

An Adaptive Approach to Impact Analysis from

Change Requests to Source Code

Malcom Gethers
1
, Huzefa Kagdi

2
, Bogdan Dit

1
, Denys Poshyvanyk

1

1
Computer Science Department

 The College of William and Mary

Williamsburg, VA 23185

{mgethers, bdit, denys}@cs.wm.edu

2
Department of Electrical Engineering and

Computer Science

Wichita State University

Wichita, KS 67260

kagdi@cs.wichita.edu

Abstract — The paper presents an adaptive approach to

perform impact analysis from a given change request (e.g., a

bug report) to source code. Given a textual change request, a

single snapshot (release) of source code, indexed using Latent

Semantic Indexing, is used to estimate the impact set.

Additionally, the approach configures the best-fit combination

of information retrieval, dynamic analysis, and data mining of

past source code commits to produce an improved impact set.

The tandem operation of the three techniques sets it apart

from other related solutions.

I. INTRODUCTION

Software-change impact analysis, or simply impact
analysis (IA), has been recognized as a key maintenance
activity. IA aims at estimating the potentially impacted
entities of a system due to a proposed change [6]. In several
realistic settings, change requests are typically specified in
natural language (e.g., English). For example, bug reports
submitted during the post-delivery maintenance by
programmers or end users. These change requests may need
to be resolved with the appropriate changes to relevant
source code. It is not uncommon in large-scale software
projects to receive numerous change requests daily that need
to be resolved in an effective manner (e.g., within time,
priority, and quality factors) [3, 20]. It is not an uncommon
maintenance scenario in which a change request, described
in the natural language, is the only source of information
available to perform IA and an automatic technique must
operate in such a situation.

In this paper, we present a novel approach for IA that
automatically adapts to the specific maintenance scenario at
hand. We consider scenarios in which the change request is
available at the minimum and is the source of focus with or
without other forms of additional developer knowledge that
maybe also available in the context of this change request.
Two quantifiable forms of the developer knowledge are
considered: a verified source code entity to start performing
the change (e.g., relevant source code method) and run-time
information pertinent to the features in change request (i.e.,
execution trace for a feature specific scenario).

Our approach uses a scenario-driven combination of
information retrieval (IR), dynamic analysis, and mining
software repositories techniques (MSR). We chose a
history-based mining technique, as we share a prevalent view

in MSR that the information in repositories is an extension of
the collective developer or development knowledge [4].
Given a textual change request, an IR (e.g., Latent Semantic
Indexing or simply, LSI) indexed single release of source
code is used to estimate the impact set. Should the execution
information be made available for the same snapshot
associated with the change request, methods in the trace are
also obtained. A combination of IR and dynamic analyses is
favored over IR to estimate the impact set in such cases.

Furthermore, should a verified start entity of change be
available, evolutionary couplings are mined from the
commits in software repositories that occur before the
snapshot of code used for IR-based indexing (and dynamic
analysis). A combination of IR and evolutionary coupling
analyses is favored over IR to estimate the impact set in such
cases. When both forms of additional developer-information
context are available, a combination of IR, dynamic
information, and evolutionary couplings supersedes others.

II. RELATED WORK

Several IA approaches ranging from classical static and
dynamic analysis techniques [7, 21, 25, 26, 29, 30] to the
recent unconventional approaches, such as those based on IR
[15, 28] and MSR [14, 19, 34], exist in the literature.

Impact analysis is traditionally performed using static
program analysis [6, 8], dynamic program analysis [21, 24,
25], or a combination of these techniques [29]. Static
program analysis relies solely on the structure of the program
and the relationship between program elements, at different
levels of granularity, whereas dynamic program analysis
takes into account information gathered from program
execution. Cornelissen et al. [11] provide a comprehensive
summary on using dynamic analysis to support program
comprehension including IA.

IR methods address tasks of extracting and analyzing
textual information in software artifacts, including change
impact analysis in source code [9, 19, 28]. Existing
approaches to IA using IR operate at two levels of
abstraction: change request [9] and source code [19, 28]. In
the first case, the technique relies on mining and indexing the
history of change requests (e.g., bug reports) [9, 33]. While
this technique has been shown to be relatively robust in
certain settings, it is entirely dependent on the history of
prior change requests. The work in [15] relates to our

approach in the use of lexical (textual) clues from the source
code to identify related methods. The other set of techniques
to IA that use IR operates at the source code level and
requires a starting point (e.g., a source code method that is
likely to be modified in response to an incoming change
request) [19, 28]. Our previous work [19] was consistent
with earlier usages of IR in IA [28]; however, it was limited
to the source-code level staring point,. Our new adaptive
approach operates at the change-request level as a starting
point. IR is a baseline technique in our adaptive solution.

The term MSR has been coined to describe a broad class
of investigations into the examination of software
repositories (e.g., Subversion and Bugzilla). Zimmerman et
al. [34] used CVS logs for detecting evolutionary coupling
between source code entities. Association rules based on
itemset mining were formed from the change-sets and used
for change-prediction. We refer the interested readers to
Kagdi et al. [17] literature survey, and Xie’s online
bibliography and tutorial on MSR

1
. In addition, conceptual

information has been utilized in conjunction with
evolutionary data to support other tasks, such as assigning
incoming bug reports to developers [3, 16], identifying
duplicate bug reports [32], estimating time to fix incoming
bugs [33] and classifying maintenance requests [12].

Traditional techniques largely performed impact analysis
at the same level of abstraction and that too mostly on source
code. Supporting IA at the change request level has been
suggested only recently [9]; the advent of applied IR and
MSR methods has renewed interest in cross abstraction IA.

Our combined approach is different from other previous
approaches, including those using IR and MSR techniques,
for IA that rely solely on the historical account of past
change requests and/or source code change history. Our
approach is not dependent on past change requests (e.g.,
repositories of past bug reports, which may not be always
available), and only requires source code of a single
complete release of the system, source code change history,
and access to execution and tracing environment, such as
Java Platform Debugger Architecture (JPDA) or Test and
Performance Tools Platform (TPTP). To the best of our
knowledge, ours is the only approach that utilizes such a
combination for performing IA from change request to
source code without the need for a bug/issue history. The
selective use of dynamic and evolutionary information along
with the textual information has not been used before. Our
approach builds on existing solutions, but synergizes them in
a new holistic technique.

III. AN INTEGRATED APPROACH TO IMPACT ANALYSIS

Our framework for impact analysis is based on the
possible degree of automation and developer augmented
information that may be available in a given maintenance
scenario. In several realistic settings, change requests are
typically specified in natural language (e.g., English). It is
reasonable to assume that change requests, in several cases,
are the only source of available information to conduct the
needed maintenance. In such a situation, a high degree of

1
 https://sites.google.com/site/asergrp/dmse

automation in estimating the impact set can be achieved by
taking the textual view of source code and applying IR
techniques, which are an organic fit to automatic text
analysis. This component of our framework assumes that
there is no developer or maintenance environment supplied
information available. Our framework operates in this
default mode, which has the highest degree of automation
and the least level of developer supplied information. We
refer to this default configuration as IR CR.

The maintenance scenario may not necessarily be as
austere as depicted in the default IR mode. In several
situations, additional pieces of valuable information are also
available. We consider two such developer-augmented
information cases: 1) a developer somehow narrows down to
at least one verified entity that needs a change (e.g., from
previous experience of performing similar changes) − seed
entity, 2) a developer has executed the feature, inferred by
reading the textual change request, and collected the run-
time information − executed methods, (e.g., to verify if the
issue that was reported can be replicated or collected from
the call stack of a failure). For the first case, our framework
provides a component Histseed, which mines the past commits
(change history) of software entities to estimate the impact
set. This component provides medium levels of automation
and human intervention is in selecting a starting point of
change; then a data mining technique is used to compute the
impact set automatically. For the second case, our
framework provides the component that uses the methods
executed in the run-time scenario. This component requires
the most human involvement and the lowest level of
automation. We refer to this component as DynCR.

Our framework employs the best effort paradigm in an
adaptive manner − it selectively employs the best-fit
components depending on the type of developer-supplied
information before resorting to the default mode. For
example, when a seed entity is available along with the
change request, a combination of the components IRCR and
Histseed is engaged. Similarly, when the dynamic information
is available along with the change request, a combination of
the components IR CR and DynCR is selected. The premise of
our approach is that any combination that involves the
human augmented information and (highest or medium)
automation would provide a better impact set than those
based on automated components alone.

A. Analyzing Textual Information via IR

Textual information in software repositories (e.g., change
requests in Bugzilla) and source code, reflected in identifiers
and comments, encodes problem domain information about a
software project. This unstructured information can be used
to support impact analysis through the use of IR techniques
[9]. IR works by comparing a set of artifacts (e.g., source
code files) to a query (e.g., a change request) and ranking
these artifacts by their relevance to the query. IRCR follows
five main steps [22]: (1) building a corpus, (2) natural-
language processing (NLP), (3) indexing, (4) querying, and
(5) estimating an impact set.

An example of such a query is the bug #2472 reported in
ArgoUML v0.22. The query is formulated from its

description “Wrong keyboard focus in Settings dialog after
close & reopen […]”. For the input query from the bug
#2472, the IRCR technique returns a ranked list of methods
according to their similarity values in descending order. The
top methods in this ranked list are considered based on a cut
point, which establishes the size of the estimated impact set.
Now, the question is how accurate are these IRCR estimated
impact sets. We manually examined the source code
methods that were changed to address/fix a specific bug,
which we refer to as a gold set. We identified 16 methods
that are relevant to the change request for the bug #2472 (i.e.,
gold sets). When comparing the IRCR estimated impact set
with its gold set, the relevant methods appeared at positions
2, 16, 30, 37, 52, 56, 57, and so on. This example shows that
although IR can help identify the real impact set, it might
induce an examination of several candidates; in some cases it
may not be quite practical (e.g., bug #4349).

B. Analyzing Evolutionary Information via Data Mining

Our approach to mining fine-grained evolutionary
couplings and prediction rules consists of four steps: (1)
extract commits from software repositories (e.g.,
Subversion), (2) process commits to fine-grained change-
sets, 3) mine evolutionary couplings using
itemset/association rule mining, 4) estimating an impact set.

We perform additional processing in an attempt to group
multiple commits forming a cohesive unit of a high-level
change. We use a heuristic, namely author-time, to estimate
such related commits. The premise is that the change-sets
committed by the same committer within a time interval
(e.g., same day) are related and are placed in the same group
or transaction [18]. Our tool codediff is used to process all
the files in every change-set for source code differences at a
fine-grained syntactic level (e.g., method).

In our approach, evolutionary couplings are essentially
mined patterns of changed entities. We employ itemset
mining [1], a data mining technique to uncover frequently
occurring patterns or itemsets (co-changed entities such as
methods) in a given set of transactions (change-
sets/commits). The frequency is typically measured by the
metric support or support value, which simply measures the
number of transactions in which an itemset appears. These
patterns are used to generate association rules that serve as
IA rules for source code changes. The evolutionary coupling

{argouml/model/mdr/FacadeMDRImpl.java/getType,
argouml/model/mdr/FacadeMDRImpl.java/isAStereotype}

is mined from the commit history between releases 0.24
and 0.26.2 of ArgoUML and is supported by three commits
with ID’s 13341, 12784, and 12810. In these three commits,
both getType() and isAStereotype() are found to co-change.

For any given starting/seed software entity, for impact
analysis, we compute all the association rules from the mined
evolutionary couplings where it occurs as an antecedent (lhs)
and another entity as a consequent (rhs). Simply put, an
association rule gives the conditional probability of the rhs
also occurring when the lhs occurs, measured by a
confidence value. That is, an association rule is of the form

lhs ⇒ rhs. When multiple rules are found for a given entity,
they are first ranked by their confidence values and then by

their support values. Thus, the estimated impact set is the set
of all consequents in the (user) selected n rules. From the
above evolutionary coupling example, the association rule

{argouml/model/mdr/FacadeMDRImpl.java/getType} ⇒
{argouml/model/mdr/FacadeMDRImpl.java/isAStereotype}

is computed. This rule has a confidence value of 1.0
(100%) and it suggests that should the method getType() be
changed, the method isASteretype() is also likely to be a part
of the same change with a conditional probability of 100%.

For the bug #2472, using the seed method

org.argouml.ui.SettingsDialog.SettingsDialog results in the

methods in the gold set appearing at positions 1, 4, 5, 7, 11-

17, and so on in the estimated impact set.

C. Analyzing Execution Information via Dynamic Analysis

The majority of existing IA techniques rely on post-
mortem execution analysis [21, 25]. In our approach,
information collected from execution traces is combined
with textual and evolutionary data. Execution information is
combined with other types of information by using it as a
filter, as in the SITIR approach [22] where methods not
executed in a feature or bug-specific scenario are clipped
from the ranked list produced by IRCR.

We used JPDA and TPTP to collect execution traces
because they do not require any source code or byte code
instrumentation. Using JPDA, we collected marked traces
(i.e., we manually controlled when to start and stop
collecting traces), whereas, using TPTP, we collected full
traces (i.e., the trace contained all the methods from the start
until the stop of the program).

D. Combining different techniques

The main goal of this work is to integrate information
from orthogonal sources to attain potentially more accurate
results for change impact analysis. Our integrated approach
provides an automated support to software developers in
different impact analysis scenarios.

Information Retrieval and Dynamic Analysis. A single
feature or bug-specific execution trace is first collected. IRCR

then ranks all the methods in the trace instead of all the
methods in a software release. Therefore, the run-time
information is used as a filter to eliminate methods that were
not executed and are less likely to be relevant to the change
request. We refer to this integrated approach as IRCRDynCR.
This dynamic information can be used to eliminate some of
the false positives produced by IRCR. For the bug #2472,
IRCRDynCR results in methods in its gold set at positions 1, 3,
5, 7, 11, 12, 14, 29, and so on. Once again, the impact set
gleaned via IRCRDynCR is more accurate than IRCR.

IR and Data Mining. Existing change impact analysis
techniques [15, 19, 28] take an initial software entity (e.g., a
method) in which a change is identified and estimates other
change-prone candidates, referred to as an estimated impact
set. Our approach (IRCRHistseed) not only considers this
initial software entity, but also takes into account the textual
description of a given change request, which triggers this
maintenance task. Our approach computes the estimated
impact set with the following steps:

(1) Selecting the first relevant entity. This is the initial
software entity for which IA needs to be performed. For
example, this initial entity (i.e., a method) could be a result
of a feature location activity [22].

(2) Mining evolutionary couplings from commits.
Mine a set of commits from the source code repository and
compute evolutionary couplings for a given software entity.
Only the commits that occurred before the software release
in the step (1) are considered. Evolutionary couplings are
then used to form association rules and are ranked by the
support and confidence values.

(3) Computing similarities using a change request.
Compute conceptual couplings with IR methods from the
release of a system in which the first entity is selected.

(4) Integrating IR and data mining results. The
resulting impact set, similar to our previous work [19], is
acquired by combining the N/2 highest ranked elements from
each technique (steps 2 and 3). Note that N is the desired
size of the final impact set. Therefore, each technique
equally contributes to the resulting set. If the same method is
suggested by both techniques, it will appear only once in the
final impact set. Methods will be continuously selected,
alternating the source ranked list, until an impact set of size
N is acquired or the two sources are exhausted. For the bug
#2472, IRCRHistseed showed improvement over IRCR. In this
case IRCR returned some relevant methods in the top
positions and Histseed returned the complementary other 11
relevant results in the first 18 positions. The two examples
depict scenarios where the combinations improve IA by
either alleviating the shortcomings of one source or blending
the orthogonal information from the two sources.

IR, Data Mining and Dynamic Analysis. We combine
all types of analyses: IR, dynamic, and data mining, to
perform IA. To integrate these three techniques, we utilize
the combination IRCRDynCR with the standalone approach
Histseed, which yields IRCRDynCRHistseed. Although the
combination IRCRDynCR benefits from the filtering provided
by dynamic information, it is also possible that correct
methods are eliminated from further consideration; an
undesired effect. We augment IRCRDynCR with Histseed, with
the intent of reducing the impact of erroneously filtered
methods. The techniques IRCRDynCR and Histseed, are
combined using the same heuristic presented for the
combination IRCRHistseed. Using the highest ranked N/2
methods, we strive to leverage the best selection of methods
from each technique. Similar to the improvement of
IRCRHistseed over IRCR, IRCRDynCRHistseed produces more
accurate impact set than IRCRDynCR for the bug #2472.

IV. CONCLUSIONS

The paper presents a novel approach to IA at change
request level that automatically adapts to the specific
software maintenance scenario at hand. Our approach uses a
scenario-driven combination of IR, dynamic analysis, and
MSR techniques to analyze incoming change requests,
execution traces and prior changes to estimate an impact set.
We identified example cases from real systems, which
suggest that our integrated approach could offer accuracy
improvements for IA.

V. ACKNOWLEDGEMENTS

This work is supported in part by NSF CCF-1063253,
NSF CCF-1016868, and NSF CCF-0916260 grants. Any
opinions, findings and conclusions expressed herein are the
authors’ and do not necessarily reflect those of the sponsors.

VI. REFERENCES

[1] R. Agrawal and R. Srikant, "Mining sequential patterns," in ICDE'95, 1995.

[2] J. Anvik, L. Hiew, and G. C. Murphy, "Who should fix this bug?," in

ICSE'06, 2006, pp. 361-370.

[3] A. Begel, K. Y. Phang, and T. Zimmermann, "Codebook: Discovering and

exploiting relationships in software repositories," in ICSE'10, 2010, pp.
125-134.

[4] S. Bohner and R. Arnold, Software change impact analysis. Los Alamitos,

CA: IEEE Computer Society, 1996.

[5] L. Briand, J. Wust, and H. Louinis, "Using coupling measurement for

impact analysis in object-oriented systems," in ICSM'99, 1999, pp. 475-

482.

[6] J. Buckner, J. Buchta, M. Petrenko, and V. Rajlich, "Jripples: A tool for

program comprehension during incremental change," in IWPC'05, St.
Louis, Missouri, USA, 2005, pp. 149-152.

[7] G. Canfora and L. Cerulo, "Fine grained indexing of software repositories

to support impact analysis," in MSR'06, 2006, pp. 105 - 111.

[8] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen, and R. Koschke,

"A systematic survey of program comprehension through dynamic

analysis," TSE, vol. 35, pp. 684-702, 2009.

[9] G. A. Di Lucca, M. Di Penta, and S. Gradara, "An approach to classify
software maintenance requests," in ICSM'02, 2002, pp. 93-102.

[10] H. Gall, Hajek, K., Jazayeri, M., "Detection of logical coupling based on

product release history," in ICSM'98, 1998, pp. 190 - 198.

[11] E. Hill, L. Pollock, and K. Vijay-Shanker, "Exploring the neighborhood

with dora to expedite software maintenance," in ASE'07, 2007, pp. 14-23.

[12] G. Jeong, S. Kim, and T. Zimmermann, "Improving bug triage with bug

tossing graphs," in ESEC/FSE'09, 2009.

[13] H. Kagdi, M. L. Collard, and J. I. Maletic, "A survey and taxonomy of
approaches for mining software repositories in the context of software

evolution," JSME, vol. 19, pp. 77-131, March/April 2007.

[14] H. Kagdi, J. I. Maletic, and B. Sharif, "Mining software repositories for

traceability links," in ICPC'07, 2007, pp. 145-154.

[15] H. Kagdi, M. Gethers, D. Poshyvanyk, and M. Collard, "Blending

conceptual and evolutionary couplings to support change impact analysis in

source code," in WCRE'10, 2010, pp. 119-128.

[16] H. Kagdi, M. Gethers, D. Poshyvanyk, and M. Hammad, "Assigning
change requests to software developers," JSME, 2011.

[17] J. Law and G. Rothermel, "Whole program path-based dynamic impact

analysis," in ICSE'03, 2003, pp. 308-318.

[18] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich, "Feature location via

information retrieval based filtering of a single scenario execution trace," in

ASE'07, 2007, pp. 234-243.

[19] A. Orso, T. Apiwattanapong, and M. J. Harrold, "Leveraging field data for
impact analysis and regression testing," in ESEC/FSE'03, 2003, pp. 128-

137.

[20] A. Orso, T. Apiwattanapong, J. Law, G. Rothermel, and M. J. Harrold, "An

empirical comparison of dynamic impact analysis algorithms," in ICSE'04,

2004, pp. 776-786.

[21] M. Petrenko and V. Rajlich, "Variable granularity for improving precision

of impact analysis," in ICPC'09, 2009, pp. 10-19

[22] D. Poshyvanyk, A. Marcus, R. Ferenc, and T. Gyimóthy, "Using
information retrieval based coupling measures for impact analysis," EMSE,

vol. 14, pp. 5-32, 2009.

[23] X. Ren, F. Shah, F. Tip, B. G. Ryder, and O. Chesley, "Chianti: A tool for

change impact analysis of java programs," in OOPSLA '04, 2004, pp. 432-

448.

[24] M. Robillard, "Automatic generation of suggestions for program

investigation," in ESEC/FSE'05, 2005, pp. 11 - 20

[25] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun, "An approach to detecting
duplicate bug reports using natural language and execution information," in

ICSE'08, 2008, pp. 461-470.

[26] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller "How long will it take

to fix this bug?," in MSR'07, Minneapolis, MN, 2007, pp. 1-8.

[27] T. Zimmermann, A. Zeller, P. Weißgerber, and S. Diehl, "Mining version

histories to guide software changes," TSE, vol. 31, pp. 429-445, 2005.

