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Abstract A goal of performance testing is to find situations when applications un-
expectedly exhibit worsened characteristics for certain combinations of input values.
A fundamental question of performance testing is how to select a manageable sub-
set of the input data faster in order to automatically find performance bottlenecks in
applications.

We propose FOREPOST, a novel solution, for automatically finding performance
bottlenecks in applications using black-box software testing. Our solution is an adap-
tive, feedback-directed learning testing system that learns rules from execution traces
of applications. Theses rules are then used to automatically select test input data for
performance testing. We hypothesize that FOREPOST can find more performance
bottlenecks as compared to random testing. We have implemented our solution and
applied it to a medium-size industrial application at a major insurance company and
to two open-source applications. Performance bottlenecks were found automatically
and confirmed by experienced testers and developers. We also thoroughly studied the
factors (or independent variables) that impact the results of FOREPOST.
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1 Introduction

The goal of performance testing is to find performance bottlenecks, when an appli-
cation under test (AUT) unexpectedly exhibits worsened characteristics for a specific
workload (Molyneaux 2009; Weyuker and Vokolos 2000). One way to find perfor-
mance bottlenecks effectively is to identify test cases for finding situations where an
AUT suffers from unexpectedly high response time or low throughput (Jiang et al
2009; Avritzer and Weyuker 1994). Test engineers construct performance test cas-
es, and these cases include actions (e.g., interacting with GUI objects or invoking
methods of exposed interfaces) as well as input test data for the parameters of these
methods or GUI objects (IEEE 1991). It is difficult to construct effective test cases
that can find performance bottlenecks in a short period of time, since it requires test
engineers to test many combinations of actions and input data for nontrivial applica-
tions.

Developers and testers need performance management tools for identifying per-
formance bottlenecks automatically in order to achieve better performance of soft-
ware while keeping the cost of software maintenance low. In a survey of 148 enter-
prises, 92% said that improving application performance was a top priority (Yuhanna
2009; Schwaber et al 2006). In a recent work, Zaman et al. performed a qualitative
study that demonstrated that performance bottlenecks are not easy to reproduce and
that developers spend more time working on them (Zaman et al 2012). Moreover,
Nistor et al. found that fixing performance bottlenecks is difficult and better tools for
locating and fixing performance bottlenecks are needed by developers (Nistor et al
2013, 2015). As a result, different companies work on tools to alleviate performance
bottlenecks. The application performance management market is over 2.3 billion US-
D and growing at 12% annually, making it one of the fastest growing segments of
the application services market (Ashley 2006; Garbani 2008). Existing performance
management tools collect and structure information about executions of applications,
so that stakeholders can analyze this information to obtain insight into performance.
Unfortunately, none of these tools identifies performance bottlenecks automatical-
ly. The difficulty of comprehending the source code of large-scale applications and
their high complexity lead to performance bottlenecks that result in productivity loss
approaching 20% for different domains due to application downtime (Group 2005).

Considering that source code may not even be available for some components, en-
gineers concentrate on black-box performance testing of the whole application, rather
than focusing on standalone components (Aguilera et al 2003; Isaacs and Barham
2002). Depending on input values, an application can exhibit different behaviors with
respect to resource consumption. Some of these behaviors involve intensive computa-
tions that are characteristic of performance bottlenecks (Zhang et al 2011). Naturally,
testers want to summarize the behavior of an AUT concisely in terms of its inputs.
In this way, they can select input data that will lead to significantly increased re-
source consumption, thereby revealing performance bottlenecks. Unfortunately, find-
ing proper rules that collectively describe properties of such input data is a highly
creative process that involves deep understanding of input domains (Ammann and
Offutt 2008, page 152).
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Descriptive rules for selecting test input data play a significant role in software
testing (Beck 2003), because these rules approximate the functionality of an AUT. For
example, a rule for an insurance application is that some customers will pose a high
insurance risk if these customers have one or more prior insurance fraud convictions
and deadbolt locks are not installed on their premises. Computing an insurance pre-
mium may consume more resources for a customer with a high-risk insurance record
that matches this rule versus a customer with an impeccable record. The reason is
that processing this high-risk customer record involves executing multiple computa-
tionally expensive transactions against a database. Of course, we use this example of
an oversimplified rule to illustrate the idea. However, even though real-world systems
exhibit much more complex behavior, useful descriptive rules often enable testers to
build effective performance bottleneck revealing test cases.

We offer a novel solution for Feedback-ORiEnted PerfOrmance Software Test-
ing (FOREPOST) by finding performance bottlenecks automatically through learning
and using rules that describe classes of input data that lead to intensive computation-
s, which is summarized in our previous paper (Grechanik et al 2012). FOREPOST
is an adaptive, feedback-directed learning testing system that learns rules from an
AUT’s execution traces. These rules are used to automatically select test input data
for performance testing. As compared to random testing, FOREPOST can find more
performance bottlenecks in applications. FOREPOST uses runtime monitoring for a
short duration of testing together with machine learning techniques and automated
test scripts. It reduces large amounts of performance-related information collected
during AUT runs to a small number of descriptive rules. These rules provide insights
into properties of test input data that lead to increased computational loads in appli-
cations.

As compared to our previous conference paper (Grechanik et al 2012), this jour-
nal paper introduces an integrated testing approach, which considers both the random
input data and the specific inputs based on generated descriptive rules. We thorough-
ly evaluate this new combined approach. Moreover, besides the commercial renters
insurance application and iBatis JPetStore, we also involve a new open source ap-
plication, Dell DVD Store, in our empirical evaluation. To understand the impact of
different parameters, we consider more independent variables, such as the number
of profiles and the number of iterations, in the experiments. We also present the s-
tudy evaluating accuracy of FOREPOST by detecting a priori injected and annotated
bottlenecks.

This paper makes the following contributions:

– FOREPOST, a novel approach that collects and utilizes execution traces of the
AUT to learn rules that describe the computational intensity of the workload in
terms of the properties of the input data. These rules are used by an adaptive
automated test script automatically, in a feedback loop, to steer the execution of
the AUT by selecting input data based on the newly learned rules. We are not
aware of any existing testing approaches that use similar ideas to automatically
find performance bottlenecks in real-world applications.
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– We provide a novel algorithm that identifies methods that lead to performance
bottlenecks, which are phenomena where the performance of the AUT is limited
by one or few components (Aguilera et al 2003; Ammons et al 2004).

– We have implemented FOREPOST and applied it to a real-word application cur-
rently deployed in a major insurance company. Performance bottlenecks were
found automatically in the insurance application and were confirmed by experi-
enced testers and developers. After implementing a fix, the performance of this
application was improved by approximately seven percent as measured by run-
ning most frequent usage scenarios before and after the fix.

– We also applied FOREPOST to two open-source application benchmarks, JPet-
Store and Dell DVD Store. FOREPOST automatically found rules that steered
executions of JPetStore and Dell DVD Store towards input data that increased the
average execution time by 78.2 % and 333.3 % as compared to random testing.

– We also conducted a controlled experiment to analyze the impact of a number
of independent variables on the power of FOREPOST to identify performance
bottlenecks. In this experiment we compared two versions of the engine: one that
uses only the rules learned from execution traces (FOREPOST) and another one
that also uses a subset of random inputs in addition to using generated rules,
namely FOREPOSTRAND. Our results demonstrate that FOREPOSTRAND helps
improve the accuracy of identifying bottlenecks at the expense of finding less
computationally expensive bottlenecks.

2 Background and the Problem

In this section we describe the state of the art and practice in performance testing,
show a motivating example, and formulate the problem statement.

2.1 State of the Art and Practice

The random testing approach, as its name suggests, involves the random selection
of test input data for input parameter values, which was shown remarkably effective
and efficient for testing and bug finding (Bird and Munoz 1983). It is widely used in
industry, and has been proved to be more effective than systematic testing approaches
(Hamlet 1994, 2006; Park et al 2012). Concurrently, another implementation of per-
formance testing involves selecting a small subset of “good” test cases with which
different testing objectives can be achieved (Kaner 2003). Specifically, more perfor-
mance bottlenecks can be found in a shorter period of time. Good test cases are more
likely to expose bugs and to produce results that yield additional insight into the be-
havior of the application under test (i.e., they are more informative and more useful
for troubleshooting). Constructing good test cases requires significant insight into an
AUT and its features and useful rules for selecting test input data.

Performance testing of enterprise applications is manual, laborious, costly, and
not particularly effective. Several approaches were proposed to improve the efficiency
of performance testing (Koziolek 2005; Avritzer and Weyuker 1996; Jin et al 2012).



FOREPOST: Feedback-Oriented Performance Software Testing 5

For example, operational profile models the occurrence probabilities of functions
and the distributions of parameter values, which has been introduced to test most
frequently used operations (Koziolek 2005). Rule-based techniques are effective for
discovering performance bottlenecks by identifying the problematic patterns from the
source code, such as misunderstandings in API calls or problematic call sequences
(Jin et al 2012). However, these techniques always work for some specific types of
performance bottlenecks, not widely used in industry. In practice, a prevalent method
for performance testing is intuitive testing, which is a method for testers to exercise
the AUT based on their intuition and experience, surmising probable errors (Cornelis-
sen et al 1995). Intuitive testing was first introduced in 1970s as an approach to use
the experience of test engineers to focus on error-prone and relevant system function-
s without writing time-consuming test specifications. Thus it lowers pre-investment
and procedural overhead costs (Cornelissen et al 1995). When running many different
test cases and observing application’s behavior, testers intuitively sense that there are
certain properties of test cases that are likely to reveal performance bottlenecks. How-
ever, one of the major risk of intuitive testing is losing key people (i.e., key testers).
The knowledge and experience of test engineers are gone when they leave the com-
pany. Training new testers is time-consuming and expensive. Thus, it is necessary to
distill the properties of test cases that reveal performance bottlenecks automatically
to avoid losing money and time. Distilling these properties automatically into rules
that describe how these properties affect performance of the application is a subgoal
of our approach.

In psychology, intuition means a faculty that enables people to acquire knowledge
by linking relevant but spatially and temporally distributed facts and by recognizing
and discarding irrelevant facts (Westcott 1968). What makes intuitive acquisition of
knowledge difficult is how relevancy of facts is perceived. In software testing, facts
describe properties of systems under test, and many properties may be partially rel-
evant to an observed phenomenon. Intuition helps testers to (i) form abstractions by
correctly assigning relevancy rankings to different facts, (ii) form hypotheses based
on these abstractions, and (iii) test these hypotheses without going through a formal
process. With FOREPOST, we partially automate the intuitive process of obtaining
performance rules.

2.2 A Motivating Example

Consider a renter insurance program, Renters, designed and built by a major insur-
ance company. A goal of this program is to compute quotes for insurance premiums
for rental condominiums. Renters is written in Java and it contains close to 8,500
methods that are invoked more than three million times over the course of a single
end-to-end pass through the application. Its database contains approximately 78 mil-
lion customer profiles, which are used as test input data for Renters. Inputs that cause
heavy computations are sparse, and random test selection often does not perform a
good job of systematically locating these inputs. A fundamental question of perfor-
mance testing is how to select a manageable subset of the input data for performance
test cases with which performance bottlenecks can be found faster and automatically.
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Consider an example of how intuitive testing works for Renters. An experienced
tester notices at some point that it takes more CPU and hardware resources (fact 1) to
compute quotes for residents of the states California and Texas (fact 2). Independent-
ly, the database administrator casually mentions to the tester that a bigger number
of transactions are executed by the database when this tester runs test cases in the
afternoon (fact 3). Trying to find an answer to explain this phenomenon, the tester
makes a mental note that test cases with northeastern states are usually completed
by noon and new test cases with southwestern states are executed afterwards (fact
4). A few days later the tester sees a bonfire (fact 5) and remembers that someone’s
property was destroyed in wildfires in Oklahoma (fact 6). All of a sudden the tester
experiences an epiphany – it takes more resources for Renters to execute tests for
the states California and Texas because these states have the high probability of hav-
ing wildfires. When test cases are run for wildfire states, more data is retrieved from
the database and more computations are performed. The tester then identifies other
wildfire states (e.g., Oklahoma) and creates test cases for these states, thereby con-
centrating on more challenging tests for Renters rather than blindly forcing all tests,
which is unfortunately a common practice now (Murphy 2008). Moreover, even if the
tester detects that the test cases for the states take more execution resources, it is also
important to pinpoint the reason why test cases that consume more resources. When
the tester looks into the execution information of these test cases, he finds that these
test cases always execute some specific methods that take an unexpectedly long time
to execute. Thereby, the tester identifies the performance bottlenecks and tries to op-
timize these methods to save time for testing. Furthermore, it is also helpful to detect
performance bottlenecks if testers find that test cases for some states perform against
their intuition. For example, some northern states like Minesota never have wildfires,
so its insurance quotes relevant with wildfires should be nearing zero. However, some
intensive checking for wildfire area for these states may still be performed. Hence, it
is possible that these test cases invoke some unnecessary methods consuming more
resources than necessary. The testers can look into the corresponding execution traces
to pinpoint the potential performance bottlenecks.

This long and cumbersome procedure reflects what stakeholders have to go through
frequently to find performance bottlenecks. Doing it can be avoided if, in our example
there was a rule that specified that additional computations are performed when the
input data includes a state where wildfires are frequent. The methods invoked by this
input data that take more resource can be pinpointed automatically. Unfortunately,
abstractions of rules that provide insight into the behavior of the AUT and the identi-
fication of performance bottlenecks automatically are difficult to obtain. For example,
a rule may specify that the method checkFraud is always invoked when test cases
are good and the values of the attribute SecurityDeposit of the table Finances are
frequently retrieved from the backend database. This information helps performance
testers to create a holistic view of testing, and to select test input data appropriately,
thereby reducing the number of tests. Thus, these rules can be used to select better
test cases and identify the performance bottlenecks automatically.

Rules for selecting test input data that quickly lead to finding performance bot-
tlenecks are notoriously difficult to capture. Since these rules are buried in the source
code, they are hard to locate manually. Test engineers must intimately know the func-
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tionality of the subject application under test, understand how programmers designed
and implemented the application, and hypothesize on how the application behavior
matches the requirements. Without having useful rules that summarize these require-
ments, it is difficult to define objectives that lead to selecting good test cases (Kaner
2003). Moreover, the performance bottlenecks are also difficult to locate manually,
since the tester needs to understand exactly how the AUT executes with the selected
input data and analyze each methods to pinpoint the ones which take more resources.

Currently, the state-of-the-art for finding useful rules is to use the experience and
the intuition of the performance test engineers who spent time observing the behavior
of AUTs when running manually constructed test cases. There is little automated
support for discovering problems with performance testing. A recent work by Jiang
et al. is the first that can automatically detect performance bottlenecks in the load
testing results by analyzing performance logs (Jiang et al 2009). However, the test
inputs that cause performance bottlenecks are not located. Experience and intuition
are the main tools that performance test engineers use to surmise probable errors
(Myers 1979; Cornelissen et al 1995). Our goal is to automate the discovery of rules
and abstractions that can help stakeholders pinpoint performance bottlenecks and to
reduce the dependency on experience and intuition of test engineers.

2.3 Abstractions For Testing

Abstraction is a fundamental technique in computer science to approximate entities
or objects in order to infer useful information about programs that use these entities
or objects (Dijkstra 1997). Abstract interpretation, static type checking, and predicate
abstraction are examples of mathematical frameworks. These frameworks allow sci-
entists to design abstractions over mathematical structures in order to build models
and prove properties of programs. Software model checking is one of the largest ben-
eficiary fields of computer science where abstractions enable engineers to deal with
the problem of state space explosion.

User-defined abstractions are most effective in the solution domain ( i.e., the do-
main in which engineers use their ingenuity to solve problems (Hull et al 2004, pages
87,109)). In the problem domain, mathematical abstractions are used to express se-
mantics of requirements. Conversely, in the solution domain engineers go into imple-
mentation details. To realize requirements in the solution domain, engineers look for
user-defined abstractions that are often implemented using ad-hoc techniques (e.g.,
mock objects that abstract missing program components (Freeman et al 2004)). Thus,
user-defined abstractions are most effective when they reflect the reality of the solu-
tion domain (Achenbach and Ostermann 2009).

Abstractions play a significant role in software testing (Beck 2003). For example,
input partitioning is a technique to divide input domain into regions that contain e-
qually useful values from a testing perspective (Ammann and Offutt 2008, page 150).
With input partitioning, only one value from each region can be used to construct test
cases instead of all values. Of course, proper partitioning requires testers to use right
abstractions. For example, an abstraction of input values for a calculator that operates
on integers could consist of negative, positive, and zero regions. Finding these ab-
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stractions for large and ultra-large enterprize-strength applications is an intellectually
laborious and difficult exercise.

Useful abstractions for testing approximate the functionality of an application un-
der test. For example, a useful abstraction for the Renters is that renters will pose high
insurance risk if they have one or more prior insurance fraud convictions and deadbolt
locks are not installed on premises. Using this abstraction testers can model the sys-
tem as two main components: one that computes insurance premium for renters with
clean history and the other for renters with fraud convictions. With this model, testers
can partition inputs in two regions that correspond to the functionalities of these main
components. Even though real-world systems exhibit much more complex behavior,
useful abstractions enable testers to build effective test cases.

2.4 Performance Test Scripting Approaches

Typically, performance testing is accomplished using test scripts, which are programs
that test engineers write to automate testing. These test scripts perform actions (i.e.,
invoking methods of exposed interfaces or mimicking user actions on GUI objects of
the AUT) to feed input data into AUT and trigger computation. Test engineers write
code in test scripts that guides the selection of test inputs. Typically, this is done
using randomly selected input values or by using algorithms of combinatorial design
interactions (Grindal et al 2005). It is impossible to performance test applications
without test scripts, since it is not feasible to engage hundreds of testers who simulate
multiple users who call multiple methods with high frequency manually (Dustin et al
2004; Fewster and Graham 1999; Kaner 1997; Molyneaux 2009).

Test scripts are typically written with one of the following frameworks: a GUI
testing framework (e.g., QuickTestPro from HP Corp) or a backend server-directed
performance tool such as JMeter, an open source software that is widely used to load
test functional behavior and measure performance of applications. These frameworks
form the basis on which performance testing is mostly done in industry. Performance
test scripts imitate large numbers of users to create a significant load on the AUT.
JMeter provides programming constructs that enable testers to automatically generate
a large number of virtual users to send HTTP requests to web servers, thereby creating
significant workloads. Natural measures of performance include throughput (i.e., the
number of executed requests per second) and the average response time it takes to
execute a request. A goal of performance testing is to determine what combinations
of requests lead to higher response times and lower throughput, which are helpful to
reveal performance bottlenecks in AUTs.

2.5 The Problem Statement

Our goal is to automate finding performance bottlenecks by executing the AUT on
a small set of randomly chosen test input data, and then inferring rules with a high
precision for selecting test input data automatically to find more performance bot-
tlenecks in the AUT. Specifically, these are if-then rules that describe properties
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of input data that result in good performance test cases. The good performance test
cases lead to increased computational workload on applications as compared to the
bad performance test cases, which have smaller computational workload. For exam-
ple, a rule may say “if inputs convictedFraud is true and deadboltInstalled

is false then the test case is good.” In this work, we supply automatically learned
rules using a feedback mechanism to test scripts. These scripts parse these rules and
use them to guide test input data selection automatically to steer the execution of the
AUT towards the code that exposes performance bottlenecks.

In this paper, we accept a performance testing definition of what constitutes a
good test case. One of the goals of performance testing is to find test cases that
worsen response time or throughput of the AUT or its latency. This can be achieved by
adding more users to the AUT, which leads to intensive computations and increased
computational workloads, and by finding input data that makes the AUT take more
resources and time to compute results. Conversely, bad test cases are those that utilize
very few resources and take much less time to execute as compared to good test cases.
The next step is to automatically produce rules that describe good and bad test cases,
and to automatically use these rules to select input data for further testing.

This system should also have the ability to correct itself. In order to do that, it
needs to apply the learned rules on the test input data that are selected based on these
rules, and then verify that these selected input data lead to predicted performance
results. This process increases the probability that the learned rules express genuine
causation between input values and performance-related workloads.

Finally, no performance testing is complete without providing sufficient clues to
performance engineers where in the AUT the problems lurk. A main objective of per-
formance analysis is to find bottlenecks (i.e., a single method that drags down the per-
formance of the entire application which is easy to detect using profilers). However,
it is difficult to find bottlenecks when there are hundreds of methods whose elapsed
execution times are approximately the same, which is often the case in large-scale
applications (Aguilera et al 2003; Ammons et al 2004). A problem that we solve in
this paper is that once the input space is clustered into good and bad performance test
cases using learned rules, we identify methods that are specific to good performance
test cases, which are most likely to contribute to bottlenecks.

3 The FOREPOST Approach

In this section we explain the key ideas behind our approach, give an overview of
Feedback-ORiEnted PerfOrmance Software Testing (FOREPOST), explain the de-
tailed algorithm, and describe its architecture and workflow finally.

3.1 A Birds-Eye View of Our Solution

Our work is based on a single key idea that is backed up by multiple experimen-
tal observations – performance bottlenecks often exhibit patterns, and these patterns
are specific to applications. These patterns are complicated; recall our motivating ex-
ample from Section 2.2 where understanding a pattern comprises the knowledge of
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properties of input parameters and execution paths. Intuitive testing is a laborious and
intellectually intensive way for test engineers to obtain these patterns by observing
the performance behavior of software applications for different inputs and configura-
tions. On the other hand, a main goal of machine learning and data mining is to obtain
patterns from large quantities of data automatically. The essence of our work is to de-
sign an approach where we can use machine learning and data mining algorithms
to obtain patterns that can concisely describe the performance behavior of software
applications.

We reduce the problem of performance testing to pattern recognition, which as-
signs some output values to sets of input values (Bishop 2006). To recognize different
patterns in software applications, terms are extracted from the source code of appli-
cations and then serve as the input to a machine learning algorithm that eventually
places these software applications into some categories (Tian et al 2009; McMillan
et al 2011; Linares-Vásquez et al 2014). For example, classifiers are used to obtain
patterns from software applications to predict defects in these applications. In this
case, extracted terms from software applications are inputs and resolved defects are
the outputs of a classifier. After a classifier is trained, it may predict future defect-
s in software applications. Even though automatic classification approaches do not
achieve perfect precision, they still enable stakeholders to quickly learn models that
concisely describe different patterns in these software applications. Classification is
widely used in mining software repositories and software traceability to solve prob-
lems for which deterministic algorithms are difficult or infeasible to apply.

In performance testing, using a classifier will result in learning a prediction model
that approximates the AUT as a function that maps inputs to outputs. Inputs include
the properties of the input values (e.g., the gender of the user or their income cate-
gories) and the outputs include ranges of performance behaviors (e.g., response time
or memory usages). To make the prediction model reliable, only legitimate test in-
puts, which comes from actual workload, are used to build the prediction model.
For example, 78 million customer profiles extracted from the database of Renters are
used as test input data. A straightforward application of a machine learning classifier
to performance testing is to run the AUT many times, collect execution data, learn the
pattern, and use it to predict the future behavior. Unfortunately, this approach does
not work well in practice for a number of reasons.

First, nontrivial AUTs have enormous numbers of combinations of different in-
put data – these numbers are measured in hundreds of billions. Executing the AUT
exhaustively with all combinations of input data is infeasible, and even collecting a
representative sample is a big problem. Consider that performance bottlenecks are
often exhibited for much smaller numbers of combinations on input data. If these
combinations were known in advance, then there would be no need for performance
testing, and all performance bottlenecks would be fixed easily. Selecting a sample of
input data that does not exhibit any performance bottlenecks might reduce the effec-
tiveness of classification for performance testing. Thus, it is important to steer the
selection of input data using some kind of guidance from the previous runs of the
AUT, and this is what we accomplish in FOREPOST.

Second, predicting some output does not explain how different input values con-
tribute to this output. Performance testing concentrates on localizing performance
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bottlenecks in the code of the AUT, so that engineers can fix them, rather than on
predicting how the AUT would behave for a given input. Our goal is to extract ex-
planations or rules from learned models in classifiers that we use to learn the perfor-
mance behavior of the AUT. We use these rules in a feedback-directed loop to guide
selection of the input data for the AUT and to pinpoint performance problem in the
code of the AUT. In that, it is the major contribution of FOREPOST.

3.2 An Overview of FOREPOST

In this section, we describe two key ideas on which FOREPOST is built: 1) extracting
rules from execution traces that describe relations between properties of input data
and workloads of performance tests that are executed with this data and 2) identifying
bottleneck methods using these rules.

3.2.1 Obtaining Rules

As part of the first key idea, the instrumented AUT is initially running using a s-
mall number of randomly selected test input data. Its execution profiles are collected
and automatically clustered into different groups that collectively describe different
performance results of the AUT. For example, there can be two groups that are corre-
sponding to good and bad performance test cases, respectively.

The set of values for the AUT inputs for good and bad test cases represent the in-
put to a Machine Learning (ML) classification algorithm. In FOREPOST, we choose
the rule learning algorithm, called Repeated Incremental Pruning to Produce Error
Reduction (RIPPER) (Cohen 1995), to obtain the rules that guide the selection of
test input data in test scripts. RIPPER is a rule learning algorithm, which is modi-
fied from the Incremental Reduced Error Pruning (IREP) (Furnkranz and Widmer
1994). It integrates pre-pruning and post-pruning into a learning phrase and follows
a separate-and-conquer strategy. Each rule will be pruned right after it is generated,
which is similar to the IREP. But the difference is that it chooses an alternative rule-
value metric in the pruning phrase, provides a new stopping condition and optimizes
the initial rule set, which is obtained by IREP.

This input of ML algorithm is described as implications of the form VI1 , . . . ,VIk →
T , where VIm is the value of the input Im and T ∈ {G,B}, with G and B representing
good and bad test cases correspondingly. In fact, T is the summarized score of an
execution trace that describes summarily whether this execution has evidence of per-
formance bottlenecks. The ML classification algorithm learns the model and outputs
rules that have the form I1�VI1 • I2�VI2 • . . . • Ik�VIk → T , where � is one of the
relational operators (e.g., > and =) and • is one of the logical connectors (i.e., ∧
and ∨). These rules are instrumental in guiding the selection of the test input data in
test scripts. For example, in a web application, if I1 refers to a URL request “viewing
the page of cat”, and I2 refers to a URL request “viewing the page of dog”, the rule
(I1 =VI1)∧(I2 >VI2)→G means that “viewing the page of cat” VI1 times and “view-
ing the page of dog” more than VI2 times is good to trigger performance bottlenecks.



12 Qi Luo et al.

The next test cases should be generated based on this rule. More detailed rules are
provided in Table 3.

We first repeatedly run the experiment with the randomly selected initial seeds
from the input space, which are different each time. Then, new values are selected
from the input space either randomly, if rules are not available, or based on learned
rules.

A feedback loop is formed by supplying these learned rules, which are obtained
using the ML classification algorithm, back into the test script to automatically guide
the selection of test input data. Using the newly learned rules, the test input data is
partitioned and the cycle repeats. The test script selects inputs from different parti-
tions, and the AUT is executed again. New rules are re-learned from the collected
execution traces. If no new rules are learned after some time of testing, the partition
of test inputs is stable with a high degree of probability. At this point the instrumen-
tation can be removed and the testing can continue, and the test input data is selected
using the learned rules.

3.2.2 Identifying Bottlenecks

Our goal is to help test engineers to automatically identify bottlenecks as method
calls whose execution seriously affects the performance of the whole AUT. For ex-
ample, consider a method that is periodically executed by a thread which checks if
the content of some file is modified. While this method may be one of the bottleneck-
s, it is invoked in both good and bad test cases. Thus, its contribution to the resource
consumption as the necessary part of the application logic does not lead to any in-
sight that may resolve a performance problem. Our second key idea is to consider
the most significant methods that occur in good test cases and that are not invoked,
or have little to no significance, in bad test cases, where the significance of a method
is a function of the resource consumption that its execution triggers. We measure re-
source consumption as a normalized weighted sum of (i) the number of times that
this method is invoked, (ii) the total elapsed time of its invocations minus the elapsed
time of all methods that are invoked from this method, and finally, (iii) the number
of methods whose invocations are spawned from this method. In FOREPOST, Inde-
pendent Component Analysis (ICA) is used to identify the performance bottlenecks.
The detailed algorithm will be explained in sections 3.3 and 3.4.

3.3 Blind Source Separation

Large applications contain multiple features, and each of these requirements is im-
plemented using different methods. For example, in JPetStore, the high-level require-
ments are “place an order”, “search an item”, or “create an account” et al.. Each
AUT’s run involves thousands of its methods that are invoked millions of times. The
resulting execution trace is a mixture of different method invocations, each of which
addresses a part of some features. These traces are very large. In order to identify
most significant methods, we need an approach that allows us to (i) compress infor-
mation in these traces and (ii) automatically break these traces into components that
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Fig. 1 A speech model of blind source separation.

match high-level features in order to identify the methods with the most significant
contributions to these components. Unfortunately, using transactional boundaries to
separate information in traces is not always possible (e.g., when dealing with file
operations or GUI frameworks). We reduced the complexity of the collected execu-
tion traces by categorizing them into components that roughly correspond to different
features.

We draw an analogy between separating method invocations in execution traces
into components that represent high-level features and a well-known problem of sep-
arating signals that represent different sources from a signal that is a mixture of these
separate signals. This problem is known as blind source separation (BSS) (Parsons
2005, pages 13-18).

The idea of BSS is illustrated using a model where two people speak at the same
time in a room with two microphones M1 and M2 as it is shown in Figure 1. Their
speech signals are designated as source 1 and source 2. Each microphone cap-
tures the mixture of the signals source 1 and source 2, which are the correspond-
ing signal mixtures from M1 and M2 respectively. The original signals source 1 and
source 2 are separated from the mixtures using a technique called independent com-
ponent analysis (ICA) (Hyvärinen and Oja 2000; Grant et al 2008), which we describe
in Section 3.4. ICA is based on the assumption that different signals from different
physical processes are statistically independent. For example, different features are
often considered independent since they are implemented in applications as separate
concerns (Parnas 1972; Tarr et al 1999). When physical processes are realized (e.g.,
different people speak at the same time, or stocks are traded, or an application is run
and its implementations of different features are executed in methods), these differ-
ent signals are mixed, and these signal mixtures are recorded by some sensors. Using
ICA, independent signals can be extracted from these mixtures with a high degree of
precision.

BSS is implemented using ICA. Even though the idea of BSS is illustrated using
the speech model, ICA is widely used in econometrics to find hidden factors in fi-
nancial data, image denoising and feature extraction, face recognition, compression,
watermarking, topic extraction, and automated concept location in source code (Grant
et al 2008).

In this paper we adapt the BSS model to automatically decompose execution
traces into components that approximately match high-level features, and then identi-
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fying the methods with the most significant contributions to these components. Non-
trivial applications implement quite a few high-level features in different methods
that are executed in different threads, often concurrently. We view each feature as
a source of a signal that consists of method calls. When an application is executed,
multiple features are realized, and method invocations are mixed together in a mixed
signal that is represented by the execution profile. Microphones are represented by
instrumenters that capture program execution traces; multiple executions of the ap-
plication with different input data are equivalent to different speakers talking at the
same time, and as a result, multiple signal mixtures (i.e., execution traces for differ-
ent input data with mixed realized features) are produced. With ICA, not only it is
possible to separate these signal mixtures into components, but also to define most
significant constituents of these signals (i.e., method calls). We choose ICA because
it works with non-Gaussian distributions of data, which is the case with FOREPOST.

3.4 Independent Component Analysis

A schematics of the ICA matrix decomposition is shown in Figure 2. The equation
x = A · s described the process, where x is the matrix that contains the observed
signal mixtures and A is the transformation or mixing matrix that is applied to the
signal matrix s. In our case, the matrix x is shown in Figure 2 on the left hand side of
the equal sign, and its rows correspond to application execution traces from different
input data, and its columns correspond to method invocations that are observed for
each trace.

Each element of the matrix x is calculated as x j
i = ∑

n
k=1 λk ·M j

i,k, where λ are nor-

malization coefficients computed for the entire matrix x to ensure 0≤ x j
i ≤ 1, M are

different metrics that are considered for method i in the trace j. For different types
of applications, different metrics can be considered. For example, in a generic appli-
cation, matrix x is calculated with three different metrics, the number of times that
the method j is invoked in the trace i (M j

i,1), the total elapsed time of these invoca-
tions minus the elapsed time of all methods that are invoked from this method in this
trace (M j

i,2), and the number of methods that are invoked from this method (M j
i,3). In a

database application, matrix x can be calculated with two additional metrics, the num-
ber of attributes that this method accesses in the databases (M j

i,4), and the amount of

data that this method transfers between the AUT and the databases (M j
i,5 ). For exam-

ple, assume there is a method a, which is invoked 20 times during the execution, total-
ly takes 32.8 ms to execute, calls methods b (8.1 ms) and c (2.3 ms), and accesses 12
attributes in the database for transferring totally 13.7 kb data. According to the equa-
tion, its weight is equal to λ1 ·20+λ2 · (32.8−8.1−2.3)+λ3 ·2+λ4 ·12+λ5 ·13.7.
Naturally, x j

i = 0 means that the method i is not invoked in the trace j, while x j
i = 1

means that the given method makes the most significant contribution to the computa-
tion in the given trace.

Using ICA, the matrix x is decomposed into a transformation and a signal matri-
ces that are shown on the right hand side of the equal sign in Figure 2. The input to
ICA is the matrix x and the number of source signals, which in our case is the number
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Fig. 2 Schematics of the ICA matrix decomposition.

Fig. 3 The architecture and workflow of FOREPOST and FOREPOSTRAND. FOREPOST does not contain
the step 14.

of features (features in the Figure 2) implemented in the application. The elements
of the matrix A, Aq

p, specify the weights that each profile p contributes to executing
code that implements the feature q, and the elements of the matrix s, sk

q, specify the
weights that each method k contributes to executing code that implements the feature
q. Methods that have the highest weights for the given features are considered the
most significant and interesting for troubleshooting performance bottlenecks. This is
a hypothesis that we evaluate and describe the results in Sections 4 and 5.

3.5 FOREPOST and FOREPOSTRAND Architecture and Workflow

The architecture of FOREPOST is shown in Figure 3. Solid arrows show command
and data flows between components, and numbers in circles indicate the sequence
of operations in the workflow. The beginning of the workflow is shown with the fat
arrow that indicates that the Test Script executes the application by simulating users
and invoking methods of the AUT interfaces. The Test Script is written (1) by the
test engineer as part of automating application testing as we described in Section 2.4.

Once the test script starts executing the application, its execution traces are col-
lected (2) by the Profiler, and these traces are forwarded to the Execution Trace
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Analyzer, which produces (3) the Trace Statistics. We implemented the Profiler us-
ing the TPTP framework1. These statistics contain information on each trace, such
as the number of invoked methods, the elapsed time it takes to complete the end-to-
end application run, the number of threads, and the number of unique methods that
were invoked in this trace. The trace statistics are supplied (4) to the module Trace
Clustering, which uses the average execution time to perform unsupervised cluster-
ing of these traces into two groups that correspond to (5) Good and (6) Bad test
traces. The user can review the results of clustering and (7,8) reassign the clustered
traces if needed. These clustered traces are supplied (9,10) to the Learner, which
uses a ML algorithm, RIPPER (Cohen 1995), to learn the classification model and
(11) output rules that were described in Section 3.2. The user can review (12) these
rules and mark some of them as erroneous if the user has sufficient evidence to do
so. Next, the rules are supplied (13) to the Test Script. In FOREPOST, once the Test
Script receives a new set of rules, it partitions the input space into blocks according
to these rules and starts forming test inputs by selecting one input from each block. In
FOREPOSTRAND, the Test Script is a combination of random input data and several
blocks of input space that correspond to different rules. The major difference in the
architecture of FOREPOSTRAND is that it considers random URLs as input data that
is shown in step (14), whereas the original version of FOREPOST (Grechanik et al
2012) does not contain this step (14). We expect that adding the random input data
could enlarge the test coverage to find more potential performance bottlenecks. Af-
ter generating new input data, the Profiler collects execution traces of these new test
runs. The cycle repeats with new rules that are learned after several passes, and the
input space is repartitioned adaptively to accommodate these rules. We implemented
the ML part of FOREPOST using JRip2, which is implemented by Weka (Witten and
Frank 2005).

The test input data is extracted from existing repositories or databases. This is a
common practice in industry, and we confirmed it with different performance testing
professionals after interviewing professionals at IBM, Accenture, two large health
insurance companies, a biopharmaceutical company, two large supermarket chains,
and three major banks. Recall that the application Renters has a database that contains
approximately 78 million customer profiles, which are used as the test input data for
different applications including Renters itself. We repeatedly ran the experiment with
the randomly selected initial seeds from the input space, which are different each
time. The new values are selected from the input space either randomly, if rules are
not available, or are based on the newly learned rules.

Finally, recall from Section 2.5 that once the input space is partitioned into clus-
ters that lead to good and bad test cases, we want to find methods that are specific
to good performance test cases and that are most likely to contribute to bottlenecks.
This task is accomplished in parallel to computing rules, and it starts when the Ex-
ecution Trace Analyzer produces (15) the method and data statistics of each trace,
and then uses this information to construct (16) two matrices xB and xG for bad and

1 http://eclipse.org/tptp, last checked August 12, 2015
2 http://weka.sourceforge.net/doc.stable/weka/classifiers/rules/JRip.html, last

checked Apr 10, 2015

http://eclipse.org/tptp
http://weka.sourceforge.net/doc.stable/weka/classifiers/rules/JRip.html
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good test cases correspondingly, based on the information provided by (17). Con-
structing these matrices is done as described in Section 3.4. Once these matrices are
constructed, ICA decomposes them (18) into the matrices sB and sG corresponding
to bad and good tests. Recall that our key idea is to consider the most significant
methods that occur in good test cases and that are not invoked, or have little to no
significance in bad test cases. Cross-referencing the matrices sB and sG, which speci-
fy the method weights for different features, the Contrast Mining (19) compares the
method weights in both of good and bad test cases, and determines the top methods
that the performance testers should look at (20) to identify and debug possible per-
formance bottlenecks. This step completes the workflow of FOREPOST. The detailed
algorithm for identifying bottlenecks, including ICA and Contrast Mining, is shown
in the section 3.6.

3.6 The Algorithm for Identifying Bottlenecks

In this section we describe our algorithm for identifying bottlenecks using FORE-
POST. This algorithm clusters the traces based on the trace statistics, and then gen-
erates the matrices for both good and bad test cases. By using the ICA algorithm, it
calculates the weight for each method in both good and bad test cases. If one method
is significant in good test cases but not significant in bad test cases, then we con-
jecture that it is likely to be a bottleneck. This algorithm provides a ranked lists of
bottlenecks as its final output. The algorithm FOREPOST is shown in Algorithm 1.
FOREPOST takes as its input the set of captured execution traces, T , and the signal
threshold, U , which is used to select methods whose signals indicate their significant
contribution in execution traces. The set of methods that are potential bottlenecks, B,
is computed and returned in line 15 of the algorithm.

In step 2 the algorithm initializes to the empty set the set of bottlenecks and the
set of clusters that contain execution traces that are matched to good and bad test
cases. In step 3 the procedure ClusterTraces is called that automatically clusters
execution traces from the set T into good (Cgood) and bad (Cbad) test case clusters.
Next, in steps 4 and 5 the procedure CreateSignalMixtureMatrix is called on
clusters of traces that correspond to bad and good test cases respectively to construct
two matrices xb and xg corresponding to bad and good test cases, as described in
Section 3.5. In step 6 and 7, the procedure ICA decomposes these matrices into the
matrices sb and sg corresponding to bad and good test cases, as described in step
(15) in Section 3.5.

Next, the algorithm implements the Contrast Mining component in steps 8–15,
mining all the methods for all the feature components in the decomposed matrices.
More specifically, for each method whose signal exists in the transformation and
signal matrices that correspond to good cases, we compare if this method does not
occur in the counterpart matrices for bad test case decompositions. Alternatively, if
the same method from the same component occurs, then the distance between these
two signals in the good and bad test should be quite large. The distance is calculated
as shown in equation 1, where Mi

g = Mk
b ∧R j

g = Rl
b, M = method, g = good, b = bad,



18 Qi Luo et al.

R = component, which means the same method from the same component occurs.

Deg =

NMg

∑
i=0

NRg

∑
j=0

√(
SLi j

g −SLkl
b

)2
(1)

In this equation, SL = signal, Deg = distance for each method, NMg = the number of
good methods, NRg = the number of components. We consider this distance as the
weight for each method, and rank all the methods based on their weights, as the step
16 shows. This ranked list BRANK is returned in line 17 as the algorithm terminates.

Algorithm 1: The algorithm for identifying bottlenecks.
1: ForePost( Execution Traces T , Signal Threshold U )
2: B← /0,Cgood ← /0,Cbad ← /0{Initialize values for the set of bottlenecks, the set of clusters that co-

ntain execution traces that are matched to good and bad test cases.}
3: ClusterTraces(T) 7→ (Cgood 7→ {tg},Cbad 7→ {tb}), tg, tb ∈ T, tb ∩ tb = /0

4: CreateSignalMixtureMatrix(Cgood ) 7→ matrix xg
5: CreateSignalMixtureMatrix(Cbad ) 7→ matrix xb
6: ICA(xg) 7→ ((Ag,sg) 7→ (Lg 7→ ({< Mg,Rg,SLg >})))
7: ICA(xb) 7→ ((Ab,sb) 7→ (Lb 7→ ({< Mb,Rb,SLb >})))
8: for all eg 7→ {< Mi

g,R
j
g,SLi j

g >} ∈ Lg do
9: for all eb 7→ {< Mk

b,R
l
b,SLkl

b >} ∈ Lb do
10: if Mi

g = Mk
b ∧R j

g = Rl
b then

11: Calculate Deg
12: B← B∪< eg,Deg >
13: end if
14: end for
15: end for
16: Rank B
17: return BRANK

4 Evaluation

In this section, we state our research questions (RQs) and we describe how we evalu-
ated FOREPOST on three applications: the commercial application, Renters, that we
described as our motivating example in Section 2.2 and two open-source applications,
JPetStore and Dell DVD Store, which are frequently used as industry benchmarks.

4.1 Research Questions

In this paper, we make one major claim – FOREPOST is more effective than random
testing, which is a popular industrial approach. We define “more effective” in two
ways: (i) finding inputs that lead to significantly higher computational workloads
and (ii) finding performance bottlenecks. We seek to answer the following research
questions:
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Table 1 Characteristics of the insurance application Renters. Size = lines of code (LOC), NOC =
number of classes, NOM = number of methods, NOA = number of attributes, MCC = Average Mc-
Cabe cyclomatic Complexity, NOP = number of packages.

Renters Size NOC NOM NOA MCC NOP
Component [LOC]
Authorization 742 3 26 1 4.65 1
Utils 15,283 16 1,623 1,170 1.52 9
Libs 85,892 284 6,390 5,752 1.68 26
Eventing 267 3 11 1 4.27 1
AppWeb 8,318 116 448 351 1.92 11
Total 110,502 422 8,498 7,275 - 48

RQ1: How effective is FOREPOST in finding test input data that steer applications
towards more computationally intensive executions and identifying bottlenecks
with a high degree of automation?

RQ2: How do different parameters (or independent variables) of FOREPOST affect
its performance for detecting injected bottlenecks in controlled experiments?

RQ3: How effective is FOREPOSTRAND in finding test input data that steer applica-
tions towards more computationally intensive executions and identifying bottle-
necks with a high degree of automation?

The rationale for these RQs lies in the complexity of the process of detecting
performance bottlenecks. Not all methods are bottlenecks whose execution times are
large. For example, the method main can be described as a bottleneck, since it takes
naturally the most time to execute. However, it is unlikely that a solution may exist to
reduce its execution time significantly. Thus, the effectiveness of bottleneck detection
involves not only the precision with which performance bottlenecks are identified, but
also in how fast they can be found and how different parameters affect this process.

In order to address these RQs, we conducted three empirical studies. In this sec-
tion, we first describe the subject applications used in the studies, then we cover the
methodology and variables for each empirical study. The results are presented in Sec-
tion 5.

4.2 Subject AUTs and Experimental Hardware

We evaluate FOREPOST on three subject applications: Renters, JPetStore and Dell
DVD Store. Renters is a commercial medium-size application that is built and de-
ployed by a major insurance company. Renters serves over 50,000 daily customers
in the U.S. and it has been deployed for over seven years. JPetStore and Dell DVD
Store are open-source applications that are often used as industry benchmarks, since
they are highly representative of enterprise-level database-centric applications.

The Renters is a J2EE application that calculates the insurance premiums for
rental condominium. Its software metrics are shown in Table 1. The backend database
is DB2 running on the IBM Mainframe, its schema contains over 700 tables including
close to 15,000 attributes that contain data on over 78 million customers, which are
used as the input to FOREPOST. The application accepts input values using 89 GUI
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objects. The total number of combinations of input data is approximately 1065, mak-
ing it infeasible to comprehensively test Renters. We used Renters in our motivating
example in Section 2.2.

JPetStore is a Java implementation of the PetStore benchmark, where users can
browse and purchase pets, and rate their purchases. This sample application is typi-
cal in using the capabilities of the underlying component infrastructures that enable
robust, scalable, portable, and maintainable e-business commercial applications. It
comes with full source code and documentation, therefore, we used it in the evalua-
tion of FOREPOST and demonstrated that we can build scalable security mechanisms
into enterprise solutions. We used iBatis JPetStore 4.0.53. JPetStore has 2,139 lines
of code, 386 methods, 36 classes in 8 packages, with the average cyclomatic com-
plexity of 1.224; it is deployed using the web server Tomcat 6.0.35 and it uses Derby
as its backend database.

The Dell DVD Store 45 is an open source simulation of an online e-commerce
site, and it is implemented in MySQL along with driver programs and web appli-
cations. For the evaluation, we injected artificial bottlenecks into Dell DVD Store
for experiments. It contains 32 methods totally, and it uses MySQL as its backend
database. For both of the JPetStore and Dell DVD Store, we have an initial set of
URLs as the input for FOREPOST.

The experiments on Renters were carried out at the premises of the insurance
company using Dell Precision T7500 with a Six Core Intel Xeon Processor X5675,
3.06GHz,12M L3, 6.4GT/s, 24GB, DDR3 RDIMM RAM, 1333MHz. The exper-
iments with JPetStore were carried out using two Dell PowerEdge R720 servers
each with two eight-core Intel Xeon CPUs E5-2609 2.40 GHz, 10M, 6.4GT/s, 32GB
RAM, 1066 MHz. The experiments with Dell DVD Store were carried out using one
Thinkpad W530 laptop with an Intel Core i7-2640M processor, 32GB DDR3 RAM.

4.3 Research Question 1

Our goal is to determine which approach is better for finding good performance test
cases faster. Given the complexity of the subject applications, it is not clear with what
input data the performance can be worsened significantly for these applications. In
addition, given the large space of the input data, it is not feasible to run these applica-
tions on all the inputs to obtain the worst performing execution profiles. These limi-
tations dictate the methodology of our experimental design, specifically for choosing
the competitive approaches to FOREPOST. We selected the random testing as the
main competitive approach to FOREPOST, since it is widely used in industry and it
has been proved to consistently outperform different systematic testing approaches
(Park et al 2012; Hamlet 1994). To support our claims in this paper, our goal is to
show, with strong statistical significance, under what conditions FOREPOST outper-
forms random testing.

3 http://sourceforge.net/projects/ibatisjpetstore, last checked Apr 10, 2015
4 http://en.community.dell.com/techcenter/extras/w/wiki/dvd-store.aspx, last

checked Apr 10, 2015
5 http://linux.dell.com/dvdstore/, last checked Apr 10, 2015

http://sourceforge.net/projects/ibatisjpetstore
http://en.community.dell.com/techcenter/extras/w/wiki/dvd-store.aspx
http://linux.dell.com/dvdstore/
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In designing the methodology for this experiment we aligned with the guidelines
for statistical tests to assess randomized algorithms in software engineering (Arcuri
and Briand 2011). Our goal was to collect highly representative samples of data when
applying different approaches, perform statistical tests on these samples, and draw
conclusions from these tests. Since our experiments involved random selection of
input data, it was necessary to conduct the experiments multiple times and pick the
average to avoid skewed results. We ran each experiment at least 50 times with each
approach on the Renters to consider the collected data as a good representative sam-
ple.

JPetStore is based on the client-server architecture, where its GUI front end is
web-based and it communicates with the J2EE-based backend that accepts HTTP
requests in the form of URLs containing an address to different components and
parameters for those components. For example, a URL can contain the address to the
component that performs checkout and its parameters could contain the session ID.
We define a set of URL requests that originate from a single user as a transaction. The
JPetStore backend can serve multiple URL requests from multiple users concurrently.
Depending on the type of URL requests in these transactions and their frequencies,
some transactions may cause the backend server of JPetStore to take longer time to
execute.

To obtain URL requests that exercise different components of JPetStore, we used
the spider tool in JMeter to traverse the web interface of JPetStore, and recorded the
URLs that were sent to the backend during this process. In random testing, multiple
URLs were randomly selected to form a transaction. In FOREPOST, the URL se-
lection process was guided by the learned rules. We limited the number of URLs in
each transaction to 100. This number was chosen experimentally based on our obser-
vations of JPetStore users who explored approximately 100 URLs before switching
to other activities. Increasing the number of certain URL requests in transactions at
expense of not including other URL requests may lead to increased workloads, and
the goal of our experimental evaluation is to show that FOREPOST eventually se-
lects test input data (i.e., customer profiles for Renters or combinations of URLs for
JPetStore and Dell DVD Store) that lead to increased workloads when compared to
the competitive approaches.

When testing JPetStore and Dell DVD Store, URLs in a transaction are issued
to the backend consecutively to simulate a single user. Multiple transactions are ran-
domly selected and issued in parallel to simulate concurrent users using the system.
During the testing we used different numbers of concurrent transactions, and mea-
sured the average time required by AUT backend to execute a transaction. A goal of
this performance testing was to find combinations of different URLs in transaction-
s for different concurrent users that lead to significant increase in average time per
transaction, which is often correlated with the presence of performance bottlenecks.

We measured inputs as transactional units, where one transactional unit for JPet-
Store or Dell DVD Store is a combination of different URLs that map to different
functional units of the application. At first, these URLs are randomly selected into
a transactional unit, but as rules that describe limits on specific URLs are learned,
some URLs will be given more preference for inclusion in transactions. For Renter-
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s, a transactional unit is an end-to-end run of the application with an input that is a
customer profile that comes from the application database.

Dependent variables are the throughput or the average number of transactions or
runs that the subject AUTs can sustain under the load, the average time that it takes
to execute a transaction or run the AUT end to end. Thus, if an approach achieves a
lower throughput or higher average time per transaction with some approach, it means
that this particular approach finds test input data which are more likely to expose
performance. The effects of other variables (the structure of AUT and the types and
semantics of input parameters) are minimized by the design of this experiment.

4.4 Research Question 2

The goal of Empirical Study 2 is to provide empirical evidence to answer the follow-
ing two questions. The first one is: can FOREPOST identify injected bottlenecks?
To test the sensitivity of FOREPOST in detecting performance bottlenecks, we in-
troduced different artificial bottlenecks, such as obvious bottlenecks and borderline
bottlenecks. The obvious bottlenecks are computationally expensive operations that
have a clear impact on software performance, but the borderline bottlenecks are the
operations that may or may not be spotted as potential bottlenecks. With different
injected bottlenecks, can FOREPOST identify the borderline bottlenecks correctly?
If not, what kind of bottlenecks can or can not be found?

We added two different groups of delays into JPetStore as bottlenecks. The first
group contains bottlenecks with exactly the same delay, whereas the second group
contains bottlenecks with different length of delays. The bottlenecks#1 contain meth-
ods with the same delay of 0.1s in each bottleneck, and the bottlenecks#2 contain
methods with different delays (e.g., 0.05s, 0.1s and 0.15s). The artificial bottlenecks
were injected into nine methods from the 386 probed methods. On the other hand,
we injected one group of bottlenecks with the same delay into Dell DVD Store. Since
Dell DVD Store only contains 32 native methods, we decided to inject the artificial
bottlenecks into both the Dell DVD Store source code and the standard libraries.
Dell DVD Store uses MySQL as its backend database, therefore, we probed meth-
ods from the library called mysql-connector-java.jar and injected bottlenecks into it.
Five bottlenecks were injected into Dell DVD Store, two of them were injected in the
source code and three of them were injected in the standard library. Since some of the
bottlenecks were injected in the library, these bottlenecks would be invoked more fre-
quently than the methods from the source code. Tracing methods from the standard
libraries that come with the underlying platforms imposed much greater overhead.
Thus, we decided to inject only five bottlenecks for Dell DVD Store (as opposed to
nine for JPetStore, see Table 11). To avoid any threats to validity in this empirical
study, we randomly selected methods from the library to inject these bottlenecks.

To make sure that the injected bottlenecks are going to be representative, before
injecting these bottlenecks, we ran FOREPOST on JPetStore to find the original bot-
tlenecks (i.e., methods from the original code that were ranked on the top when no
artificial bottlenecks were injected), as well as the original positions of the injected
bottlenecks. We chose nine artificial bottlenecks and the results are shown in Ta-
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ble 12. The injected bottlenecks are ranked on low positions, that implies that our
injected bottlenecks are not really original bottlenecks and we choose them random-
ly. After injecting bottlenecks, some of the artificial bottlenecks are ranked in the top
ten results, but the original bottlenecks are ranked on lower positions , implying that
the lengths of delays which we injected are significant enough to be detected.

The second question is: how do different parameters (or independent variables)
in FOREPOST affect its performance for detecting injected bottlenecks? To an-
swer this question, we introduced a controlled experiment for sensitivity analysis on
FOREPOST. In the sensitivity analysis, we considered the following two key param-
eters, namely, the number of profiles collected for learning rules and the number of
iterations, as they affect the effectiveness of the rules. Furthermore, the number of
artificial bottlenecks and the number of users may also impact the performance of
FOREPOST in both of finding inputs steering application towards computationally
intensive executions and identifying performance bottlenecks. All in all, four inde-
pendent variables are investigated in the sensitivity analysis. Since our experiments
involved random selection of input data, it was important to conduct these experi-
ments multiple times to avoid skewed results. In this study, we ran each configuration
five times and reported the average results.

The values of four independent variables are shown in Table 2. The first indepen-
dent variable is the number of profiles (i.e., np) that needs to be collected in order
to enable learning rules. FOREPOST collects the execution traces that saved as pro-
files, and then uses the average execution time to cluster these traces into two classes
corresponding to Good and Bad traces. Next, the Learner analyzes them via a ma-
chine learning algorithm which extracts the rules. Intuitively, the number of collected
profiles can affect the resulting rules. For example, the rules extracted from only
ten profiles should contain different information from execution traces or profiles, as
compared to the configuration containing 15 profiles. In our sensitivity analysis, the
numbers of profiles are set to 10, 15, and 20. Our goal is to empirically investigate
whether the number of profiles has substantial impact on the accuracy of FOREPOST.

The second independent variable is called the number of iterations (i.e., ni), which
is defined as the process between the generations of two sets of rules. For example,
setting the number of iterations to two means that FOREPOST uses the ICA algorith-
m to identify the bottlenecks after the second round of learning rules. The number of
iterations are set to 1, 2, 3, and 4. Intuitively, the rules tend to converge as the number
of iterations increases. Our goal is to analyze the performance of FOREPOST after
different numbers of iterations.

The third independent variable is the number of bottlenecks (i.e., nb), which is
the number of artificial performance bottlenecks injected into subject application-
s. Artificial delays were injected randomly into methods for simulating the realistic
performance bottlenecks. The numbers of bottlenecks are set to 6, 9, and 12, and all
bottlenecks have the same delay. Our goal is to empirically investigate the perfor-
mance of FOREPOST on detecting different numbers of performance bottlenecks.
All the artificial bottlenecks are shown in Tables 8, 9, and 10, which are located in
Appendix.

The fourth independent variable is the number of users (i.e., nu) that send URL
requests simultaneously to the subject applications. The numbers of users are set to 5,
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Table 2 Independent variables in sensitivity analysis. Profiles np = number of profiles for learning
rules, iterations ni = times of learning rules, bottlenecks nb = number of artificial bottlenecks, users
nu = number of users.

factors value
profiles np 10, 15, 20
iterations ni 1, 2, 3, 4

bottlenecks nb 6, 9, 12
users nu 5, 10, 15

Table 3 Selected rules that are learned for Renters and JPetStore, where the first letters of the names
of the AUTs are used in the names of rules to designate to which AUTs these rules belong. The last
column (Cons) designates the consequent of the rule that corresponds to good and bad test cases that
these rules describe.

Rule Antecedent Cons

R–1
(customer.numberOfResidents ≤ 2)∧

Good(coverages.limitPerOccurrence ≥ 400000)∧
(preEligibility.numberOfWildAnimals ≤ 1)

R–2

(adjustments.homeAutoDiscount = 2)∧

Bad(adjustments.fireOrSmokeAlarm = LOCAL PLUS CENTRAL)∧
(dwelling.construction = MASONRY VENEER)∧

(coverages.limitEachPerson ≤ 5000)

R–3

(coverages.deductiblePerOccurrence ≤ 500)∧

Good(adjustments.burglarBarsQuickRelease = Y)∧
(nurseDetails.prescribeMedicine = Y)∧
(coverages.limitPerOccurrence ≥ 500000)

J–1

(viewItem_EST-4 ≤ 5)∧ (viewCategory_CATS ≤ 23)∧

Good(viewItem_EST-5 ≤ 6)∧ (Checkout ≥ 269)∧
(Updatecart ≥ 183)∧ (AddItem_EST-6 ≥ 252)∧

(viewCategory_EST-6 ≥ 71)
J–2 (viewItem_EST-4 ≤ 5)∧ (viewCategory_CATS ≤ 0) Bad

10, and 15. Using multiple users may lead to different AUT performance behaviors,
where multithreading, synchronization and database transactions may expose new
types of performance bottlenecks. Our goal is to empirical analyze the performance
of FOREPOST with different numbers of users.

4.5 Research Question 3

FOREPOSTRAND is a combinational testing approach, which considers both the ran-
dom input data and the specific inputs based on generated rules. We instantiated and
evaluated FOREPOSTRAND on JPetStore and Dell DVD Store. The main question
addressed is whether considering random inputs in addition to generated rules is use-
ful in terms of identifying known bottlenecks. In this empirical study, we fixed the
independent variables in both of FOREPOST and FOREPOSTRAND to compare these
two approaches side by side.
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5 Results

In this section, we describe and analyze the results obtained from our experiments
with Renters, JPetStore and Dell DVD Store. We provide only parts of the results
in this paper. The complete results of all our experiments are shown in our online
appendix6.

5.1 Research Question 1

Finding Test Inputs for Increased Workloads. The results for Renters are shown
in the box-and-whisker plots in Figure 4 (a) that summarize the execution times for
end-to-end single application runs with different test input data. We first calculated
the effect size to compare the FOREPOST with RANDOM using Cohen’s d (Co-
hen 2013). The result is 1.2. According to Cohen’s definition, the value of the effect
size is large (≥ 0.8) implying that there is a difference between the execution times
for RANDOM and FOREPOST. To further test the NULL hypotheses that there is
no significant difference between the execution time for the random and FOREPOST
approaches, we performed statistical tests for two paired sample means. Before apply-
ing paired significance test, we first applied the Shapiro-Wilk Normality Test (Shapiro
and Wilk 1965) to check the normality distribution assumption. The results show that
the sample data does not follow normal distribution even at the 0.01 significance lev-
el. Therefore, we chose to use the Wilcoxon Signed-Rank Test (Wilcoxon 1945) to
compare the two sample sets, because it is suitable for the case that the sample data
may not be normally distributed (Lowry 2014). The results of the statistical test allow
us to reject the NULL hypotheses and accept the alternative hypotheses with strong
statistical significance (p< 0.0001), which states that FOREPOST is more effective
at finding test input data that steers applications towards more computationally
intensive executions than random testing, thus addressing RQ1.

This conclusion is confirmed by the results for JPetStore and Dell DVD Store
that are shown in Figure 4 (b) and (c), which are the average end-to-end execution
times for five runs. In JPetStore, while in performing random testing, it takes on av-
erage 542.1 seconds to execute 300 transactions. With FOREPOST, executing 300
transactions takes on average 965.8 seconds, which shows 78.2% increase. In Dell
DVD Store, while performing random testing, it takes on average 100.0 seconds to
execute 300 transactions. With FOREPOST, executing 300 transactions takes on av-
erage 433.3 seconds, which shows 333.3% increase. This implies that FOREPOST
outperforms random testing by more than one order of magnitude. Random testing
is evaluated on the instrumented JPetStore and Dell DVD Store, so that the cost of
instrumentation is evenly factored into the experimental results. FOREPOST has a
large overhead, close to 80% of the baseline execution time, however, once rules are
learned and stabilized, they can be used to partition the input space without using
instrumentation.

Identifying Bottlenecks and Learned Rules. When applying the algorithm for
identifying bottlenecks (see Section 3.6) on Renters, we obtained a list of top 30

6 http://www.cs.wm.edu/semeru/data/EMSE-forepost/

http://www.cs.wm.edu/semeru/data/EMSE-forepost/
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(a) Renters application (b) JPetStore application

(c) Dell DVD Store application

Fig. 4 The summary of the results for Empirical Study 1.The box-and-whisker plots for Renters are shown
in Figure (a), where the time for end-to-end runs is measured in seconds. The central box represents the
values from the lower to upper quartile (i.e., 25 to 75 percentile). The middle line represents the median.
The thicker vertical line extends from the minimum to the maximum value. The bar graphs for JPetStore
and Dell DVD Store are shown in Figure (b) and (c), where the bars represent average times per transaction
in seconds for the Random and FOREPOST approaches for different numbers of concurrent transactions
ranging from 50 to 300.

methods that the algorithm identified as potential performance bottlenecks out of ap-
proximately 8,500 methods. To evaluate how effective this algorithm is, we asked the
insurance company to allocate the most experienced developer and tester for Renters
to review this list and provide feedback on it. According to the management of the
insurance company, it was the first time when a developer and a tester were in the
same room together to review results of testing.

The reviewing process started with the top bottleneck method, checkWildFire-
Area. The developer immediately said that FOREPOST did not work since this
method could not be a bottleneck for a simple reason – this method computes in-
surance quotes only for U.S. states that have wildfires, and FOREPOST selected test
input data for northern states like Minnesota that never have wildfires. We explained
that FOREPOST automatically selected the method checkWildFireArea as impor-
tant because its weight was significant in execution traces for good test cases, and it
was absent in traces for bad test cases. It meant that this method was invoked many
times for the state of Minnesota and other northern states, even though its contribu-
tion in computing insurance quotes was zero for these states. Invoking this method
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Fig. 5 Average execution times (in second) for different groups of injected bottlenecks (i.e.,bottlenecks#1
and bottlenecks#2), where np = 10 and nu = 5. Different colors represent different iterations. The central
box represents the values from the lower to upper quartile (i.e., 25 to 75 percentile). The middle line
represents the median.

consumes more resources and time in addition to significantly increasing the number
of interactions with the backend databases. After hearing our arguments, the devel-
oper and the tester told us that they would review the architecture documents and the
source code and get back to us.

A day later they got back with a message that this and few other methods that
FOREPOST identified as bottlenecks were true bottlenecks. It turned out that the im-
plementation of the Visitor pattern in Renters had a bug, which resulted in incorrect
invocations of the method checkWildFireArea. Even though it did not contribute
anything to computing the insurance quote, it consumed significant resources. Af-
ter implementing a fix based on the feedback from FOREPOST, the performance of
Renters increased by approximately seven percent, thus addressing RQ1 that FORE-
POST is effective at identifying bottlenecks. More experiments of identifying bot-
tlenecks in FOREPOST presented in the section 5.2 and 5.3 also support this con-
clusion.

Examples of learned rules are shown in Table 3. When professionals from the
insurance company looked at these and other rules in more depth, they identified
certain patterns that indicated that these rules were logical and matches some features.
For example, the rules R-1 and R-3 point out to strange and inconsistent insurance
quote inputs, where low deductible goes together with very high coverage limit, and
it is combined with the owner of the condo taking prescribed medications, and with
the condo having fewer than two residents. All these inputs point to situations that are
considered higher risk insurance policies. These classes of input values trigger more
computations that lead to significantly higher workloads.

For JPetSore, rules J-1 and J-2 describe inputs as the number of occurrences of
URLs in transactions, where URLs are shown using descriptive names (e.g., “Check-
out” for the URL that enables customers to check out their shopping carts). It is im-
portant that rules for both applications are input-specific. While we do not expect that
rules learned for one system would apply to a completely different system, training a
new set of rules using the same algorithm should deliver similar benefits.
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Table 4 Detailed execution times (in seconds) for different configurations of the independent vari-
ables for JPetStore.

6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
nu -np iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

5-10 859 1983 2269 2270 970 3206 3216 3218 1180 2759 2790 2815
5-15 860 1990 2013 2024 963 2369 2420 2446 1138 3001 3010 3022
5-20 809 2000 2024 2031 975 3252 3253 3252 1114 2462 2473 2553
10-10 1651 3758 3787 3857 1971 6093 6108 6118 2120 6551 6551 6551
10-15 1694 4075 4075 4084 2002 6157 6175 6201 2231 6042 6054 6078
10-20 1623 3391 3488 3659 1922 6094 6118 6126 2278 5898 5962 6006
15-10 2510 6837 6838 6837 3089 7973 9324 9334 3484 8167 8180 8221
15-15 2491 6070 6077 6088 3062 9828 9860 9852 3360 7487 7684 7750
15-20 2530 5314 5380 5448 2920 7468 7676 7810 3267 8199 8220 8326

5.2 Research Question 2

Finding Test Inputs for Increased Workloads. Recall that we injected two differ-
ent groups of artificial bottlenecks to investigate how FOREPSOT identifies different
injected bottlenecks. The bottlenecks#1 refer to the methods that have same artifi-
cial delay, and the bottlenecks#2 refer to the methods that have different artificial
delays. The results with the same configurations of FOREPOST but different groups
of bottlenecks are shown in Fig. 5. As the results show, the execution times for bottle-
necks#1 are generally larger than the execution times for bottlenecks#2. The reason
is that different delays in these two groups of bottlenecks lead to different AUT be-
haviors. Some injected bottlenecks in bottlenecks#1 have longer delays, leading to
more computationally intensive executions as compared to the bottlenecks#2. These
empirical results confirm the conjecture that different types of bottlenecks affect the
performance of the FOREPOST engine in finding test inputs for increased workloads.

The results for the average execution times of the sensitivity analysis are shown in
detail in Table 4. In the table, Column 1 presents the different settings for the number
of users (i.e., nu) and the number of profiles (i.e., np). Columns 2-5 present the aver-
age time (across 5 runs) for each iteration when injecting six bottlenecks. Similarly,
Columns 6-9 and Columns 10-13 present the average execution time for each itera-
tion when injecting nine and twelve bottlenecks, respectively. To further investigate
the impacts of various independent variables on the execution time, we control the
value of each independent variable, and present the corresponding results in Fig. 6.
In this figure, each sub-figure represents the execution time information when we
control the value of each independent variable (e.g., number of profiles, bottlenecks,
and users). In each sub-figure, the x-axis presents the values for the controlled in-
dependent variable, the y-axis presents the execution time, and boxplots in different
color represent different iteration. Note that the boxplots present the median (line in
the box), upper/lower quartile, and 90th/10th percentile values. From the figure, we
can infer the following observations:

First, across all the sub-figures, we can find that after the 1st iteration, the ex-
ecution time increases dramatically, implying that FOREPOST can find inputs that
steer applications towards computationally intensive executions. But after the 2nd it-
eration, the execution times increase slightly, implying that the learnt rules converge
to some stable states. The reason is that the inputs are selected randomly in the 1st

iteration. From the 2nd iteration, a number of interesting rules are inferred to cover
the hot paths in the system under test. Thus the execution time increases dramatically.
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Fig. 6 Average execution times (in second) when controlling different independent variables. Different
colors represent different iterations. The central box represents the values from the lower to upper quartile
(i.e., 25 to 75 percentile). The middle line represents the median.

However, from the 2nd iteration, the majority of the hot paths have been covered by
FOREPOST, making the execution time relatively stable after the 2nd iteration. This
also implies that different numbers of iterations do not significantly help identify dif-
ferent behaviors in order to find test input data that steers applications towards more
computationally intensive executions.

When controlling the independent variable of the number of profiles (see Fig. 6
(a)), we find that the execution time does not change much across different number
of profiles. We also observe an interesting finding that when the number of profiles
per iteration increases, the execution time for various other settings tends to be more
stable. For example, the boxplot for using 20 profiles is more stable than that for ten
profiles. The reason is that after collecting more profiles, the machine learning results
can be more accurate in guiding meaningful rule generation. Therefore, the empir-
ical results when controlling the number of profiles demonstrate that FOREPOST
becomes more stable when using more profiles.

When controlling the independent variable of the number of bottlenecks (see
Fig. 6 (b)), we find that the execution time increases gradually and the performance
has wider range when injecting more bottlenecks. One possible reason is that more
injected bottlenecks may incur more bottlenecks to be actually executed, leading to
longer execution time. Moreover, the interaction of different bottlenecks can make
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Table 5 Precision for FOREPOST when nu=5 and np=10

Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

2 100.00 100.00 90.00 90.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 90.00
4 95.00 65.00 55.00 60.00 100.00 65.00 70.00 75.00 100.00 75.00 80.00 75.00
6 90.00 46.67 40.00 40.00 100.00 50.00 50.00 50.00 100.00 50.00 60.00 56.67
8 72.50 35.00 30.00 30.00 100.00 37.50 37.50 40.00 100.00 40.00 45.00 45.00
10 60.00 28.00 24.00 24.00 88.00 32.00 30.00 32.00 100.00 34.00 36.00 36.00
12 50.00 26.67 20.00 20.00 75.00 26.67 25.00 26.67 100.00 28.33 30.00 30.00
14 42.86 22.86 17.14 17.14 64.29 22.86 21.43 22.86 85.71 24.29 27.14 25.71
16 37.50 20.00 15.00 15.00 56.25 20.00 18.75 20.00 75.00 21.25 23.75 22.50
18 33.33 17.78 13.33 13.33 50.00 17.78 16.67 17.78 66.67 20.00 21.11 20.00
20 30.00 16.00 12.00 12.00 45.00 16.00 15.00 16.00 60.00 18.00 19.00 18.00

Table 6 Recall for FOREPOST when nu=5 and np=10

Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

2 33.33 33.33 30.00 30.00 22.22 22.22 22.22 22.22 16.67 16.67 16.67 15.00
4 63.33 43.33 36.67 40.00 44.44 28.89 31.11 33.33 33.33 25.00 26.67 25.00
6 90.00 46.67 40.00 40.00 66.67 33.33 33.33 33.33 50.00 25.00 30.00 28.33
8 96.67 46.67 40.00 40.00 88.89 33.33 33.33 35.56 66.67 26.67 30.00 30.00
10 100.00 46.67 40.00 40.00 97.78 35.56 33.33 35.56 83.33 28.33 30.00 30.00
12 100.00 53.33 40.00 40.00 100.00 35.56 33.33 35.56 100.00 28.33 30.00 30.00
14 100.00 53.33 40.00 40.00 100.00 35.56 33.33 35.56 100.00 28.33 31.67 30.00
16 100.00 53.33 40.00 40.00 100.00 35.56 33.33 35.56 100.00 28.33 31.67 30.00
18 100.00 53.33 40.00 40.00 100.00 35.56 33.33 35.56 100.00 30.00 31.67 30.00
20 100.00 53.33 40.00 40.00 100.00 35.56 33.33 35.56 100.00 30.00 31.67 30.00

Table 7 F-score for FOREPOST when nu=5 and np=10

Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

2 50.00 50.00 45.00 45.00 36.36 36.36 36.36 36.36 28.57 28.57 28.57 25.71
4 76.00 52.00 44.00 48.00 61.54 40.00 43.08 46.15 50.00 37.50 40.00 37.50
6 90.00 46.67 40.00 40.00 80.00 40.00 40.00 40.00 66.67 33.33 40.00 37.78
8 82.86 40.00 34.29 34.29 94.12 35.29 35.29 37.65 80.00 32.00 36.00 36.00
10 75.00 35.00 30.00 30.00 92.63 33.68 31.58 33.68 90.91 30.91 32.73 32.73
12 66.67 35.56 26.67 26.67 85.71 30.48 28.57 30.48 100.00 28.33 30.00 30.00
14 60.00 32.00 24.00 24.00 78.26 27.83 26.09 27.83 92.31 26.15 29.23 27.69
16 54.55 29.09 21.82 21.82 72.00 25.60 24.00 25.60 85.71 24.29 27.14 25.71
18 50.00 26.67 20.00 20.00 66.67 23.70 22.22 23.70 80.00 24.00 25.33 24.00
20 46.15 24.62 18.46 18.46 62.07 22.07 20.69 22.07 75.00 22.50 23.75 22.50

the AUT’s performance rather unstable, which enlarges the possible range for the
application execution time.

When controlling the independent variable of the number of users (see Fig. 6 (c)),
we find that the execution time increases linearly when simulating more users. For
example, when using five users, the average execution time for the inputs selected by
FOREPOST (e.g., the 4th iteration) is around 2500 seconds, while it is approximately
5500 seconds and 7500 seconds when the number of users increases to ten and 15
respectively. Obviously, when the number of users increases, it would take more time
to execute the URL requests sending by the increased users. We can also find that the
execution time becomes more unstable when simulating ten users as compared to five
users. The possible reason is that when increasing the number of users, the problems
of multi-threading, synchronization, etc., may arise, causing the studied application
to have performance bottlenecks of wider range.

Identifying Bottlenecks. The results of experiments with different groups of ar-
tificial bottlenecks (i.e., bottlenecks#1 and bottlenecks#2) are shown in Fig. 7. From
the figures, we observe that the results of bottlenecks#2 vary greatly as compared to
the results of bottlenecks#1. One possible reason is that the injected bottlenecks with
different delays (i.e., bottlenecks#2) make the AUT performance vary, thus FORE-
POST may converge to the different executions for uncovering different performance
bottlenecks, leading to unstable results. On the contrary, FOREPOST always con-
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verge to some stable states when injecting the same performance bottlenecks (i.e.,
bottlenecks#1). Given our empirical results, we conclude that the length of the delays
in bottlenecks, given the delay ranges we experimented with, impacts the perfor-
mance of FOREPOST.

For the sensitivity analysis, let’s look into the results where np = 10, nb = 9, and
nu = 5. The precision, recall and F-score are shown in Tables 5, 6, and 7. Note that
due to the space limitation, we put the detailed results for all the other settings in
the Appendix section. The precision is measured as the percentage of the artificial
bottlenecks returned in the top methods. The recall is measured as the ratio of the
artificial bottlenecks within the top methods to all the injected bottlenecks. The F-
score is calculated based on the precision and recall (i.e., F−score= 2∗precision∗recall

precision+recall ).
To calculate those metrics, we used a cut point to separate methods in the ranking list
into two parts, and we only considered the ranks of methods whose positions are
higher than the cut point. For example, if we set the cut point as ten, it means we only
consider the ranks of methods which are in top ten and the methods outside the top ten
are ignored. In each of the three tables, Column 1 lists the different cut points used,
Columns 2-5/6-9/10-13 list the corresponding metric results for FOREPOST when
injecting 6/9/12 bottlenecks. According to the three tables, we have the following
observations:

First, the best cut point depends on the number of potential bottlenecks in the
application under test as well as the number of iterations used in FOREPOST. For
example, as shown in Table 7 (nu=5 and np=10), when controlling the number of
bottlenecks to be six, the cut point with the highest F-score value is six after 1st

iteration, and four after 2nd iterations. Similarly, when controlling the number of
iterations to be four, the cut point with the highest F-score value is four when injecting
six bottlenecks, and six when injecting twelve bottlenecks.

Second, as the number of iterations increases, FOREPOST tends to miss some
injected performance bottlenecks. For example, when using six as the cut point value
where nb = 9, the random inputs (i.e., the 1st iteration) have a F-score of 80.00, but
the selected inputs (e.g., the 2nd iteration) only has a F-score of 40.00. A possible
explanation is that FOREPOST runs a much more manageable and focused subset of
input data after generating rules, which means the size of this subset is much smaller
and easier to test, but it can lead to intense computations faster than other subsets.
However, since the input data is limited by the rules, the domain would become s-
maller if rules are only associated with a small subset of methods. Although some
methods have a high probability to be associated with the bottlenecks, FOREPOST
still does not list them since they are not invoked in the execution traces. For exam-
ple, before learning rules, there are 386 methods invoked in JPetStore. But only 208
methods are invoked after learning rules, which means the learned rules focused on a
subset of input data, therefor less methods are invoked during the execution. Mean-
while, as observed from Figure 6, the average execution times of selected inputs are
quite higher than the average execution times of random inputs (i.e., inputs in the
1st iteration), which implies that FOREPOST finds the subset of input data that lead
to intense computations in a short time. So FOREPOST identifies computationally
more expensive execution paths as compared to random performance testing at the
expense of lower precision.
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Our current implementation of FOREPOST only considers cumulative execution
time of each method in the ICA algorithm.The other metrics, such as the number of
invocations and the amount of data transited between methods and database, may af-
fect the method weights when using ICA algorithm to identify bottlenecks. We leave
this investigation as future work. For different applications, the FOREPOST behaves
differently. It took around 24 hours to finish five runs on JPetStore with nine artifi-
cial bottlenecks, where the number of profiles (np) is ten, the number of iterations
(ni) is four and the number of users (nu) is five. The time of the experiment related
to the number of the bottlenecks and also their delay. Without any artificial bottle-
necks, it took approximately five hours to finish five runs on JPetStore. Moreover, as
the np, ni, and nu increase, the experiments become more time-consuming. It took
around two months to finish all the experiments on sensitivity analysis for JPetStore.
Currently the experiments in empirical study 2 are done on JPetStore only, since the
experiments on Dell DVD Store are extremely time-consuming. The reason is that
we injected artificial bottlenecks into the standard library for Dell DVD Store. These
bottlenecks were invoked more frequently, thus, the elapsed time was substantially
longer.
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Fig. 8 Average execution times (in second) for FOREPOST and FORPOSTRAND, where np = 10 and nu
= 5. Different colors represent different iterations. The central box represents the values from the lower to
upper quartile (i.e., 25 to 75 percentile). The middle line represents the median.

5.3 Research Question 3

Comparing FOREPOST and FOREPOSTRAND in Finding Test Input for In-
creased Workloads. The results for comparing FOREPOST and FOREPOSTRAND
are shown in Fig. 8. On JPetStore, the inputs selected by FOREPOST take around
2800 seconds after the 2nd iteration, while inputs selected by FOREPOSTRAND take
around 3200 seconds. Although there is no significant difference after the 2nd it-
eration, the average execution times of FOREPOST are always larger than those of
FOREPOSTRAND. The results demonstrate that FOREPOST is more effective in find-
ing test input data that steer applications towards more computationally intensive exe-
cutions compared with FOREPOSTRAND. The conclusion is confirmed by the results
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for Dell DVD Store shown in Fig. 8 (b). Morever, the increase between random in-
puts and selected inputs in execution time on Dell DVD Store is smaller as compared
to JPetStore since Dell DVD Store has relatively smaller number of combinations of
inputs. Thus, even randomly selected inputs can cover significant part of the com-
putationally intensive executions. All in all, FOREPOST is more effective in finding
inputs to cover computationally intensive executions, thus addressing RQ3.

Comparing FOREPOST and FOREPOSTRAND in Identifying Bottlenecks.
While FOREPOST finds artificial bottlenecks with lower F-score, FOREPOSTRAND
can identify almost all artificially injected bottlenecks, which is shown in Fig. 9 and
10. The figures show the precision, recall and F-score after each iterations on JPet-
Store and Dell DVD Store, respectively. We observe that the comparison results show
similar trends on both applications. The precision, recall and F-score are quite simi-
lar after the 1st iteration since inputs in both FOREPOST and FOREPOSTRAND are
selected randomly. After the 2nd iteration, FOREPOSTRAND have all clearly larger
values as compared to FOREPOST. This implies that FOREPOSTRAND outperform-
s FOREPOST in terms of accuracy. Among the reasons mentioned above, FORE-
POST may miss to identify some bottlenecks since the input data is generated only
based on rules which focus on traces that correspond to computationally intensive
executions. Since FOREPOSTRAND also involves random input data in addition to
the specific input data based on the rules, it also covers other traces without losing
accuracy. On the contrary, because FOREPOST focuses on more computationally
expensive executions, it is hard to identify all the scenarios that lead to identifying
specific performance bottlenecks. As our results demonstrated, software testers can
choose either FOREPOST or FOREPOSTRAND based on their goals: either identify-
ing extreme bottlenecks by focusing on the more intensive executions or identifying
as many bottlenecks as possible at a time but less intensive executions.

6 Threats to Validity

In this section we systematically review three different types of threats to validity to
the studies reported in this paper: internal, external and construct validity.

6.1 Internal Validity

The first threat to internal validity relates to the fact that we injected artificial bot-
tlenecks into the subject software systems. While we injected these bottlenecks ran-
domly, there is a threat that some of the bottlenecks may not necessarily appear in the
”natural” locations in program paths or where they are likely to appear in some real
world scenarios. However, this particular design allowed us to evaluate FOREPOST
in a controlled setting. Thus, we believe that we sufficiently minimized this threat,
and our results are reliable.

In our implementation of profiling system, we used Probekit to inject probes into
binary code for collecting execution traces, which affects the AUT performance be-
haviors. However, we only logged for some simple events like current system time
for method entry and exit, and the overhead of Probekit was rather negligible. Thus,
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we believe that the overhead did not affect the results and current conclusions in our
paper.

FOREPOST analyzes execution trace for each test case, and uses machine learn-
ing algorithm to extract rules for selecting test cases that lead to performance bottle-
necks. It is possible that the rules converge to some local input space thus the selected
test cases only steer executions to some specific paths. However, with more execution
traces collected, it is possible to obtain more meaningful rules to select test cases un-
covering more performance bottlenecks. Furthermore, it would be interesting to use
different techniques like genetic algorithms to explore the input space. We leave this
extension and rigorous comparison for the future work.

6.2 External validity

The main external threat to our experimental design is that we experimented only
with three subject AUTs. The results may vary for AUTs that have different logic
or different architectures. Furthermore, we only have the authority to access the data
and source code of Renters to conduct the experiments in empirical study 1, since it
is a closed-source application that belongs to an insurance company. Thus, we did not
perform the experiments on Renters in empirical studies 2 and 3. This threat makes
it difficult to generalize the obtained results. There are many other different kinds
of systems and different types of performance bottlenecks that can be tested in our
experiments. However, since all the applications used are highly representative of
enterprise-level applications and frequently used as benchmarks (Jiang et al 2009;
Foo et al 2010) in performance testing research in software engineering, we suggest
that our results are generalizable, at least in part, to a larger population of applications
from these domains.

To evaluate the effectiveness of FOREPOST, we only compared FOREPOST with
random testing and FOREPOSTRAND. This constitutes a threat, in that if we compare
FOREPOST to other performance testing approaches, our results may compare dif-
ferently. Thus, it may be difficult to derive general conclusions based solely on the
comparisons made. However, the goal of FOREPOST is specific to find input data
that leads to intensive computations which identify bottlenecks; and controlled exper-
iments related to different performance testing approaches are difficult to compare.
Comparing FOREPOST with FOREPOSTRAND made the controlled experiments fea-
sible and also reliable. We suggest that it minimized this threat effectively.

6.3 Construct Validity

In this paper, we used the execution time to measure the AUT performance and cluster
execution traces, since the execution time is a representative performance metric and
is widely used in performance testing area. The threat is that we did not consider
other performance metrics. For example, memory leaks may lead to performance
bottlenecks that arise over time, but memory usage is not taken into account in our
current version. The methods that automatically scale or reconfigure themselves may
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also affect the AUT performance, introducing performance bottlenecks. However, our
approach is not limited to use only the execution time as performance metric, and it
can be extended using other types of performance metrics, like involving different
metrics in matrix x (Section 3.4). We leave this extension as future work.

7 Related Work

There are many approaches that aid in generating test cases for testing. Avritzer et
al. proposed an approach that automatically generates test cases and extended it by
applying it into a “performability model”, which is used to track the resource failures
(Avritzer et al 2011). Partition testing is a set of strategies that divides the program’s
input domain into subdomains (subsets) from which test cases can be derived to cover
each subset at least once (Ammann and Offutt 2008, pages 150-152). Closely related
is the work by Dickinson et al. (Dickinson et al 2001), which uses clustering analysis
execution profiles to find failures among the executions induced by a set of potential
test cases. Although their work and ours used clustering techniques, our work differs
in that we cluster the execution profiles based on the length of the execution time and
number of methods that have been invoked, and we target performance bottlenecks
instead of functional errors.

Load testing is used to determine the AUT performance behaviors under specific
workloads. Bayan et al. proposed an approach that uses a PID controller to automati-
cally drive the test cases for achieving a pre-specified level of stress/load for a specific
resource, such as response time (Bayan and Cangussu 2008). Another related work
by Barna et al. proposed an autonomic framework to explore workload space and i-
dentify the points that cause the worst case behavior (Barna et al 2011). It contains a
feedback loop that generates workloads, monitors the software system, analyzes the
effects of each workload and plans the new workloads. However, this work focus-
es on the effects of workloads (i.e., number of requests). Thus, it does not consider
the effects of different types of requests (e.g., browse, buy, pay) in web applications.
The Menasce’s work discusses three important activities, load testing, benchmarking,
and application performance management, on web-based applications, and provides
a performance models that illustrates the relationship between workload and through-
put/response time for improving load testing (Menascé 2002). Briand et al. proposed
an approach that uses genetic algorithms to find combinations of inputs that ensure
that completion times of a specific task’s executions are as close as possible to their
deadlines (Briand et al 2005). However, all these approaches do not point out the po-
tential performance bottlenecks in the AUT. In contrast, FOREPOST explores input
space and uses machine learning algorithms to identify the combinations of inputs
(i.e., requests in web application) for finding performance bottlenecks.

Operational profile is commonly used in performance load testing, where a sys-
tem can be tested more efficiently because the operations most frequently used are
tested the most (Musa 1993). It is a quantitative characterization of how the software
will be used, which indicates the occurrence probabilities of function calls and the
distributions of parameter values. Avritzer et al. proposed an approach that uses op-
erational profiles to improve performance testing, where an application-independent
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performance workload is designed for comparing the existing production with the
proposed architecture (Avritzer and Weyuker 1996). In this approach, operational da-
ta are collected in the current production environment, and a synthetic workload is
fabricated which has a profile close to the average profile compiled by the applica-
tion in production for the selected operations. However, this work is not aimed at
pinpointing specific methods leading to the different performance behaviors of the
application.

Learning rules helps stakeholders to reconfigure distributed systems online to op-
timize for dynamically changing workloads (Wildstrom et al 2007). This work is
similar to FOREPOST in using the learning methodology to learn rules, from only
low-level system statistics, which of a set of possible hardware configurations will
lead to better performance under the current unknown workload. In contrast, FORE-
POST uses feedback-directed adaptive performance test scripts to locate most com-
putationally intensive execution profiles and bottlenecks.

There is a recent work that studied 109 real-world performance bugs and found
the guidance to detect performance bugs (Jin et al 2012). The study demonstrated
the root causes of performance bugs, thus the efficiency rules should exist and could
be collected from patches. Then, the extracted rules from real-world performance-
bug patches are used to check performance bottlenecks. Compared with FOREPOST,
these rules are extracted manually, and they are used to analyze software binary code
(Jin et al 2012). In contrast, FOREPOST extracts rules by using black-box software
testing. Furthermore, the study by Zaman et al. (Zaman et al 2011) compared perfor-
mance bugs and the security bugs, and found that performance bugs fixes impacted
more files and took more time, while security bugs were fixed and triaged faster, but
reopened and tossed frequently, required more developers and were more complex
overall (Zaman et al 2011).

Another technique related to FOREPOST automatically classifies execution da-
ta, collected in the field, which comes from either passing or failing program runs
(Haran et al 2005). This technique attempts to learn a classification model to predict
if an application run failed using execution data. Jovic et al. presented an approach,
called Lag Hunting, that collects runtime information such as the stack samples, and
analyzes this information to detect the latency bugs automatically (Jovic et al 2011).
Malik et al. developed an automated approach that ranked the subsystems that likely
involved performance deviations by using the performance signatures (Malik et al
2010). Subsequently they proposed and compared one supervised and three unsuper-
vised approaches for detecting performance deviations automatically for the loading
testing in large scale systems, with a smaller and manageable subset of performance
counters (Malik et al 2013). Moreover, Syer et al. recently combined performance
counters and execution logs to detect memory-related issues automatically (Syer et al
2013). On the other hand, FOREPOST learns rules that it uses to select test input data
that steer applications towards computationally intensive runs to expose performance
bottlenecks.

In the recent work, Zhang, Elbaum, and Dwyer generate performance test cases
using dynamic symbolic execution (Zhang et al 2011). Similar to FOREPOST, they
used heuristics that guided the generation of test cases by determining paths of exe-
cutions that can introduce higher workloads. Shen et al. proposed an approach that
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uses genetic algorithms to explore input space for finding the combinations of inputs
likely to trigger performance bottlenecks. It treats determining inputs to reveal perfor-
mance bottlenecks as a search and optimization problem, while FOREPOST tries to
learn a precise model for AUT’s performance behavior for performance testing (Shen
et al 2015). Zaparanuks and Hauswirth presented algorithmic profiler that identifies
the ingredients of algorithms and their inputs, presented the execution cost by using
the repetition tree, and provided the cost function that illustrates the relationship be-
tween the cost and the input size, which can be used to identify algorithms with high-
er algorithmic complexity (Zaparanuks and Hauswirth 2012). Unlike FOREPOST,
white-box testing approach are used, thus requiring access to source code, while
FOREPOST is a black-box approach. It is also unclear how the approach (Zhang
et al 2011) will scale to industrial applications with over 100KLOC. We view these
approaches as complementary, where a hybrid technique may combine the benefits of
both approaches in a gray-box performance testing. This is left for the future work.

8 Conclusion

We offer a novel solution for automatically finding performance bottlenecks in ap-
plications using black-box software testing. Our solution, FOREPOST, is an adap-
tive, feedback-directed learning testing system that learns rules from execution traces
of applications. These rules are then used to automatically select test input data
for performance testing. As compared with random testing, our solution can find
more performance bottlenecks. We have implemented our solution and applied it
to a nontrivial closed-source application at a major insurance company and to two
open-source applications in a controlled experiment. The results demonstrate that
performance bottlenecks were found automatically in all applications and were con-
firmed by experienced testers and developers. Moreover, we implemented a new ver-
sion of the approach referred to as FOREPOSTRAND. We compared FOREPOST
with FOREPOSTRAND on two open-source applications and confirmed that while
FOREPOSTRAND can identify bottlenecks with higher precision, FOREPOST was
able to find not only the subset of bottlenecks, but also the scenarios that lead to
substantially more intense computations, which could potentially lead to more seri-
ous performance bottlenecks in certain situations. Our results demonstrate that testers
can use FOREPOSTRAND for initial performance testing to outline possible roots of
performance bottlenecks and use FOREPOST for more focused search of scenarios
that result in substantial delays in system execution.
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APPENDIX

Table 8 Six Injected bottlenecks in JPetStore, where the length of delay is measured in seconds.

Method name Method container Delay
getProductId() /domain/Product 0.10

getCategoryId() /domain/Product 0.10
getItemListByProduct(String) /persistence/sqlmapdao/ItemSqlMapDao 0.10

getProductListByCategory(String) /persistence/sqlmapdao/ProductSqlMapDao 0.10
getUsername() /presentation/AccountBean 0.10
getAccount() /presentation/AccountBean 0.10
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Table 9 Nine Injected bottlenecks in JPetStore, where the length of delay is measured in seconds.

Delay in Delay in
Method name Method container bottle- bottle-

necks#1 necks#2
setZip(String) /domain/Account 0.10 0.05
getProductId() /domain/Product 0.10 0.10

getCategoryId() /domain/Product 0.10 0.15
getName() /domain/Product 0.10 0.05

getItemList- /persistence/sqlmapdao 0.10 0.10ByProduct(String) /ItemSqlMapDao
getProductList- /persistence/sqlmapdao 0.10 0.15ByCategory(String) /ProductSqlMapDao
getUsername() /presentation/AccountBean 0.10 0.05

setPassword(String) /presentation/AccountBean 0.10 0.10
getAccount() /presentation/AccountBean 0.10 0.15

Table 10 Twelve Injected bottlenecks in JPetStore, where the length of delay is measured in seconds.

Method name Method container Delay
setZip(String) /domain/Account 0.10

getLanguagePreference() /domain/Account 0.10
getItemId() /domain/Item 0.10

getProductId() /domain/Product 0.10
getCategoryId() /domain/Product 0.10

getName() /domain/Product 0.10
getItemListByProduct(String) /persistence/sqlmapdao/ItemSqlMapDao 0.10

isItemInStock() /persistence/sqlmapdao/ItemSqlMapDao 0.10
getProductListByCategory(String) /persistence/sqlmapdao/ProductSqlMapDao 0.10

getUsername() /presentation/AccountBean 0.10
setPassword(String) /presentation/AccountBean 0.10

getAccount() /presentation/AccountBean 0.10

Table 11 Injected bottlenecks in Dell DVD Store and the standard jar file mysql-connector-java.jar,
where the length of delay is measured in seconds.

Delay
getBrowsetype() /com/ds2/ConnectionManager 0.10

setNew item length(int) /com/ds2/ConnectionManager 0.10
getBufLength() /com/mysql/jdbc/Buffer 0.10

loadAuthenticationPlugins() /com/mysql/jdbc/MysqlIO 0.10
checkForIntegerTruncation(int, byte[], int) /com/mysql/jdbc/ResultSetImpl 0.10
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Table 12 Ranks of bottlenecks for FOREPOST in JPetStore, where there are five original bot-
tlenecks and nine artificial bottlenecks. The vertical columns of group ”No injected bottleneck”
shows the ranks when there is no artificial bottleneck injected. The vertical columns of group
”Bottleneck#1” shows the ranks when there are nine artificial bottlenecks injected. The number
of profiles is equal to 10.

No injected bottleneck Bottleneck#1
Bottlenecks Method name iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

pushConnection() 4 1 2 1 29 8 37 16
popConnection() 1 3 1 2 11 18 47 5

Original getResults() 2 5 6 3 16 5 5 7
bottlenecks getNullValue() 17 7 5 7 46 27 28 30

executeQuery() 6 11 3 4 13 9 7 9
setZip(String) 380 N/A N/A N/A 8 N/A N/A N/A
getProductId() 34 24 18 43 2 1 1 3

getCategoryId() 253 N/A N/A N/A 4 N/A N/A N/A
getName() 140 200 167 201 3 4 4 1

Injected getItemListByProduct(String) 188 N/A N/A N/A 7 N/A N/A N/A
bottlenecks getProductListByCategory(String) 280 204 111 141 6 2 3 123

getUsername() 142 N/A N/A N/A 9 N/A N/A N/A
setPassword(String) 235 N/A N/A N/A 5 N/A N/A N/A

getAccount() 11 N/A N/A N/A 1 3 2 2

Table 13 Precision for FOREPOST when nu=5 and np=15

Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

2 100.00 90.00 80.00 80.00 100.00 90.00 100.00 100.00 100.00 100.00 100.00 70.00
4 95.00 50.00 50.00 45.00 100.00 75.00 75.00 75.00 100.00 90.00 70.00 80.00
6 83.33 33.33 36.67 30.00 96.67 56.67 53.33 56.67 100.00 60.00 53.33 60.00
8 70.00 27.50 27.50 25.00 92.50 45.00 40.00 42.50 100.00 45.00 45.00 47.50
10 58.00 22.00 22.00 20.00 80.00 36.00 32.00 34.00 100.00 40.00 36.00 38.00
12 48.33 18.33 18.33 16.67 70.00 30.00 26.67 28.33 96.67 33.33 30.00 31.67
14 41.43 15.71 15.71 14.29 61.43 25.71 22.86 24.29 84.29 28.57 25.71 27.14
16 37.50 13.75 13.75 12.50 53.75 22.50 20.00 21.25 73.75 25.00 22.50 23.75
18 33.33 12.22 12.22 11.11 47.78 20.00 17.78 18.89 65.56 22.22 20.00 21.11
20 30.00 11.00 11.00 10.00 43.00 18.00 16.00 17.00 60.00 20.00 18.00 19.00

Table 14 Recall for FOREPOST when nu=5 and np=15

Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

2 33.33 30.00 26.67 26.67 22.22 20.00 22.22 22.22 16.67 16.67 16.67 11.67
4 63.33 33.33 33.33 30.00 44.44 33.33 33.33 33.33 33.33 30.00 23.33 26.67
6 83.33 33.33 36.67 30.00 64.44 37.78 35.56 37.78 50.00 30.00 26.67 30.00
8 93.33 36.67 36.67 33.33 82.22 40.00 35.56 37.78 66.67 30.00 30.00 31.67
10 96.67 36.67 36.67 33.33 88.89 40.00 35.56 37.78 83.33 33.33 30.00 31.67
12 96.67 36.67 36.67 33.33 93.33 40.00 35.56 37.78 96.67 33.33 30.00 31.67
14 96.67 36.67 36.67 33.33 95.56 40.00 35.56 37.78 98.33 33.33 30.00 31.67
16 100.00 36.67 36.67 33.33 95.56 40.00 35.56 37.78 98.33 33.33 30.00 31.67
18 100.00 36.67 36.67 33.33 95.56 40.00 35.56 37.78 98.33 33.33 30.00 31.67
20 100.00 36.67 36.67 33.33 95.56 40.00 35.56 37.78 100.00 33.33 30.00 31.67

Table 15 F-score for FOREPOST when nu=5 and np=15

Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

2 50.00 45.00 40.00 40.00 36.36 32.73 36.36 36.36 28.57 28.57 28.57 20.00
4 76.00 40.00 40.00 36.00 61.54 46.15 46.15 46.15 50.00 45.00 35.00 40.00
6 83.33 33.33 36.67 30.00 77.33 45.33 42.67 45.33 66.67 40.00 35.56 40.00
8 80.00 31.43 31.43 28.57 87.06 42.35 37.65 40.00 80.00 36.00 36.00 38.00
10 72.50 27.50 27.50 25.00 84.21 37.89 33.68 35.79 90.91 36.36 32.73 34.55
12 64.44 24.44 24.44 22.22 80.00 34.29 30.48 32.38 96.67 33.33 30.00 31.67
14 58.00 22.00 22.00 20.00 74.78 31.30 27.83 29.57 90.77 30.77 27.69 29.23
16 54.55 20.00 20.00 18.18 68.80 28.80 25.60 27.20 84.29 28.57 25.71 27.14
18 50.00 18.33 18.33 16.67 63.70 26.67 23.70 25.19 78.67 26.67 24.00 25.33
20 46.15 16.92 16.92 15.38 59.31 24.83 22.07 23.45 75.00 25.00 22.50 23.75
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Table 16 Precision for FOREPOST when nu=5 and np=20

Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

2 100.00 100.00 100.00 90.00 100.00 100.00 100.00 90.00 100.00 100.00 100.00 100.00
4 100.00 55.00 55.00 50.00 100.00 80.00 70.00 70.00 100.00 70.00 80.00 85.00
6 90.00 36.67 40.00 40.00 100.00 53.33 53.33 50.00 100.00 56.67 60.00 56.67
8 72.50 30.00 30.00 30.00 90.00 40.00 40.00 40.00 100.00 45.00 47.50 45.00
10 58.00 24.00 24.00 24.00 78.00 32.00 32.00 32.00 100.00 38.00 38.00 36.00
12 48.33 20.00 20.00 20.00 65.00 26.67 26.67 26.67 91.67 33.33 31.67 30.00
14 41.43 17.14 17.14 17.14 58.57 22.86 22.86 22.86 80.00 28.57 27.14 25.71
16 37.50 15.00 15.00 15.00 52.50 20.00 20.00 20.00 70.00 25.00 23.75 22.50
18 33.33 13.33 13.33 13.33 46.67 17.78 17.78 17.78 63.33 22.22 21.11 20.00
20 30.00 12.00 12.00 12.00 43.00 16.00 16.00 16.00 58.00 20.00 19.00 18.00

Table 17 Recall for FOREPOST when nu=5 and np=20

Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

2 33.33 33.33 33.33 30.00 22.22 22.22 22.22 20.00 16.67 16.67 16.67 16.67
4 66.67 36.67 36.67 33.33 44.44 35.56 31.11 31.11 33.33 23.33 26.67 28.33
6 90.00 36.67 40.00 40.00 66.67 35.56 35.56 33.33 50.00 28.33 30.00 28.33
8 96.67 40.00 40.00 40.00 80.00 35.56 35.56 35.56 66.67 30.00 31.67 30.00
10 96.67 40.00 40.00 40.00 86.67 35.56 35.56 35.56 83.33 31.67 31.67 30.00
12 96.67 40.00 40.00 40.00 86.67 35.56 35.56 35.56 91.67 33.33 31.67 30.00
14 96.67 40.00 40.00 40.00 91.11 35.56 35.56 35.56 93.33 33.33 31.67 30.00
16 100.00 40.00 40.00 40.00 93.33 35.56 35.56 35.56 93.33 33.33 31.67 30.00
18 100.00 40.00 40.00 40.00 93.33 35.56 35.56 35.56 95.00 33.33 31.67 30.00
20 100.00 40.00 40.00 40.00 95.56 35.56 35.56 35.56 96.67 33.33 31.67 30.00

Table 18 F-score for FOREPOST when nu=5 and np=20

Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

2 50.00 50.00 50.00 45.00 36.36 36.36 36.36 32.73 28.57 28.57 28.57 28.57
4 80.00 44.00 44.00 40.00 61.54 49.23 43.08 43.08 50.00 35.00 40.00 42.50
6 90.00 36.67 40.00 40.00 80.00 42.67 42.67 40.00 66.67 37.78 40.00 37.78
8 82.86 34.29 34.29 34.29 84.71 37.65 37.65 37.65 80.00 36.00 38.00 36.00
10 72.50 30.00 30.00 30.00 82.11 33.68 33.68 33.68 90.91 34.55 34.55 32.73
12 64.44 26.67 26.67 26.67 74.29 30.48 30.48 30.48 91.67 33.33 31.67 30.00
14 58.00 24.00 24.00 24.00 71.30 27.83 27.83 27.83 86.15 30.77 29.23 27.69
16 54.55 21.82 21.82 21.82 67.20 25.60 25.60 25.60 80.00 28.57 27.14 25.71
18 50.00 20.00 20.00 20.00 62.22 23.70 23.70 23.70 76.00 26.67 25.33 24.00
20 46.15 18.46 18.46 18.46 59.31 22.07 22.07 22.07 72.50 25.00 23.75 22.50

Table 19 Precision for FOREPOST when nu=10 and np=10

Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

2 100.00 80.00 90.00 80.00 100.00 100.00 100.00 90.00 100.00 100.00 100.00 100.00
4 100.00 40.00 50.00 40.00 100.00 75.00 75.00 70.00 100.00 75.00 65.00 75.00
6 90.00 30.00 33.33 26.67 100.00 53.33 50.00 50.00 100.00 56.67 46.67 56.67
8 70.00 25.00 25.00 20.00 97.50 40.00 40.00 37.50 100.00 42.50 37.50 45.00
10 58.00 22.00 22.00 20.00 86.00 32.00 32.00 30.00 100.00 34.00 30.00 36.00
12 48.33 18.33 18.33 16.67 73.33 26.67 26.67 25.00 100.00 28.33 25.00 30.00
14 41.43 15.71 15.71 14.29 64.29 22.86 22.86 21.43 85.71 24.29 21.43 25.71
16 36.25 13.75 13.75 12.50 56.25 20.00 20.00 18.75 75.00 21.25 18.75 22.50
18 32.22 12.22 12.22 11.11 50.00 17.78 17.78 16.67 66.67 18.89 16.67 20.00
20 29.00 11.00 11.00 10.00 45.00 16.00 16.00 15.00 60.00 18.00 15.00 18.00

Table 20 Recall for FOREPOST when nu=10 and np=10

Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

2 33.33 26.67 30.00 26.67 22.22 22.22 22.22 20.00 16.67 16.67 16.67 16.67
4 66.67 26.67 33.33 26.67 44.44 33.33 33.33 31.11 33.33 25.00 21.67 25.00
6 90.00 30.00 33.33 26.67 66.67 35.56 33.33 33.33 50.00 28.33 23.33 28.33
8 93.33 33.33 33.33 26.67 86.67 35.56 35.56 33.33 66.67 28.33 25.00 30.00
10 96.67 36.67 36.67 33.33 95.56 35.56 35.56 33.33 83.33 28.33 25.00 30.00
12 96.67 36.67 36.67 33.33 97.78 35.56 35.56 33.33 100.00 28.33 25.00 30.00
14 96.67 36.67 36.67 33.33 100.00 35.56 35.56 33.33 100.00 28.33 25.00 30.00
16 96.67 36.67 36.67 33.33 100.00 35.56 35.56 33.33 100.00 28.33 25.00 30.00
18 96.67 36.67 36.67 33.33 100.00 35.56 35.56 33.33 100.00 28.33 25.00 30.00
20 96.67 36.67 36.67 33.33 100.00 35.56 35.56 33.33 100.00 30.00 25.00 30.00
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Table 21 F-score for FOREPOST when nu=10 and np=10

Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

2 50.00 40.00 45.00 40.00 36.36 36.36 36.36 32.73 28.57 28.57 28.57 28.57
4 80.00 32.00 40.00 32.00 61.54 46.15 46.15 43.08 50.00 37.50 32.50 37.50
6 90.00 30.00 33.33 26.67 80.00 42.67 40.00 40.00 66.67 37.78 31.11 37.78
8 80.00 28.57 28.57 22.86 91.76 37.65 37.65 35.29 80.00 34.00 30.00 36.00
10 72.50 27.50 27.50 25.00 90.53 33.68 33.68 31.58 90.91 30.91 27.27 32.73
12 64.44 24.44 24.44 22.22 83.81 30.48 30.48 28.57 100.00 28.33 25.00 30.00
14 58.00 22.00 22.00 20.00 78.26 27.83 27.83 26.09 92.31 26.15 23.08 27.69
16 52.73 20.00 20.00 18.18 72.00 25.60 25.60 24.00 85.71 24.29 21.43 25.71
18 48.33 18.33 18.33 16.67 66.67 23.70 23.70 22.22 80.00 22.67 20.00 24.00
20 44.62 16.92 16.92 15.38 62.07 22.07 22.07 20.69 75.00 22.50 18.75 22.50

Table 22 Precision for FOREPOST when nu=10 and np=15

Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

2 100.00 100.00 90.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
4 100.00 60.00 50.00 55.00 100.00 70.00 80.00 80.00 100.00 70.00 75.00 65.00
6 90.00 40.00 33.33 36.67 100.00 53.33 53.33 53.33 100.00 53.33 56.67 50.00
8 67.50 30.00 27.50 30.00 97.50 42.50 40.00 42.50 100.00 42.50 42.50 37.50
10 56.00 24.00 24.00 24.00 84.00 34.00 32.00 34.00 98.00 34.00 34.00 30.00
12 48.33 20.00 20.00 20.00 70.00 28.33 26.67 28.33 91.67 28.33 28.33 25.00
14 41.43 17.14 17.14 17.14 60.00 24.29 22.86 24.29 82.86 25.71 24.29 21.43
16 36.25 15.00 15.00 15.00 52.50 21.25 20.00 21.25 73.75 22.50 21.25 18.75
18 32.22 13.33 13.33 13.33 46.67 18.89 17.78 18.89 66.67 20.00 18.89 16.67
20 29.00 12.00 12.00 12.00 42.00 17.00 16.00 17.00 60.00 18.00 17.00 15.00

Table 23 Recall for FOREPOST when nu=10 and np=15

Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

2 33.33 33.33 30.00 33.33 22.22 22.22 22.22 22.22 16.67 16.67 16.67 16.67
4 66.67 40.00 33.33 36.67 44.44 31.11 35.56 35.56 33.33 23.33 25.00 21.67
6 90.00 40.00 33.33 36.67 66.67 35.56 35.56 35.56 50.00 26.67 28.33 25.00
8 90.00 40.00 36.67 40.00 86.67 37.78 35.56 37.78 66.67 28.33 28.33 25.00
10 93.33 40.00 40.00 40.00 93.33 37.78 35.56 37.78 81.67 28.33 28.33 25.00
12 96.67 40.00 40.00 40.00 93.33 37.78 35.56 37.78 91.67 28.33 28.33 25.00
14 96.67 40.00 40.00 40.00 93.33 37.78 35.56 37.78 96.67 30.00 28.33 25.00
16 96.67 40.00 40.00 40.00 93.33 37.78 35.56 37.78 98.33 30.00 28.33 25.00
18 96.67 40.00 40.00 40.00 93.33 37.78 35.56 37.78 100.00 30.00 28.33 25.00
20 96.67 40.00 40.00 40.00 93.33 37.78 35.56 37.78 100.00 30.00 28.33 25.00

Table 24 F-score for FOREPOST when nu=10 and np=15

Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

2 50.00 50.00 45.00 50.00 36.36 36.36 36.36 36.36 28.57 28.57 28.57 28.57
4 80.00 48.00 40.00 44.00 61.54 43.08 49.23 49.23 50.00 35.00 37.50 32.50
6 90.00 40.00 33.33 36.67 80.00 42.67 42.67 42.67 66.67 35.56 37.78 33.33
8 77.14 34.29 31.43 34.29 91.76 40.00 37.65 40.00 80.00 34.00 34.00 30.00
10 70.00 30.00 30.00 30.00 88.42 35.79 33.68 35.79 89.09 30.91 30.91 27.27
12 64.44 26.67 26.67 26.67 80.00 32.38 30.48 32.38 91.67 28.33 28.33 25.00
14 58.00 24.00 24.00 24.00 73.04 29.57 27.83 29.57 89.23 27.69 26.15 23.08
16 52.73 21.82 21.82 21.82 67.20 27.20 25.60 27.20 84.29 25.71 24.29 21.43
18 48.33 20.00 20.00 20.00 62.22 25.19 23.70 25.19 80.00 24.00 22.67 20.00
20 44.62 18.46 18.46 18.46 57.93 23.45 22.07 23.45 75.00 22.50 21.25 18.75

Table 25 Precision for FOREPOST when nu=10 and np=20

Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

2 100.00 90.00 90.00 80.00 100.00 100.00 100.00 90.00 100.00 90.00 100.00 90.00
4 100.00 50.00 55.00 40.00 100.00 70.00 70.00 75.00 100.00 75.00 70.00 70.00
6 86.67 36.67 36.67 26.67 96.67 53.33 50.00 53.33 100.00 53.33 46.67 46.67
8 70.00 30.00 27.50 25.00 87.50 40.00 37.50 40.00 97.50 40.00 35.00 35.00
10 58.00 24.00 24.00 20.00 74.00 32.00 30.00 32.00 92.00 32.00 28.00 28.00
12 48.33 20.00 20.00 16.67 61.67 26.67 25.00 26.67 78.33 26.67 23.33 23.33
14 41.43 17.14 17.14 14.29 54.29 22.86 21.43 22.86 70.00 22.86 20.00 20.00
16 36.25 15.00 15.00 12.50 47.50 20.00 18.75 20.00 61.25 20.00 17.50 17.50
18 32.22 13.33 13.33 11.11 42.22 17.78 16.67 17.78 54.44 17.78 15.56 15.56
20 29.00 12.00 12.00 10.00 39.00 16.00 15.00 16.00 50.00 16.00 14.00 14.00
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Table 26 Recall for FOREPOST when nu=10 and np=20

Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

2 33.33 30.00 30.00 26.67 22.22 22.22 22.22 20.00 16.67 15.00 16.67 15.00
4 66.67 33.33 36.67 26.67 44.44 31.11 31.11 33.33 33.33 25.00 23.33 23.33
6 86.67 36.67 36.67 26.67 64.44 35.56 33.33 35.56 50.00 26.67 23.33 23.33
8 93.33 40.00 36.67 33.33 77.78 35.56 33.33 35.56 65.00 26.67 23.33 23.33
10 96.67 40.00 40.00 33.33 82.22 35.56 33.33 35.56 76.67 26.67 23.33 23.33
12 96.67 40.00 40.00 33.33 82.22 35.56 33.33 35.56 78.33 26.67 23.33 23.33
14 96.67 40.00 40.00 33.33 84.44 35.56 33.33 35.56 81.67 26.67 23.33 23.33
16 96.67 40.00 40.00 33.33 84.44 35.56 33.33 35.56 81.67 26.67 23.33 23.33
18 96.67 40.00 40.00 33.33 84.44 35.56 33.33 35.56 81.67 26.67 23.33 23.33
20 96.67 40.00 40.00 33.33 86.67 35.56 33.33 35.56 83.33 26.67 23.33 23.33

Table 27 F-score for FOREPOST when nu=10 and np=20

Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

2 50.00 45.00 45.00 40.00 36.36 36.36 36.36 32.73 28.57 25.71 28.57 25.71
4 80.00 40.00 44.00 32.00 61.54 43.08 43.08 46.15 50.00 37.50 35.00 35.00
6 86.67 36.67 36.67 26.67 77.33 42.67 40.00 42.67 66.67 35.56 31.11 31.11
8 80.00 34.29 31.43 28.57 82.35 37.65 35.29 37.65 78.00 32.00 28.00 28.00
10 72.50 30.00 30.00 25.00 77.89 33.68 31.58 33.68 83.64 29.09 25.45 25.45
12 64.44 26.67 26.67 22.22 70.48 30.48 28.57 30.48 78.33 26.67 23.33 23.33
14 58.00 24.00 24.00 20.00 66.09 27.83 26.09 27.83 75.38 24.62 21.54 21.54
16 52.73 21.82 21.82 18.18 60.80 25.60 24.00 25.60 70.00 22.86 20.00 20.00
18 48.33 20.00 20.00 16.67 56.30 23.70 22.22 23.70 65.33 21.33 18.67 18.67
20 44.62 18.46 18.46 15.38 53.79 22.07 20.69 22.07 62.50 20.00 17.50 17.50

Table 28 Precision for FOREPOST when nu=15 and np=10

Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

2 100.00 60.00 80.00 90.00 100.00 100.00 70.00 100.00 100.00 90.00 100.00 90.00
4 90.00 40.00 50.00 55.00 100.00 75.00 55.00 75.00 100.00 65.00 65.00 75.00
6 80.00 33.33 33.33 36.67 100.00 56.67 40.00 50.00 100.00 50.00 53.33 53.33
8 62.50 25.00 25.00 27.50 100.00 50.00 32.50 37.50 100.00 40.00 40.00 40.00
10 52.00 22.00 20.00 22.00 90.00 40.00 26.00 30.00 98.00 34.00 32.00 32.00
12 43.33 18.33 16.67 18.33 75.00 33.33 21.67 25.00 96.67 28.33 26.67 26.67
14 37.14 15.71 14.29 15.71 64.29 28.57 18.57 21.43 85.71 24.29 22.86 22.86
16 33.75 13.75 12.50 13.75 56.25 25.00 16.25 18.75 75.00 21.25 20.00 20.00
18 30.00 12.22 11.11 12.22 50.00 22.22 14.44 16.67 66.67 18.89 17.78 17.78
20 27.00 11.00 10.00 11.00 45.00 20.00 13.00 15.00 60.00 17.00 16.00 16.00

Table 29 Recall for FOREPOST when nu=15 and np=10

Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

2 33.33 20.00 26.67 30.00 22.22 22.22 15.56 22.22 16.67 15.00 16.67 15.00
4 60.00 26.67 33.33 36.67 44.44 33.33 24.44 33.33 33.33 21.67 21.67 25.00
6 80.00 33.33 33.33 36.67 66.67 37.78 26.67 33.33 50.00 25.00 26.67 26.67
8 83.33 33.33 33.33 36.67 88.89 44.44 28.89 33.33 66.67 26.67 26.67 26.67
10 86.67 36.67 33.33 36.67 100.00 44.44 28.89 33.33 81.67 28.33 26.67 26.67
12 86.67 36.67 33.33 36.67 100.00 44.44 28.89 33.33 96.67 28.33 26.67 26.67
14 86.67 36.67 33.33 36.67 100.00 44.44 28.89 33.33 100.00 28.33 26.67 26.67
16 90.00 36.67 33.33 36.67 100.00 44.44 28.89 33.33 100.00 28.33 26.67 26.67
18 90.00 36.67 33.33 36.67 100.00 44.44 28.89 33.33 100.00 28.33 26.67 26.67
20 90.00 36.67 33.33 36.67 100.00 44.44 28.89 33.33 100.00 28.33 26.67 26.67

Table 30 F-score for FOREPOST when nu=15 and np=10

Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

2 50.00 30.00 40.00 45.00 36.36 36.36 25.45 36.36 28.57 25.71 28.57 25.71
4 72.00 32.00 40.00 44.00 61.54 46.15 33.85 46.15 50.00 32.50 32.50 37.50
6 80.00 33.33 33.33 36.67 80.00 45.33 32.00 40.00 66.67 33.33 35.56 35.56
8 71.43 28.57 28.57 31.43 94.12 47.06 30.59 35.29 80.00 32.00 32.00 32.00
10 65.00 27.50 25.00 27.50 94.74 42.11 27.37 31.58 89.09 30.91 29.09 29.09
12 57.78 24.44 22.22 24.44 85.71 38.10 24.76 28.57 96.67 28.33 26.67 26.67
14 52.00 22.00 20.00 22.00 78.26 34.78 22.61 26.09 92.31 26.15 24.62 24.62
16 49.09 20.00 18.18 20.00 72.00 32.00 20.80 24.00 85.71 24.29 22.86 22.86
18 45.00 18.33 16.67 18.33 66.67 29.63 19.26 22.22 80.00 22.67 21.33 21.33
20 41.54 16.92 15.38 16.92 62.07 27.59 17.93 20.69 75.00 21.25 20.00 20.00
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Table 31 Precision for FOREPOST when nu=15 and np=15

Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

2 100.00 70.00 60.00 60.00 100.00 90.00 80.00 80.00 100.00 100.00 100.00 90.00
4 100.00 55.00 60.00 40.00 100.00 75.00 80.00 55.00 100.00 80.00 80.00 80.00
6 90.00 36.67 40.00 26.67 96.67 53.33 53.33 43.33 100.00 76.67 76.67 76.67
8 72.50 30.00 30.00 22.50 97.50 40.00 40.00 32.50 100.00 60.00 60.00 62.50
10 58.00 24.00 24.00 18.00 86.00 32.00 32.00 26.00 98.00 48.00 48.00 50.00
12 48.33 20.00 20.00 15.00 71.67 26.67 26.67 21.67 93.33 40.00 41.67 41.67
14 41.43 17.14 17.14 12.86 62.86 22.86 22.86 18.57 82.86 34.29 35.71 35.71
16 36.25 15.00 15.00 11.25 55.00 20.00 20.00 16.25 75.00 31.25 31.25 31.25
18 32.22 13.33 13.33 10.00 48.89 17.78 17.78 14.44 66.67 27.78 27.78 27.78
20 29.00 12.00 12.00 9.00 44.00 16.00 16.00 13.00 60.00 25.00 25.00 25.00

Table 32 Recall for FOREPOST when nu=15 and np=15

Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

2 33.33 23.33 20.00 20.00 22.22 20.00 17.78 17.78 16.67 16.67 16.67 15.00
4 66.67 36.67 40.00 26.67 44.44 33.33 35.56 24.44 33.33 26.67 26.67 26.67
6 90.00 36.67 40.00 26.67 64.44 35.56 35.56 28.89 50.00 38.33 38.33 38.33
8 96.67 40.00 40.00 30.00 86.67 35.56 35.56 28.89 66.67 40.00 40.00 41.67
10 96.67 40.00 40.00 30.00 95.56 35.56 35.56 28.89 81.67 40.00 40.00 41.67
12 96.67 40.00 40.00 30.00 95.56 35.56 35.56 28.89 93.33 40.00 41.67 41.67
14 96.67 40.00 40.00 30.00 97.78 35.56 35.56 28.89 96.67 40.00 41.67 41.67
16 96.67 40.00 40.00 30.00 97.78 35.56 35.56 28.89 100.00 41.67 41.67 41.67
18 96.67 40.00 40.00 30.00 97.78 35.56 35.56 28.89 100.00 41.67 41.67 41.67
20 96.67 40.00 40.00 30.00 97.78 35.56 35.56 28.89 100.00 41.67 41.67 41.67

Table 33 F-score for FOREPOST when nu=15 and np=15

Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

2 50.00 35.00 30.00 30.00 36.36 32.73 29.09 29.09 28.57 28.57 28.57 25.71
4 80.00 44.00 48.00 32.00 61.54 46.15 49.23 33.85 50.00 40.00 40.00 40.00
6 90.00 36.67 40.00 26.67 77.33 42.67 42.67 34.67 66.67 51.11 51.11 51.11
8 82.86 34.29 34.29 25.71 91.76 37.65 37.65 30.59 80.00 48.00 48.00 50.00
10 72.50 30.00 30.00 22.50 90.53 33.68 33.68 27.37 89.09 43.64 43.64 45.45
12 64.44 26.67 26.67 20.00 81.90 30.48 30.48 24.76 93.33 40.00 41.67 41.67
14 58.00 24.00 24.00 18.00 76.52 27.83 27.83 22.61 89.23 36.92 38.46 38.46
16 52.73 21.82 21.82 16.36 70.40 25.60 25.60 20.80 85.71 35.71 35.71 35.71
18 48.33 20.00 20.00 15.00 65.19 23.70 23.70 19.26 80.00 33.33 33.33 33.33
20 44.62 18.46 18.46 13.85 60.69 22.07 22.07 17.93 75.00 31.25 31.25 31.25

Table 34 Precision for FOREPOST when nu=15 and np=20

Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

2 90.00 50.00 70.00 80.00 100.00 80.00 90.00 100.00 100.00 80.00 80.00 90.00
4 90.00 50.00 50.00 50.00 95.00 60.00 70.00 70.00 100.00 80.00 75.00 70.00
6 73.33 33.33 33.33 33.33 93.33 46.67 46.67 50.00 100.00 53.33 53.33 46.67
8 57.50 25.00 25.00 25.00 87.50 35.00 35.00 37.50 95.00 40.00 40.00 35.00
10 46.00 20.00 20.00 20.00 72.00 28.00 28.00 30.00 86.00 32.00 32.00 28.00
12 38.33 16.67 16.67 16.67 60.00 23.33 23.33 25.00 80.00 26.67 26.67 23.33
14 34.29 14.29 14.29 14.29 51.43 20.00 20.00 21.43 71.43 22.86 22.86 20.00
16 30.00 12.50 12.50 12.50 45.00 17.50 17.50 18.75 66.25 20.00 20.00 17.50
18 26.67 11.11 11.11 11.11 41.11 15.56 15.56 16.67 61.11 17.78 17.78 15.56
20 25.00 10.00 10.00 10.00 37.00 14.00 14.00 15.00 55.00 16.00 16.00 14.00

Table 35 Recall for FOREPOST when nu=15 and np=20

Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

2 30.00 16.67 23.33 26.67 22.22 17.78 20.00 22.22 16.67 13.33 13.33 15.00
4 60.00 33.33 33.33 33.33 42.22 26.67 31.11 31.11 33.33 26.67 25.00 23.33
6 73.33 33.33 33.33 33.33 62.22 31.11 31.11 33.33 50.00 26.67 26.67 23.33
8 76.67 33.33 33.33 33.33 77.78 31.11 31.11 33.33 63.33 26.67 26.67 23.33
10 76.67 33.33 33.33 33.33 80.00 31.11 31.11 33.33 71.67 26.67 26.67 23.33
12 76.67 33.33 33.33 33.33 80.00 31.11 31.11 33.33 80.00 26.67 26.67 23.33
14 80.00 33.33 33.33 33.33 80.00 31.11 31.11 33.33 83.33 26.67 26.67 23.33
16 80.00 33.33 33.33 33.33 80.00 31.11 31.11 33.33 88.33 26.67 26.67 23.33
18 80.00 33.33 33.33 33.33 82.22 31.11 31.11 33.33 91.67 26.67 26.67 23.33
20 83.33 33.33 33.33 33.33 82.22 31.11 31.11 33.33 91.67 26.67 26.67 23.33
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Table 36 F-score for FOREPOST when nu=15 and np=20

Cut 6 Bottlenecks 9 Bottlenecks 12 Bottlenecks
points iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4 iter #1 iter #2 iter #3 iter #4

2 45.00 25.00 35.00 40.00 36.36 29.09 32.73 36.36 28.57 22.86 22.86 25.71
4 72.00 40.00 40.00 40.00 58.46 36.92 43.08 43.08 50.00 40.00 37.50 35.00
6 73.33 33.33 33.33 33.33 74.67 37.33 37.33 40.00 66.67 35.56 35.56 31.11
8 65.71 28.57 28.57 28.57 82.35 32.94 32.94 35.29 76.00 32.00 32.00 28.00
10 57.50 25.00 25.00 25.00 75.79 29.47 29.47 31.58 78.18 29.09 29.09 25.45
12 51.11 22.22 22.22 22.22 68.57 26.67 26.67 28.57 80.00 26.67 26.67 23.33
14 48.00 20.00 20.00 20.00 62.61 24.35 24.35 26.09 76.92 24.62 24.62 21.54
16 43.64 18.18 18.18 18.18 57.60 22.40 22.40 24.00 75.71 22.86 22.86 20.00
18 40.00 16.67 16.67 16.67 54.81 20.74 20.74 22.22 73.33 21.33 21.33 18.67
20 38.46 15.38 15.38 15.38 51.03 19.31 19.31 20.69 68.75 20.00 20.00 17.50
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