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Abstract. Data fusion is the process of integrating multiple sources of information such 
that their combination yields better results than if the data sources are used individually. 
This paper applies the idea of data fusion to feature location, the process of identifying 
the source code that implements specific functionality in software. A data fusion model 
for feature location is presented which defines new feature location techniques based on 
combining information from textual, dynamic, and web mining or link analyses 
algorithms applied to software. A novel contribution of the proposed model is the use of 
advanced web mining algorithms to analyze execution information during feature 
location. The results of an extensive evaluation on three Java systems indicate that the 
new feature location techniques based on web mining improve the effectiveness of 
existing approaches by as much as 87%.  
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1. Introduction  
Software systems are constantly changing and evolving in order to eliminate defects, 

improve performance or reliability, and add new functionalities. When the software 
engineers who maintain and evolve a system are unfamiliar with it, they must go through 
the program comprehension process. During this process, they obtain sufficient 
knowledge and understanding of at least the part of the system to which a change is to be 
made. An important part of the program comprehension process is feature or concept 
location (Biggerstaff et al. 1994; Antoniol and Guéhéneuc 2006), which is the practice of 
identifying the source code that implements functionality, also known as a feature. Before 
software engineers can make changes to a feature, they must first find and understand its 
implementation. 

For software developers who are unfamiliar with a system, feature location can be a 
laborious task if performed manually. In large software systems, there may be hundreds 
of classes and thousands of methods. Finding even one method that implements a feature 
can be extremely challenging and time consuming. Fortunately for software engineers in 
this situation, there are feature location techniques that automate, to a certain extent, the 
search for a feature’s implementation.  

Existing feature location techniques use different tactics to find a feature’s source 
code. Approaches based on information retrieval (IR) leverage the fact that identifiers 
and comments embed domain knowledge to locate source code that is textually similar to 
a query describing a feature (Marcus et al. 2004). Dynamic feature location techniques 
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collect and analyze execution traces to identify a feature’s source code based on set 
operations (Wilde and Scully 1995) or probabilistic ranking (Antoniol and Guéhéneuc 
2006). Static approaches to feature location rely on following or analyzing structural 
program dependencies (Chen and Rajlich 2000; Robillard 2008). 

The state of the art in feature location involves integrating information from multiple 
sources. Researchers have recognized that combining more than one approach to feature 
location can produce better results than standalone techniques (Eisenbarth et al. 2003; 
Zhao et al. 2006; Hill et al. 2007; Liu et al. 2007; Poshyvanyk et al. 2007; Eaddy et al. 
2008a). Generally in these combined approaches, information from one source is used to 
filter results from another. For instance in the SITIR approach to feature location (Liu et 
al. 2007), a single execution trace is collected, and then IR is used to rank only the 
methods that appear in the trace instead of all of the system’s methods. Thus, dynamic 
analysis is used as a filter to IR, and filtering is one way to combine information from 
several sources to perform feature location. Instead of using filtering, PROMESIR 
(Poshyvanyk et al. 2007) combines the opinions of two “experts” (scenario-based 
probabilistic ranking (Antoniol and Guéhéneuc 2006) and IR (Marcus et al. 2004)) using 
an affine transformation. A comprehensive survey on existing feature location 
approaches is presented in (Dit et al. 2011). 

The idea of integrating data from multiple sources is known as data fusion. The 
sources of data have their individual benefits and limitations, but when they are 
combined, those drawbacks can be minimized and better results can be achieved. Data 
fusion is used heavily in sensor networks and geospatial applications to attain better 
results in terms of accuracy, completeness, or dependability. For example, the position of 
an object can be calculated using an inertial navigation system (INS) or global 
positioning system (GPS). An INS continuously calculates the position of an object with 
relatively little noise and centimeter-level accuracy, though over time the position data 
will drift and become less accurate. GPS calculates position discretely, has relatively 
more noise, and meter-level accuracy. However, when data from an INS and GPS are 
used together in the proper proportions, the GPS data can correct for the drift in the INS 
data. Thus the fusion of INS and GPS data produces more accurate and dependable 
results than if they were used separately. 

Inspired by the benefits of using data fusion to integrate multiple sources of 
information, this work applies data fusion to feature location. This work presents a data 
fusion model for feature location that is based on the idea that combining data from 
several sources in the right proportions will be effective at identifying a feature’s source 
code. The data fusion model defines different types of information that can be integrated 
to perform feature location including textual, execution, and dependence. Textual 
information is analyzed by IR, execution information is collected by dynamic analysis, 
and dependencies are analyzed using link analysis algorithms. Applying web mining to 
feature location is a novel idea, but it has been previously used for other program 
comprehension tasks, such as identifying key classes for program comprehension 
(Zaidman and Demeyer 2008) and ranking components in a software repository (Inoue et 
al. 2005). Software lends itself well to web mining approaches, because like the World 
Wide Web, software can be represented by a graph, and that graph can be mined for 
useful information such as the source code that implements a feature. 

This work makes the following contributions: 
 A data fusion model for feature location is defined that integrates different 

types of information to locate features using IR, dynamic analysis, and web 
mining algorithms. 
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 An extensive evaluation of the feature location techniques defined in the 
model. 

 Results that show that the new feature location techniques have better 
effectiveness than the state of the art in feature location. Statistical analysis 
indicates that this improvement is significant. 

In addition, all of the data used in the evaluation is made freely available online1, and 
other researchers are welcome to replicate this work. Making the data available will help 
facilitate the creation of feature location benchmarks. 

The remainder of this article is structured as follows. Section 2 introduces the data 
fusion model for feature location. Section 3 outlines the evaluation methodology, and 
Section 4 discusses the results. Related work is summarized in Section 5, and Section 6 
concludes. 

2. Integrating Information Retrieval with 
Execution and Link Analyses 
The feature location model presented here defines several sources of information, the 

analyses used to derive the data, and how the information can be combined using data 
fusion. 

2.1. Textual Information from Information Retrieval 

Textual information in source code, represented by identifier names and internal 
comments, embeds domain knowledge about a software system. This information can be 
leveraged to locate a feature’s implementation through the use of IR. Information 
Retrieval is the methodology of searching for textual artifacts or for relevant information 
within artifacts. IR works by comparing a set of artifacts to a query and ranking these 
artifacts by their relevance to the query. There are many IR techniques that have been 
applied in the context of program comprehension tasks such as the Vector Space Model 
(VSM) (Salton and McGill 1983), Latent Semantic Indexing (LSI) (Deerwester et al. 
1990), and Latent Dirichlet Allocation (LDA) (Blei et al. 2003). This work focuses on 
evaluating LSI for feature location, and the notation ܴܫ௅ௌூ is used to denote that LSI is the 
method used to instantiate IR analysis in the model. ܴܫ௅ௌூ	follows five main steps 
(Marcus et al. 2004): creating a corpus, preprocessing, indexing, querying, and generating 
results. 

Corpus creation. To begin the IR process, a document granularity needs to be 
chosen so a corpus can be formed. A document lists all the text found in a contiguous 
section of source code such as a method, class, or package. A corpus consists of a set of 
documents. For instance in this work, a corpus contains method-level granularity 
documents that include the text of each method in a software system. 

Preprocessing. Once the corpus is created, it is preprocessed. Preprocessing 
involves normalizing the text of the documents. For source code, operators and 
programming language keywords are removed. Additionally, source code identifiers and 
other compound words are split (e.g., “featureLocation” becomes “feature” and 
“location”). Finally, stemming is performed to reduce words to their root forms (e.g., 
“stemmed” becomes “stem”), using the Porter stemmer (Porter 1980). 

Index the corpus. The corpus is used to create a term-by-document matrix. The 
matrix’s rows correspond to the terms in the corpus, and the columns represent 

                                                           
1 http://www.cs.wm.edu/semeru/data/emse-link-analysis/ (verified on 05/30/2011) 
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documents (i.e., source code methods). A cell ݉௜,௝ in the matrix holds a measure of the 
weight or relevance of the ݅௧௛ term in the ݆௧௛ document. The weight can be expressed as a 
simple count of the number of times the term appears in the document or as a more 
complex measure such as term frequency-inverse-document frequency. Singular Value 
Decomposition (SVD) (Salton and McGill 1983) is then used to reduce the 
dimensionality of the matrix by exploiting the co-occurrence of related terms, using a 
dimensionality reduction factor of 300 as in our prior work (Poshyvanyk et al. 2007). 

Issue a query. A user formulates a natural language query consisting of words or 
phrases that describe the feature to be located (e.g., “print file to PDF format”). Each 
query extracted from the software repository goes through the same preprocessing 
techniques as the software corpus. 

Generate the results. In the SVD model, each document corresponds to a vector. 
The query is also converted to a vector, and then the cosine of the angle between the two 
vectors is used as a measure of the similarity of the document to the query. The closer the 
cosine is to one, the more similar the document is to the query. A cosine similarity value 
is computed between the query and each document, and then the documents are sorted by 
their similarity values. The user inspects the ranked list, generally only reviewing the top 
results to decide if they are relevant to the feature. 

2.2. Execution Information from Dynamic Analysis 

Execution information is gathered via dynamic analysis, which is commonly used in 
program comprehension (Cornelissen et al. 2009) and involves executing a software 
system under specific conditions. For feature location, these conditions involve running a 
test case or scenario that invokes a feature in order to collect an execution trace. For 
example, if the feature of interest in a text editor is printing, the test case or scenario 
would involve printing a file. Invoking the desired feature during runtime generates a 
feature-specific execution trace. 

Most existing feature location techniques that employ dynamic analysis use it to 
explicitly locate a feature’s implementation by analyzing patterns in traces postmortem 
(Wilde and Scully 1995; Eisenbarth et al. 2003; Antoniol and Guéhéneuc 2006). The 
model presented in this work extends the dynamic analysis for feature location. 
Information collected from execution traces is combined with other data sources instead 
of being analyzed itself. Execution information is integrated with other information by 
using it as a filter, as in the SITIR approach (Liu et al. 2007) where methods not executed 
in a feature-specific scenario are pruned from the ranked list produced by ܴܫ௅ௌூ. 

The model in this work takes a similar approach to using execution information 
(denoted as “Dyn”) as a filter. By extracting information from a single trace, the sequence 
of method calls can be used to create a graph where nodes represent methods and edges 
indicate method calls. This graph is a subgraph of a static call graph that only contains 
methods that were executed. The edges in the graph can be weighted or weightless. When 
weights are used, they can be derived from execution frequency information captured by 
a trace. For instance, Figure 1 shows a portion of an execution trace where method ݔ calls 
method ݕ two times and calls method ݖ three times. This trace is represented by a graph 
where the weight of the edge from ݔ to ݕ is 2/5, and the weight of the edge from ݔ to ݖ is 
3/5. Alternatively, instead of normalizing the edge weights, the values on the edge from ݔ 
to ݕ can be 2, and the weight of the edge from ݔ to ݖ can be 3. When dynamic execution 
information is used in either of these ways, it is denoted with the “freq” subscript, 
referring to the fact that execution frequency information is used. If no weights are placed 
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on the edges of a graph, this is denoted with the “bin” subscript, referring to the fact that 
only binary information about a method’s execution is used. 

2.3. Link Analysis Information from Web Mining 

Web mining is a branch of data mining that concentrates on analyzing the structure 
of the World Wide Web (WWW) (Cooley et al. 1997). The structure of the WWW can be 
used to extract useful information. For instance, search engines use web mining to rank 
web pages by their relevance to a user’s query. Web mining algorithms view the WWW 
as a graph. The graph is constructed of nodes, which represent web pages, and edges, 
which represent hyperlinks between pages. 

Software can also be represented in graph form as a call graph. Nodes represent 
methods, and edges correspond to relationships or calls among methods. Therefore, web 
mining algorithms can be naturally applied to software to discover useful information 
from its structure, such as key classes for program comprehension (Zaidman and 
Demeyer 2008), component ranks in software repositories (Inoue et al. 2005), and 
statements that can be refined from concept bindings (Li 2009). This work explores 
whether web mining can also be applied to feature location, either as a standalone 
technique or used as a filter to an existing approach to feature location. Two web mining 
algorithms are discussed below. 

2.3.1. HITS 

The Hyperlinked-Induced Topic Search (HITS) (Kleinberg 1999) algorithm 
identifies hubs and authorities from a graph representing the WWW. Hubs are pages that 
have links to many other pages that contain relevant information on a topic. These pages 
with pertinent information are known as authorities. Good hubs point to many good 
authorities, and good authorities are pointed to by many hubs. Thus, hub and authority 
values are defined in a mutually recursive way. Let ݄௣ stand for the hub value of page ݌ 
and ܽ௣ represent the authority value of ݌. The hub and authority values of ݌ are defined 
in Equation 1, where ݅ is a page connected to ݌, and ݊ is the total number of pages 
connected to ݌. 

݄௣ ൌ෍ܽ௜

௡

௜ୀଵ

and ܽ௣ ൌ෍݄௜

௡

௜ୀଵ

 (1) 

 
Figure 1 An example of an execution trace translated into a call graph with execution 
frequency weights on the edges. ࢋࢄ is the entry to method ࢄ, and ࢘ࢄ is the return from 

method ࢄ. 
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To start, HITS initializes all hub and authority values to one. Then, the algorithm is 
run for a given number of iterations (or until the values converge), during which the hub 
and authority values are updated according to Equation 1. The values are normalized after 
each iteration. 

A slight variation of the HITS algorithm allows weights to be added to the links 
between pages. Weighted links denote relative importance. Let ݓ௜→௣ represent the weight 
of the link between ݅ and ݌. The formulas for hubs and authorities now become: 

݄௣ ൌ෍ݓ௜→௣ ∙ ܽ௜

௡

௜ୀଵ

and ܽ௣ ൌ෍ݓ௜→௣ ∙ ݄௜

௡

௜ୀଵ

 (2) 

When using software to construct a graph instead of the WWW, the nodes and edges 
can be determined from a static call graph or dynamic execution trace. This work 
concentrates on constructing graphs from execution traces. Nodes in the graph 
correspond to methods, and edges represent dependencies (calls) between methods. If 
weights are placed on the graph edges, dynamic execution frequency can be used2. 
Otherwise, if no weights are used, binary dynamic information is used. 

Using either frequency or binary dynamic information to construct a method call 
graph, the HITS algorithm can potentially be used for feature location in two ways. First, 
the methods in a graph can be ranked by extending the concepts of hubs and authorities to 
source code. Hub methods are those that call upon many other methods, while authority 
methods are called by a large number of other methods. Intuitively, hubs do not perform 
much functionality themselves but delegate to others, and authorities actually perform 
specific functionalities. Ranking methods in a software system by either their hub or 
authority values is a novel feature location technique. The notation ܹܯுூ்ௌሺ௛,௙௥௘௤ሻ, 
 ,refers to web mining ܯܹ ுூ்ௌሺ௔,௕௜௡ሻ is used, whereܯܹ ,ுூ்ௌሺ௔,௙௥௘௤ሻܯܹ ,ுூ்ௌሺ௛,௕௜௡ሻܯܹ
 ”ሺܽሻ stand for hub and authority scores respectively, and the “freqܵܶܫܪ ሺ݄ሻ andܵܶܫܪ
and “bin” subscripts denote how dynamic information is used to weight the graph’s 
edges. 

The second way in which the HITS algorithm can be used for feature location is as a 
filter. Instead of directly using the hub and authority values to rank methods, those 
rankings can be combined with other information.  From a theoretical point of view, 
when adapting the HITS algorithm from web pages to software, the intuition is that the 
methods with high hub values will be methods that are more general purpose in nature 
and not specific to a feature, i.e., methods in “god” classes. Conversely, methods with 
high authority values will be highly relevant to a feature. Therefore, top-ranked hub 
methods and bottom-ranked authority methods can be filtered from the results of other 
techniques such as ܴܫ௅ௌூ݊ݕܦ௕௜௡. The “top” superscript is used to represent when the top-
ranked methods are filtered, and “bottom” superscript stands for the case when the 
bottom-ranked methods are filtered.  Although these are the intuitive and expected 
results, our evaluation investigates filtering both bottom and top methods ranked by hubs 
and authorities scores in order to find the best method of filtering by hub and authority 
values. 

2.3.2. PageRank 

PageRank (Brin and Page 1998) is a web mining algorithm that estimates the relative 
importance of web pages. It is based on the random surfer model which states that a web 
                                                           
2 The HITS algorithm does not require edge weights to be normalized, so the execution 
frequency values are used without normalization. 
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surfer on any given page ݌ will follow one of ݌’s links with a probability of ߚ and will 
jump to a random page with a probability of ሺ1	 െ  Given a .0.85 = ߚ ,ሻ. Generallyߚ	
graph representing the WWW, let ܰ be the total number of pages or nodes in the graph. 
Let ܫሺ݌ሻ be the set of pages that link to ݌, and ܱሺ݌ሻ be the pages that ݌ links to. 
PageRank is defined by the Equation 3. 

ܴܲሺ݌ሻ ൌ
1 െ ߚ
ܰ

൅ ߚ ∙ ෍
ܴܲሺ݆ሻ
|ܱሺ݆ሻ|

௝∈ூሺ௣ሻ

 (3) 

PageRank’s definition is recursive and must be iteratively evaluated until it 
converges. 

Like HITS, PageRank can be applied to software if a system is represented by a 
graph where nodes are methods executed in a trace and edges are method calls. In the 
PageRank algorithm, edges always have weights. When binary execution information is 
used, the weight of all the outgoing edges from a node is equally distributed among those 
edges (e.g., if ݔ has three outgoing edges, their weight will each be 1/3). Otherwise, 
execution frequency information can be used for the edge weights. PageRank requires 
normalized values, so the execution frequency values are normalized, as in the example 
in Figure 1. 

Like HITS, PageRank can be used to directly rank and locate a feature’s relevant 
methods or as a filter to other sources of information. When used directly as a feature 
location technique, it is denoted as ܹܯ௉ோሺ௙௥௘௤ሻ or ܹܯ௉ோሺ௕௜௡ሻ, referring to the use of 
frequency or binary execution information to create a graph. PageRank, applied to 
software, is an estimate of the global importance of a method within the system. 
Therefore, methods that have global significance within a system will be ranked highly. 
Methods relevant to a specific feature are unlikely to have high global importance, so 
they may be ranked lower in the list. The evaluation examines PageRank as a feature 
location technique. 

Since PageRank identifies methods of global importance, instead of using it as a 
standalone feature location technique, it can be used as a filter to be combined with other 
sources of information. Pruning the top-ranked PageRank methods from consideration 
may produce better feature location results. The “top” and “bottom” superscripts denote 
that the top and bottom results returned by PageRank are filtered. The evaluation explores 
the best way to use PageRank as a filter. 

2.4. Fusions 

Data fusion combines information from multiple sources to achieve potentially more 
accurate results. For feature location, this model has defined three information sources 
derived from three types of analysis: information retrieval, execution tracing, and web 
mining. This subsection outlines the feature location techniques instantiated within the 
model that are evaluated. Table 1 lists all of the techniques. 

Information Retrieval via LSI. This feature location technique, introduced by 
Marcus et al. (Marcus et al. 2004), ranks all methods in a software system based on their 
relevance to a query. Only one source of information is used, so no data fusion is 
performed. This approach is referred to as ܴܫ௅ௌூ. 

Information Retrieval and Execution Information. The idea of fusing IR with 
dynamic analysis is used by the SITIR approach (Liu et al. 2007) and is the state of the 
art of feature location techniques that rank program elements (e.g., methods) by their 
relevance to a feature. A single feature-specific execution trace is collected. Then, LSI 
ranks all the methods in the trace instead of all the methods in the system. Thus dynamic 
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information is used as a filter to eliminate methods that were not executed and therefore 
are less likely to be relevant to the feature. In this work, this technique is abbreviated 	
	 ௕௜௡ and represents the baseline for comparison. Note that the݊ݕܦ௅ௌூܴܫ
  ௕௜௡݊ݕܦ௅ௌூܴܫ ௙௥௘௤ approach is not evaluated. It filters the same methods as݊ݕܦ௅ௌூܴܫ
because it only matters whether a method was executed or not. 

Web Mining. The HITS and PageRank algorithms can be used as feature location 
techniques that rank all methods in an execution trace using either binary or frequency 
information. Web mining has not been applied to feature location before; therefore all of 
the approaches involving web mining are novel. Table 1 lists all the feature location 
techniques based on web mining. 

Information Retrieval, Execution Information, and Web Mining. Applying data 
fusion, IR, execution tracing, and web mining can be combined to perform feature 
location. This work proposes the use of web mining as a filter to ܴܫ௅ௌூ݊ݕܦ௕௜௡’s results in 
order to eliminate methods that are irrelevant. Figure 2 illustrates the process. Each web 
mining algorithm can be applied to binary or execution frequency information. To 
combine ܴܫ௅ௌூ݊ݕܦ௕௜௡	and web mining, the top or bottom web mining results can be 
pruned from ܴܫ௅ௌூ݊ݕܦ௕௜௡’s ranked list. If the results returned by a standalone web 
mining technique rank methods that are relevant to a feature at the top of the list, then 
methods at the bottom of the list can be filtered from consideration. However, since the 
standalone web mining techniques are based on a dynamically-constructed call graph, the 
resulting rankings could be similar across many different features, meaning the top-
ranked results are not relevant to the feature. In this case, those top-ranked results are 
eliminated from consideration. For example, ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௕௜௡ሻ

௧௢௣ is a feature 

Table 1 The feature location techniques evaluated. 

IR & Dynamic Analysis ܴܫ௅ௌூ 
௕௜௡݊ݕܦ௅ௌூܴܫ

Link Analysis Algorithms ܹܯுூ்ௌሺ௛,௕௜௡ሻ 
 ுூ்ௌሺ௛,௙௥௘௤ሻܯܹ
 ுூ்ௌሺ௔,௕௜௡ሻܯܹ
 ுூ்ௌሺ௔,௙௥௘௤ሻܯܹ
 ௉ோሺ௕௜௡ሻܯܹ
 ௉ோሺ௙௥௘௤ሻܯܹ

IR, Dyn, & HITS ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௕௜௡ሻ
௧௢௣ 

ுூ்ௌሺ௛,௕௜௡ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௕௢௧ 

ுூ்ௌሺ௛,௙௥௘௤ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௧௢௣ 

ுூ்ௌሺ௛,௙௥௘௤ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௕௢௧ 

ுூ்ௌሺ௔,௕௜௡ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௧௢௣ 

ுூ்ௌሺ௔,௕௜௡ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௕௢௧ 

ுூ்ௌሺ௔,௙௥௘௤ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௧௢௣ 

ுூ்ௌሺ௔,௙௥௘௤ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௕௢௧ 

IR, Dyn & PageRank ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯ௉ோሺ௕௜௡ሻ
௧௢௣ 

௉ோ,௕௜௡ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௕௢௧ 

௉ோሺ௙௥௘௤ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௧௢௣ 

௉ோሺ௙௥௘௤ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௕௢௧ 
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location technique that uses IR to rank all of the executed methods by their relevance to a 
query. A graph is constructed using binary execution information from a trace, and the 
methods in the graph are ranked according to their HITS hub values. Finally, the top 
methods from the HITS hub rankings are pruned from the ܴܫ௅ௌூ݊ݕܦ௕௜௡ results. In this 
technique, methods with high HITS hub values are filtered. Table 1 lists all of the feature 
location techniques that filter	ܴܫ௅ௌூ݊ݕܦ௕௜௡’s results using HITS or PageRank. 

3. Experimental evaluation 
This section describes the design of a case study to assess the feature location 

techniques defined by the data fusion model. The evaluation seeks to answer the 
following research questions: 
RQ1: Does combining link analysis algorithms with an existing approach to feature 

location improve its effectiveness? 
RQ2: Which web-mining algorithm, HITS or PageRank, produces better results? 

The answers to these research questions will help reveal the best instantiation of the 
data fusion model. 

3.1. Systems and Benchmarks 

Figure 2 Combining textual analysis, dynamic analysis, and web mining for feature 
location. The ranked results of type A are: ܴܫ௅ௌூ ; The ranked results of type B are: 
 ௉ோሺ௕௜௡ሻ, etc.; Theܯܹ ,ுூ்ௌሺ௛,௕௜௡ሻܯܹ :௕௜௡; The ranked results of type C are݊ݕܦ௅ௌூܴܫ

ranked results of type D are: ܴܫ௅ௌூ݊ݕܦ௕௜௡ ுூ்ௌሺ௛,௕௜௡ሻܯܹ
௧௢௣, ܴܫ௅ௌூ݊ݕܦ௕௜௡ ௉ோሺ௕௜௡ሻܯܹ

௧௢௣ , 
etc. 
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The evaluation was conducted on three open source Java software systems: Eclipse, 
Rhino and jEdit. Eclipse3 is an integrated development environment. Version 3.0 has 
approximately 10K classes, 120K methods, and 1.6 million lines of code. Forty-five 
features from Eclipse were studied. The features are represented by bug reports submitted 
to Eclipse’s online issue tracking system4. The bug reports are change requests that 
pertain to faulty features. The bug reports provide steps to reproduce the problem, and 
these steps were used as scenarios to collect execution traces. Table 2 lists information 
about the size of the collected traces. The short descriptions in the bug reports were used 
as the IR queries. The bug reports also have submitted patches that detail the code that 
was changed to fix the bug. The modified methods are considered to be the “gold set” of 
methods that implement the feature. Since their code had to be altered to correct a 
problem with the feature, they are likely to be relevant to the feature. These gold set 
methods are used as the benchmark to evaluate the feature location techniques. This way 
of determining a feature’s relevant methods from patches has also been used by other 
researchers (Liu et al. 2007; Poshyvanyk et al. 2007; Lukins et al. 2008). 

The second system evaluated is Rhino, a Java implementation of JavaScript. Rhino6 
version 1.5 consists of 138 classes, 1,870 methods, and 32,134 lines of code. Rhino 
implements the ECMAScript specification7. The Rhino distribution comes with a test 
suite, and individual test cases in the suite are labeled with the section of the specification 
they test. Therefore, these test cases were used to collect execution traces for 241 
features. The text from the corresponding section of the specification was used to 
formulate IR queries. For the gold set benchmarks for each feature, the mappings of 

                                                           
3 http://www.eclipse.org/ (verified on 05/30/2011) 
4 https://bugs.eclipse.org/ (verified on 05/30/2011) 
5 Nesting is based on the average nesting level per feature. 
6 http://www.mozilla.org/rhino/ (verified on 05/30/2011) 
7 http://www.ecmascript.org/ (verified on 05/30/2011) 

Table 2 Descriptive statistics on the execution traces. The columns represent the 
minimum, maximum, lower quartile, median, upper quartile, mean and the standard 

deviation. Forty-five traces were collected for Eclipse, 241 for Rhino, and 150 for jEdit. 

  Min Max 25% Med 75% Mean ߤ 
Eclipse Methods 88K 1.5MM 312K 525K 1MM 666K 406K 

 Unique 1.9K 9.3K 3.9K 5K 6.3K 5.1K 2K 
 Size(MB) 9.5 290 55 98 202 124 83 
 Nesting5 22 178 37 54 71 59 32 
 Threads 1 26 7 10 12 10 5 

Rhino Methods 160K 12MM 612K 909K 1.8MM 1.8MM 2.3MM 
 Unique 777 1.1K 870 917 943 912 54 
 Size(MB) 18 1,668 71 104 214 210 273 
 Nesting 25 37 28 27 28 28 1 
 Threads 1 1 1 1 1 1 0 

jEdit Methods 4.9K 542K 30K 56K 91K 76K 75K 
 Unique 227 1.9K 935 1.1K 1.3K 1.1K 310 
 Size(MB) 0.55 227 6 16 42 30 39 
 Nesting 4 491 53 102 196 137 106 
 Threads 1 11 1 5 6 4 3 
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source code to features made available by Eaddy et al. (Eaddy et al. 2008b) were used. 
They considered the sections of the ECMAScript documentation to be features and 
associated code with each following the prune dependency rule which states: “A program 
element is relevant to a [feature] if it should be removed, or otherwise altered, when the 
[feature] is pruned” (Eaddy et al. 2008a). Their mappings are made publically available 
online8 and have been used in several other research evaluations (Eaddy et al. 2008a; 
Eaddy et al. 2008b). 

The third system evaluated is jEdit9, a popular text editor written in Java. jEdit 
version 4.3 has 483 classes, 6.4K methods and 109 KLOC. We analyzed the SVN 
commits that were submitted between releases 4.2 and 4.3, and we associated these 
commits with issues from the jEdit bug tracking system, based on the identifiers found in 
the SVN commit log messages. The title and the description of the issue were used as the 
queries. In addition, the changes associated with each SVN commit were used to build 
the “gold set” of methods that were modified during that commit, and conversely for that 
issue or feature. We choose only 150 features that had steps to reproduce, and for which 
we could extract traces based on the issue’s steps to reproduce. Among the 150 issues, 34 
are in the feature category, 30 are patches, and 86 are bugs. As in the case of the previous 
two systems, the queries and gold sets are used to evaluate the feature location 
techniques. 

The position of the first relevant method from the gold set was used as the primary 
means to evaluate the feature location techniques and is referred to as the effectiveness 
measure (Poshyvanyk et al. 2007). Techniques that rank relevant methods near the top of 
the list are more effective because they reduce the number of false positives a developer 
has to consider. The effectiveness measure is an accepted metric to evaluate feature 
location techniques. It is used here instead of precision and recall to be consistent with 
previous approaches (Liu et al. 2007; Poshyvanyk et al. 2007) and because feature 
location techniques have been shown to be better at finding one relevant method for a 
feature as opposed to many (Revelle and Poshyvanyk 2009). However, the evaluation 
also investigates how well the techniques locate all of a feature’s relevant methods. 

3.2. Hypotheses 

Several null hypotheses were formed to test whether the performance of the baseline 
feature location technique improves with the use of web mining. The testing of the 
hypotheses is based on the effectiveness measure. Two null hypotheses are presented 
here; the other hypotheses can be derived analogously. 

 ܪ଴,ௐெುೃሺ್೔೙ሻ
: There is no significant difference between the effectiveness of 

the baseline technique (ܴܫ௅ௌூ݊ݕܦ௕௜௡) and the ܹܯ௉ோሺ௕௜௡ሻ technique. 
 ܪ଴,ூோಽೄ಺஽௬௡್೔೙ௐெುೃሺ್೔೙ሻ

೟೚೛: There is no significant difference between the 

effectiveness of the baseline technique (ܴܫ௅ௌூ݊ݕܦ௕௜௡) and the technique 
௉ோሺ௕௜௡ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ

௧௢௣ 
If a null hypothesis can be rejected with high confidence, an alternative hypothesis 

that states that a technique has a positive effect on the ranking of the first relevant method 
can be supported. The corresponding alternative hypotheses to the null hypotheses above 
are given. The remaining alternative hypotheses are formulated in a similar manner. 

                                                           
8 http://www.cs.columbia.edu/~eaddy/concerntagger/ (verified on 05/30/2011) 
9 http://www.jedit.org/ (verified on 05/30/2011) 
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 ܪ஺,ௐெುೃሺ್೔೙ሻ
: The effectiveness of ܹܯ௉ோሺ௕௜௡ሻ is significantly better than the 

baseline technique’s effectiveness. 
 ܪ஺,ூோಽೄ಺஽௬௡್೔೙ௐெುೃሺ್೔೙ሻ

೟೚೛: The effectiveness of ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯ௉ோሺ௕௜௡ሻ
௧௢௣ 

is significantly better than the baseline technique’s effectiveness. 

3.3. Data Collection and Analysis 

The primary data collected in the evaluation is the effectiveness measure.  For each 
feature location technique, there are 45 data points for Eclipse, 241 for Rhino and 150 for 
jEdit.  We use the following three criteria for comparing the feature location techniques. 
The first one is descriptive statistics of the effectiveness measure for each system which 
summarizes the data in terms of mean, median, minimum, maximum, lower quartile, and 
upper quartile, and displays it as box plots. 

The feature location techniques can also be evaluated by how many features they can 
return at least one relevant result.  Many of the techniques in the model filter methods 
from consideration, and some of those methods may belong to the gold set.  It is possible 
for a technique to filter out all of a feature’s gold set methods and return no relevant 
results.  Therefore, the percentage of features for which a technique can locate at least 
one relevant method is reported.  If a feature location technique ranks one of a feature’s 
relevant methods closer to the top of the list than another technique, then the first 
approach is more effective.  Every feature location technique can be compared to every 

(a) Eclipse 
 

(b) Rhino 
 

 
(c) jEdit 

T1: ܴܫ௅ௌூ 
T2:  ௕௜௡݊ݕܦ௅ௌூܴܫ
T3:	ܹܯ௉ோሺ௙௥௘௤ሻ 
T4: ܹܯ௉ோሺ௕௜௡ሻ 
T5:	ܹܯுூ்ௌሺ௔,௙௥௘௤ሻ 
T6: ܹܯுூ்ௌሺ௔,௕௜௡ሻ 
T7:	ܹܯுூ்ௌሺ௛,௙௥௘௤ሻ 
T8: ܹܯுூ்ௌሺ௛,௕௜௡ሻ 
 

Figure 3 The effectiveness measure for the standalone web mining feature location 
techniques applied to 45 features in Eclipse, 241 features in Rhino and 150 features, bug 

reports and patches in jEdit. The values above the boxes represent the percentage of 
features for which the technique was able to locate at least one relevant method. 
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other technique in this manner, and the percentage of times the first technique is more 
effective is reported.  This is the second criteria for comparing the feature location 
techniques. 

Data on whether one technique is more effective than another is not enough.  The 
third comparison between feature location techniques consists of statistical analysis to 
determine if the difference between the effectiveness of two techniques is significant.  
The Wilcoxon Rank Sum test (Conover 1998) is used to test if the difference between the 
effectiveness measures of two feature location techniques is statistically significant.  
Essentially, the test determines if the decrease in the number of false positives reported 
by one technique as compared to another is significant.  It is important to note that the 
input data for the Wilcoxon test considers for each feature the rank of the best method 
and ignores the ranks of all the other gold set methods, hence the test is not affected by 
the total number of false positives (i.e., for all the gold set methods).  The Wilcoxon test 
is a non-parametric test that accepts paired data.  Since a technique may not rank any of a 
feature’s gold set methods, it would have no data to be paired with the data from another 
feature location technique.  Therefore, only cases where both techniques rank a method 
are input to the test. In this evaluation, the significance level of the Wilcoxon Rank Sum 
test is ߙ	0.05 =. 
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4. Results and Discussion 
This section presents the results of using the feature location techniques listed in 

Table 1 to identify the first relevant method of 45 features of Eclipse, 241 features of 
Rhino and 150 features of jEdit. Figure 3 and Figure 4 show box plots representing the 
descriptive statistics of the effectiveness measure for Eclipse and Rhino. Low values in 
the box plots, which represent positions of relevant methods, suggest potentially less 
effort for developer to locate relevant methods, because the ranks are among the first 
results returned by the feature location techniques. The y-axis represents the effectiveness 
measure. The graphs for Eclipse and Rhino have different scales because Eclipse has 
more methods. Figure 3 plots the feature location techniques based on IR (T1), IR and 

(a) Eclipse 
 

(b) Rhino 
 

 
(c) jEdit 

T1: ܴܫ௅ௌூ݊ݕܦ௕௜௡ 
T2:ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯ௉ோሺ௙௥௘௤ሻ

௧ሾସ଴,଺଴,଼଴ሿ% 

T3:ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯ௉ோሺ௙௥௘௤ሻ
௕ሾଶ଴,଻଴,ଷ଴ሿ% 

T4:ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯ௉ோሺ௕௜௡ሻ
௧ሾସ଴,଺଴,଻଴ሿ% 

T5:ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯ௉ோሺ௕௜௡ሻ
௕ሾଵ଴,଻଴,ଷ଴ሿ% 

T6:ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௔,௙௥௘௤ሻ
௧ሾଷ଴,଻଴,ସ଴ሿ% 

T7:ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௔,௙௥௘௤ሻ
௕ሾସ଴,଺଴,଺଴ሿ% 

T8:ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௙௥௘௤ሻ
௧ሾଵ଴,଻଴,ଶ଴ሿ% 

T9:ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௙௥௘௤ሻ
௕ሾ଺଴,ହ଴,଼଴ሿ% 

T10:ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௔,௕௜௡ሻ
௧ሾଶ଴,଻଴,ସ଴ሿ% 

T11:ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௔,௕௜௡ሻ
௕ሾସ଴,ସ଴,଺଴ሿ% 

T12:ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௕௜௡ሻ
௧ሾଵ଴,଻଴,ଶ଴ሿ% 

T13:ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௕௜௡ሻ
௕ሾ଻଴,଺଴,଼଴ሿ% 

Figure 4 The effectiveness measure for the feature location techniques that use web 
mining as a filter. The top and bottom percentages in brackets have two values. The first 
value is the percentage used in Eclipse, the second is the percentage used in Rhino, and 

the third is the percentage used in jEdit. The values above the boxes represent the 
percentage of features for which the technique was able to locate at least one relevant 

method. 
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dynamic analysis (T2), and web mining as a standalone approach (T3 through T8). Figure 
4 shows the techniques that combine IR, dynamic analysis, and web mining (T2 through 
T13). ܴܫ௅ௌூ݊ݕܦ௕௜௡ is also included in this figure for reference since it represents the 
baseline for comparison. In Figure 3 and Figure 4, the diamonds represent the average 
effectiveness measure. The dark grey and light grey boxes stand for the upper and lower 
quartiles, respectively, and the line between the boxes represents the median. The 
whiskers above and below the boxes denote the maximum and minimum effectiveness 
measure. In some cases, the maximum is beyond the scale of the graphs. The figures also 
report for each feature location technique, above the box plots, the percentage of features 
for which the technique was able to identify at least one relevant method. 

The box plots in Figure 3 show that using web mining as a standalone feature 
location technique produces results that are comparable to ܴܫ௅ௌூ	even though no query is 
used. However, these techniques are less effective than the state of the art, no matter the 
web mining algorithm used. The feature location techniques based on PageRank, HITS 
hub values, or HITS authority values are not as effectiveness as ܴܫ௅ௌூ݊ݕܦ௕௜௡. Overall, 
there is little difference between the use of binary and execution frequency information. It 
is surprising that ranking methods by their hub values is more effective than ranking them 
by their authority values, for all three systems. Intuitively, hubs are methods that delegate 
functionality to authorities which actually implement it. Therefore, authorities should be 
more valuable for feature location, but this was not observed. Another interesting 
observation is that for Eclipse and jEdit, PageRank was less effective than HITS, whereas 
for Rhino, PageRank returned comparable results to HITS. We suppose that this has to do 
with the structure, dependencies and the type of software. Eclipse and jEdit have many 
commonalities, such as graphical user interfaces, they are both editors, they have an 
architecture extensible for plug-ins, etc., whereas Rhino could be considered more like a 
library. Future research will confirm or infirm these preliminary observations.  

Even though feature location techniques based on standalone web mining are not 
more effective than the state of the art approach, when web mining is used as a filter to 
IR, the results significantly improve in some cases. Figure 4 presents box plots of the 
effectiveness measure of the techniques that used web mining to filter ܴܫ௅ௌூ݊ݕܦ௕௜௡’s 
results. The filters prune either the top or bottom methods ranked by a web mining 
algorithm. The threshold for the percent of methods to filter was selected for each 
technique individually such that at least one gold set method remained in the results for 
66% of the features. In Eclipse, ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௙௥௘௤ሻ

௕௢௧ (T9 in Figure 4) had the 

best effectiveness measure on average. In Rhino and jEdit, ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௕௜௡ሻ
௕௢௧  

(T13 in Figure 4) was the most effective technique. In fact, all but one (T8 in Figure 4) of 
the techniques that use web mining to filter IR are more effective than ܴܫ௅ௌூ݊ݕܦ௕௜௡	in 
Eclipse by 13% to 62% on average. In Rhino, most of the techniques that combine IR, 
dynamic analysis, and web mining have an average effectiveness of 1% to 51% better 
than ܴܫ௅ௌூ݊ݕܦ௕௜௡ with a few exceptions (T7, T8, T11 and T12 in Figure 4). Similarly for 
jEdit, with the exception of T3, T8 and T12, all the techniques that use web mining as a 
filter have an average effectiveness of 19% to 87% (in the case of T13) better than 
 ,௕௜௡. It should be noted that for all the three systems in our evaluation݊ݕܦ௅ௌூܴܫ
ுூ்ௌሺ௛,௙௥௘௤ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ

௧௢௣	(T8) technique had lower effectiveness than the baseline 
technique, that is ܴܫ௅ௌூ݊ݕܦ௕௜௡, and for two of the systems (Rhino and jEdit) 
ுூ்ௌሺ௛,௕௜௡ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ

௧௢௣	(T12) had lower effectiveness than the baseline 
 ௕௜௡ as well. This supports our observation that the methods of interest normally݊ݕܦ௅ௌூܴܫ
have higher HITS hub values, pushing them to the top of the list. Thus, removing those 
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methods from the ranked list negatively impacts effectiveness. This observation is further 
emphasized by the fact that for all the three systems, ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௙௥௘௤ሻ

௕௢௧	(T9) 

and ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௕௜௡ሻ
௕௢௧	(T13) are the most effective techniques as compared to 

the baseline. In other words, removing methods with lower HITS hub values (usually 
those not relevant to the feature) improves effectiveness, because more irrelevant 
methods are filtered out and those methods of interest are ranked higher. 

These results help answer RQ1 because they lend strong support to the fact that 
integrating the ranking of methods using web mining with information retrieval is a very 
effective way to perform feature location. In regards to RQ2, the techniques based on 
HITS were generally more effective than the PageRank approaches, so HITS, used either 
as a standalone technique or as a filter, seems better suited to the task of feature location. 

In addition to measuring the effectiveness of each of the feature location techniques, 
the new approaches based on web mining were directly compared to ܴܫ௅ௌூ	and 
 ௕௜௡. Table 3 shows for each new technique, the percent of times its݊ݕܦ௅ௌூܴܫ
effectiveness measure is better than that of the existing approaches10. The table shows a 
different view of the data presented in Figure 3 and Figure 4. It shows on a case-by-case 
basis, which feature location technique is more effective. The data in this table is derived 
from the subset of methods that are ranked by both techniques, while Figure 3 and 
Figure 4 show data for all methods. In Table 3, if one approach ranks a method and 
another does not, the method is not included in the reported data. Also, the percentage of 
times the feature location techniques produce the same ranks for the same method is not 
explicitly included in the table, but it can be easily derived. The process of generating the 
values for Table 3 is better illustrated with an example (see Table 4). Feature location 
techniques ܣ and ܤ are used to locate eight features and the best rank of the methods 
from each feature is reported in the table. Features ଶ݂ and ଷ݂ will be discarded, since they 
produce a rank for just one system, and not for both (i.e., this situation may happen when 
all the relevant methods are filtered out). Among the remaining six features, for one 
feature the feature location technique ܣ has better ranking than the feature location 
technique ܤ (i.e., ଵ݂), for two features both systems produce equal results (i.e., ହ݂ and  
଺݂), and for three features ܤ has better ranking than ܣ (i.e., ସ݂, ଻݂, and 	଼݂ ). When 

comparing A and B, we report these results as the pair 50% / 16.66%, which means that 
 produces better results in 16.66% of ܤ produces better results in 50% of cases, and ܣ
cases. In the remaining 100%-50%-16.66%=33.33% of cases both feature location 
techniques produce equivalent results. This pair formatting is presented in Table 3, where 
the left side of the pair represents the percentage of cases the feature location technique 
on the row is better than the technique on the left, and vice-versa, where the right side of 
the pair represents the percentage of cases where the technique on the column is better 
than the technique in the row. 

The table shows that feature location techniques based solely on web mining never 
have better effectiveness than ܴܫ௅ௌூ݊ݕܦ௕௜௡. On the other hand, the techniques that use 
web mining as a filter routinely rank methods closer to the top of the list than 
  .௕௜௡݊ݕܦ௅ௌூܴܫ

                                                           
10 The online appendix has data on the performance of each technique compared to all 
others. 
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The same trend, which suggests that HITS hubs rank relevant methods in the top 
results, is observed here. For example, for Eclipse system, 
ுூ்ௌሺ௛,௙௥௘௤ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ

௧௢௣ produces better results than those of ܴܫ௅ௌூ݊ݕܦ௕௜௡ in 74% 
of cases, and ܴܫ௅ௌூ݊ݕܦ௕௜௡	produces better results in only 6% (in the remaining 100%-
74%-6%=20% of cases both techniques produce equivalent ranks). However, when we 
compare ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௙௥௘௤ሻ

௕௢௧ against ܴܫ௅ௌூ݊ݕܦ௕௜௡ for the Eclipse system we 
get even better results than for ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௙௥௘௤ሻ

௧௢௣ (94% vs. 74%).  The same 
trend is observed for all the systems while using HITS hubs. 

Table 3 For each feature location technique, the left side of the values pair represents the 
percentage of times the effectiveness of the technique in the row is better than the 

technique in the corresponding column. The right side of the values pair represents the 
percentage of times the effectiveness of the technique in the column is better than the 

technique in the row.  

 Eclipse Rhino jEdit 
 

 ௅ௌூܴܫ
 ௅ௌூܴܫ
 ௕௜௡݊ݕܦ

 ௅ௌூܴܫ
 ௅ௌூܴܫ
 ௕௜௡݊ݕܦ

 ௅ௌூܴܫ
 ௅ௌூܴܫ
 ௕௜௡݊ݕܦ

 ௕௜௡ 97/3 X 84/9 X 83/1 X݊ݕܦ௅ௌூܴܫ
 ௉ோሺ௙௥௘௤ሻ 59/41 10/87 48/51 17/80 12/88 2/98ܯܹ
 ௉ோሺ௕௜௡ሻ 59/41 10/90 43/56 17/81 13/87 2/98ܯܹ

 ுூ்ௌሺ௔,௙௥௘௤ሻ 67/33 18/82 44/55 15/85 21/79 8/91ܯܹ
 ுூ்ௌሺ௔,௕௜௡ሻ 56/44 18/82 24/75 6/94 17/83 3/97ܯܹ
 ுூ்ௌሺ௛,௙௥௘௤ሻ 77/23 26/74 44/55 19/80 38/62 17/82ܯܹ
 ுூ்ௌሺ௛,௕௜௡ሻ 77/23 26/74 39/59 19/78 26/72 9/89ܯܹ

௉ோሺ௙௥௘௤ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௧ 97/3 84/10 76/15 63/28 75/15 58/22 

௉ோሺ௙௥௘௤ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௕ 100/0 77/17 78/17 56/37 75/16 59/25 

௉ோሺ௕௜௡ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௧ 97/3 85/9 78/15 64/27 74/11 60/17 

௉ோሺ௕௜௡ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௕ 97/3 88/6 78/18 45/46 78/13 61/23 

ுூ்ௌሺ௔,௙௥௘௤ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௧ 97/3 80/10 81/12 66/26 77/13 65/17 

ுூ்ௌሺ௔,௙௥௘௤ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௕ 97/3 91/6 78/18 44/47 81/10 62/19 

ுூ்ௌሺ௛,௙௥௘௤ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௧ 97/3 74/6 67/28 31/60 74/19 51/29 

ுூ்ௌሺ௛,௙௥௘௤ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௕ 97/3 94/3 87/7 74/13 84/4 72/6 

ுூ்ௌሺ௔,௕௜௡ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௧ 97/3 84/6 80/15 61/32 78/15 60/21 

ுூ்ௌሺ௔,௕௜௡ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௕ 97/3 85/9 66/27 42/40 82/6 63/14 

ுூ்ௌሺ௛,௕௜௡ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௧ 97/3 70/6 67/28 31/60 73/18 47/31 

ுூ்ௌሺ௛,௕௜௡ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௕ 97/3 94/3 83/11 71/19 83/3 73/6 

 
Table 4 Example of computing percentages. The feature location techniques ܣ and ܤ are 
used to locate eight features and the values represent the ranks of the relevant methods in 

the list of the results for that feature 

Feature Location 
Technique 

Features 
ଵ݂ ଶ݂ ଷ݂ ସ݂ ହ݂ ଺݂ ଻݂ ଼݂  

 19 21 9 18 20 12 - 10 ܣ
 4 16 9 18 15 - 14 17 ܤ
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This finding also helps answer RQ1, combining web mining with existing 
approaches improves their effectiveness. RQ2 addresses which of the two web mining 
algorithms is more effective. Based on the results in Table 3, the techniques based on 
HITS are more effective than the PageRank techniques. 

4.1. Statistical Analysis 

The Wilcoxon Rank Sum test was used to test if the difference between the 
effectiveness measures of two feature location techniques is statistically significant. 
Table 5 shows the results of the test (݌-values) for all of the techniques based on web 
mining as compared to ܴܫ௅ௌூ݊ݕܦ௕௜௡ and if the null hypotheses can be rejected based on 
the ݌-values. In the table, statistically significant results are presented in boldface. None 
of the approaches in which web mining is used as a standalone technique have 
statistically significant results. However in Eclipse, all of the feature location techniques 
that employ web mining as a filter to IR have significantly better effectiveness than 
 ௕௜௡. Similarly in Rhino and jEdit, most of the approaches that use web mining݊ݕܦ௅ௌூܴܫ
as a filter have statistically significant results with a few exceptions. Therefore, the null 
hypotheses for these approaches that do not have significant results for all the systems 
cannot be rejected. However, for the techniques with statistically significant results for all 
the systems, their null hypotheses are rejected, and there is evidence to suggest that the 
corresponding alternative hypotheses can be supported. These feature location techniques 
have better effectiveness than the baseline technique.  

Table 5 The results of the Wilcoxon test. 

 Eclipse Rhino jEdit Null Hypothesis 
 ௉ோሺ௙௥௘௤ሻ 1 1 1 Not Rejectedܯܹ
 ௉ோሺ௕௜௡ሻ 1 1 1 Not Rejectedܯܹ

 ுூ்ௌሺ௔,௙௥௘௤ሻ 1 1 1 Not Rejectedܯܹ
 ுூ்ௌሺ௔,௕௜௡ሻ 1 1 1 Not Rejectedܯܹ
 ுூ்ௌሺ௛,௙௥௘௤ሻ 1 1 1 Not Rejectedܯܹ
 ுூ்ௌሺ௛,௕௜௡ሻ 1 1 1 Not Rejectedܯܹ

௉ோሺ௙௥௘௤ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௧௢௣ < 0.0001 < 0.0001 < 0.0001 Rejected 

௉ோሺ௙௥௘௤ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௕௢௧ 0.004 0 0.003 Rejected 

௉ோሺ௕௜௡ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௧௢௣ < 0.0001 < 0.0001 < 0.0001 Rejected 

௉ோሺ௕௜௡ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௕௢௧ < 0.0001 0.74 0.0004 Not Rejected 

ுூ்ௌሺ௔,௙௥௘௤ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௧௢௣ 0 < 0.0001 < 0.0001 Rejected 

ுூ்ௌሺ௔,௙௥௘௤ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௕௢௧ < 0.0001 0.99 < 0.0001 Not Rejected 

ுூ்ௌሺ௛,௙௥௘௤ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௧௢௣ 0 1 0.066 Not Rejected 

ுூ்ௌሺ௛,௙௥௘௤ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௕௢௧ < 0.0001 < 0.0001 < 0.0001 Rejected 

ுூ்ௌሺ௔,௕௜௡ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௧௢௣ < 0.0001 < 0.0001 < 0.0001 Rejected 

ுூ்ௌሺ௔,௕௜௡ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௕௢௧ < 0.0001 1 < 0.0001 Not Rejected 

ுூ்ௌሺ௛,௕௜௡ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௧௢௣ 0 1 0.144 Not Rejected 

ுூ்ௌሺ௛,௕௜௡ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௕௢௧ < 0.0001 < 0.0001 < 0.0001 Rejected 
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4.2. Impact of the Selection of a Threshold 

The results in the previous section for the techniques that use web mining as a filter 
present only one possible threshold for what percentage of the top or bottom web mining 
results to eliminate from the baseline results. The threshold was chosen such that a given 
feature location technique returned at least one relevant method for at least 66% of the 

(a) ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௙௥௘௤ሻ
௕௢௧ (b) ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௕௜௡ሻ

௕௢௧ 
Figure 5 Summary of the effectiveness measure of ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௙௥௘௤ሻ

௕௢௧ and 

ுூ்ௌሺ௛,௕௜௡ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௕௢௧ at different filtering thresholds for the 45 features of 

Eclipse. The values above the boxes represent the percentage of features for which the 
technique was able to locate at least one relevant method. 

(a) ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௙௥௘௤ሻ
௕௢௧ (b) ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௕௜௡ሻ

௕௢௧ 
Figure 6 Summary of the effectiveness measure of ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௙௥௘௤ሻ

௕௢௧ and 

ுூ்ௌሺ௛,௕௜௡ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௕௢௧  at different filtering thresholds for the 241 features of 

Rhino. The values above the boxes represent the percentage of features for which the 
technique was able to locate at least one relevant method. 

 
(a) ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௙௥௘௤ሻ

௕௢௧ 
 

(b) ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௕௜௡ሻ
௕௢௧ 

Figure 7 Summary of the effectiveness measure of ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௙௥௘௤ሻ
௕௢௧ and 

ுூ்ௌሺ௛,௕௜௡ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௕௢௧  at different filtering thresholds for the 150 features of 

jEdit. The values above the boxes represent the percentage of features for which the 
technique was able to locate at least one relevant method. 
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features studied. This section examines how varying the filtering threshold impacts the 
results, focusing on the techniques with the lowest average effectiveness, 
ுூ்ௌሺ௛,௙௥௘௤ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ

௕௢௧ and ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௕௜௡ሻ
௕௢௧. Figure 5 shows, for 

Eclipse, box plots of the average effectiveness of the two techniques with different 
filtering thresholds. Figure 6 shows the results for Rhino and Figure 7 shows the results 
for jEdit. 

Not surprisingly, the higher the filtering threshold, the lower the average 
effectiveness since more methods are eliminated from consideration. However, there is a 
tradeoff; the improvement in effectiveness comes at the cost of completeness. The values 
above the boxes in Figure 5, Figure 6 and Figure 7 represent the percentage of features 
for which the technique was able to locate at least one relevant method. When a higher 
percentage of the HITS hubs results are filtered, the techniques find at least one relevant 
method for fewer features. For instance in Eclipse with ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௙௥௘௤ሻ

௕௢௧, 
when the bottom 90% of the HITS hubs results are pruned from the baseline, the average 
effectiveness is 67, but the technique can identify a relevant method for only 29% of 
Eclipse’s 45 features. Setting the threshold too high means methods that are relevant to a 
feature are considered false negatives and removed from the results. Therefore at least 
with the ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௙௥௘௤ሻ

௕௢௧ and ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௕௜௡ሻ
௕௢௧ techniques, a 

threshold of 50%–60% yields acceptable results. Automatically selecting appropriate 
thresholds for individual features remains part of our future work.  In the meanwhile we 

 
(a) Eclipse 

 
(b) Rhino 

 

 
(c) jEdit 

T1: ܴܫ௅ௌூ 
T2:  ௕௜௡݊ݕܦ௅ௌூܴܫ
T3:	ܹܯ௉ோሺ௙௥௘௤ሻ 
T4: ܹܯ௉ோሺ௕௜௡ሻ 
T5:	ܹܯுூ்ௌሺ௔,௙௥௘௤ሻ 
T6: ܹܯுூ்ௌሺ௔,௕௜௡ሻ 
T7:	ܹܯுூ்ௌሺ௛,௙௥௘௤ሻ 
T8: ܹܯுூ்ௌሺ௛,௕௜௡ሻ 

Figure 8 Box plots of position of all gold set methods for the standalone web mining 
feature location techniques applied to 45 features of Eclipse, 241 features of Rhino and 

150 features of jEdit. The values above the boxes represent the percent of all the gold set 
methods the technique could locate. 
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provide support for selecting these thresholds in a tool FLAT3 (Savage et al. 2010) that 
implements proposed approaches for combining Information Retrieval with Execution 
and Link Analyses.  Using FLAT3, developers can select different ranking schemas based 
on link analysis (PageRank, HITS authorities, HITS hubs), different filtering mechanisms 
(top, bottom), and different thresholds. 

4.3. Locating All of a Feature’s Methods 

So far, this work has focused on the effectiveness of feature location only in terms of 
the position of the first relevant method (i.e., the effectiveness measure). However, since 
gold sets defining all the methods relevant to a feature were available, the feature location 
techniques can also be evaluated in terms of how well they locate all of a feature’s 

 
(a) Eclipse 

 

 
(b) Rhino 

 

 
(c) jEdit 

T1: ܴܫ௅ௌூ݊ݕܦ௕௜௡ 

T2:ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯ௉ோሺ௙௥௘௤ሻ
௧ሾହ଴,ଷ଴,ଶ଴ሿ% 

T3:ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯ௉ோሺ௙௥௘௤ሻ
௕ሾଶ଴,ଷ଴,଴ሿ% 

T4:ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯ௉ோሺ௕௜௡ሻ
௧ሾହ଴,ଷ଴,ଶ଴ሿ% 

T5:ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯ௉ோሺ௕௜௡ሻ
௕ሾଶ଴,ସ଴,଴ሿ% 

T6:ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௔,௙௥௘௤ሻ
௧ሾଶ଴,ଷ଴,଴ሿ% 

T7:ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௔,௙௥௘௤ሻ
௕ሾସ଴,ଷ଴,଴ሿ% 

T8:ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௙௥௘௤ሻ
௧ሾଵ଴,ଷ଴,଴ሿ% 

T9:ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௙௥௘௤ሻ
௕ሾ଺଴,ସ଴,ଶ଴ሿ% 

T10:ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௔,௕௜௡ሻ
௧ሾଶ଴,ସ଴,ଵ଴ሿ% 

T11:ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௔,௕௜௡ሻ
௕ሾସ଴,ଷ଴,଴ሿ% 

T12:ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௕௜௡ሻ
௧ሾଵ଴,ଷ଴,଴ሿ% 

T13:ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௕௜௡ሻ
௕ሾ଺଴,ସ଴,ଷ଴ሿ% 

Figure 9 The average position of all gold set methods for the feature location techniques 
that use web mining as a filter applied to 45 features of Eclipse, 241 features of Rhino 

and 150 features of jEdit. The top and bottom percentages in brackets have three values. 
The first value is the percentage used in Eclipse, the second is the percentage used in 

Rhino, and the third is the percentage used in jEdit. The values above the boxes represent 
the percent of all the gold set methods the technique could locate. 
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methods. Figure 8 and Figure 9 show box plots summarizing the positions of all of a 
feature’s relevant methods. Figure 8 presents the results for ܴܫ௅ௌூ, ܴܫ௅ௌூ݊ݕܦ௕௜௡, and the 
standalone web mining feature location techniques, while Figure 9 shows the results for 
the baseline and the techniques that use web mining as a filter.  

Figure 8 shows that the baseline approach, ܴܫ௅ௌூ݊ݕܦ௕௜௡ is the more effective at 
locating all of a feature’s relevant methods than the standalone web mining techniques. 
However, using web mining as a filter improves the average effectiveness of locating all 
of the methods from a feature’s gold set, as seen in Figure 9. As with the effectiveness 
measure results presented earlier, ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௙௥௘௤ሻ

௕௢௧ and 

ுூ்ௌሺ௛,௕௜௡ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ
௕௢௧ were the two most effective techniques. 

 
(a) Filter top PageRank results 

 
(b) Filter bottom PageRank results 

 
(c) Filter top HITS authority results 

 
(d) Filter bottom HITS authority 

results 

 
(e) Filter top HITS hub results 

 
(f) Filter bottom HITS hub results 

Figure 10 The effectiveness measure for the feature location techniques applied to 45 
features of Eclipse. The values above the boxes represent the percentage of features for 

which the technique was able to locate at least one relevant method. 



 

23 
 

4.4. Using a Static Call Graph 

All of the feature location techniques investigated have leveraged a call graph that is 
constructed from execution traces specific to each feature. Collecting execution traces is 
computationally expensive and time consuming. This section explores whether 
comparable results can be achieved using a static call graph. The tradeoff is that only one 
static call graph is needed instead of a different dynamic call graph for each feature, but a 
static call graph is generalized and not feature-specific. 

Figure 10 shows for Eclipse summaries of the effectiveness measure for each of the 
feature location techniques based on using web mining as a filter. Figure 11 shows the 

 
(a) Filter top PageRank results 

 
(b) Filter bottom PageRank results 

 
(c) Filter top HITS authority results 

 
(d) Filter bottom HITS authority 

results 

 
(e) Filter top HITS hub results 

 
(f) Filter bottom HITS hub results 

Figure 11 The effectiveness measure for the feature location techniques applied to 241 
features of Rhino. The values above the boxes represent the percentage of features for 

which the technique was able to locate at least one relevant method. 
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results for Rhino. In each graph, the first plot represents using a dynamic call graph with 
binary weights and the second corresponds to using a dynamic call graph with execution 
frequency weights. The third patterned plot represents using a static call graph. For 
example, Figure 10(a) compares the results of ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯ௉ோሺ௕௜௡ሻ

௧௢௣, 
௉ோሺ௙௥௘௤ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ

௧௢௣, and filtering PageRank’s top-ranked methods from a static 
call graph from ܴܫ௅ௌூ݊ݕܦ௕௜௡’s results. Note that the threshold for the percentage of 
methods that were filtered from the static call graph was selected so that at least one 
method from the gold set remained in the results for at least 66% of the features. 

Figure 10 shows that in Eclipse, using a static call graph is not as effective as using 
a dynamically-constructed call graph. A static call graph includes all of a system’s 
methods, not just those that were executed. Eclipse has over 84,000 methods, so using a 
static call graph significantly increases the number of methods that need to be ranked. 
This increase in the number of methods leads to a decrease in effectiveness because there 
are more false positives in the ranked list. 

Figure 11 shows the results of using a dynamic call graph and a static call graph for 
each feature location technique that uses web mining as a filter in Rhino. Unlike the 
Eclipse results, using a static call graph in Rhino has comparable effectiveness. In 
general, the static approaches are not quite as effective as the dynamic ones, but the 
difference is not large. In Rhino, using a static call graph gives results that are close to 
those when using a dynamic call graph without the cost of collecting traces. Rhino is a 
smaller system than Eclipse, so ranking all of its methods instead of only those that were 
executed introduces fewer false positives. There may be other factors in why the static 
results are comparable to the dynamic results in Rhino but not Eclipse. Future work will 
include investigating the circumstances under which a static call graph might yield 
comparable results. 

4.5. Discussion 

The findings of the evaluation show that combining web mining with an existing 
feature location technique results is a more effective approach (RQ1). Additionally in the 
context of feature location, HITS is a more effective web mining algorithm than 
PageRank (RQ2). The most effective techniques evaluated were 
ுூ்ௌሺ௛,௙௥௘௤ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ

௕௢௧ and ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௕௜௡ሻ
௕௢௧. The results indicate 

that filtering bottom-ranked hub methods from ܴܫ௅ௌூ݊ݕܦ௕௜௡’s results is the most effective 
approach from both the perspective of the position of the first relevant method and of all 
relevant methods. For instance, for one feature in Eclipse, ܴܫ௅ௌூ ranked the first relevant 
method at position 1,696, and for ܴܫ௅ௌூ݊ݕܦ௕௜௡, the best rank of a relevant method was at 
position 61. On the other hand, ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௕௜௡ሻ

௕௢௧, ranked the first relevant 
method to the feature at position 24. Filtering the bottom HITS hub methods eliminated 
37 false positives from the results obtained by the state of the art technique. Examining 
the results in detail reveals why. Methods with high hub values call many other methods, 
while methods that do not make many calls have low hub values. These bottom-ranked 
hub methods are generally getter and setter methods or other methods that do not make 
any calls and perform very specific tasks. The ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௕௜௡ሻ

௕௢௧ technique 
prunes these methods from the results since they are not relevant to the feature, thus 
improving effectiveness. 
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The two most effective techniques remove bottom-ranked hub methods, and these 
methods tend to be getters and setters. To see if a simpler filtering heuristic is more 
effective that using web mining, a technique that filters out all getter and setter methods 
from ܴܫ௅ௌூ݊ݕܦ௕௜௡’s results was compared to two approaches: 
ுூ்ௌሺ௛,௙௥௘௤ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ

௕௢௧ and ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௕௜௡ሻ
௕௢௧. Figure 12 shows the 

average effectiveness measure of the baseline (T1), the baseline with getter and setter 
methods pruned (T2), and ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௕௜௡ሻ

௕௢௧ (T3). In both Eclipse and Rhino, 
removing getters and setters from ܴܫ௅ௌூ݊ݕܦ௕௜௡’s results is not as effective as 
ுூ்ௌሺ௛,௕௜௡ሻܯ௕௜௡ܹ݊ݕܦ௅ௌூܴܫ

௕௢௧. Similarly, when considering the ranks of all of a feature’s 
relevant methods, the most effective technique is still ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௕௜௡ሻ

௕௢௧, as 
seen in Figure 13. Therefore, using the HITS web mining algorithm and filtering bottom-

T1: ܴܫ௅ௌூ݊ݕܦ௕௜௡ 
T2:	ܴܫ௅ௌூ݊ݕܦ௕௜௡ with getters and setters filtered 
T3:	ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௕௜௡ሻ

௕௢௧ 
 

 
(a) Eclipse 

 
(b) Rhino 

Figure 12 Comparing the effectiveness measure for the baseline technique (T1), filtering 
getters and setters from the baseline (T2), and one of the most effective techniques based 
on using web mining as a filter (T3). The values above the boxes represent the percentage 

of features for which the technique was able to locate at least one relevant method. 

 
(a) Eclipse 

 
(b) Rhino 

Figure 13 Comparing the average position of all gold set methods for the baseline (T1), 
filtering getters and setters from the baseline (T2), and one of the most effective 

techniques based on using web mining as a filter (T3). The values above the boxes 
represent the percent of all the gold set methods the technique could locate. 
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ranked hub methods eliminates more false positives than simply pruning getter and setter 
methods. 

In addition to investigating the filtering heuristic of eliminating getter and setter 
methods, another simplified heuristic was explored in which methods with certain fan-in 
values are pruned from ܴܫ௅ௌூ݊ݕܦ௕௜௡’s results. The fan-in of a module is defined as the 
number of locations from which control is passed in to the module (Henry and Kafura 
1981) and is derived from a static call graph. Fan-in is similar to web mining. Both count 
the number of incoming links/calls to a page/method. The difference is that the web 
mining algorithms are more powerful because they incorporate indirect information. Not 
only are the number of incoming links counted, but the importance of those incoming 

T1: ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௕௜௡ሻ
௕௢௧ 

T2:	ܴܫ௅ௌூ݊ݕܦ௕௜௡, filter fan-in ൑ 1  
T3:	ܴܫ௅ௌூ݊ݕܦ௕௜௡, filter fan-in ൑ 2  
T4:	ܴܫ௅ௌூ݊ݕܦ௕௜௡, filter fan-in ൑ 3  

T5:   ௕௜௡, filter fan-in ൑ 4݊ݕܦ௅ௌூܴܫ
T6:   ௕௜௡, filter fan-in ൑ 5݊ݕܦ௅ௌூܴܫ
T7:  ௕௜௡, filter fan-in ൑ 10݊ݕܦ௅ௌூܴܫ

 

 
(a) Eclipse 

 
(b) Rhino 

Figure 14 Comparing the effectiveness measure for one of the most effective techniques 
based on using web mining as a filter (T1) and techniques based on filtering methods with 

certain fan-in values from ܴܫ௅ௌூ݊ݕܦ௕௜௡’s results (T2 – T7). The values above the boxes 
represent the percentage of features for which the technique was able to locate at least 

one relevant method. 

 
(a) Eclipse 

 
(b) Rhino 

Figure 15 Comparing the average position of all gold set methods for one of the most 
effective techniques based on using web mining as a filter (T1) and techniques based on 
filtering methods with certain fan-in values from ܴܫ௅ௌூ݊ݕܦ௕௜௡’s results (T2 – T7). The 
values above the boxes represent the percent of all the gold set methods the technique 

could locate. 
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links is considered as well. For instance, the PageRank of a page is based upon how many 
other pages link to the page and the PageRank of those pages. Similarly with HITS, 
page’s authority score is based on how many hubs point to it, not just the total number of 
pages that link to it. The web mining algorithms are defined recursively (see Sections 
2.3.1 and 2.3.2) to capture this indirect information. Another difference between this 
work and research on using fan-in is that web mining is applied to a dynamic call graph, 
while fan-in is computed from a static call graph. 

Figure 14 compares the effectiveness of ܴܫ௅ௌூ݊ݕܦ௕௜௡ܹܯுூ்ௌሺ௛,௕௜௡ሻ
௕௢௧ to several 

techniques based on filtering methods with certain fan-in values from the ranked list 
produced by ܴܫ௅ௌூ݊ݕܦ௕௜௡. For instance, T3 prunes all methods with a fan-in value less 
than or equal to 2. In both Eclipse and Rhino, the approaches that filter more methods 
have lower average effectiveness. However, these techniques are only able to locate at 
least one gold set method for a smaller percentage of all the features. The results are 
similar when the rankings of all of a feature’s methods are considered, as seen in Figure 
15. Therefore, using fan-in as a filtering heuristic is too naïve and simplistic because it 
eliminates too many of a feature’s relevant methods, unlike using web mining. 

Concerning the use of execution frequency or binary weights, the results do not show 
a significant difference between the two, nor is one consistently more effective than the 
other. However, one observation is that in Rhino, binary weights were more effective, 
likely because the Rhino traces had many loops which artificially inflated the execution 
frequencies of many of the methods. Using binary weights avoided this situation. 

Each of the analyses used in the data fusion model have their own costs and 
overheads that must be weighed against the benefits of using the techniques. The main 
cost associated with LSI is indexing the corpus, which for large corpora can take several 
minutes, depending on many factors such as the size of the corpus and CPU speed. 
However, this is a one-time cost and can be performed incrementally when the source 
code changes (Jiang et al. 2008). Gathering execution information by collecting traces is 
probably the most expensive analysis used in the model in terms of both time and space. 
Tracing a program’s execution can impose considerable overhead and significantly slow 
down execution speed (Cornelissen et al. 2009). Collecting a trace of a large system such 
as Eclipse could take an hour. Additionally, the collected trace will be large in size, 
possible over a gigabyte (see Table 2). Collecting multiple traces requires sufficient 
storage space to save them all. The final type of analysis used in the framework is web 
mining. Running the web mining algorithms can take several minutes for a large system. 
Like indexing with LSI, this is a one-time cost. 

4.6. Threats to Validity 

There are several threats to validity of the evaluation presented in this article. 
Conclusion validity refers to the relationship between the treatment and the outcome and 
if it is statistically significant. Since no assumptions were made about the distribution of 
the effectiveness measures, a non-parametric statistical test was used. The results of the 
test showed that the improvement in effectiveness of most of the web mining based 
feature location techniques over the state of the art is significant. 

Internal validity refers to if the relationship between the treatment and the outcome is 
casual and not due to chance. The effectiveness measure is based on the position of a 
feature’s first relevant method, and the relevant methods are defined by a gold set. In 
Eclipse, the gold set was defined by bug report patches. These patches may contain only 
a subset of the methods that implement a feature, and sometimes the methods were not 
implemented until a later version. In Rhino, the gold set methods were defined manually 
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by other researchers who were not system experts. In jEdit, the gold set was extracted 
from SVN commits. Thus, relevant methods could be missing from the gold sets of each 
system. This threat is minimized by the fact that the patches were approved by the 
module owners and the Rhino data has been previously used by other researchers (Eaddy 
et al. 2008a; Eaddy et al. 2008b). 

Another threat to internal validity pertains to the collection of data from IR and 
dynamic analysis. Information retrieval requires a query. The queries in this evaluation 
were taken directly from bug reports and documentation. It is possible that the queries 
used do not accurately reflect the features being located or that the use of different 
queries with vocabularies more inline with the source code would yield better results. 
However, using these default queries instead of formulating our own eliminated the 
introduction of bias. Similarly, execution traces were collected for each feature based on 
either the bug reports or test cases. The collection of these traces may not have invoked 
all of a feature’s relevant methods or may have inadvertently invoked another feature. 
This is a threat to validity common to all approaches that use dynamic analysis. The use 
of test cases distributed with the software reduces this threat since the tests were created 
by the system’s authors. 

External validity concerns whether or not the results of this evaluation can be 
generalized beyond the scope of this work. Three open source systems written in Java 
were evaluated. Eclipse is large enough to be comparable to an industrial software 
system, but Rhino and jEdit are only medium-sized. Additional evaluations on other 
systems written in other languages are needed to know if the results of this study hold in 
general. 

5. Related work 

5.1. Feature Location 

Existing feature location techniques can be broadly classified by the types of analysis 
they employ, be it static, dynamic, textual, or a combination of two or more of these. This 
section reviews some of the related work that is most relevant to the work presented here 
and explains the key differences between this work and the related work. For a 
comprehensive survey on feature location techniques, please refer to (Dit et al. 2011). 

There are several static approaches to feature location. Chen and Rajlich (Chen and 
Rajlich 2000) proposed the use of Abstract System Dependence Graphs (ASDG) as a 
means of static feature location, whereby users follow system dependencies to find 
relevant code. Robillard (Robillard 2005; Robillard 2008) introduced a more automated 
static approach that analyzed the topology of a system’s dependencies. Saul et al. (Saul et 
al. 2007) applied the HITS algorithm on subsets of the static callgraph in order to 
recommend methods related to a method given as a starting point. Harman et al. (Harman 
et al. 2002) used hypothesis-based concept assignment (HB-CA) (Gold and Bennett 
2002) and program slicing to create executable concept slices and found that these slices 
can be used to decompose a system into smaller executable units corresponding to 
concepts (features) (Binkley et al. 2008). In this work, instead of using static information, 
textual and dynamic data are used to get results that are more tailored to a specific 
feature. 

Software reconnaissance (Wilde and Scully 1995) is a well-known dynamic 
approach to feature location. Two execution traces are collected: one that invokes the 
feature of interest and another that does not. The traces are compared, and methods 
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invoked only in the feature-specific trace are deemed relevant. SPR (Antoniol and 
Guéhéneuc 2006) is another dynamic feature location technique in which statistical 
hypothesis testing is used to rank executed methods. Our work employs dynamic 
information for feature location, but uses it as a filter to textual information instead of 
directly locating a feature from pure dynamic analysis. 

Textual feature location was introduced by Marcus et al. (Marcus et al. 2004) when 
they applied LSI to source code. The approach has been extended to include relevance 
feedback (Gay et al. 2009), where users indicate which results are relevant, and a new 
query is automatically formulated from the feedback. Textual analysis of source code is 
not limited to LSI. Hill et al. (Hill et al. 2009) also use natural language processing (NLP) 
and the idea of query expansion and refinement in their approach to feature location. NLP 
analyzes the parts of speech of the words used in source code. Grant et al. (Grant et al. 
2008) employ Independent Component Analysis (ICA) (Comon 1994) for feature 
location. ICA is an analysis technique that separates a set of input signals into statistically 
independent components. For each method, the analysis determines its relevance to each 
of the signals, which represent features. This work relies on LSI as opposed to other 
analyses because LSI is the de facto standard. 

In addition to these techniques based on a single type of analysis, there are many 
hybrid approaches. Both SITIR (Liu et al. 2007) and PROMESIR (Poshyvanyk et al. 
2007) combine textual and dynamic analysis. FLAT3 (Savage et al. 2010) provides tool 
support for SITIR. Eisenbarth et al. (Eisenbarth et al. 2003) applied formal concept 
analysis (Ganter and Wille 1996) to execution traces and combined the results with an 
approach similar to ASDGs. This approach involves human input and does not produce 
ranked results, so it was not included it in the evaluation. Dora (Hill et al. 2007) and 
SNIAFL (Zhao et al. 2006) incorporate information from textual and static analysis. 
Rohatgi et al. (Rohatgi et al. 2009) proposed an approach that combines dynamic and 
static analysis. Cerberus (Eaddy et al. 2008a) is the only hybrid approach that combines 
static, dynamic, and textual analyses. Dora and Cerberus do not produce ranked results, 
but SNIAFL does, so future work involves comparing the new web mining based 
techniques to it. 

There are some feature location techniques that are not based on textual, dynamic, or 
static analyses. Robillard and Dagenais (Robillard and Dagenais 2008; Robillard and 
Dagenais 2010) also use historical information from a repository for feature location. 
They use change history to identify clusters of program elements related to a task (i.e., a 
feature). Given a query of a set of program elements, their approach groups repository 
transactions by the number of nearest-neighbor program elements they share and returns 
a cluster of elements related to the query. Various filtering heuristics can be applied to the 
results to remove program elements that are unlikely to be related. For instance, if a 
program element is modified in a high percentage of all of the transactions in the 
repository, it can be ignored. 

Hipikat (Cubranic and Murphy 2003; Cubranic et al. 2005) is a feature location 
approach that also makes use of archival information for feature location, but instead of 
identifying candidate program elements, Hipikat recommends artifacts from a project’s 
archives such as online documentation, versions, bugs, or communications. Hipikat forms 
a group memory (Cubranic et al. 2004) from a project’s history as recorded in source 
code repositories, issue trackers, communication channels, and web documents. Links 
between these artifacts are inferred using IR. For example, a source code version can be 
linked to a bug report if the bug’s id is included in a repository commit log message. This 
history is used to find relevant artifacts in response to a user query. The query consists of 
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an artifact, potentially a program element, for which the user wants recommendations of 
related artifacts. Hipikat responds with a list of artifacts ranked by their relevance. 

No existing feature location techniques rely on web mining. However, web mining 
has been used for other program comprehension tasks. The HITS algorithm has been used 
on a dependence graph of a system weighted with dynamic coupling measures to identify 
the classes that are most important for understanding the software (Zaidman et al. 2006; 
Zaidman and Demeyer 2008). Saul et al. (Saul et al. 2007) also used HITS to recommend 
related API calls. SPARS-J (Inoue et al. 2005) is a system that analyzes the usage 
relations of components in a software repository using a ranking algorithm that is similar 
to PageRank. Components that are generic and frequently reused are ranked highly. Li 
(Li 2009) also uses a variant of PageRank called Vertex Rank Model (VRM) to refine 
concept bindings found using HB-CA. The VRM works on a dependence graph of 
concept bindings to identify statements that can be removed from the concept bindings 
without losing domain knowledge.  Also, approaches based on Information Foraging 
Theory that rely on link analysis have been applied in the context of software 
maintenance tasks (Lawrance et al. 2007). 

Aspect mining is closely related to feature location. The goal of aspect mining is to 
identify concerns11 that are scattered throughout a system’s modules so that they can be 
refactored in to their own modules known as aspects. The concerns are not known a 
priori, whereas in feature location, the features of interest are known before searching 
begins. Marin et al. (Marin et al. 2004; Marin et al. 2007) use fan-in to identify concerns 
that can be refactored in to aspects. Methods with high fan-in are called from many 
different locations within the system, and thus possibly represent a scattered concern. 
Other aspect mining approaches have employed the idea of data fusion by combining 
multiple techniques (Shepherd et al. 2005) including fan-in, clone detection (Bruntink et 
al. 2004; Shepherd et al. 2004; Bruntink et al. 2005), and natural language analysis 
(Shepherd et al. 2007). 

5.2. Studies on Maintenance and Evolution 

Feature location is an integral part of software maintenance and evolution. Many 
studies have been conducted investigating what programmers look for when performing 
change tasks and how they look for it. Robillard et al. (Robillard et al. 2007) performed 
an empirical study in which 23 programmers were asked to determine the source code 
that implements 16 concepts (features) in four different software systems written in Java. 
In analyzing the mappings produced by the programmers, Robillard et al. found that the 
amount of agreement for a feature ranged from 0% to 61%, with an average of 34%, 
meaning there is a large amount of variability in the source code programmers consider 
related to a feature. 

Ferret (de Alwis and Murphy 2008) is a tool for answering conceptual queries, which 
are questions about a software system a programmer may have while performing 
maintenance and evolution. The model Ferret is based on supports the composition and 
integration of different sources of information into a queryable knowledge-base. A source 
of information is known as a sphere, and examples include structural relationships in 
source code, dynamic call information from an execution trace, and revision history 
recorded in a software repository. Ferret supports 36 different conceptual queries such as 
“What calls this method?”, “What are this class’ subclasses?”, “What are all the fields 

                                                           
11 A concern is an area of interest or focus in a system. Features can be concerns, but not 
all concerns are features. 
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declared by this type?”, and “What transactions changed this element?”. These types of 
queries represent questions programmers may have when investigating a software system 
in order to locate a feature’s implementation. 

Sillito et al. (Sillito et al. 2008) also explored the kinds of questions programmers 
ask while performing software maintenance. They conducted two user studies with the 
goal of determining what programmers need to learn about a system before evolving it 
and how programmers find the information they need. Based on the results of their 
studies, they cataloged 44 types of questions programmers ask during maintenance tasks 
and described activities aimed at answering those questions. 

Starke et al. (Starke et al. 2009) conducted a similar study focused on the challenges 
programmers face when trying to find information needed for a maintenance task and 
how tool support can be improved. From a case study involving ten programmers 
assigned change tasks on a large system, Starke et al. had five key observations. The 
observations most relevant to feature location are that the programmers only skimmed the 
search results instead of thoroughly investigating them all and only opened a small 
number of the results to view their source code. Based on their observations, they 
conclude that tools should support skimming and ranking of the results. 

6. Conclusion 
This work has introduced a data fusion model for feature location. The basis of the 

model is that combining information from multiple sources is more effective than using 
the information individually. Feature location techniques based on web mining and 
approaches using web mining as a filter to information retrieval were instantiated within 
the model. A large number of features from three open source Java systems were studied 
in order to discover if feature location based on combining IR and web mining is more 
effective than the current state of the art and which of two web mining algorithms is 
better suited to feature location. 

The results of an extensive evaluation reveal that new feature location techniques 
based on using web mining as a filter are more effective than the state of the art, and that 
their improvement in effectiveness is statistically significant. Future work includes 
instantiating the model with different IR techniques and investigating when static call 
graphs are acceptable to use. All of the data used to generate the results presented in this 
work is made publically available to other researchers who wish to replicate these case 
studies.  
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