and are less likely to be relevant to the change 
request.  We refer to this integrated approach as IRCRDynCR.  
This dynamic information can be used to eliminate some of 
the false positives produced by IRCR. For the bug #2472, 
IRCRDynCR results in methods in its gold set at positions 1, 3, 
5, 7, 11, 12, 14, 29, and so on. Once again, the impact set 
gleaned via IRCRDynCR is more accurate than IRCR. 

IR and Data Mining. Existing change impact analysis 
techniques [15, 19, 28] take an initial software entity (e.g., a 
method) in which a change is identified and estimates other 
change-prone candidates, referred to as an estimated impact 
set.  Our approach (IRCRHistseed) not only considers this 
initial software entity, but also takes into account the textual 
description of a given change request, which triggers this 
maintenance task. Our approach computes the estimated 
impact set with the following steps: 



 

(1) Selecting the first relevant entity. This is the initial 
software entity for which IA needs to be performed.  For 
example, this initial entity (i.e., a method) could be a result 
of a feature location activity [22].   

(2) Mining evolutionary couplings from commits. 
Mine a set of commits from the source code repository and 
compute evolutionary couplings for a given software entity.  
Only the commits that occurred before the software release 
in the step (1) are considered.  Evolutionary couplings are 
then used to form association rules and are ranked by the 
support and confidence values. 

(3) Computing similarities using a change request.  
Compute conceptual couplings with IR methods from the 
release of a system in which the first entity is selected. 

(4) Integrating IR and data mining results. The 
resulting impact set, similar to our previous work [19],  is 
acquired by combining the N/2 highest ranked elements from 
each technique (steps 2 and 3).  Note that N is the desired 
size of the final impact set.  Therefore, each technique 
equally contributes to the resulting set.  If the same method is 
suggested by both techniques, it will appear only once in the 
final impact set.  Methods will be continuously selected, 
alternating the source ranked list, until an impact set of size 
N is acquired or the two sources are exhausted. For the bug 
#2472, IRCRHistseed showed improvement over IRCR.  In this 
case IRCR returned some relevant methods in the top 
positions and  Histseed returned the complementary other 11 
relevant results in the first 18 positions.  The two examples 
depict scenarios where the combinations improve IA by 
either alleviating the shortcomings of one source or blending 
the orthogonal information from the two sources.  

IR, Data Mining and Dynamic Analysis. We combine 
all types of analyses: IR, dynamic, and data mining, to 
perform IA.  To integrate these three techniques, we utilize 
the combination IRCRDynCR with the standalone approach 
Histseed, which yields IRCRDynCRHistseed.  Although the 
combination IRCRDynCR benefits from the filtering provided 
by dynamic information, it is also possible that correct 
methods are eliminated from further consideration; an 
undesired effect.  We augment IRCRDynCR with Histseed, with 
the intent of reducing the impact of erroneously filtered 
methods.  The techniques IRCRDynCR and Histseed, are 
combined using the same heuristic presented for the 
combination IRCRHistseed.  Using the highest ranked N/2 
methods, we strive to leverage the best selection of methods 
from each technique. Similar to the improvement of 
IRCRHistseed over IRCR, IRCRDynCRHistseed produces more 
accurate impact set than IRCRDynCR for the bug #2472. 

IV. CONCLUSIONS 

The paper presents a novel approach to IA at change 
request level that automatically adapts to the specific 
software maintenance scenario at hand.  Our approach uses a 
scenario-driven combination of IR, dynamic analysis, and 
MSR techniques to analyze incoming change requests, 
execution traces and prior changes to estimate an impact set.  
We identified example cases from real systems, which 
suggest that our integrated approach could offer accuracy 
improvements  for IA. 
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