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Abstract Previous studies have demonstrated the relationship between coupling and external 

software quality attributes, such as fault-proneness, and the application of coupling to software 

maintenance tasks, such as impact analysis.  These previous studies concentrate on class 

coupling.  However, there is a growing focus on the study of features in software, and features 

are often implemented across multiple classes, meaning class-level coupling measures are not 

applicable.  We ask the pertinent question, “Is measuring coupling at the feature-level also 

useful?”  We define new feature coupling metrics based on structural and textual source code 

information and extend the unified framework for coupling measurement to include these new 

metrics.  We also conduct three extensive case studies to evaluate these new metrics and answer 

this research question.  The first study examines the relationship between feature coupling and 

fault-proneness, the second assesses feature coupling in the context of impact analysis, and the 

third study surveys developers to determine if the metrics align with what they consider to be 

coupled features.  All three studies provide evidence that feature coupling metrics are indeed 

useful new measures that capture coupling at a higher level of abstraction than classes and can be 

useful for finding bugs, guiding testing effort, and assessing impact of changes. 

Keywords Feature coupling · Information Retrieval · Latent Semantic Indexing · program 

comprehension · open source software 

1 Introduction 

Coupling is an important software relationship that has been used for numerous tasks related to 
software development and maintenance such as predicting software quality (Basili et al. 1996; 
Briand et al. 2000; Briand et al. 2002; Subramanyam and Krishnan 2003; Gyimóthy et al. 2005; 
Olague et al. 2007) and impact analysis (Briand et al. 1999; Wilkie and Kitchenham 2000; 
Poshyvanyk et al. 2009).  Coupling is primarily measured at the class-level by determining the 
degree to which two classes in an object-oriented system depend on one another.   

Features are functionalities described in functional requirement specifications1 that have been 
actualized in a software system (Poshyvanyk et al. 2007).  For example, consider an Internet 

                                                 
1 We acknowledge that some features are not documented in requirements, but still can be analyzed in source code. 
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browser software system, such as Mozilla Firefox.  Examples of the features for such a system 
are “bookmarking web pages” and “opening a new tab window”.  Often, features have 
implementations that span multiple methods or classes and cannot be modularized due to design 
decisions (Kiczales et al. 1997; Tarr et al. 1999).  Features are important software entities that 
transcend the boundaries of classes.  Note that the notion of concepts and concerns are more 
general than features capturing non-functional requirements in addition to functional requirements.  
Our work is also applicable when considering the more general abstractions.  Currently, there are 
no metrics that explicitly capture the coupling between features, and the usefulness of such 
measures is not known. 

In this paper, we argue that feature-level coupling metrics are needed and show that they are 
useful.  Feature coupling can be used as a predictor of fault-proneness.  Just as class coupling 
has been used in testing (Jin and Offutt 1996), if it is known that two features are tightly coupled, 
more testing effort can be applied to them to help eliminate bugs.  Another example is software 
maintenance.  Many software change tasks are framed in terms of a system’s functionalities or 
features.  Since a feature’s implementation may be scattered throughout the source code of a 
software system, programmers may have difficulty determining which other features interact with 
it.  Therefore, changes made to one feature may have unintended consequences for other, 
seemingly unrelated features, causing improper system behavior.  To avoid such situations, 
feature-level impact analysis should be performed to discover other features that are tightly 
coupled to the feature undergoing modification. Thus feature coupling metrics are needed to 
measure the dependencies among features to support a variety of software development and 
maintenance tasks.  Additionally, we speculate that our proposed feature-level coupling metrics 
may also be applicable to the problem of detecting feature-interactions (Griffeth and Lin 1993; 
Zave 1993; Aho and Griffeth 1995).   

We introduce new feature coupling metrics because current coupling metrics are designed for 
classes, and features exist at a higher level of abstraction than classes.  Features are defined by a 
portion of a specification and implemented in source code, meaning features are represented by 
both structured (e.g., source code dependencies) and unstructured (e.g., identifiers and comments 
in source code) information.  Therefore, it is logical to measure feature coupling using both types 
of data: structured and unstructured.  Structured information refers to source code and other 
related derivative artifacts such as program dependence graphs (PDGs) that are ordered in a 
particular way (i.e., following programming language grammar rules).  Unstructured information, 
on the other hand, refers to internal source code comments, identifier names, and external 
documentation that encode domain knowledge and design decisions.  While comments and 
documentation can be structured in the form of sentences and organized into sections, they are 
more free form, unstructured, and do not follow specific rules.   

We define feature coupling metrics based on these different sources of information.  Structural 
Feature Coupling (SFC) captures the relationship between two features based on structured 
information, while Textual Feature Coupling (TFC) measures the coupling between features based 
on unstructured, textual information in source code using an information retrieval technique called 
Latent Semantic Indexing (LSI) (Deerwester et al. 1990) (see Section 3 for more details).  In 
addition, we conjecture that the structured and unstructured data are complimentary, as has been 
shown elsewhere (Hill et al. 2007; Poshyvanyk et al. 2007; Eaddy et al. 2008; Poshyvanyk et al. 
2009), so we propose to combine SFC and TFC into a hybrid feature coupling metric called HFC.  
Hybrid feature coupling can be used when one source of information cannot be completely relied 
on, but programmers still want to incorporate it.  For instance, in systems that are poorly 
structured, more weight can be given to textual information to compensate.  Likewise, in 
software with little or no comments or poorly named identifiers, more weight can be placed on 
structural information.  

This paper makes the following research contributions:  
1. Define feature coupling metrics.  We formally define coupling metrics for features using 

structural and textual information.  Our metrics are novel and fill a void in the research area 
that currently lacks feature coupling metrics based on either type of information.  We also 
theoretically validate our metrics and introduce a new dimension to the unified framework for 
coupling measurement (Briand et al. 1999). 

2. Demonstrate the relationship between feature coupling and fault-proneness.  To 
demonstrate both the usefulness and applicability of our new feature coupling metrics, we 
perform three separate case studies.  In the first case study, we empirically investigate the 
relationship between our feature coupling metrics and fault-proneness.  In this study, we 
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establish that there is a statistically significant correlation between feature coupling and 
defects.  Our results build on previously published findings (Eaddy et al. 2008) that cross-
cutting concerns may cause defects.  In essence, the first case study extends prior results by 
showing that there is also a relationship between coupled features (concerns) and bugs. 

3. Evaluate the application of feature coupling to impact analysis.  We also demonstrate 
some implications of feature coupling measurement for feature-level impact analysis.  
Feature coupling is a good starting point for understanding how a change to one feature is 
likely to affect others.  For example, during impact analysis, all features can be ranked by 
their strength of coupling to the feature being modified.  If programmers know that feature A 
is more tightly coupled to feature B than to feature C, they can expect that a change to A is 
likely to impact B more than C and spend more time ensuring B was not adversely affected by 
the change to A.  Also, analyzing related features using coupling metrics can help avoid 
introducing defects caused by intricate and potentially hidden dependencies (Yu and Rajlich 
2001) among features.  We show that feature coupling can be effectively used for impact 
analysis under certain configurations.  

4. Explore how feature coupling metrics align with developers’ opinions.  The final way in 
which we evaluate our new feature coupling metrics is by investigating if they agree with 
developers’ opinions of whether two features are coupled or not.  We find that overall, there 
is agreement between the developers’ ratings and our measures, meaning our feature coupling 
metrics do capture coupling among features as recognized by software developers.     

5. Create tool support for feature coupling.  We have developed an Eclipse plug-in for 
managing features.  The tool has functionality to assign portions of code to features, perform 
structural and textual analyses, and the ability to compute and analyze feature coupling 
metrics on demand. 

The three case studies provide evidence that feature coupling metrics are useful tools 
programmers can use while performing feature-level software maintenance tasks.  Like class 
coupling measures, they can be used to predict fault-proneness and for impact analysis.  These 
new metrics give programmers greater flexibility because they allow for analysis at a higher level 
of abstraction than classes. 

The remaining sections of the paper are organized as follows.  Section 2 presents related work, 
covering structural coupling measures, other static coupling measures, dynamic coupling 
measures, as well as applications of such measures.  Subsequently, Section 3 discusses using 
structural and unstructured information for feature coupling.  Our case studies conducted to 
evaluate our proposed feature coupling metrics are presented in Section 4 which is followed by the 
conclusions in Section 5. 

2 Related Work 

There are many existing coupling metrics that employ different types of information such as 
structural, dynamic, textual, or evolutionary.  Most of these metrics determine coupling between 
classes.  Our work is distinct from previous research in that it provides a formal way to capture 
and analyze the strength of coupling among features using various types of information, namely 
structural and textual.  Furthermore, there are no existing metrics that combine information from 
two or more distinct sources (e.g., structural and textual) to capture coupling. Table 1 summarizes 
the state-of-the-art in coupling measurement, and we offer a brief overview below. 

2.1 Structural Coupling Measures 
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Most existing coupling metrics capture coupling between classes structurally.  Coupling Between 
Objects (CBO) and Response for a Class (RFC) were introduced in Chidamber and Kemerer’s 
suite of object-oriented metrics (Chidamber and Kemerer 1994).  According to CBO, two classes 
are coupled if methods in one class use methods or fields in the other.  RFC and RFCα are counts 
of a class’ methods plus methods that are directly or indirectly (Churcher and Shepperd 1995) 
invoked by those methods.  Li and Henry (Li and Henry 1993) introduced several class coupling 
metrics that also utilize structural information.  Message Passing Coupling (MPC) between 
classes A and B is based on the number static invocations of methods from class B in class A.  
Data Abstraction Coupling (DAC) is a count of the number of fields in class A that are of type B, 
while DAC’ is a binary version of this metric.  There are a wealth of other structural metrics 
based on class dependencies such as Efferent Coupling (Ce) and Afferent Coupling (Ca) (Martin 
1994). 

Briand et al. (Briand et al. 1997) developed several metrics for measuring the coupling between 
classes based on structural information from method invocations and the types of fields and 
parameters.  These metrics, plus those by (Hitz and Montazeri 1995) and (Eder et al. 1994), were 
reviewed in (Briand et al. 1999) to build a unified framework for coupling measurement in object-
oriented systems. 

Information flow-based coupling (ICP) (Lee et al. 1995) is a structural measure that takes 
polymorphism into account.  ICP counts the number of methods from a class B invoked in a class 
A, weighted by the number of parameters.  Two alternative versions, IH-ICP and NIH-ICP, count 
invocations of inherited methods and classes not related through inheritance, respectively.  Like 
ICP, some of the coupling measures defined in (Briand et al. 1999) take polymorphism into 
account.  All of these existing coupling metrics are defined for classes, and therefore are at a 
lower level of abstraction than our feature coupling metrics. 

2.2 Other Static Coupling Measures 

Other static coupling measures exist along textual and evolutionary dimensions.  Poshyvanyk and 
Marcus (Poshyvanyk and Marcus 2006) define a coupling metric for classes based on textual 
information extracted from source code identifiers and comments.  Their conceptual coupling 
metric, CoCC (which stands for conceptual coupling of classes), captures a new dimension of 
coupling not addressed by structural or dynamic measures.  More recently, Újházi et al. (Újházi 
et al. 2010) extended CoCC, defining a new conceptual metric namely Conceptual Coupling 
between Object Classes (CCBO).  Another conceptual class coupling metric lately defined by 
Gethers and Poshyvanyk (Gethers and Poshyvanyk 2010) is coined as Relational Topic based 
Coupling (RTC). RTC utilizes topic-based analysis of source code to capture coupling among 
classes. CoCC, CCBO, and RTC are all defined for classes only, while the metrics we propose in 
this paper are for features.  Interaction (Zou et al. 2007), logical (Gall 2003), and evolutionary 
(Zimmermann et al. 2005) coupling metrics utilize information from repositories to mine 
information from artifacts (including source code) that are frequently co-changed.  Such 
evolutionary information has been used for impact analysis (Sherriff and Williams 2008), much 
like coupling metrics.  Additionally, coupling metrics have been defined for other applications 
such as knowledge-based (Kramer and Kaindl 2004) and aspect-oriented (Zhao 2004) systems. 

Table 1.  State-of-the art in coupling measurement across two dimensions: level of coupling and 
type of information used to capture the strength of coupling.  The metrics proposed in this paper 
are highlighted in bold.  

Coupling 
dimension 

Structural Dynamic Textual Hybrid Evolutionary 

Class 

CBO, RFC, MPC, DAC, Ce 
and Ca, Info coupling, class-
attribute interaction, class-
method interaction, method-
method interaction  

Dynamic 
import and 
export 
coupling  

CoCC, 
RTC  

Future 
work 

Interaction coupling, 
evolutionary  and 
logical coupling  

Feature SFC, SFC   DIST  
TFC, 

TFCmax 
HFC Future work 
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2.3 Dynamic Coupling Measures 

Arisholm et al. (Arisholm et al. 2004) introduced dynamic import and export metrics to capture the 
coupling between classes at runtime.  Dynamic analysis is often used to locate the code 
associated with features (Wilde and Scully 1995; Eisenbarth et al. 2003; Salah et al. 2005; Liu et 
al. 2007; Poshyvanyk et al. 2007; Eaddy et al. 2008) since a feature’s behavior can be observed 
during execution.  Currently the only existing feature-level coupling-like metric that we are 
aware of is based on dynamic information.  Wong and Gokhale (Wong and Gokhale 2005) 
defined the distance (DIST) between two features using an execution slice-based technique.  
Similar feature metrics have been proposed to dynamically measure certain relationships or 
dependencies between features (Greevy and Ducasse 2005; Lienhard et al. 2007) other than 
coupling.  Greevy et al. (Greevy et al. 2006) also created metrics for dynamically measuring the 
evolution of a feature.  Similarly, Giroux and Robillard (Giroux and Robillard 2006) defined a 
measure for feature coupling across versions of a system using regression tests since tests typically 
align with features.  The association graph matching similarity measure (AGM) introduced by 
Kothari et al. (Kothari et al. 2006) is a measure of pair-wise similarity between features based on 
dynamic call graphs.  It has been used to find canonical feature sets (Kothari et al. 2006), feature 
version similarity (Kothari et al. 2008), and feature implementation overlap (Kothari et al. 2007).  
All of these feature metrics solely utilize dynamic information. However, dynamic information 
may not be sufficient to precisely capture coupling among features.  The best way to collect 
dynamic information is to execute scenarios that exercise only one feature at a time, but 
developing such scenarios can be difficult, if possible at all (Wong and Gokhale 2005).  Our 
metrics are the first to capture feature coupling using structural and textual information, thus 
avoiding the overhead of collecting execution traces.  

2.4 Applications of Coupling Metrics 

There have been numerous studies showing that coupling is a good predictor of external quality 
attributes such as fault-proneness (Zimmerman and Nagappan 2008; Cataldo et al. 2009; Briand et 
al. 1997; Basili et al. 1996), maintainability (Li and Henry 1993), reengineering effort (Meyers and 
Binkley 2007), and change-proneness (Briand et al. 1999). Other studies have shown that coupling 
can be used for different tasks (Darcy and Kemerer 2005)  such as impact analysis (Wilkie and 
Kitchenham 2000; Poshyvanyk et al. 2009; Kagdi et al. 2010), program comprehension (Zaidman 
et al. 2006), reengineering (Abreu et al. 2000), quality assessment (Bansiya and Davis 2002), reuse 
(Chidamber et al. 1998), change propagation (Geipel and Schweitzer 2009), and clone detection 
(Geiger et al. 2006).  These studies focus on coupling at the class level, while our work examines 
feature coupling and investigates if it is also useful for predicting fault-proneness and performing 
impact analysis.   

3 Using Structural and Textual Information for 

Feature Coupling 

Our approach to measuring feature coupling is based on two main ideas: 1) features are entities 
that are coupled at a higher level of abstraction than methods and classes and 2) coupling can be 
measured in multiple ways by using structured and unstructured (textual) information.  Features 
are domain concepts implemented in a system (Poshyvanyk et al. 2007), and their implementations 
are often scattered across a system’s classes (Eaddy et al. 2008).  Therefore, features exist at a 
level of abstraction outside of or above classes in object-oriented languages.  Features, in the 
context of this research, closely relate the notion of features in the product line research 
community (Griss 2000; Kang et al. 2002).  As described in Section 2, there exists an abundance 
of class coupling metrics that rely on structural dependencies and some that utilize textual 
information to measure class coupling.  These metrics are useful and important because they 
capture essential forms of coupling.  However, since features transcend class boundaries, we 
propose and define metrics that comprehensively capture and measure feature coupling using both 
structural and textual information. 

Traditional coupling metrics focus on capturing the relationships among classes within a 
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software system.  Therefore, those metrics are unable to properly quantify coupling among 
features.  This, in part, is because of cross-cutting concerns.  More specifically, within source 
code there potentially exist scattered implementations of features, crossing module or class 
boundaries.  Since such features are not completely encapsulated within modules or classes the 
usefulness of existing coupling metrics is limited.  With the introduction of our metrics we are 
able to bridge the gap between features and coupling measurement. 

The structural feature coupling metric that we propose measures the coupling between two 
features structurally, drawing on information used by existing class-level coupling metrics.  The 
textual feature coupling metric we introduce measures the conceptual or textual similarity between 
two features.  Our approach is based on the premise that the unstructured information embedded 
in source code reflects, to a reasonable degree, the software’s domain concepts since existing 
feature location techniques (Marcus et al. 2004; Liu et al. 2007; Poshyvanyk et al. 2007; Revelle et 
al. 2010) leverage such textual information to find code that implements features.    

3.1 System Representation 

To define structural and textual feature coupling metrics, we first define a representation of a 
software system. 
 
Definition 1: (System, Classes, Methods) 
A system S is an object-oriented software system.  S has a set of classes C = {c1, c2,…, cn}.  The 
number of classes in S is n = |C|.  A class has a set of methods.  For each class c  C, let Mc = 

{m1, m2,…, mz} be the set of methods implemented in c, where z = |Mc| is the number of methods in 
c.  The set of all methods in the system S is defined as MS.   
 
Definition 2: (Feature) 
A feature f is a requirement, functionality, or behavior described in the specification of a system S.  
A system S has a set of features F = {f1, f2,…fp} where p  = |F|.  A feature f is implemented by a 
set of methods Mf   MS. The set of methods, Mf , represent the feature f, within the source code.  
The methods of Mf may belong to multiple classes. A method may belong to several features, and 
a feature may have methods that belong to other features as well.  Note that the connection 
between requirements and methods implementing features is that requirements describe desired 
functionality, which will be realized upon development of a software system.  We indirectly 
capture coupling between the requirements by analyzing the methods where their functionality is 
implemented.  
 
 We base this definition from Eaddy et al.’s (Eaddy et al. 2008) well-established model for 
representing cross-cutting concerns.  The key differences include the level of granularity in which 
features are mapped to source code and the exclusion of the notion of hierarchy for both features 
and program elements.  The prior model considered fields, methods and classes when mapping to 
source code whereas our model only maps features to methods.  Additionally, we do not consider 
the hierarchical structure of either features or source code elements.  Identification of methods 
associated with features is accomplished using the prune dependency rule (Eaddy et al. 2008).  
That is, we simulate the removal of each feature from the source code.  All removed or altered 
methods are identified as contributors to the implementation of the given feature. 

3.2 Structural Feature Coupling Using Structural Information 

In this section we discuss how structural information is leveraged to capture coupling between 
features for a given software system. 

3.2.1 Analyzing Structural Information in Source Code 

Most software engineers are familiar with structural source code information that can be 
represented in various forms such as a program dependence graph (PDG2).  We use a PDG to add 

                                                 
2 A PDG is a directed graph that represents the dependencies among objects in a software system.  
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additional information to our structural feature coupling metric.  We obtain a method-level PDG 
using JRipples (Buckner et al. 2005; Petrenko and Rajlich 2009).  It should be noted that class 
relationships, method invocations, and field references have all been used to compute class 
coupling (Briand et al. 1999).  In our work, we focus on methods (method sets Mf1 andMf2 for the 
feature pair f1, f2) as the main unit of structural information for several reasons.  Working at 
method-level granularity is common with feature location.  Most feature location techniques 
attempt to find methods associated with features (Wilde and Scully 1995; Eisenbarth et al. 2003; 
Liu et al. 2007; Poshyvanyk et al. 2007; Eaddy et al. 2008) because methods implement 
functionality in code.  Also, several existing class coupling metrics, such as CBO and RFC, use 
methods only (Chidamber and Kemerer 1994; Arisholm et al. 2004; Poshyvanyk and Marcus 
2006), ignoring fields.  We provide more details on how we use this information to capture 
structural feature coupling in following section. 

3.2.2 Structured Feature Coupling Metric 

We define structural feature coupling metrics using our representation of a system, features, and 
methods.  
Definition 3: (Structural Feature Coupling – SFC) 
The structural feature coupling (SFC) between features fa and fb, implemented by the methods in 
sets Ma and Mb respectively, is defined as the ratio of the number of methods shared by the features 
to the total number of methods associated with the two features. 

| |
( , )

| |
a b

a b
a b

M M
SF C f f

M M




  
(1) 

We only consider features with non-empty methods sets to avoid a potential division by zero.  
SFC uses structured information to capture feature coupling by measuring the degree to which two 
features share code. 

Instead of solely basing coupling on the methods that implement two features, an alternative is 
to consider the first order structural dependencies of those methods to also be associated with the 
features.  Dependencies are taken into account in some existing coupling metrics (e.g. RFCα), 
plus they are often traversed for maintenance, feature location, and program comprehension tasks.  
Therefore, we include the static callers and callees of a feature’s methods in a variant SFC, which 
we coin SFC’. 
Definition 4: (Structural Features Coupling Prime – SFC’) 

Let fa and fb be features implemented by the methods in sets Ma and Mb respectively.  Let Ma’ 
  Ma and Mb’   Mb be the set of methods that implement features fa and fb, respectively, plus 
the methods that are first order structural dependencies of the methods in Ma and Mb.  So, let Da 
be the set of methods which directly call or are called by a method in Ma.  From this we have the 
following formal definition Ma’ = Ma ∪ Da.   That is, in addition to including the methods which 
implement the features, Ma’ and Mb’ include the methods that directly call or are directly called by 
the methods in Ma and Mb respectively.  The structural feature coupling prime (SFC’) is defined 
as the number of methods shared by two features over the total number of methods associated with 
both features. 

| |
( , )

| |
a b

a b
a b

M M
SF C f f

M M

 







  

(2) 

Thus, SFC’ incorporates additional structured information in the form of dependencies to 
measure feature coupling.  Both SFC and SFC’ are normalized, i.e., they have values in the range 
[0, 1].  The closer the value is to one, the stronger the structural coupling between the features. 

3.3 Textual Feature Coupling Using Unstructured Information 

Although structural information captures key characteristics of a software system, the importance 
of textual information must not be overlooked.  In this section we discuss the process of 
extracting and utilizing textual information to measure the degree of coupling between features in 
a software system.  This is accomplished using Latent Semantic Indexing which identifies 
relationships between terms and concepts in unstructured text.  LSI (Deerwester et al. 1990) has 
been successfully applied to a number of software engineering tasks, such as feature location 
(Poshyvanyk et al. 2007; Poshyvanyk and Marcus 2007; Cleary et al. 2009; Revelle and 
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Poshyvanyk 2009), traceability link recovery (Jiang et al. 2008; De Lucia et al. 2007; Hayes et al. 
2006; Marcus et al. 2005; Lormans et al. 2008), software measurement (Marcus et al. 2008; 
Poshyvanyk et al. 2009), and detecting code clones (Marcus and Maletic 2001; Tairas and Gray 
2009).   

3.3.1 Analyzing Unstructured Information in Source Code with LSI 

In LSI, a word is a basic unit of discrete data defined to be an item from a vocabulary V={w1, 
w2,..., wv}.  A document is a sequence of n words denoted by d = (w1, w2,..., wn), where wn is the 
nth word in the sequence.  A corpus is a collection of m documents, D = (d1, d2,... ,dm).  Table 
2Table 2 shows how these LSI concepts are mapped to source code.  In general, a corpus consists 
of a set of documents and in our case the set of documents corresponds to methods in the source 
code.  The documents consist of words extracted from the comments and identifiers of the 
corresponding methods in the source code. 

The process of applying LSI to source code has three steps.  First, the source code must be 
preprocessed to build a corpus.  Second, the corpus is indexed.  Third and finally, textual 
similarities between all pairs of documents (methods) are computed.  If two methods use similar 
terminology and have a high textual similarity, they may implement related concepts and therefore 
be coupled.  Each of these steps is explained in more detail in the following subsections.   

3.3.2 Building the Corpus 

A corpus represents all the words found in each document of a body of text.  A document can be 
a sentence, a paragraph, a chapter, or in the case of source code, a method, a class, or a package.  
To build a corpus for the source code of a software system, a document granularity must first be 
chosen.  In our work, we use methods as documents.  Next, the text of each document must be 
preprocessed before being included in the corpus.  There are several options for preprocessing, 
such as removing stop words and programming language keywords, splitting compound 
identifiers, including or excluding comments, and performing or not performing stemming.  
Stemming (Porter 1980) reduces words to their root form, such that stemming and stemmed would 
become stem.  For every corpus created in this work, stop words (e.g., the, of) and programming 
language keywords (e.g., public, for, try) were removed and compound identifiers were split. 

3.3.3 Indexing the Corpus 

The central concept of LSI is that the information about the contexts in which a word appears or 
does not appear provides a set of mutual constraints that determines the similarity of meaning of 
sets of words (documents) to each other.  LSI indexes a corpus and generates a real-valued vector 
description for each document based on the vector space model (VSM) (Salton and McGill 1983).  
LSI was originally developed in the context of information retrieval as a way of overcoming 
problems with polysemy and synonymy that occurred with VSM approaches.  Some words 
appear in the same contexts, and an important part of word usage patterns is blurred by accidental 
and inessential information.  The method used by LSI to capture essential semantic information is 
dimension reduction, selecting the most important dimensions from a co-occurrence matrix (words 
by documents) decomposed using singular value decomposition (SVD) (Salton and McGill 1983).  
The word  document matrix holds term frequency-inverse document frequency (tf-idf) values 

Table 2.  Mapping LSI concepts to source code. 

LSI Model Source Code Entities 

word 

Identifiers and comments extracted from source code comprise a vocabulary set.  This 
set is refined to exclude programming language keywords, stop words, and punctuation.  
Finally, all compound identifiers are split based on the observed naming conventions. 
V={w1, w2,..., wv }. 

document 
A method is treated as a document, which can be expressed as n identifiers and 
comments from a vocabulary and appear in the implementation of a method 
mi=(w1,w2,...,wn). 

corpus 
The software system S consists of a set of classes comprised of methods, S = (C1, ...,Cz) 
where the methods of the classes forms a corpus  D = (d1, d2, . . . ,dm). 
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which assess how important a particular word is to a given document.  SVD is a form of factor 
analysis and acts as a method for reducing the dimensionality of a feature space without serious 
loss of specificity.  Typically, the word by document matrix is very large and quite sparse.  SVD 
is applied to the word-by-document matrix to get rid of noise. 

LSI requires, as input, a term-by-document co-occurrence matrix.  Dimensionality reduction is 
performed using Singular Value Decomposition (SVD).  The singular value decomposition of a 
co-occurrence matrix X produces three matrices. That is, we can represent our co-occurrence 
matrix as X=T0S0D

'.  The matrix T0 essentially captures terms within domains, D' captures 
documents within domains and the matrix S is the singular values matrix.  When S0 is ordered by 
size we can reduce the dimensionality of the LSI subspace by considering only the top k largest 
dimensions, setting the remaining elements of the diagonal to zero.  Appropriate selection of k 
allows for the subspace to discard unessential details and sampling error while capturing only the 
most significant aspects of the set of textual documents.  The result of SVD is a subspace referred 
to as the LSI subspace.  Within the LSI subspace each document is represented as a vector which 
is derived from the original co-occurrence matrix.   

Using singular value decomposition LSI is able to capture relationships between terms in the 
co-occurrence matrix.  The issues, associated with polysemy and synonymy, are alleviated 
through the use of the context in which terms are used and relationships between terms.  Overall, 
latent semantic indexing provides a good solution to issues previously encountered in the 
information retrieval community and currently is used throughout the software engineering 
community.   

3.3.4 Computing Textual Similarities  

Once the corpus is indexed, the similarities between documents can be computed by taking the 
cosine between their corresponding vectors.  The textual similarity between two documents 
(methods) mi and mj is defined as the cosine between vectors vmi and vmj, corresponding to mi and 
mj after dimensionality reduction is applied.  Just as cosine values range from -1 to 1, so do 
textual similarities.  The closer a value is to one, the more similar the texts of the 
documents/methods are.  Note that textual similarities are symmetric, that is the similarity 
between mi and mj is the same as the similarity between mj and mi.  In Section 3.8, an example of 
how to compute textual feature coupling using the textual similarities between two features is 
given. 

3.3.5 Textual Feature Coupling Metric 

We define textual feature coupling metrics based on unstructured, textual information found in 
source code.  In order to define a metric for the textual coupling between features, we first define 
the conceptual similarity between two methods as well as between a method and a feature.  These 
measures are building blocks needed to define our textual feature coupling metric.  It should be 
noted that, like structural feature coupling metrics, textual feature coupling metrics also infer 
relationships between features based on the methods in which they are implemented in. 
Definition 5: (Conceptual Similarity between Methods – CSM) 
As defined in (Poshyvanyk and Marcus 2006), the conceptual similarity, also known as the textual 
similarity, between methods mi  MS and mj  MS is CSM(mi, mj) where  

2 2

( , )
| | | |

T
i j

i j
i j

vm vm
CSM m m

vm vm



 

(3) 

CSM(mi, mj) is the cosine between vectors vmi and vmj, corresponding to mi and mj after 
indexing.  As defined, the value of CSM(mi, mj)  [-1, 1].  In order to comply with the non-
negativity property of coupling (Briand et al. 1996), if CSM(mi, mj) ≤ 0, we redefine CSM(mi, mj) = 
0.  CSM measures the textual similarity of two methods, but most features are composed of more 
than one method.  Next, we define the conceptual similarity between a single method and a 
feature. 
Definition 6: (Conceptual Similarity between a Method and a Feature – CSMF) 
Let fa and fb be two distinct features in S.  Each feature has a set of methods Ma = {ma1, ma2,… , 
max}, where x = |Ma| and Mb = {mb1, mb2,… , mby}, where y = |Mb|.  Between every pair of methods, 
there is a similarity measure CSM(ma, mb).  The textual similarity between a method ma from fa 



10 

and a feature fb is: 

1
( , )

( , )
a b q

a b

y

q
CSM m m

CSMF m f
y




 
(4) 

which is the average of the textual similarities between a method ma and all methods in feature fb.  
Now that we have a measure of the textual similarity of one method to a feature, we can define the 
textual similarity among all the methods of two features, i.e. their textual coupling.    
Definition 7: (Textual Feature Coupling – TFC) 
Let fa and fb be two distinct features in S.  The textual coupling between fa and fb is: 

1
( , )

( , ) al b
a b

x

l
CSMF m f

TFC f f
x

 
 

(5) 

which is the average of the textual similarity measures between all unordered pairs of methods 
from feature fa and fb.  TFC(fa, fb) is a measure of the textual coupling between the two features.  
This definition guarantees that the coupling between two features is symmetric.   
Definition 8: (Maximum Textual Feature Coupling – TFCmax) 
In (Poshyvanyk and Marcus 2006), a variant of the conceptual class coupling metric was used in 
which only the highest textual similarities between methods of a class are considered.  Similarly, 
we define such an alternative measure for textual feature coupling.  We refine TFC to only 
capture the strongest textual similarity between features.  Under this definition, the maximum 
textual similarity between a pair of features fa and fb is: 

( , ) max{ ( , ) | , }m a x a b a a b ba bTFC f f CSM m m m M m M    (6) 

3.4 Hybrid Feature Coupling 

Definition 9: (Hybrid Feature Coupling – HFC) 
Structural information aligns with a program’s structured information (e.g., source code) while 
unstructured, textual information aligns, to some degree, with domain concepts (e.g., 
requirements).  We combine structural and textual information into a single feature coupling 
metric to take advantage of this complementary relationship. Both SFC and TFC capture coupling 
utilizing relationships between sets of methods in which features are implemented; therefore HFC 
also measures coupling using identical underlying information.  Thus, the hybrid coupling 
between features fa and fb is defined as:    

HFC(fa, fb) = wSFC * SFC(fa, fb) +  wTFC * TFC(fa, fb) (7) 
A weight between zero and one is chosen for both the structural and textual feature coupling 

values such that the sum of the weights equals one.  The higher the weight, the more preference is 
given to that metric.  We chose this straightforward means of combining the two metrics because 
we were interested in investigating, in a controllable fashion, whether combining structural and 
textual information captures new facets of feature coupling. 

3.5 Theoretical Evaluation 

Our feature coupling metrics comply with the five mathematical measurement properties proposed 
by (Briand et al. 1996): non-negativity, null value, monotonicity, merging of modules, and disjoint 
module additivity.  Both our structural and textual feature coupling measures assume non-
negative values.  SFC and SFC’ are based on the cardinality of sets and therefore their minimum 
value is zero.  By redefining CSM to always produce a value greater than or equal to zero, TFC 
and TFCmax comply with the non-negativity property.  Since HFC is based on the combination of 
SFC and TFC, it also obeys the property.  Additionally, when there is no relationship between 
two features, our metrics return a measurement of zero, meeting the null value property.  To 
fulfill the monotonicity property, when a new method is added to a feature that is shared by 
another feature or had a strong textual similarity to methods in another feature, our coupling 
metrics increase instead of decreasing.  Finally, the coupling obtained after merging two features 
is not greater than the sum of the coupling of the two original features.  That is, if we assume the 
set of methods which implement two features are union together to create a new feature, the sum 
of the coupling metrics for the individual feature will not exceed that of the new feature. Thus, the 
final two properties are met. 
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3.6 Classification within the Unified Framework for Coupling 

Measurement 

Briand et al. (Briand et al. 1999) classified coupling metrics along a number of criteria such as the 
type of coupling, the direction of coupling, direct vs. indirect coupling, inheritance-based vs. non-
inheritance-based coupling, and domain of measurement.  Our metrics are new and rely on 
several mechanisms not currently supported by the unified framework.  The framework needs to 
be expanded to include a new level of granularity for features.  Additionally, at the time the 
framework was created, only class coupling was measured using structural information.  More 
recently, conceptual/textual coupling (Poshyvanyk and Marcus 2006) has been established, which 
necessitates the introduction of a new dimension to the framework that takes into account textual 
information.  We extend the unified framework for coupling measurement to account for feature-
level granularity and textual coupling and classify our metrics within the expanded version. 

All of the existing coupling measures surveyed for the framework take into account structural 
information to define the type of connectivity between elements of a class.  The existing coupling 
metrics were classified according to seven different types of connectivity, listed in Table 3.  We 
extend the types of connection to include structural and textual relationships between methods of 
features.  We also classify our metrics using the other criteria proposed by Briand et al. (Briand et 
al. 1999).  Import coupling refers to a class that uses (imports) another class, while export 
coupling denotes a class that is used by another.  Our feature coupling metrics measure both 
import and export coupling.  Direct and indirect coupling measure direct connections and indirect 
connections, respectively.  SFC, TFC, TFCmax, and HFC are all direct measures, but SFC’ is 
indirect because it also includes callers and callees of a feature’s methods.  Currently, inheritance 
is not explicitly considered in our feature coupling measures and only methods of a class that are 
implemented or overloaded in a class are associated with features.  Therefore, all of our feature 
coupling metrics can be classified as non-inheritance based.  Finally, the dimension that most 
distinguishes our coupling metrics from existing ones is the domain of measurement.  Table 4 
lists the five domains identified by Briand et al. (Briand et al. 1999) and their associated measures.  
We extend the unified framework for coupling measurement with a new dimension, the feature 
domain, and our metrics belong in this classification. 

3.7 Measurement Tool  

We have developed tool support for feature coupling measurement.  FLAT3 (Feature Location 
And Textual Tracing Tool), which is overviewed in Figure 1, is an Eclipse plug-in based on 
ConcernMapper3 and ConcernTagger4 that supports mapping features to source code and the 
computation of feature coupling metrics (Savage et al. 2010).   Users can manually associate 
features with source code or use an embedded feature location technique based on our prior 
research.  Alternatively, feature-method mappings can be imported from existing models (Marin 
et al. 2007; Robillard and Murphy 2007) or tools such as ConcernMapper or ConcernTagger.  If 
the source code or mappings are changed in successive versions of a system, the data given to 
FLAT3 must also be updated.   Updating such mappings can be performed by importing up-to-
date mappings, manually updating mappings or semi-automatically using an embedded feature 
location technique. 

Table 3.  Types of connection, a dimension of the unified framework for coupling 
measurement. 

# Element 1 Element 2 Description Measures 

1 Attribute a of class c Class d, d ≠ c Class d is of type a 
DAC, DAC’, class-
attribute  

2 Method m of class c Class d, d ≠ c 
Class d is the type of a 
parameter of m or m’s 
return type 

class-method interaction  

3 Method m of class c Class d, d ≠ c 
Class d is the type of a 
local variable of m 

 

4 Method m of class c Class d, d ≠ c 
Class d is the type of a 
parameter of a method 
invoked by m 

 

5 Method m of class c Attribute a of 
class d, d ≠ c 

m references a CBO, CBO’, COF 

6 Method m of class c 
Method m’ of a 
class d, d ≠ c 

m invokes m’ 

CBO, CBO’, RFC, RFCα, 
MPC, COF, ICP, NIH-
ICP, IH-ICP, method-
method interaction  

7 Class c Class d, d ≠ c 
High level 
relationships between 
classes 

 

8 Method m of feature f 
Method m’ of 
feature g, g ≠ f 

m is the same as m’  SFC, SFC’ 

9 Method m of feature f 
Method m’ of 
feature f 

m and m’ are 
textually similar 

TFC, TFCmax 

Table 4.  Mapping of Coupling Measure to Domain. 

Domain Measures 
Attribute  
Method ICP, NIH-ICP, IH-ICP 
Class CBO, CBO’, RFC, RFCα, MPC, COF, class-attribute interaction, class-method 

interaction, method-method interaction, CoCC, RTC, CCBO 
Set of Classes ICP, NIH-ICP, IH-ICP 
Feature SFC, SFC’, TFC, TFCmax, HFC 
System COF 
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Admittedly, the cost of mapping features to code can be expensive, but research areas such as 
feature location are focused on automatically recovering such mappings.  For instance, Ratiu et 
al. (Ratiu and Deissenboeck 2006; Ratiu and Deissenboeck 2007) have developed a formal 
framework for mapping domain concepts to program elements.  Also, some integrated 
development environments like IBM’s Jazz5 have embedded automatic traceability functionalities 
for requirements and bug fixes that could be leveraged.   These techniques and tools can ease the 
burden creating feature-method mappings.       

Based on the mappings of features to code, our feature coupling metrics can be computed. First, 
the source code of a system is parsed into methods.  Then, the text of the methods is pre-
processed to form the documents of the corpus.  Pre-processing always removes stop words and 
programming language keywords and splits compound identifiers.  Options include removing 
comments from the corpus and performing stemming.  Then, LSI is used to create a word-by-
document matrix that describes the distribution of terms in the methods of the corpus.  Through 
the use of SVD, a semantic subspace is constructed in which each method from the corpus is 
represented as a vector.  The cosine between two vectors (i.e., CSM) is a measure of the textual 
similarity between two methods.  Given the similarities between methods and the mappings of 
features to methods, FLAT3 can compute TFC.  To compute SFC, the tool simply requires 
feature-method maps as well as dependency information. 

3.8 An Example of Measuring Feature Coupling 

We provide an illustrative example of how SFC and TFC are calculated.  The example is taken 
from our evaluation of the system Rhino, a Java implementation of JavaScript, and two of its 
features are type conversions ToString (fstring) and ToObject (fobject).  Feature fstring is implemented 
by four methods (Mstring = {ms1,…, ms4}), and feature fobject is implemented by eight methods 
(Mobject = {mo1,…, mo8}).  Note that ms2 is the same as mo8. 

The structural coupling between these two features is straightforward to compute.  SFC(fstring, 
fobject) = 1/11 = 0.09 because the two feature have one method in common out of 11 total.  Our 
metric captures the weak structural coupling between fstring and fobject. The two features are 
concerned with converting an argument, and the only method they share deals with determining 
the type of the argument before the conversion.     

To compute textual coupling, the following formula is used: TFC(fstring, fobject) = (CSMF(ms1, 
fobject) + CSMF(ms2, fobject) + CSMF(ms3, fobject) + CSMF(ms4, fobject))/4.  CSMF(ms1, fobject) is the 
average of the textual similarities between method ms1 and all methods in fobject such that 
CSMF(ms1, fobject) = (CSM(ms1, mo1) + CSM(ms1, mo2) + … + CSM(ms1, mo8))/8. The textual 
similarities between methods are shown in Table 5.  These are the CSM values.  Thus 
CSMF(ms1, fobject) = (0.60 + 0.24 + 0.54 + 0.68 + 0.36 + 0.23 + 0.19 + 0.24)/8 = 0.39, CSMF(ms2, 
fobject) = 0.40, CSMF(ms3, fobject) = 0.27, and CSMF(ms4, fobject) = 0.09.  Finally, TFC(fstring, fobject) = 
(0.39 + 0.40+ 0.27 + 0.09)/4 = 0.29.  The textual coupling between fstring and fobject is stronger than 
the structural coupling.  The two features do use some common identifiers such as “Number,” 
“Object,” “ScriptRuntime,” and “val,” but otherwise, they have their own vocabularies. 

 

Figure 1.  Architecture of the feature coupling component of FLAT3. 
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To calculate the hybrid coupling between these two features, the weight given to each type of 
coupling needs to be established.  If wSFC = 0.5 and wTFC = 0.5, then the hybrid feature coupling is 
computed as HFC(fstring, fobject) = 0.5 * 0.09 + 0.5 * 0.29 = 0.19. 

4 Case Studies 

The purpose of our evaluation is to assess the usefulness of our new feature coupling metrics as 
well as to show that they have a practical application.  We perform three assessments of the 
metrics, each targeting a different aspect of their utility or applicability.  In the first case study, 
we explore the relationship between feature coupling and fault-proneness.  To that end, we 
calculate the correlation between the metric values and bugs for all unique pairs of features in two 
software systems.  If there is a high correlation between a feature coupling metric and defects, 
then that metric may serve as a useful predictor of fault-proneness among features.  For our 
second case study, we examine the application of feature coupling metrics for impact analysis.  If 
feature coupling metrics help determine other features likely to be affected by a change to a feature 
undergoing modification, then these new measures are helpful in the context of impact analysis.  
Finally, our third case study involves testing if the feature coupling metrics align with developers’ 
opinions about which features are coupled or not.  We carry out a survey in which 31 
programmers rated the strength of coupling between 16 randomly selected pairs of features from 
three different software systems.   

By considering the results of three evaluations, we can come to a stronger conclusion about the 
usefulness of feature coupling metrics than if we had used only one assessment.  This idea of 
synthesizing data from multiple analyses is known as data triangulation (Yin 2003).  The 
advantage of such an approach is that by corroborating multiple sources of evidence, any findings 
or conclusions are likely to be more valid.  Figure 2 summarizes our data triangulation approach, 
and in the following sections we provide the details and results of each part of our evaluation. 

4.1 Subject Systems and Data Sets 

To be able to compute our feature coupling metrics, we required mappings of features to the 
methods that implement them in a given software system.  Obtaining this information from a 
single developer is difficult, time-consuming, and biased (Robillard et al. 2007).  These factors 

Table 5.  Textual similarities between methods of Rhino’s ToString and ToObject 

features. 

ms1:  ScriptRuntime.toString(Object);  ms2 = mo8: FunctionObject.convertArg(...);   

ms3: Context.toString(Object);  ms4: NativeRegExpCtor.setInstanceIdValue(...);   

mo1 - mo5: ScriptRuntime.toObject(*);  mo6 - mo7: Context.toObject(*) 

 mo1 mo2 mo3 mo4 mo5 mo6 mo7 mo8 
ms1 0.60 0.24 0.54 0.68 0.36 0.23 0.19 0.24 
ms2 0.28 0.25 0.27 0.33 0.25 0.48 0.37 1.00 
ms3 0.17 0.16 0.18 0.22 0.18 0.57 0.28 0.42 
ms4 0.06 0.08 0.06 0.07 0.05 0.13 0.11 0.19 

Figure 2.  Our data triangulation evaluation approach. 
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led us to select several existing data sets made available by Eaddy et al. (Eaddy et al. 2008) in 
which multiple researchers compiled mappings of features to code.  We used the information in 
these data sets to compute our feature coupling metrics, and we consider these data sets to be 
reliable since they have been previously used in other studies (Eaddy et al. 2008; Eaddy et al. 
2008).  Since we utilized previously published data, our study is reproducible; we invite other 
researchers to replicate our work. All of our data and results are provided in an online appendix6.       

The first data set we use is dbViz7 version 0.5, an open-source database visualization tool 
written in Java.  The system is comprised of 12,700 LOC (lines of code), 93 classes, and 554 
methods.  We also utilize the Rhino data set.  Rhino8 is a Java implementation of JavaScript 
consisting of approximately 32,000 LOC, 138 classes, and over 1,800 methods.  The final data 
set we use is iBatis9 version 2.3, an object-relational mapping tool written in Java that has 13,300 
LOC, 212 classes, and over 1,800 methods. 

The data sets include mappings of program elements to features.  Eaddy et al. (Eaddy et al. 
2008) identified 13 features from dbViz’s use cases, 411 features in Rhino from the ECMAScript 
specification10  of JavaScript, and 132 features for iBatis.  The distribution of the number of 
methods per feature for each system appears in Figure 3.  For each feature in the data sets, the 
code associated with it was manually identified using the prune dependency rule: “A program 
element is relevant to a [feature] if it should be removed, or otherwise altered, when the [feature] is 
pruned”  (Eaddy et al. 2008).  In other words, to assign code (methods and fields) to the features 
they implement, the authors of (Eaddy et al. 2008) considered a scenario where a feature was to be 
removed from a system and attempted to remove as much relevant code as possible without 
affecting other features.  While the data sets map some fields to features, we excluded field 
mappings from our evaluation because our model does not currently support them.   

If the features identified in the data sets are well encapsulated by classes, then measuring 
feature-level coupling is without merit.  To check if the features in the three data sets are 
implemented in multiple classes, we calculated the average and median number of classes per 
feature (this data is also available in (Eaddy 2008)).  In dbViz, features are located in nine classes, 
on average, with two being the minimum, 21 the maximum, and 9 the median.  The average 

Rhino

289.000

1.000

12.888

4.000
0

50

100

150

200

250

300

350

M
et

h
o

d
s 

p
er

 F
ea

tu
re

dbViz

63.000

5.000

33.615

31.000
0

50

100

150

200

250

300

350

M
et

h
o

d
s 

p
er

 F
ea

tu
re

 
(a) Rhino                           (b) dbViz 

iBatis

810.000

2.000

24.056

10.000
0

100

200

300

400

500

600

700

800

900

M
et

h
o

d
s 

p
er

 F
e

 
(c) iBatis 

Figure 3.  Box plots summarizing the distribution of methods per feature for (a) Rhino (b) dbViz 

and (c) iBatis. 
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number of classes per feature in Rhino is four, with a minimum of one, a maximum of 67, and a 
median of 2.  Finally, iBatis’ features are implemented in six classes on average, with a minimum 
of one, a maximum of 128, and a median of 3.  Since most of the features from the three data sets 
are implemented in multiple classes, traditional class-level coupling metrics are not able to capture 
the dependencies between features.  Therefore, metrics at a higher level of abstraction, such as 
feature coupling metrics, are needed.   

The data sets also include defect information.  We use this data on bugs and where they occur 
in our first two case studies.  In dbViz, 47 bugs are mapped directly to features.  Each feature 
has at least two bugs associated with it, and on average, a feature has 4.7 bugs.  In Rhino, 149 
bugs are mapped to program elements.  Of the 411 features, 344 have bugs, and each feature has 
6.4 bugs on average.  The publically available data sets did not include defect data for iBatis.  If 
a method was modified to fix a bug, that method is associated with that bug.  Transitively, if a 
feature is associated with a method, and that method was changed to fix a bug, then that bug is 
mapped to that feature.  See (Eaddy et al. 2008) for the complete details on how the mappings 
were obtained. 

In this work we perform case studies to (1) study the relationship between feature coupling and 
faults, (2) support feature level impact analysis using textual and structural coupling, and (3) 
investigate the relationship between the metrics and software developers.  The first two case 
studies utilize dbViz and Rhino datasets, while the third study makes use of dbViz, iBatis, and 
Rhino.  The difference in the datasets used for the studies is attributed to the lack of defect data 
for iBatis (i.e., we could not answer research questions in study (1) and (2) since we did not have 
bug data available for iBatis). 

4.2 Case Study Settings 

In Section 3.3.2, we explained the process of building a corpus in order to obtain textual 
similarities between methods.  There are several options for building a corpus; comments can be 
included or excluded and text can be stemmed or not.  Comments are associated with a method if 
they appear within the method body or directly above a method definition.  More details (with 
accompanying examples) on how we associated the comments with methods can be found in (Fluri 
et al. 2009).  Comments embed additional domain knowledge within the source code of a system.  
Their inclusion, or exclusion, from a corpus can have an impact on the textual similarities between 
methods (Marcus and Poshyvanyk 2005).  Stemming reduces words to their root, thus potentially 
increasing the textual similarity of two documents.  Both of these options have implications for 
textual feature coupling.  One of the secondary goals of our evaluation is to discover the optimal 
configuration for measuring textual feature coupling.  We generated different versions of the 
corpus of a software system in order to explore the effect of corpus creation on feature coupling.  
The four corpus versions we created appear in Table 6.  These corpora represent all possible 
combinations of the preprocessing options for comments and stemming.  We consider the c-ns 
corpus to be the default.  For one system in which external documentation was available (Rhino), 
we made a fifth corpus (c-ns+d).  This corpus included source code text including comments, the 
external documentation’s text, and words were not stemmed.  The documentation is simply added 
to the corpus as more text; it is not mapped to source code.  This augmented corpus was then 
used by LSI to compute similarities.  The idea behind including documentation is that it encodes 
additional domain knowledge which may bolster the textual information in source code. 

For each system, we computed five feature coupling metrics for each pair of features: SFC, 
SFC’, TFC, TFCmax, and HFC.  TFC and TFCmax are based on the default corpus, and for HFC, 
we placed equal weight on structural and textual information.  We also refer to this instance of 
HFC as S0.5T0.5, indicating a structural weight of 0.5 and a textual weight of 0.5.  For each of 
these feature coupling metrics, we investigated their relationship with faults.  Table 7 summarizes 
the descriptive statistics for the feature coupling measures using the default corpora 

Table 6.  Corpus configurations used in the case study. 

Name Description 
c-ns Comments included but without stemming  
c-s Comments included and stemming performed 

nc-s Without comments but with stemming  
nc-ns Comments excluded and no stemming 
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configurations.  We list the maximum (max), minimum (min), inter-quartiles (75%, median, 
25%), mean (μ), and standard deviation (σ).  The values are based on the 78 unique pairs of 
features in dbViz, 84,255 unique feature pairs in Rhino, and 13,041 pairs in iBatis.  

4.3 The Relationship between Feature Coupling and Faults 

To investigate the relationship between feature coupling and fault-proneness, we performed an 
empirical study.  We conjecture that since features can be implemented in classes and methods 
dispersed throughout a system, the impact of changes to features can be difficult to determine, 
possibly leading to faults or system failures.  Therefore, we hypothesize that the more coupled 
two features are, the more likely they are to share a bug.  More formally, we seek to evaluate the 
following hypotheses. 

Ho,1 The null hypothesis is that there is no significant correlation between the strength of 
coupling of two features and the number of bugs they have in common. 

Ha,1 The alternative hypothesis is that there is a statistically significant correlation between the 
strength of coupling  of two features and the number of bugs they share.
 
If we are able to reject H0,1 with high confidence, it means that, the correlations we obtained are 

not likely to occur by coincidence.  To test our hypotheses, we computed feature coupling 
metrics between all pairs of features in dbViz and Rhino.  Additionally, we counted the number of 
bugs shared by two features for all feature pairs in each system.  Then, we computed the 
Spearman rank order correlation between the metrics and defects.   

In addition to computing coupling metrics for each pair of features, we also determined the 
number of defects shared by any two features.  We considered a bug to be associated with a pair 
of features if any methods mapped to the features are also associated with the bug.  Consider the 
example in Figure 4. Bug1 is mapped to methods m1, m2, and m3, while Bug2 is associated with m4 
and m5. Feature fa is implemented by methods m1 and m3, while fb is mapped to m3, m4, and m5.  fa 
is associated with Bug1 because its two methods are associated with the defect.  Likewise, fb is 
associated with Bug1 and Bug2.  Therefore, fa and fb are both associated with Bug1, so these 
features share that bug in common.  This provides an example of one scenario where bugs are 
associated with a pair of features.  Additionally, we associate a bug with a pair of features if it is 
associated with a method from each feature and also if the bug is associated with one of the two 
features in the pair. 

Table 7.  Descriptive statistics of the feature coupling metrics. 

System Metric Max 75% Med. 25% Min μ σ 
SFC 0.85 0.08 0.04 0.01 0 0.08 0.15 
SFC’ 0.92 0.40 0.32 0.25 0 0.33 0.19 
TFC 0.22 0.09 0.08 0.06 0.02 0.08 0.04 
TFCmax 1 1 1 1 0.21 0.92 0.19 

dbViz 

HFC 0.53 0.09 0.06 0.04 0.01 0.08 0.09 
 Max 75% Med. 25% Min μ σ 
SFC 1 0 0 0 0 0.02 0.11 
SFC’ 1 0.05 0.01 0 0 0.06 0.16 
TFC 1 0.22 0.13 0.09 0 0.19 0.17 
TFCmax 0 0.27 0.50 0.86 1 0.55 0.31 

Rhino 

HFC 1 0.12 0.07 0.04 0 0.11 0.12 
 Max 75% Med. 25% Min μ σ 
SFC 1 0 0 0 0 0.01 0.05 
SFC’ 1 0.02 0 0 0 0.03 0.09 
TFC 0.99 0.13 0.09 0.06 0 0.11 0.10 
TFCmax 0 0.19 0.35 0.55 1 0.40 0.29 

iBatis 

HFC 0.91 0.07 0.04 0.03 0 0.06 0.07 
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Using our feature coupling metrics and the defect data, we calculated the Spearman rank order 
correlation coefficient (Spearman 1904) to determine the relationship between the feature coupling 
measures and fault-proneness.  Table 8 lists the Spearman correlation coefficients for dbViz and 
Rhino for all the versions of the corpora.  Note that the results based on structural information are 
constant across versions of corpora as processing techniques used do not impact structural 
properties of the corpora.  Correlation coefficients can take values in the range of -1.0 to 1.0.  A 
perfect negative correlation is denoted by -1.0, a perfect positive correlation is designated by a 
value of 1.0, and zero means no correlation.  All of the Spearman correlations in Table 8 are 
statistically significant at the one percent confidence level, meaning there is only a 1% probability 
that the relationship is caused by chance.     

The results for dbViz and Rhino indicate that there is a moderate to strong11 correlation between 
the feature coupling metrics and defects.  Under the default configuration (comments, no 
stemming) in dbViz, textual coupling had the strongest correlation (0.52) with bugs, while in 
Rhino structural coupling was the strongest (0.62).  HFC is also moderately correlated with bugs 
in both systems.  From these results, we can reject H0,1, the null hypothesis.  In other words, 
based on our study, the correlations obtained between our feature coupling metric and defects is 
statistically significant, therefore feature coupling is correlated with defects.   

Under the different versions of the corpus, SFC is unchanged since corpus building does not 
impact structural information.  However, textual coupling does change, and with it its correlation 
with bugs.  In dbViz, TFC’s correlation with defects is significantly impacted by the exclusion of 
comments and the use of stemming since dbViz is a relatively small system.  TFC’s correlation 
with bugs in Rhino does not suffer from the lack of comments or use of stemming as greatly as in 
dbViz, but there is still a slight weakening of the correlation.  From this, we conclude that the best 
configuration under which to build a corpus to measure textual feature coupling is to include 
comments but not to use stemming.  Stemming may indeed be useful in other contexts (De Lucia 
et al. 2007), but we did not observe it have an impact on these results.   

Using this top-performing configuration, we created one additional corpus for Rhino that 
included the ECMAScript specification, an external document for Rhino.  By including this 
documentation in the corpus, we are adding additional domain information.  The last column of 
Table 8 (c-ns+d) lists the correlation values between the metrics and bugs for this version of the 
corpus.  The numbers in the table are rounded so it is not obvious, but for all the metrics except 
TFCmax, the version of the corpus with the strongest correlation with bugs is c-ns+d.  
Consequently, if programmers are seeking to use feature coupling to evaluate the fault-proneness 

 

Figure 4.  An example showing how shared bugs between features fa and fb were determined. 

Table 8.  Spearman correlation coefficients for dbViz and Rhino.  All values are statistically 

significant at the one percent level (two-tailed).  The sample size (number of feature pairs) is 

78 for dbViz and 84,255 for Rhino. 

c-ns: comments, no stemming,  c-s: comments, stemming; nc-s: no comments, stemming,   

nc-ns: no comments, no stemming; c-ns+d: comments, no stemming, external documentation 

 dbViz Rhino 
Metric c-ns c-s nc-s nc-ns c-ns c-s nc-s nc-ns c-ns+d 
SFC 0.38 0.38 0.38 0.38 0.62 0.62 0.62 0.62 0.62 
SFC’ 0.35 0.35 0.35 0.35 0.58 0.58 0.58 0.58 0.58 
TFC 0.52 0.13 0.15 0.15 0.38 0.35 0.35 0.37 0.38 
TFCmax 0.16 0.16 0.16 0.16 0.63 0.63 0.63 0.62 0.63 
HFC 0.49 0.47 0.47 0.47 0.44 0.42 0.41 0.43 0.44 
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of features and have documentation available, it should be included in the corpus for improved 
results.  This finding supports other results in the literature that state that the inclusion of 
documents besides source code improves information retrieval results (Ye and Fischer 2005). 

4.3.1 Hybrid Feature Coupling 

In addition to investigating the five feature coupling metrics above, we also explored the effect of 
varying the weights assigned to our hybrid feature coupling metric, HFC.  By varying the 
weights, preference is given to one type of information over the other, which may be useful in 
cases when one source of information is more reliable than the other.  For instance, if a system is 
poorly structured but has good identifier names, more weight can be placed on textual coupling.  
Table 9 lists the Spearman correlation coefficients for all possible HFC combinations with a step 
size of 0.05 for the default corpus.  All the correlations are statistically significant at the one 
percent confidence level.  In dbViz, textual coupling is more strongly correlated with bugs than 
structural coupling (0.52 vs. 0.38), so increasing the textual weight improves HFC’s correlation.  
The opposite is true in Rhino where structural coupling has a stronger correlation with bugs than 
textual coupling (0.62 vs. 0.38).  Therefore, increasing the structural weight strengthens HFC’s 
correlation with defects.  Rhino may have a stronger structural coupling than dbViz since it is an 
order of magnitude larger in size.  Overall, the HFC variants have moderate correlations with 
defects, and programmers using HFC should select weights based on their assessment of the 
system and type of coupling they want to emphasize.  However, when the quality of the 
structured or unstructured information is unknown, using the default weight of 0.5 provides good 
results. 

4.3.2 Comparison with an Existing Metric 

The distance between features metric (DIST) introduced by Wong and Gokhale (Wong and 
Gokhale 2005) is a feature metric that is very similar to coupling because it measures the distance 
(or similarity) between features.  DIST is computed based on information collected by 
dynamically executing a system.  Since DIST is the state of the art in feature measurement, we 
compared our metrics to it.  DIST was originally defined on basic blocks, but we redefine it here 
at the method level to be able to directly compare it with our metrics.  Let Ma and Mb be the sets 
of methods executed by inputs that invoke features fa and fb respectively.  Therefore, the distance 
between features fa and fb is 

| |
( , )

| |

a b
a b

a b

M M
DIST f f

M M




  
(8) 

where   is the exclusive OR operator. 
We collected one execution trace for each of dbViz’s 13 features and 51 of Rhino’s.  The dbViz 

traces were based on the developers’ use cases, while the Rhino traces were based on available test 
cases, and not all features had a test case.  We computed DIST between all pairs of features and 
calculated the Spearman correlation to determine the relationship between DIST and fault-
proneness.  Bugs were associated with features as described in Section 4.1.  For dbViz, The 
Spearman correlation coefficient for DIST and bugs is 0.02, and for Rhino, it is 0.05.  Both values 
are not statistically significant.  DIST’s correlation with defects is very close to zero, meaning 
that there is almost no correlation between the metric values and bugs.  In comparison, all of our 
metrics have positive moderate to strong statistically significant correlations with bugs.  DIST is 

Table 9.  Spearman correlation coefficients for HFC in dbViz and Rhino using the default 
configuration of the corpora (c-ns).  All values are statistically significant at the one percent 
level (two-tailed).  The sample size (number of feature pairs) is 78 for dbViz and 84,255 for 

Rhino. 

Metric dbViz Rhino Metric dbViz Rhino Metric dbViz Rhino Metric dbViz Rhino 
S0.05T0.95 0.52 0.38 S0.3T0.7 0.51 0.41 S0.55T0.45 0.47 0.44 S0.8T0.2 0.42 0.48 
S0.1T0.9 0.53 0.39 S0.35T0.65 0.51 0.42 S0.6T0.4 0.46 0.45 S0.85T0.15 0.41 0.50 
S0.15T0.85 0.53 0.39 S0.4T0.6 0.51 0.42 S0.65T0.35 0.45 0.46 S0.9T0.1 0.40 0.51 
S0.2T0.8 0.52 0.40 S0.45T0.55 0.50 0.43 S0.7T0.3 0.44 0.47 S0.95T0.05 0.39 0.53 
S0.25T0.75 0.52 0.41 S0.5T0.5 0.49 0.44 S0.75T0.25 0.43 0.48    
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expensive to compute because of the overhead of collecting traces.  It is not a good predictor of 
faults, likely due to the imprecise nature of dynamic analysis.  In contrast, our metrics are less 
expensive, and all of them are good predictors of fault-proneness.   

Besides being the only feature coupling metric with no statistically significant correlation to 
bugs, an example of DIST highlights the problems associated with using dynamic information.  
Consider dbViz’s features to start dbViz and to exit the system.  The dynamic coupling between 
these two features is 1 because despite what other features are invoked, the system must always be 
started and exited.  This example shows the difficulty inherent in using dynamic information for 
feature coupling because some features cannot be invoked separately.  On the other hand, SFC 
between these features is 0 and TFC is 0.08, reflecting the true lack of coupling between them, as 
is also supported by the fact that they do not share a bug. 

4.4 Using Structural and Textual Coupling to Support Feature-Level 

Impact Analysis 

Our second case study investigates the application of feature coupling metrics for impact analysis.  
Given a starting point, such as a change to some module, impact analysis involves detecting other 
modules within a system that may be affected by a change (Orso et al. 2004; Ren et al. 2004).  
Both class-level coupling and information retrieval have been used for impact analysis (Briand et 
al. 1999; Poshyvanyk et al. 2009; Gethers and Poshyvanyk 2010; Kagdi et al. 2010).  Generally, 
to select candidate modules to investigate for impact analysis, a threshold is set on the coupling or 
textual similarity values.  Previous research on using coupling or information retrieval for impact 
analysis has focused on identifying methods and classes (Poshyvanyk et al. 2009), not features.  
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Figure 5.  Average F-measure of coupled features in (a) Rhino and (b) dbViz for 
various thresholds.   
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Therefore, we explore if feature coupling metrics can be used to find other features that are likely 
to be affected by a change to a feature undergoing modification by using defects identified in these 
features as an oracle. 

To evaluate feature coupling in the context of impact analysis, we use available bug data from 
two systems to compute the precision, recall, and f-measure of the relevant coupled features 
recommended by our metrics.  The process can be described as follows.  For a bug b, we create 
a set Fb = {f1, f2, ..., fn} of features that all share the bug.  That is, every feature in the set is 
associated with bug b.  For each feature fi in Fb, we determine which other features from all of the 
system’s features are coupled to fi by setting a threshold.  For example, if the threshold is 0.5, 
then every feature that is coupled to fi with a metric value equal to or above 0.5 is included in a 
new set T.  Then, precision and recall are computed with T being the retrieved set and Fb 
(excluding fi) as the relevant set.  Precision is the ratio of the number of relevant features 
retrieved over the total number of features retrieved, while recall is computed as the number of 
relevant features retrieved divided by the total number of relevant features.  The f-measure is the 
harmonic mean of precision and recall.  For each bug b, we get precision, recall, and f-measure 
values.  To get an overall measure of all bugs in the system, we summarize these precision, 
recall, and f-measure values using a macro-evaluation averaging technique as in (Zimmermann et 
al. 2005).  Macro-evaluation means an average is taken of the values for all fi in Fb and then for 
all bugs in the system.  These values were computed for all threshold values with a step size of 
0.05.  We only present the results for Rhino here; the dbViz results, which are similar (as depicted 
in Figure 5 for both systems following similar properties with respect to HFC and thresholds), can 
be found in the online appendix.   

Figure 5 shows the average f-measure and Table 10 shows the average precision and recall 
values for SFC, TFC, and one version of HFC (S0.5T0.5) at various coupling thresholds with a step 
size of 0.05.  These results are for the default corpora of Rhino and dbViz.  For Rhino the best 
precision for structural coupling is 78.4% with a recall of 24.8% at a threshold of 0.1, while the 
best recall is 30.2% with a precision of 77.9% at the 0.05 threshold, meaning at best slightly over 
three quarters of the candidate features are relevant, but only 25 to 30% of the relevant features are 
found. Textual coupling’s best performance in terms of precision is 54.4% with a recall of 38.1% 
at the 0.3 threshold, while its best recall of 86% with 28.1% precision is at a threshold of 0.05.  
The precision of SFC seems to increase and then level out as the threshold decreases. The 
precisions of both TFC and SFC increase until a certain point, then both decline, likely due to the 
fact that the threshold is low enough that too many features are deemed textually coupled when 
they are not.  We speculate that the increase in accuracy acquired by reducing the threshold is, in 
part, a result of relaxing the strength of the association indicated by the metrics, which indicates a 
pair of features is coupled.  SFC had the best precision overall but the worst recall.  The 
precision for HFC generally fell below that of SFC but above TFC, and its recall is above TFC and 
below SFC.  Therefore, using hybrid feature coupling is a good compromise between the two 
other metrics.  For example, at threshold 0.1, HFC’s precision is 55% and its recall is 60%.   

The results in Figure 5  show similar results that are also obtained for dbViz.  One obvious 
difference is that SFC, as opposed to TFC, yields highest accuracy for dbViz.  This finding is 
perhaps related to the variation in characteristics of the software systems.  But in light of this 
difference we continue to observe that the performance HFC falls in between the two techniques.  
This occurs until we reach a threshold (approximately 0.1 in both cases) at which point we observe 

Table 10.  Precision and recall values for impact analysis of different metric thresholds in 
Rhino.  The first value in a cell is precision, and the second is recall.   

Threshold SFC TFC HFC Threshold SFC TFC HFC 
1 40%, 3% 5%, 1% 5%, 1% 0.5 66%, 9% 39%, 22% 57%, 8% 

0.95 41%, 3% 5%, 1% 8%, 1% 0.45 67%, 9% 42%, 25% 61%, 9% 
0.9 43%, 3% 8%, 1% 18%, 2% 0.4 71%, 10% 48%, 28% 66%, 10% 

0.85 43%, 3% 17%, 2% 22%, 2% 0.35 72%, 10% 52%, 33% 69%, 15% 
0.8 45%, 3% 18%, 3% 25%, 2% 0.3 75%, 13% 54%, 38% 68%, 22% 

0.75 48%, 4% 24%, 5% 31%, 3% 0.25 75%, 14% 53%, 45% 70%, 30% 
0.7 50%, 4% 27%, 8% 35%, 4% 0.2 77%, 17% 52%, 54% 68%, 39% 

0.65 53%, 5% 30%, 11% 42%, 5% 0.15 77%, 20% 46%, 65% 63%, 46% 
0.6 58%, 7% 36%, 15% 48%, 6% 0.1 78%, 25% 34%, 79% 55%, 60% 

0.55 60%, 8% 37%, 19% 52%, 7% 0.05 78,% 30% 28%, 86% 34%, 80% 
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that the performance of HFC exceeds that of both SFC and TFC.  It is possible that HFC 
performs better at lower thresholds because in those scenarios the metric is capable of identifying 
coupled features where the values returned by the two individual metrics were in disagreement.  
Consider the case where one metric returns a value of zero while the other returns a low coupling 
value.  It is only at low thresholds where HFC is capable of overcoming this disagreement and 
identifying the coupling which exists between the two features.  One other trend, which holds 
across systems, is the fact that there is a decline in F-Measure once a certain threshold is reached. 

While feature coupling may not provide the best solution to the impact analysis problem, these 
results suggest that the metrics can still be useful.  More research is needed to provide more 
practical techniques.  However, these initial results are promising and comparable to some 
existing techniques on impact analysis based on structural and textual information (Briand et al. 
1999; Poshyvanyk et al. 2009).   

The precision and recall results also add weight to our claim that structural and textual feature 
coupling are complementary since their curves are different.  We also executed the Kruskal-
Wallis statistical test, a nonparametric alternative to the analysis of variance test, to assess if SFC 
and TFC are significantly different.  At a significance level of 0.01, the test for both dbViz and 
Rhino show that SFC’s and TFC’s precision and recall values are indeed significantly different. 

The impact analysis results presented thus far have been for the default version of the corpus 
used to obtain textual information.  We also investigate the use of feature coupling metrics for 
impact analysis using different corpora configurations (see Section 4.2) for the Rhino system.  
Figure 6 shows the average f-measure of TFC for the various versions of the corpus.  Recall that 
only textual information is affected by the corpus’ configuration, so SFC remains the same across 
corpora.  The graph indicates that the way in which a corpus is built does little to influence 
precision and recall for impact analysis, no matter the threshold.  However, the corpus with 
comments and stemming typically has the highest precision and recall.  Just as was observed with 
the Spearman correlation coefficients, the inclusion of comments yields better results.  However, 
textual feature coupling still works well in cases where comments are missing. 

Finally, we study the effects of HFC’s weights on precision, recall, and f-measure during 
feature level impact analysis.  We provide only the results for the default corpora since the results 
for the other versions were similar.  We select two metric thresholds that performed well for SFC 
and TFC (0.2 and 0.15) and calculate precision and recall of HFC for all weights with a step size 
of 0.05.  Figure 7 shows the f-measure curves for HFC at a threshold of 0.2 (black lines) and 0.15 
(gray lines).  The x-axis denotes the structural weight.  The corresponding textual weight is 
simply one minus the structural weight.   
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Figure 6.  Impact analysis F-measure values of TFC for different Rhino corpora.
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The graphs illustrate the effects of relying on one type of information over the other.  
Depending more heavily on structural information yields good precision at the cost of poor recall.  
Overall, using HFC produces better results than the standalone SFC and TFC metrics.  Consider 
HFC with a structural weight of 0.2 and a textual weight of 0.8 at a threshold of 0.2.  The 
precision is 51% and the recall is 55%.  At the same threshold, SFC’s precision is 77%, but its 
recall is only 17%, so HFC is a better overall performer in this situation because its recall is much 
higher without sacrificing too much precision.  Therefore, HFC helps alleviate those cases where 
the quality of either structural or textual information is low. 

4.5 Developer Study 

In the final part of our evaluation, we investigate if our feature coupling metrics align with 
developers’ opinions of feature coupling.  If the metrics indicate that two features are coupled 
and so do the majority of developers surveyed, then we can be confident in the utility of the 
measures.  More formally, we formulate two null and two alternative hypotheses: 
 

H0,2: There is no agreement between developer's responses of how they rate coupling between 
pairs of features. 

HA,2: There is agreement between developer's responses of how they rate coupling between pairs 
of features. 
 

H0,3: There is no correlation between the developer's responses and the metrics about whether or 
not two features are coupled. 

HA,3: There exist correlation between the developer's responses and the values returned by the 
feature coupling metrics. 

  
To test our hypotheses, we conduct a survey in which developers were asked to rate the strength 

of coupling among pairs of features.  Below, we offer general details about the participants and 
the task they performed, as well as exploring the results of the survey.  All the details on this 
developer study are available in the online appendix12. 

4.5.1 Participants 

The respondents to our survey were 31 volunteer programmers from several different institutions.  
Twenty-three of the programmers were graduate students, one was an undergraduate, and seven 
were industry professionals.  On average, they had 7.2 years of programming experience, 3.8 
with Java, and 2.6 with Eclipse.  Each volunteer was given a link to the survey’s instructions and 
could complete it on their own time.  The survey took 97 minutes to complete, on average.   
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Figure 7.  F-measure of HFC in Rhino at selected thresholds.
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4.5.2 Task Description 

The programmers downloaded an Eclipse installation that was preloaded with our FLAT3 plug-in 
and all the necessary source code.  FLAT3 included mappings of features to code for selected 
features from Eaddy et al.’s (Eaddy et al. 2008) data sets.  The programmers could click on a 
feature’s name to see the methods associated with it, and double clicking on a method to show its 
source code in the editor.  The programmers were asked to consider the code of two features and 
rate whether the features were coupled.  The responses varied according to the five-level Likert 
scale: “Strong No,” “Weak No,” “Unknown,” “Weak Yes,” or “Strong Yes.” If a developer could 
not decide on a rating, they could respond “Unknown.”  The pairs of features included five from 
dbViz, six from Rhino, and five from iBatis.  The set of feature pairs were randomly selected 
from the set of all feature pairs for each system prior to the evaluation. The exact instructions and 
pairs of features given to the participants as well as detailed descriptions of the features can be 
found in the online appendix. 

4.5.3 Agreement among Participants and with the Metrics 

The survey is a rating of n subjects (the 16 randomly selected feature pairs) by k raters (the 31 
programmers).  We tested if there was a sufficient amount of agreement among the developers’ 
responses to be able to draw conclusions about the feature coupling metrics.  To determine the 
amount of agreement among the raters, we designed our analysis in a fashion similar to (Mende et 
al. 2009) by using the intra-class correlation coefficient (ICC) (McGraw and Wong 1996).  We 
used ICC(A,1), which calculates the agreement of all the raters, where each person rates each 
subject (feature pair).  The A means it is an absolute agreement, and the one indicates the ratings 
are not an average.  With the ratings stored in a matrix with feature pairs as the rows and raters as 
the columns, ICC(A,1) is calculated as follows: 

( ,1)
( 1) / ( )

r c

r e c e

MS MS
ICC A

MS k MS k n MS MS




   
 (10) 

where k is the number of raters, MSr is the mean square for rows, MSc is the mean square for 
columns, and MSe is the mean square error.  ICC(A, 1) relates the variance of the ratings of each 
feature pair to the overall variance. 

The ratings given by the developers were ordinal, but numeric data is required to compute ICC.  
Therefore, we transformed the ratings of “Strong No,” “Weak No,” “Weak Yes,” and “Strong 
Yes” to the values 1, 2, 3, and 4 respectively coding to interval level scores for analysis purposes 
(Sirkin 2005).  Eight programmers gave a rating of “Unknown” for at least one feature pair.  We 
omit all responses of those subjects to avoid issues pertaining to responses of "Unknown" and the 
calculation of ICC.  The ICC(A,1) of the programmers in our survey is 0.443 (values can range 
from -1 to 1), meaning there is a moderate amount of agreement in their ratings of the pairs of 
features.  Additionally, the result obtained was statistically significant allowing us to reject H0,2.  
We believe that there is enough concordance to be able to draw conclusions.  While we had to 
remove some responses from the computation of ICC (replies of “Unknown”), the rest of our 
analyses are based on the responses of remaining 23 developers. 

4.5.4 Correlation between Participants Responses and the Metrics 

In order to test our hypothesis (H0,3) we make use of Spearman rank-order correlation.  The 
ordinal data collected during our user study makes Spearman rank-order correlation ideal for 
determining the correlation between developer's responses and coupling metric results.  We 
compute the Spearman rank-order correlation and obtain a correlation between developer 
responses and HFC metric of 0.404 with a p-value <0.0001.  Based on these finding we are able 
to reject our null hypothesis H0,3, thus suggesting that, based on our study, there exist sufficient 
evidence to suggest that there is a correlation between developer's responses and the HFC metric. 

Table 11 (columns 5-8) summarizes the number of developers that gave each rating for dbViz, 
iBatis, and Rhino’s feature pairs, respectively.  The columns contain the frequency in which a 
particular response was given by a developer for the corresponding feature pair.  Frequencies 
presented in each column can be compared to the metric values in the third and the fourth 
columns.  Such a comparison provides insight into the relationship between developer responses 
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and metric values.  For instance, the row in Table 11 for the pair dbViz #1, “Connect to database” 
and “Exit dbViz” shows both, metric values and user responses, are in agreement.    

When both SFC and TFC are low, the overwhelming majority of responses are “Strong No,” as 
can be seen by the first pair of features in dbViz.  These features are to connect to a database and 
exit the program and have little in common, so low structural and textual coupling values are valid, 
as supported by the developers’ ratings.  Additionally, these features do not share any common 
bugs, which is further evidence that they are not coupled.  

Another overall trend is that when SFC is high, most raters responded “Strong Yes.”  As an 
example of high structural coupling, consider the feature pair dbViz #3, “Import from database” 
and “Import from SQL file.”  These features are very similar in function and share a number of 
methods, so a high SFC value (0.61) makes sense, and the programmers’ responses also support 
SFC being high.  Furthermore, the two import features have a common bug, which also supports 
higher coupling between them.    However, TFC between these two features is rather low (0.15) 
because the methods that are distinct to each feature have their own vocabulary.  

One interesting case is the Rhino #6 feature pair.  The two features are “SQRT2,” the number 
value of the square root of two, and “Date.prototype.getTimezoneOffset” that gets the local time 
and UTC in minutes.  There is no structural coupling between the features, but rather high textual 
coupling.  The majority of responses for this feature pair were “Strong No” despite these two 
features having a high TFC value.  Two options are possible: the features are not actually coupled 
and the high textual coupling is a coincidence, or the programmers did not pick up on the 
similarity in the two features’ vocabularies because textual coupling is not as well known a 
concept as regular, structural coupling.  The two features do have a shared bug, but after 
reviewing the two features’ source code, the textual coupling seems to be artificial.  “SQRT2” 
has two methods, and both of those methods’ names happen to be the same as two of 
“Date.prototype.getTimezoneOffset” three methods.  These methods perform similar parsing 

 Table 11.  Feature coupling values for the dbViz, Rhino, and iBatis feature pairs in the developer 
study.   

Features Pair SFC TFC 
Strong 

No 
Weak 

No 
Weak 
Yes 

Strong 
Yes 

Bugs 

Connect to database & 
Exit dbViz 

dbViz #1 0 0.03 17 4 2 0 0 

Autoarrange Diagram & 
Undo/Redo 

dbViz #2 0.07 0.06 2 5 8 8 0 

Import from database &  
Import from SQL file 

dbViz #3 0.61 0.15 0 1 3 19 1 

Add table & 
Remove table 

dbViz #4 0.85 0.22 0 2 0 21 0 

Save/Load diagram &  
Load saved diagram 

dbViz #5 0.45 0.13 0 1 4 18 2 

Unary + operator &  
Addition operator 

Rhino #1 0.33 0.27 3 3 3 14 15 

Addition operator & 
Subtraction operator 

Rhino #2 0.71 0.28 4 1 2 16 17 

Date.prototype.toString & 
Date.prototype.valueOf 

Rhino #3 0.75 0.74 3 5 0 15 2 

Unicode format control chars 
& ToPrimitive 

Rhino #4 0 0.08 16 3 3 1 0 

parseInt & 
parseFloat 

Rhino #5 0.40 0.46 8 2 3 10 2 

SQRT2 & Date.pro-
totype.getTimezoneOffset 

Rhino #6 0 0.85 14 6 3 0 1 

Data sources & 
JTA 

iBatis #1 0.08 0.42 1 2 9 11 - 

JDBC & 
JTA 

iBatis #2 0 0.44 10 4 7 2 - 

Query & 
Max Results 

iBatis #3 0.15 0.47 0 1 10 12 - 

Update & 
Autogenerated keys 

iBatis #4 0 0.17 9 4 7 3 - 

SELECT & 
SQL Scripts 

iBatis #5 0 0.06 11 6 5 1 - 
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functionalities and use a lot of the same variable names, so high textual coupling in this case seems 
to be accidental.     

Another interesting case is the Rhino #5 feature pair: “parseInt” and “parseFloat.”  SFC and 
TFC have approximately equal values which are both substantially greater than the average for 
each metric in Rhino.  The developers are almost evenly split in their opinions of whether these 
two features are coupled, with a slight majority thinking they are coupled.  The feature’s coupling 
is also supported by the fact that they have two bugs in common.  The developers’ mixed ratings 
suggest that perhaps there is a coupling threshold, but that threshold varies from person to person.       

The results for iBatis include an interesting case, the iBatis #4 feature pair, where the features 
"Update" and "Autogenerated keys" exhibit low coupling with respects to both SFC and TFC 
metrics.  The "Update" feature relates to modifying data previously entered into a table in the 
database while the feature "Autogenerated keys" automatically generates keys for new entries into 
a database table. Although the majority of participants either responded "Strong No" or "Weak 
No" there were a noticeable number which thought the two were coupled to some degree.  
Clearly there exists a logical relationship between the two which may explain why a few 
participants indicated that the two were coupled. 

Overall, the ratings given by the programmers seem to support our feature coupling metrics.  
This implies that the measures do capture the coupling between features.  Generally, the 
respondents’ opinions support SFC more than TFC, but that may be due to the fact that feature 
textual coupling is a newer concept.   

4.6 Threats to Validity 

In this section, we discuss the main threats to the validity of our case studies and provide details on 
how we minimized these threats. 

4.6.1 Internal Threats to Validity 

Internal validity refers to the degree to which statements about cause and effect are valid.  Since 
we use previously published data sets, we inherit all of the threats to validity associated with them.  
One internal threat of the data sets is the subjective manner in which methods were assigned to 
features.  These facts limit the consistency of our results because different mappings would 
produce different results.  However, since the data sets have been used and verified by other 
researchers (Eaddy et al. 2008; Eaddy et al. 2008), these threats are minimized.  Additionally, 
Spearman rank-order correlation can mitigate unreliable measurements as long as their relative 
order is correct (Kan 2003).  Also, the Rhino data set has a large sample size (84,252 feature 
pairs).  The moderate and strong correlations observed are unlikely if the data is unreliable.  
Another threat we inherit from the data sets pertains to the assignment of bugs.  As with any 
approach to mining software repositories, defects can potentially be mapped to wrong or missing 
methods if methods undergo a change in signature.  Similarly, automated repository mining does 
not always provide a complete picture of a bug’s history.  It may lack social, technological, and 
organizational knowledge (Aranda and Venolia 2009) or may be biased and only record a fractions 
of bug fixes (Bird et al. 2009).    

Another threat related to the data sets is their granularity.  Full methods are associated with 
features.  However, only a small portion of the code in a method may actually pertain to a feature 
(Koschke and Quante 2005; Revelle et al. 2005).  Therefore, a finer level of granularity such as 
statements or basic blocks would be more accurate.  Since we are not experts in any of the 
systems we studied, we made no attempts to refine the granularity of the data sets.   

Another threat to validity associated with our data set pertains to our approach for associating 
bugs with pairs of features.  In this work we increment the bug count per feature pair for any bug 
associated with a method from either feature in the pair.  In doing so we overlook the distinct 
impact scenarios where (1) a defect is associated with a method shared by the two features and (2) 
a defect is associated with methods uncommon to both features.  So our results provide more 
general insight to the association between features and bugs and do not explore these scenarios 
individually in which bugs can be associated with pairs of features. 

In our case studies, we observed a high correlation between feature coupling and defects, which 
may imply that feature coupling can serve as a predictor for faults.  However, correlation values 
only measure goodness of fit, not predictive power.  To better assess predictive power, we would 
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need to perform some form of data splitting, such as ten-fold cross-fold validation, which is part of 
our future work. 

As with other similar approaches to impact analysis, we currently do not suggest any technique 
for selecting an optimal threshold.  So, it is possible that the set of thresholds considered in this 
paper excludes the threshold which provides optimal performance.  Additionally, the best 
threshold will depend on the specific software system.  To overcome this threat, we would need 
to implement an approach, which is capable of identifying the best threshold for a given data set, 
which is out of the scope for this paper.  On the other hand, we minimize this threat by providing 
the results using a number of threshold values. 

Our approach to combining multiple sources of information to measure coupling among pairs of 
features requires weights be assigned to both structural and textual coupling metrics.  Currently, 
we do not provide any heuristic to determine such weights.  Instead we explore various 
possibilities and highlight scenarios, which lead to the best performance.  It is possible that the 
weights selected for HFC in each case will not provide the best results on different software 
systems. 

In the context of our survey, there are a number of threats to validity.  First, the programmers’ 
proficiency with Java and Eclipse is a threat because we did not select participants based on their 
familiarity with either technology.  Some of the programmers had no experience with Java or 
Eclipse.  By including programmers with little or no Java experience in our survey, there is a 
danger that they made poor choices due to their unfamiliarity with the programming language.  
Another threat related to the programmers is their motivation.  All the developers who 
participated were volunteers and received no compensation for their time or effort, so there was no 
motivation for them to perform well.  On the other hand, we did not give them a time constraint, 
so there was no time pressure to complete the survey quickly.   

Two final threats to the validity of our survey pertain to the task the programmers were asked to 
complete.  The participants were instructed to consider if two features were coupled in the 
context of performing a change task to either.  No specific change task was given, leaving the 
task rather open-ended and general.  However, it may be difficult to gauge the relationship 
between two features without a specific context.  There could be changes made to a feature that 
affect the other one, but other changes made to the same feature may not affect the other feature.  
To avoid making a judgment call about a specific change tasks, we kept the task general.  
Additionally, the mappings of features to code the participants were given was the same as was 
used to compute SFC.  This introduces a bias that could not be avoided. 

Lastly, there exists a threat related to the results obtained for the ICC coefficient, which captures 
agreement amongst developers in the study.  ICC is a parametric test statistic, which assumes the 
data set is sampled from a normal distribution.  Based on our data set normality, tests indicate 
that we are unable to make such an assumption.  It is possible that not abiding to the assumption 
influences our results for ICC to some degree. 

4.6.2 External Threats to Validity 

External threats to validity limit the degree to which generalizations can be drawn from our results.  
We studied only three systems, one small and the other two medium in size.  In future work, our 
feature coupling metrics will be validated on larger systems.  However, the number of features 
studied in Rhino was large (411), and the feature coupling metrics of both systems had statistically 
significant correlations with bugs.  While both systems are open-source, their development shares 
many characteristics in common with industrial systems such as the use of specifications, use 
cases, and change management systems.  Therefore, it is reasonable to expect that our results 
would hold for industrial software of similar sizes.  All the systems we studies are written in 
Java.  To see if our results are not language-specific, we are planning to study systems written in 
other programming languages in the future.   

Concerning the survey we conducted, there are also threats to external validity.  The majority 
of the programmers were graduate students, so the participants are not necessarily representative 
of all developers.  However, some of our participants were industrial programmers, and in 
general, their responses aligned with those of the graduate students.   
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5 Conclusions 

We have introduced novel metrics that capture feature-level coupling by using structural and 
textual information, filling a critical gap in the area of empirical software measurement.  We have 
theoretically validated our metrics and extended the unified framework for coupling measurement 
(Briand et al. 1999) with important new dimensions.  Through our three-pronged evaluation, we 
have shown that these metrics are useful since they are good predictors of fault-proneness.  
Additionally, they have an application in feature-level impact analysis to determine if a change 
made to one feature may have undesirable effects on other features.  Finally, based on the results 
of a survey of 31 developers asked to rate the strength of coupling between pairs of features, our 
metrics align with those ratings.  Altogether, these results point to a solid conclusion that 
structural and textual feature coupling metrics are valid and useful tools for developers performing 
feature-level software maintenance tasks.      

A secondary goal of this work was to discover the optimal way in which to obtain our metrics so 
developers can use them most efficiently.  Both TFC and HFC can be computed under different 
configurations.  Textual information can be mined based on several options (i.e., include 
comments, perform stemming).  When available, external documentation should be included in 
the corpus to boost textual similarities by adding more domain terminology and concepts.  In the 
absence of external documentation, comments should be preserved.  When combining structural 
and textual information for HFC, more weight should be placed on the stronger of the two sources 
to be able to better predict faults or perform impact analysis tasks.  Although accuracy of our 
metrics for the task of impact analysis exceeds results, which appear in the literature, we still must 
improve our technique in order to reach a level of accuracy which will allow our metrics to be 
used in practice.   

We make all of the source code, data, and results of the case studies available and invite other 
researchers to replicate our work. 
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