
Teaching Evolution of Open-Source Projects in Software Engineering Courses

Joseph Buchta, Maksym Petrenko, Denys Poshyvanyk, Václav Rajlich
Department of Computer Science

Wayne State University
Detroit, Michigan USA 48202

{JBuchta, max, denys, Rajlich}@wayne.edu

Abstract

In the traditional software engineering courses, the

students develop small programs from scratch. This
does not correspond to industry practice where
programmers spend most of their time evolving
medium to large systems. In order to narrow this gap,
we developed a course where students practice
software evolution through the implementation of
change requests on medium-sized open-source
software systems. The results of the course show that
this type of software engineering course gives students
a more realistic experience than traditional software
engineering courses. In the survey at the end of the
course, the students expressed a higher level of
satisfaction with both rating the course and assessing
how much they learned. Additionally, the resources
required by such a course are not excessive.

1. Introduction

Traditionally, software engineering course projects

have used the waterfall model, while more recently
enterprising instructors have implemented projects
utilizing software evolution and Extreme Programming
(XP) [1]. These projects are either small in scale and
expect the student to follow predefined steps already
undertaken by experienced software engineers [2, 3],
or use medium sized programs in laboratory sessions
closely supervised by experienced programmers [4-6].
These courses often require a commitment of
substantial resources.

Our traditional course Advanced Software
Engineering (CSC6110) taught at the Department of
Computer Science at Wayne State University is a
graduate level course. This course is presented
annually to anywhere from 10 to 20 senior
undergraduates and first year graduate students.

In the past, the course project was a traditional
project implemented and completed in three phases by

teams of 3-4 students. Each phase consisted of certain
activities designed to guide the student through the
waterfall development model. The resulting “toy”
program usually only contained few classes, the most
rudimentary features, and a low quality of code.

This traditional approach has outlived its usefulness
for several reasons. First, the typical projects given to
the students did not match the realities experienced by
industry programmers, who deal with much larger
systems that contain many features and the code
quality expectations are much higher. Also, in
industry, seventy or more percent of time is devoted to
the evolution or maintenance of large programs [7, 8]
rather than new development.

Secondly, the arrangement of teams has promoted
abuse of the system in which few motivated students
carry out the work load on behalf of the less motivated
students who contribute little or nothing to the success
of the project. This abuse is often invisible to the
instructor because of the false solidarity among the
students.

This paper describes our solution to these problems
by using the process of software evolution in open-
source projects. Software evolution is the process of
adding additional functionality to an existing software
system as a result of changing business or customer
needs [3]. The use of open-source projects guarantees
that the students will have an experience with a
software system of realistic size and complexity. It is
our assertion that a project of this nature prepares a
student better for their future software engineering
career.

Section 2 presents a discussion regarding previous
approaches to teaching software engineering courses.
Section 3 provides an overview of software evolution,
while section 4 presents the framework for the course
project. Section 5 contains a discussion of the required
resources and both student and manager experience.
Lastly, section 6 presents conclusions and future goals.

2. Related Work

While software engineering instructors generally

agree with the inclusion of a team project in software
engineering education, the implementation of such a
project is still a matter of debate. Sommerville [8]
pointed out that the critical goals of software
engineering projects are to make students practice
“programming in the large”, to let them practice
concepts learned in the classroom, and to learn how to
use software tools. Gnatz et al. [9] offers non-
technical goals: understanding the customer’s domain
and requirements, working in a team, organizing the
division of work, and coping with time and pressure.

Postema, Miller, and Dick [2, 3] propose to focus
the projects on the four main software maintenance
activities: corrective, adaptive, perfective, and
preventative. The students work in groups of two on
each of the activities using a medium sized, open-
source project. At each step, the students are given
directions; the instructors then individually verify the
students’ work.

In the first stage students find errors in the program.
In the next stage they fix the errors and review the
changes of other groups. The project concludes with
the implementation of a graphic user interface as a
front end to the software. Hence the beginning stages
focus largely on bug correction and the project
concludes with introducing new functionality to the
system.

The authors provide an introduction to software
maintenance through a well structured program, where
the solutions to each stage have previously been
implemented. The usage of Computer Aided Software
Engineering (CASE) tools and/or Concurrent
Versioning Systems (CVS) is mentioned as a large
expense that cannot be undertaken.

Gnatz et al. [9] presented a software engineering
project, where students interacted with a real customer
on a fictional project. The course consisted of three
teams of four members developing a new project via a
waterfall-like approach: requirements specification,
design, development of the first increment including
testing and delivery, and development of the second
increment also including testing and delivery.

The course required five supervisors and an
industry partner. Even with all this personnel, the
course ran behind schedule and the authors did not
have a chance to teach software maintenance issues.

Hazzan and Dubinsky [5] report on a course
project that followed all twelve core practices of XP
that include planning, small releases, system metaphor,
simple design, continuous testing, refactoring, pair
programming, collective code ownership, continuous
integration, 40 hour work week, on-site customer, and

coding standards. The students in the course
participated in studio exercises in which all XP
practices can be tightly controlled and reviewed by a
designated tutor or instructor.

In the student evaluations, the authors assumed that
other students would not allow “parasites” on the team.
Whenever this assumption proved false, the project
manager or instructor acted temporarily as the partner
for the students in question and assessed their
capabilities in this way.

Hedin et al. [10] used pair programming to teach a
second year undergraduate course to 107 students in a
closed lab setting. Students were graded pass/fail
depending on their perceived participation.

Some authors raised concerns over the grading
schemas used in software engineering projects. Hayes
et al. [4] recognized that students often hide in groups
and will attempt to circumvent the grading scheme.
Solutions include mandating that students post daily
internet work logs, meet frequently with course
instructors, or evaluate each other during the course of
the project. Each of these seeks to mitigate the risk of
freeloading students, but often fail when it comes to
the collusion of student teams.

Each of these authors presented a partial solution to
the challenge of bringing a realistic software
development environment to an academic
environment, but the full attainment of this goal still
requires further effort.

3. Software Evolution

Software evolution consists of the processes that

change existing software in order to meet changing
customer requirements [11]. One such process is
incremental change (IC) [12]. While there may be
several versions of the IC process, we have decided to
base our course on the IC process proposed by Rajlich
and Gosavi [12] with some adaptations. In their paper,
IC activities are classified into four main groups:
initiation, design, implementation, and testing.

IC initiation begins when a customer or other
project stakeholder requests new functionality to be
incorporated into an existing system. This can be the
result of a bug or a problem report, which requires
certain functionality to be corrected. It can also occur
when the customer requires a completely new
functionality resulting from changing business or
technological needs. In either case, the change request
contains relevant information, such as the functionality
required and/or program logs and traces. In open-
source software, change requests are often listed in a
“wish list” [13-15]. The change request is received by
the software team and is assigned a priority.

IC design is the response by the software
engineering team to a change request. It includes
concept extraction, location, and impact analysis.
Each of these activities is undertaken before the actual
change is introduced into the system.

Concepts appear as nouns, verbs, or short clauses in
the change request; often, there are several concepts
embodied within a single change request. Concepts
also appear within the source code [16]. Concept
extraction extracts the most important concept related
to the change. Concept location is the process of
locating the implementations of this concept in the
code [11, 16, 17].

There are several different methodologies available
for concept location, including string pattern matching,
information retrieval techniques [18], and static
dependency search [19]; a more complete explanation
of these techniques can be found in [17]. Still, other
methodologies include dynamic techniques [20-22],
formal concept analysis [23], use of CVS repository
comments [24], or combined techniques [25].

In our course, the students were required to use the
static dependency search technique [17, 19]. This
approach calls for the programmer to traverse the
program dependencies in a manner similar to that of
depth-first search, but the search is conducted by the
programmer instead of a computer.

 In doing so, the programmer is required to follow
the static program dependencies contained within the
source code and make decisions that guide the search.
For example in Java, class A depends on class B if
class A refers to class B as a data member, local
variable, argument, or data cast; if class A inherits
from class B; or if class A implements the interface of
class B. Class A is called a dependent class and class B
is called a supporting class.

The static dependency search usually begins at the
top class containing the main () or init () function. If
the concept is not implemented there, the programmer
must determine which of supporting classes leads to it.
If none of the supporting classes lead to the desired
concept, then a wrong turn must have been taken, the
search backtracks to the previous class, and a new
dependency is chosen. This proceeds until the concept
is located within the program’s classes.

Impact analysis determines a change’s extent by
determining the strategy for the change and the set of
classes IC affects [26, 27]. The outcome of the
analysis is a list of the relevant classes involved in the
change.

The next activities of IC implement the desired
change. These activities are pre-factoring,
actualization, incorporation, change propagation, and
post-factoring.

Refactoring restructures the architecture of a
program without changing its functionality [28]. Pre-
factoring is an opportunistic refactoring that takes
place before the change proper. Its purpose is to
localize the code affected by IC before the actual
change is implemented.

Actualization produces the code that implements
the new functionality required by the IC. In the case of
a small change, the new code may be a part of an
existing class. A larger change may require one or
more new classes to be designed and implemented.

Incorporation is the activity of interconnecting the
new code with the old system. This can be achieved
by declaring new instances of the new classes within
the old code.

After the new code has been introduced into the
software system, the system may or may not become
inconsistent. In order to return the system back to a
consistent state, change propagation changes all
components in a system that have become inconsistent.
This activity is similar to impact analysis except that
actual code changes take place [29].

Post-factoring refactors the new and old code in
order to make the system clear and understandable to
future software engineers.

Testing includes both unit testing and function
testing. The aim is to ensure that all of the new
functionality is correct and old functionality remains
intact after a change has taken place (through
regression testing).

Lastly, a build of the updated software is
completed.

4. Software Evolution Course Projects

We choose to base our course on software evolution

and IC for several reasons: IC is intuitive and easy to
teach; we explained the theory of IC in approximately
10 hours of lecture time at the beginning of the
semester. Change requests can be decomposed into
several parts and distributed among the team members
for later integration, giving the participants a
cooperative experience. Last but not least, large
software systems can be used since the students do not
need to understand the entire code in order to
implement a change [17].

In order to emulate an industry experience, students
coordinated their efforts through a Concurrent
Versioning System (CVS) [30, 31] maintained by the
instructors. This encouraged the students to do their
own work, but also to cooperate with others in order to
clarify and structure their changes appropriately.

The CVS system used for the course was on a
Solaris UNIX server maintained by the department.
The initial setup consisted of creating student accounts

Table 1. JCDSee Change Requests.
Implement a right-click Context menu feature for picture objects (e.g. for thumbnails, preview picture and full-
screen picture)
Implement the ability to launch plug-ins from within the application. Provide a consistent framework for doing
so.
Augment the Context menu to allow the Context menu to display the full image.
Allow the user to zoom in on a picture within the Context menu.
Automatically refresh the Context menu screen.
Allow the user to view a slideshow of their photos. Allow the user to select it from the View menu.
Allow the user to view web pages from a viewer located within the application.
Add sorting capability to the View menu. Some sorting options include date, size, image type, and file name.
Integrate an open-source "Album Central" project into the JCDSee application.
Add an “Add to the favorites” option to the Context menu of directory objects (currently the program only has
“browse”, “slide show”, “delete”, “view” entries in it).
Implement blur, rotate, sharpen, and resize plug-ins using the previously developed plug-in framework.
JCDSee can call plug-ins only from preview mode. Modify JCDSee so we can call plug-in functions from the
full-screen Context menu also.
Modify the sort functionality so that it can sort images in title mode also. Add check boxes ahead of sorting
options so the user can see what the current sorting mode is (check box should be displayed only ahead of
current sorting option).
MS Windows has files with .URL extensions. These types of files store links to web-pages. Allow the user to
view pictures of these web pages the same way as it was done for the local directories.
Implement the ability to auto-size in full-screen mode so that the user will see the picture in the size matching
the screen size when it is opened in full-screen mode.

for the CVS login and setting the proper permissions.
After this, several CVS clients were evaluated: Eclipse
CVS, WinCVS, and TortoiseCVS. TortoiseCVS was
chosen because it was easy to use and it is open-source
so the students or the instructors would not have to
absorb the cost of an expensive CVS license [30]. The
students were able to install TortoiseCVS on their
computers and work at home after having only a short
instruction. The students were given logins and
passwords for the CVS system at the start of the
course.

The open-source projects were chosen by the
instructors and used together with change requests
found on the corresponding projects’ websites. These
change requests often required further clarification as
they would in an industry setting.

We selected several open-source software systems
written in either C++ or Java. During the software
selection, the domain of the software was given
considerable attention as we felt that the software
domain should be intuitive and easy to understand in
order to alleviate the student from having to learn too
many domain-specific concepts. This ensured that
each student was able to understand the required
changes in a timely manner. Other important aspects
included complexity and the number of available
change requests. In the end, the final list of projects
included JAdvisor [13], JCDSee [14], and WinMerge

[15]. The sizes of the projects ranged from 14 to 69
classes.

JCDSee 0.6 uses Java and the Swing framework
and organizes photos in various formats such as JPEG,
BMP, and GIF. It also converts various image
formats. It consists of 14 classes with 3506 lines of
code. Table 1 shows the change requests that were
implemented by the students, including both those
taken from the JCDSee website and brand new ones,
formulated by project managers.

JAdvisor 0.4.6 consists of 34 classes with 6145
lines of code also written in Java and the Swing
framework. It provides the ability for a student to plan
a schedule of courses downloaded from a university
website, maintain a course history, and plan future
course selections. Table 2 contains the change
requests that were implemented by the students.

WinMerge 2.0.2 is a Win32 tool for displaying and
comparing various document versions. It also provides
visual tools for side-by-side line differencing and
merging. It consists of 69 classes with 62990 lines of
code written entirely in C++. Table 3 contains the
change requests that were implemented by the
students.

Each project was assigned to a separate team of 4-6
students. Each team had a project manager, a Ph.D.
graduate student assistant, who was responsible for the
change requests and supervision of the team members.
Project managers also acted as formal customers when

Table 2. JAdvisor Change Requests.
Implement a wizard to generate a schedule of courses using the courses selected by the user. Automatically add
the selected schedule to the planner and schedule portions of the user interface.
Use the school adapter framework to implement a new school adapter for Wayne State University.
Allow for partial course overlap when scheduling courses. Signify the overlap using a special color of your
choice and notify the user.
Define an XML schedule schema. Implement a feature which outputs the schedule in the schema and also loads
the schema.
Implement a feature which is able to read in the HTML created by the application and recreate the schedule.
Populate the scheduler with the data.
Implement a feature which allows the user to block off time and assign it a category. Possible categories include
lunch time, study time, etc.
Implement a feature which detects when a course has been previously taken and notify the user of the duplicate
course. Allow the user to override such a selection.
Implement the functionality to save the planner information. Allow the user to track course completion and
grades as well. Calculate GPA to date based on grades recorded by the user.
Allow the user to search the courses available by partial course numbering, credits, time offered, building, or
teacher.
Automatically add a course which has been scheduled on the scheduler tab to the planner tab. Assume the
course is to be added to the current semester being planned.

Table 3. WinMerge Change Requests.
Use the Microsoft framework to implement the "Tip of the Day" functionality.
Implement a persistent cache, which is a cache of merges that persists between executions of the application.
These cached merges can be used to automatically repeat a previous merge, given the same two files that
participated in the original merge as input
Modify WinMerge so that it highlights XML code. If either of the two files presented to WinMerge contain
XML code, the XML should be highlighted.
Extend the application to allow for three-way document comparison and merging.
Provide the user with line statistics (the number of lines that are modified, deleted or added) as a menu choice
option.
Add features to the Find dialog box to store the last searched text. Also add a drop-down menu which
maintains a history of previous queries.
Allow the user to swap panels. When the user selects Swap, the documents should switch positions on the
screen.

change requests needed clarification and provided
resolution in case of a team members’ dispute or an
unexpected CVS problem. This was done via weekly
meetings or emails between the students and project
managers. It also allowed each project manager to be
familiar with each student’s capabilities as the students
progressed through their changes.

Each team member worked independently on
specific change requests and interacted with other team
members via a CVS repository. Therefore, the
students had to communicate with each other to ensure
that their changes did not conflict. Any disputes were
resolved by the project managers.

The course project was conducted in three main
phases. At the end of each phase the project manager
performed a build of the current CVS and saved the
project as a release build. This ensured that errors did

not persist from phase to phase and helped to recover
the last working version of the project if critical errors
were introduced into the code.

The first phase was the simplest so that the students
were able to experiment with the CVS system and
learn the course format. Typically, these changes
required minimal communication among them and
affected only a small number of the classes. This
allowed the students to explore the architecture of the
system and to experiment with the methodology.

After the first stage, the students understood the
process of IC and the course expectations. Thus, the
second and third phases introduced more complex
change requests that required the students to
communicate as their change requests often
overlapped. The changes in these two phases were
selected to ensure that all the stages of IC were

included. The students were given three weeks to
complete each phase and the change requests were
estimated to take 25 to 40 hours.

Each phase was graded by the project manager. At
the end of each phase, the students had individual
meetings with their managers in which they
demonstrated the new functionality. The students were
also individually interviewed as to their interaction
with their team members and any problems with the
CVS. After the initial interview, the students were
required to turn in a report detailing the process they
followed and the documentation for the change. Table
4 contains the questions that were addressed by the
students in the project report.

The grade of each student was primarily based on
individual effort, group interaction and
communication, and the extent to which they followed
the IC process. The individual effort comprised
seventy percent of the grade and the team component

was thirty percent of the grade. Table 5 lists the rubric
used to grade the student submissions.

In assessing the individual grade, the project
managers considered the students’ explanation of the
IC process. This included the process of successfully
locating the required concept, identifying the impact
set, performing pre-factoring and post-factoring, and
implementing the change in a clear and concise
manner, which is consistent with the code of the
system. When discussing each activity, the students
were expected to provide justification for their actions
and architectural decisions.

The team portion of the grade consisted of the
evaluation of the interactions among the team
members. This required successfully communicating
with other team members when change requests
conflicted, ensuring that all files were merged
appropriately within the CVS, and successfully
performing a release build, which included the union

Table 4. Outline of Report Submitted by Students after Completing a Change.
Course Report Format

Change Request: Explain the change that was requested by your project leader.

Concept Location: Explain the method that you used in concept location. Describe the process of concept
location including all classes that you visited. Give reasons to justify your decisions. Give the reasons why you
believe the class(es) that you located represent your concept.
Impact Analysis: List the classes that may be affected by the change. Describe why these classes should be
considered in your analysis. Remember that this is an analysis and may change after the actual implementation
of the change request.
Pre-factoring: Explain whether or not the concepts described above need to be pre-factored. Use your analysis
to support your choices.
Description of Implementation: Explain where and why you made a change in the code. Did you have to post-
factor anything after implementing the change? Explain your decisions.
Modified Source Code: Attach your modified code including only the classes which were modified. Highlight
the code that was changed or added using the computer. The report should have a professional look.

Table 5. Grading Scheme Used By Project Managers to Grade Student Submissions.
Sample Grading Scheme Points

CVS Used and Functionality Checked-In: Was the new functionality successfully added to the
CVS? Was it properly integrated with the other students change requests? 10

Met with Group Members Regarding Conflicting Change: Met with other group members when a
change required coordination of more than one group member? 10

Interaction with Project Manager: Met with the project manager when asked. Asked questions
pertinent to the change request. 10

Followed Correct Format of the Report: See Table 4 for explanation of format of the report. 10
Content of Paper: See Table 4 for explanation of paper content. 10
Incremental Change Time Table: Time required for each change. 5
Demonstrated Complete Functionality: Demonstrated functionality to project manager. 15
Correctness of Implemented Solution: Was all the functionality present and functioning correctly? 20
Organization of Solution and Comments: Were classes refactored when needed? Were interfaces
defined appropriately? 10

of the new functionality added by all team members.
Through the individual interviews and analysis of CVS
data log files, the project managers were able to
determine those team members who were not doing
their part. This also allowed them to accurately assign
grades accordingly. This ensured that no team member
was able to hide in the team and that no team member
was unduly punished if the CVS became corrupted.

The projects were also organized to deter cheating.
As it was mentioned earlier, all of the change requests
were either taken form the corresponding project sites
or formed by the project manager. This made cheating
almost impossible, when combined with the CVS,
since the implementations of the change were not
available and the students had to produce their own
implementation.

5. Course Assessment

The course had one project manager per team (three

for the whole course) in order to ensure that students
were given adequate attention and to spread the pre-
course planning and course workload. Most of the
time was spent in determining appropriate course
projects, setting up the CVS, and structuring change
requests. This process took place a month before the
course was scheduled to begin and was complete
before the course projects were assigned. We estimate
the shared setup cost to be 60 hours of planning and
preparation time.

After the course infrastructure was in place, each
project team required roughly six or seven hours of
manager’s time in an average semester week and
around ten to twelve hours in the weeks where build
releases were due.

The new version of the course projects was first
offered in Fall 2004, while the last course with the
traditional projects was offered in Fall 2002. At the
end of course, a course assessment survey is
traditionally conducted. The survey is comprised of
several questions relating to the course project and the
course content. Students are asked to rate the course
on a five point scale. Question one asks the students to
rate the course as a whole with five being “Excellent”
and one being “Very Poor”. Question two asks the
students to rate their learning in the course with five

being “a Great Deal” and one being “Nothing at All”.
Table 6 shows the large increase in student satisfaction
and student learning in the course.

These results were also reiterated by the students
during the course project survey. One part-time
student, who also is a practicing software engineer for
a large company, commented that, “The IC
methodology is helpful in analyzing and implementing
change requests.” Another student echoed this by
saying, “This being our third phase, we habitually
followed this approach as soon as we were handed the
change request. We realized that this approach saves a
lot of time and is beneficial.”

Another pair of students responded by saying,
“Before taking this course, we did not have these
concepts (methodological). Now we realize that they
greatly improve the clarity of code and make it easier
for later modification. We were more dependent on
intuition and experiences to change code before. We
now can apply these new techniques to modify code
systematically and efficiently.”

The students particularly liked the new ability to
update large and unknown software. Positive
comments from two practicing programmers included,
“The incremental change approach is a well defined
method that helped us implement our changes in a neat
fashion. This method was very useful to us when we
were asked to implement change requests. Generally
when people are asked to perform changes to large
projects they would be lost or find difficulty in starting.
We think this (referring to IC) is a methodological and
standard way to implement changes.”

Project managers were also positive in their
experiences with the course, as they gained experience
in managing a team of several students.

6. Conclusions and Future Work

The approach of applying the process of IC to an

open-source project allows students to work on
realistic programs and thus gives them a valuable
project experience. This approach places the emphasis
on individual contribution within the contexts of the
team, as is often the case in the industry settings.

The course, outlined in this paper, fulfilled
expectations when addressing the problems of teaching

Table 6. Student Survey Results Before and After Introduction of the Software Evolution into
Course Projects

 How would you rate the course? How much did you learn in this course?
Fall 2002 Mean 3.4 3.4
Fall 2002 Median 3 3
Fall 2004 Mean 3.7 3.8
Fall 2004 Median 4 4

software engineering: realistic size programs, industry-
like setting, and individual accountability. Medium
sized software systems were evolved using realistic
change requests. This noticeably increased the
motivation of our students and their understanding of
the software engineering process. This is reflected in
the student assessments of the course.

 Although additional resources are required in terms
of course administration to teach such a course, the
resources are not excessive and are well spent when
evaluating the benefits to both the students and the
instructors.

Based on this experience, tools such as JRipples
[32] and IRiSS [33] are being implemented to facilitate
the IC process and guide student users through it.
Moreover, the techniques used for concept location,
impact analysis, and change propagation are currently
being improved and expanded. These techniques will
be incorporated into future software engineering
courses. The course also would be greatly enhanced by
a textbook that is based on this or a similar approach to
teaching software engineering.

Acknowledgments

This work was supported in part by grants from the
National Science Foundation (CCF-0438970), the
National Institute for Health (NHGRI
1R01HG003491), and by 2005 IBM Faculty Award.
Any opinions, findings, conclusions, or
recommendations expressed in this material are those
of the authors and do not necessarily reflect the views
of the NSF, NIH, or IBM.

References

[1] Beck, K., Extreme Programming Explained. Reading,
MA: Addison Wesley Longman Inc, 2000.

[2] Dick, M., Postema, M., and Miller, J., "Improving student
performance in software engineering practice", in
Proceedings of International Conference on Software
Engineering Education and Training (CSEE&T'01),
Charlotte, NC USA, 2001, pp. 143-152.

[3] Postema, M., Miller, J., and Dick, M., "Including
Practical Software Evolution in Software Engineering
Education", in Proceedings of 14th Conference on Software
Engineering Education and Training (CSEE&T'01),
Charlotte, NC USA, 2001, pp. 127-135.

[4] Hayes, J. H., Lethbridge, T. C., and Port, D., "Evaluating
Individual Contribution Toward Group Software Engineering
Projects", in Proceedings of 25th International Conference on
Software Engineering (ICSE'03), 2003, pp. 622 - 627.

[5] Hazzan, O. and Dubinsky, Y., "Teaching a Software
Development Methodology: the Case of Extreme

Programming", in Proceedings of 16th Conference on
Software Engineering Education and Training (CSEE&T'03),
2003, pp. 176 - 184.

[6] Xu, S. and Rajlich, V., "Pair Programming in Graduate
Software Engineering Course Projects", in Proceedings of
35th ASEE/IEEE Frontiers in Education Conference
(FIE'05), 2005, pp. 7-12.

[7] Schach, S., Object Oriented and Classical Software
Engineering, Fifth ed: McGraw-Hill, 2002.

[8] Somerville, I., Software Engineering, Sixth ed: Addison-
Wesley, 2001.

[9] Gnatz, M., Kof, L., Prilmeier, F., and Seifert, T., "A
Practical Approach of Teaching Software Engineering", in
Proceedings of 16th Conference on Software Engineering
Education and Training (CSEE&T'03), 2003, pp. 140-147.

[10] Hedin, G., Bendix, L., and Magnusson, B., "Introducing
Software Engineering by means of Extreme Programming",
in Proceedings of 25th International Conference on Software
Engineering (ICSE'03), 2003, pp. 586 - 593.

[11] Rajlich, V. and Bennett, K., "A Staged Model for the
Software Lifecycle", Computer, vol. 33, no. 7, July 2000, pp.
66-71.

[12] Rajlich, V. and Gosavi, P., "Incremental Change in
Object-Oriented Programming", in IEEE Software, 2004, pp.
2-9.

[13] Rawls, C., "JAdvisor", Date Accessed: 8/18/2004,
http://jadvisor.sourceforge.net, 2002.

[14] Tri, T. T. H., "JCDSee", http://jcdsee.sourceforge.net,
2001.

[15] "WinMerge", http://winmerge.sourceforge.net, 2004.

[16] Rajlich, V. and Wilde, N., "The Role of Concepts in
Program Comprehension", in Proceedings of IEEE
International Workshop on Program Comprehension
(IWPC'02), 2002, pp. 271-278.

[17] Marcus, A., Rajlich, V., Buchta, J., Petrenko, M., and
Sergeyev, A., "Static Techniques for Concept Location in
Object-Oriented Code", in Proceedings of 13th IEEE
International Workshop on Program Comprehension
(IWPC'05), 2005, pp. 33-42.

[18] Marcus, A., Sergeyev, A., Rajlich, V., and Maletic, J.,
"An Information Retrieval Approach to Concpet Location in
Source Code", in Proceedings of 11th IEEE Working
Conference on Reverse Engineering (WCRE2004), Delft,
The Netherlands, November 9-12 2004, pp. 214-223.

[19] Chen, K. and Rajlich, V., "Case Study of Feature
Location Using Dependece Graph", in Proceedings of 8th
IEEE International Workshop on Program Comprehension
(IWPC'00), Limerick, Ireland, June 2000 2000, pp. 241-249.

[20] Antoniol, G. and Gueheneuc, Y., "Feature
Identification: A Novel Approach and a Case Study", in
Proceedings of 21st IEEE International Conference on

Software Maintenance (ICSM'05), Budapest, Hungary,
September 25 2005, pp. 357-366.

[21] Wilde, N., Buckellew, M., Page, H., Rajlich, V., and
Pounds, L., "A Comparison of Methods for Locating
Features in Legacy Software", Journal of Systems and
Software, vol. 65, no. 2, February 15 2003, pp. 105-114.

[22] Wilde, N. and Scully, M., "Software Reconnaissance:
Mapping Program Features to Code", Software Maintenance:
Research and Practice, vol. 7, 1995, pp. 49-62.

[23] Eisenbarth, T., Koschke, R., and Simon, D., "Locating
Features in Source Code", IEEE Transactions on Software
Engineering, vol. 29, no. 3, March 2003, pp. 210 - 224.

[24] Chen, A., Chou, E., Wong, J., Yao, A. Y., Zhang, Q.,
Zhang, S., and Michail, A., "CVSSearch: searching through
source code using CVS comments", in Proceedings of IEEE
International Conference on Software Maintenance
(ICSM'01), Nov. 2001, pp. 364-373.

[25] Poshyvanyk, D., Gueheneuc, Y., Marcus, A., Antoniol,
G., and Rajlich, V., "Combining Probabilistic Ranking and
Latent Semantic Indexing for Feature Identification", in
Proceedings of 14th IEEE International Conference on
Program Comprehension (ICPC'06), 2006, pp. 137-148.

[26] Bohner, S. and Arnold, R., "Software Change Impact
Analysis," in An Introduction to Software Change Impact
Analysis. Los Alamitos, CA: IEEE Computer Society Press,
1996, pp. 1-28.

[27] Briand, L., Labiche, Y., and Sullivan, L., "Impact
Analysis and Change Management of UML Models", in
Proceedings of International Conference on Software
Maintenance (ICSM'03), Amsterdam, The Netherlands,
September 22 - 26, 2003 2003, pp. 256-265.

[28] Fowler, M., Beck, K., Brant, J., Opdyke, W., and
Roberts, D., Refactoring: Improving the Design of Existing
Code. Reading, MA: Addison Wesley, 1999.

[29] Rajlich, V., "A Model for Change Propagation Based on
Graph Rewriting", in Proceedings of IEEE International
Conference on Software Maintenance (ICSM'97), 1997, pp.
84-91.

[30]"TortoiseCVS", http://tortoiseCVS.sourceforge.net, 2004

[31] "WinCVS", http://www.wincvs.org, 2004.

[32] Buckner, J., Buchta, J., Petrenko, M., and Rajlich, V.,
"JRipples: A Tool for Program Comprehension during
Incremental Change", in Proceedings of 13th IEEE
International Workshop on Program Comprehension
(IWPC'05), May 15-16 2005, pp. 149-152.

[33] Poshyvanyk, D., Marcus, A., Dong, Y., and Sergeyev,
A., "IRiSS - A Source Code Exploration Tool", in
Industrial and Tool Proceedings of 21st IEEE International
Conference on Software Maintenance (ICSM'05), Budapest,
Hungary, September 25-30 2005, pp. 69-72.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

