

A TraceLab-Based Solution for Creating, Conducting,
and Sharing Feature Location Experiments

Bogdan Dit, Evan Moritz, Denys Poshyvanyk
Department of Computer Science
The College of William and Mary

Williamsburg, Virginia, USA
{bdit, eamoritz, denys}@cs.wm.edu

Abstract—Similarly to other fields in software engineering, the
results of case studies involving feature location techniques
(FLTs) are hard to reproduce, compare, and generalize, due to
factors such as, incompatibility of different datasets, lack of
publicly available implementation or implementation details, or
the use of different metrics for evaluating FLTs. To address these
issues, we propose a solution for creating, conducting, and
sharing experiments in feature location based on TraceLab, a
framework for conducting research. We argue that this solution
would allow rapid advancements in feature location research
because it will enable researchers to create new FLTs in the form
of TraceLab templates or components, and compare them with
existing ones using the same datasets and the same metrics. In
addition, it will also allow sharing these FLTs and experiments
within the research community. Our proposed solution provides
(i) templates and components for creating new FLTs and
instantiating existing ones, (ii) datasets that can be used as inputs
for these FLTs, and (iii) metrics for comparing these FLTs. The
proposed solution can be easily extended with new FLTs (in the
form of easily configurable templates and components), datasets,
and metrics.

Index Terms–TraceLab, feature location, experiments,
benchmarks

I. INTRODUCTION

There are numerous case studies in software engineering
that present contradictory results for a given technique applied
(reproduced) on different projects by other researchers [1]. As
a consequence, the same technique, which was shown to work
in one experimental setting, but not in others, may cast some
doubts on the external validity of such empirical studies and
applicability of that technique [1, 2].

Feature location is empirical in nature, with case studies as
the predominant research method for evaluating the results [3].
However, there are several factors that impact the
reproducibility, comparison, and generalizability of many of
the existing empirical results. Some of these factors, which
serve as our motivation, are enumerated next.

First, the datasets used in the evaluation are different in
many cases. In a feature location survey by Dit et al. [4] it was
shown that only three out of 60 papers (5%) used the same
datasets for evaluating their proposed FLTs. In all the other
cases, the techniques were evaluated using datasets from

different software systems, different versions, or even different
subsets of data points from those subject systems.

Second, the actual implementation of feature location
techniques (FLTs) is not always made publicly available, and
this is the case with almost all the feature location papers
summarized in our previous work [4]. The unavailability of the
implementation of a FLT makes it difficult to compare new
FLTs with existing ones. For example, assuming that a
researcher is proposing a new FLT, she will have to compare
her technique against (relevant) existing ones. However,
implementing previous FLTs is not only time consuming, but
also error prone, as some of the implementation details or
settings may not be explicitly stated in the research paper that
introduced the existing techniques. Out of the 60 surveyed
feature location papers, only 23 (38%) compared their
techniques against a very small subset of existing ones [4].

Third, the FLTs are evaluated using different metrics. For
example, some techniques are evaluated using precision, recall
or the effectiveness measure [4]. In some cases, even if the
techniques use the same metric, the results may be at different
levels of granularity (e.g., class, method, or statement level)
and thus, not directly comparable [4].

All these previously enumerated factors (i.e., different
datasets, lack of implementation details for existing techniques
and different metrics used in the evaluation) make FLTs hard to
compare and reproduce in empirical studies. In addition, the
number of feature location research papers increased
considerably in the last years. According to the recent survey
[4], the total number of feature location research papers that use
textual, dynamic or static information, or a combination of
these types of information was just four in the year 2000, 15 in
the year 2005 and 54 in the year 2010. This means that
between 2000 and 2005 there were only 11 papers published,
whereas between 2005 and 2010 there were 39 feature location
papers published. Note that these numbers are for research
papers only and do not include tool papers or posters.

Given the large number of new FLTs in the last years, and
the fact that the area of feature location research becomes more
mature, the standards for publishing new techniques are also
increasing. For example, new techniques are oftentimes
expected to be compared against existing state-of-the-art ones
using sound statistical methods. These requirements are
necessary to ensure the progress in this and many other
research areas, but at the same time they result in substantial
effort for developing and publishing new techniques. This is

because a large portion of research effort is dedicated to
reimplementation and comparison with other techniques, which
is non-trivial in many cases [4].

In order to address these problems, we are proposing a
solution to uniformly create, conduct, and share feature location
experiments using the TraceLab framework [5, 6, 7]. This
solution contains templates and components for creating feature
location experiments, datasets for running these experiments
and metrics for evaluating FLTs. More details and the data are
available on our online appendix1.

II. TRACELAB BASICS

In this section we describe the TraceLab framework [5, 6,
7] and discuss some of its important characteristics that make it
suitable for feature location research.

A. TraceLab

TraceLab [5, 6, 7] is a framework for creating, running and
sharing experiments using a visual modeling environment.
TraceLab is funded by the National Science Foundation and is
developed at DePaul University with collaborating partners at
Kent State University, University of Kentucky, and the College
of William and Mary. Currently TraceLab is still in beta
version, but it is expected to be released for public use by June
2012, with many stability and performance improvements, as
well as a large set of reusable components. TraceLab is
designed to support research in the area of traceability link
recovery. However, due to its design qualities and
characteristics it is well suited to be adapted to other software
engineering tasks [6], such as feature location. Some of these
characteristics are discussed in the next subsection.

B. TraceLab Characteristics

TraceLab’s visual modeling plug-and-play environment
was designed to support a wide range of experiments in

1 http://www.cs.wm.edu/semeru/data/TraceLab-feature-location/

traceability link recovery research. A TraceLab experiment
(see Figure 1 (a)) is a graphical representation of a directed
graph, in which nodes are TraceLab components and directed
edges are dependencies between components.

1) Components. A primitive component (see rectangular
shapes with rounded corners in Figure 1 (a)) is a
computational unit that takes as input data from external
sources (e.g., files) or data produced by other components and
produces data that will be used by other components, or data
that can be saved to external sources (e.g., files). Components
can be written in C#, Java, or other memory managed
programming languages. The developer of a component must
specify metadata information, such as the name, description,
author, etc. of the component, as well as the data types
required as input and the data types produced as output.

A composite component is composed of a set of primitive
components, and has the same functionality as the primitive
components it encapsulates. An example of a composite
component is presented in Figure 1 (b). The “VSM FLT”
composite component encapsulates all the functionality of the
experiment presented in Figure 1 (a).

A special type of component is a decision component (see
component “More datasets?” in Figure 2 (b)), which allows the
possibility of changing the control flow of the experiment,
based on some values. In other words, a decision component is
similar to an if statement in any procedural programming
language, but it also allows to create loop structures by
manipulating the control flow. For example, the decision
component “More datasets?” from Figure 2 (b), along with the
primitive components “Get next dataset” and “datasetIndex++”
are used to iterate through multiple datasets in the experiment.

2) Datatypes. The datatypes for the input and output can
be chosen from either predefined TraceLab datatypes or they
can be user defined datatypes. The datatypes already
implemented in TraceLab consist of primitives (e.g., lists,
strings, integers), and complex datatypes specific to some
areas of software engineering, such as similarity matrices, co-

(a) (b)

(c)

Figure 1 (a) The VSM feature location experiment in TraceLab using primitive components (rectangles with rounded corners);
(b) The VSM feature location experiment in TraceLab as a composite component (rectangle with sharp corners);

(c) One possible implementation of the VSMDyn FL experiment in TraceLab that was adapted from the VSM FL experiment from Figure 1 (a)

occurrence matrices, etc. The TraceLab framework allows
users to develop their own datatypes to fit their needs. In
addition, users can develop custom datatype viewers for their
datatypes, which allows them to view the data stored in the
variables of that datatype while the experiment is running, or
after the experiment finished. All the variables of the
predefined TraceLab datatypes or the user developed datatypes
can be viewed at any time in the TraceLab Workspace. In
addition, the TraceLab Workspace allows components to
exchange information with each other, by storing data to or
loading data from the Workspace.

3) Dependencies. The dependencies (see arrows in Figure
1 (a)) ensure that components do not execute until the
components depended upon are executed. This precedence
order of components ensures that the data required by a
component was already computed by the components it
depends on. For example, in Figure 1 (a), the component
“Compute VSM Similarities” that computes the VSM
similarities between a corpus of methods and a set of external
queries cannot execute until the components “TFIDF Corpus”
and “Queries Stemmer” are executed, which are responsible
for generating the required data from the corpus and queries
respectively. However, if components are independent from
each other, they can be executed in parallel. For example,
“Corpus Importer” and “Queries Importer” can be executed in
parallel because they do not depend on each other.

III. FEATURE LOCATION IN TRACELAB

In this section we describe the process of creating,
conducting, and sharing feature location experiments in
TraceLab. In addition, we provide some details about the
artifacts that we released for transitioning feature location
research to TraceLab.

A. Creating Experiments

In some cases new components need to be developed
because the FLT being introduced may be so unique or novel
that there are no other similar components that can be reused.
These are user defined components and can be easily
implemented in C# or Java, or any other programming
languages that support memory management.

In the other cases, using TraceLab can substantially reduce
the effort for creating new FLTs by reusing templates, primitive
components or composite components [5].

1) Templates. Templates are TraceLab experiments that
can be easily adapted to create new FLTs. For example, the
vector space model (VSM) FLT presented in Figure 1 (a), can
be easily adapted to implement another FLT (called VSMDyn)
that is similar to SITIR [8], which combines information
retrieval results with dynamic information from execution
traces. SITIR uses only a subset of methods (i.e., the methods
from the execution trace) for computing the similarities
between the developer query and the methods, whereas an
information retrieval technique such as VSM computes the
similarities between a query and all the methods in the corpus.
In other words, it is easy to implement VSMDyn FLT by
keeping the existing components of the VSM experiment and
adding some components that handle the dynamic information
from execution traces. Figure 1 (c) shows one possible
implementation for the VSMDyn FLT that was adapted from
the VSM FLT (see Figure 1 (a)). The new components that
were added to the VSMDyn FLT (see Figure 1 (c)) to handle
the dynamic information are “Execution Traces Importer”,
“Extract Unique Methods” and “Filter Methods”, which
imports the execution traces into the Workspace, preprocesses
them to extract the unique methods from each execution trace,
and eliminates from the final results the methods that do not
appear in the execution trace.

(a) (b)
Figure 2 (a) Example of comparing the proposed FLT (the composite node in green color) with existing FLTs on the same datasets and metrics, using boxplots,
descriptive statistics and statistical tests; (b) An alternative example for comparing the proposed FLT (the composite node in green color) with existing FLTs on

the same datasets and metrics, using boxplots, descriptive statistics and statistical tests. This example is suited when there are multiple datasets to be used as input.
The multiple datasets are loaded at the beginning and a decision node (i.e., the “More Datasets?” node) allows iterating through all the datasets before giving the

control flow to the component that displays and compares the results

Note that in Figure 1 (c) the composite component “Corpus
Preprocessing” has the same functionality as the primitive
components “Corpus Remove Non-Literals”, “Corpus Split
Identifiers”, “Stopwords Importer”, “Corpus Stopwords” and
“Corpus Stemmer” from Figure 1 (a). Analogously is for the
composite component “Queries Preprocessing” from Figure 1
(c). In addition, the composite components “Corpus
Preprocessing” and “Queries Preprocessing” are the same
component that was instantiated twice in the experiment, to use
different data. Furthermore, the primitive components
“Effectiveness - VSM” and “Effectiveness - VMS+Dyn” from
Figure 1 (c) are the same component that was instantiated
twice.

Using multiple instances of a component in the same
experiment shows the flexibility and adaptability of TraceLab
to easily create experiments, and it also encourages researchers
to create components that are general enough to be reused by
others.

2) Primitive Components. When developing a new FLT
that is not very similar to others, it may be the case that there
are no suitable templates to use, but there may be reusable
components that can be utilized. For example, the new
technique might use primitive components for importing data
(e.g., the “Corpus Importer” or “Gold (answer) Set Importer”
components from Figure 1 (a)) or for computing similarities
(e.g., “Compute VSM Similarities” component in Figure 1 (a))
between two sets of artifacts, such as methods, bug reports,
documentation, etc.

3) Composite Components. Another example of reusable
components is a composite component, which is a set of
components that are grouped under a single component. For
example the components “Box Plots”, “Descriptive Statistics”
and “Statistical Tests”, from Figure 2 (a) could be grouped
under one single composite component with the same
functionality, called “Box Plots, Descriptive Statistics,
Statistical Tests” (see Figure 2 (b)). Composite components
are easier to handle, especially while designing complex
experiments, and can be considered as procedures that
encapsulate statements (primitive components) in procedural
programming languages.

B. Conducting and Comparing Experiments

Once a new FLT is created by adapting templates or using
existing components or user defined components, it can be run
from inside TraceLab, and its results could be displayed.
However, the results of the new FLT would not be very
indicative unless they are compared against the results of
existing FLTs using the same datasets and the same evaluation
metrics. Figure 2 (a) shows a TraceLab experiment that would
allow comparing multiple FLTs on the same datasets, using the
same metrics. The template should be customized to meet the
requirements of the user and the new FLT, but the general steps
in creating a new experiment are as follows.

First, from the existing datasets a subset (or all) should be
chosen as input for the evaluation. For instance, datasets #1
through #m were chosen in Figure 2 (a). In case there are
numerous datasets, the user does not have to instantiate an
“Import dataset” component for each dataset. Instead, she has
the choice to use a different experiment (see Figure 2 (b)) that

has a component that loads multiple datasets (see Figure 2 (b),
“Datasets Importer”) based on a configuration file defined by
the user. Once the datasets have been loaded, the experiment
iterates over the datasets and uses them to compute the FLTs
results. The iteration over the datasets is possible using the
decision node “More datasets?” (see Figure 2 (b)) which
decides which nodes should get the control flow next, based on
some variables values. The logic of the decision node is
specified by the user when designing the experiment. In this
example, the logic is to give the control flow to the component
“Get next dataset” if there are still datasets that still need to be
used as inputs for the FLTs, or give the control flow to the
composite component “Box Plots, Descriptive Statistics,
Statistical Tests” to compare the results, after all the datasets
have been used as inputs.

Second, from the already implemented FLTs, a subset (or
all) should be chosen as the baseline for the comparison of the
results. Note that in some cases, the choice of FLTs may be
restricted by the datasets chosen. For example, if a chosen
dataset does not contain execution traces, or any other dynamic
information, then no FLTs that use dynamic information can be
chosen as baseline for comparison. In Figure 2 (a), the chosen
FLTs are FLT1 through FLTn.

Third, given the choice of datasets and FLTs, the
appropriate metrics for comparison are chosen. In other words,
the datasets, the FLTs, and the metrics should be selected
appropriately, so that they are consistent with one another. For
example, if a dataset has an incomplete set of methods related
to a feature (i.e., incomplete gold set), then the recall metric
cannot be used, but the precision or effectiveness [4] measure
could be used instead. For instance, metric1 and metric2 were
chosen to evaluate the results in Figure 2 (a).

Fourth, the methods for comparing and analyzing the results
of the FLTs need to be selected. The results can be compared
(i) visually, using box plots or precision-recall curves, (ii) using
descriptive statistics (e.g., minimum, 25th percentile, median,
75th percentile, maximum, average, standard deviation, etc.), or
(iii) using statistical tests, such as the Wilcoxon signed-ranked
test, in order to determine if one FLT produces results that are
statistically significant. In Figure 2 (a), the components for
comparing the techniques are located on the next to last line
and are “Box plots”, “Descriptive statistics” and “Statistical
tests”.

The benefits of using TraceLab to conduct feature location
experiments are clearly depicted in Figure 2 (a), as the effort to
develop a new FLT and compare it against existing ones is
reduced considerably. In addition, the development of the new
FLT can be significantly increased using existing components.

C. Sharing Experiments

Similarly to the way primitive components in TraceLab are
grouped into a single composite component, a FLT can be
encapsulated into a single composite component that has the
same functionality as the group of primitive or composite
components that created it (see the “VSM FLT” composite
component from Figure 1 (b)). This has the advantage of not
only allowing for an easier manipulation of FLTs when
designing experiments in TraceLab’s visual modeling
environment, but also sharing such composite components with
the research community.

TraceLab already provides the functionality for creating
composite components for easy sharing, using a wizard-based
interface. The user only needs to specify the metadata
information (e.g., the composite component’s name, author,
description, etc.), as well as the input and output data types and
the configuration parameters, by clicking the appropriate check
boxes in the wizard. The exported data consists of a TraceLab
description file in XML format, which can be used in the same
way as other components.

A TraceLab feature for exporting experiments is currently
being developed and is estimated to be ready by June 2012.
This feature would allow to export an entire experiment,
including primitive and composite components, their
implementation (e.g., assemblies or byte code), and datasets.
The exported experiment will have support for referencing
other exported experiments or datasets. For example, if the
research community publishes datasets, and FLTs in the form
of exported experiment, a new researcher who uses those
datasets and the existing FLTs to evaluate her new technique
would simply reference them in her experiment, instead of
including them. This would be possible, as each experiment or
dataset has a Globally Unique Identifier (GUID), which allows
the referencing to be robust to version changes. In other words,
if an experiment was tested on a specific implementation (or
version) of the components, and on specific versions of the
datasets, the experiment will produce the same results,
regardless if there are new versions of those components or
datasets, because the experiment will reference the versions of
the components and datasets it originally used by their GUID.

D. Artifacts for Feature Location in TraceLab

In this section we describe some of the software artifacts
(datasets, templates, components, and metrics) that we made
available in order to transition feature location research to

TraceLab. For more detailed explanations and updates please
refer to our online appendix.

1) Datasets. We make available five datasets for the
purpose of testing new experiments involving new FLTs.
These datasets are for the following five Java software
systems: ArgoUML 2 , Eclipse 3 , JabRef 4 , jEdit 5 and
muCommander 6 . These datasets were used in previously
published case studied on FL [9, 10], as well as in case studies
on impact analysis [11].

The datasets contain issues (e.g., bugs, features, patches,
etc.) extracted from their issue tracking system, and these issues
have associated with them gold sets, queries and execution
traces.

The gold sets are set of methods related to the functionality
described in the textual description of the maintenance task
(i.e., issue). The gold sets were extracted from the patches
submitted to the issue tracking system (for Eclipse), or were
generated by mining SVN repositories (for the other four
systems) and matching SVN commit log messages to issue IDs.

The queries are textual descriptions of the maintenance
tasks (i.e., issues) and are composed of the title of the issue as
well as its description.

The execution traces were collected at method level
granularity by reproducing the steps described in the issue
description on an instrumented version of the system.

A more detailed description of these datasets and their
format is presented in the survey [4] and its online appendix7.

2) Templates and Components. We also provide the
source code and executable code of the components that were
used in building four FLTs. In addition, we also provide their
templates.

The first two templates are based on information retrieval,
namely the Vector Space Model FLT (see Figure 1 (a)) and
Latent Semantic Indexing [12] (LSI) FLT. The LSI FLT uses a
component that imports the similarities between queries and
methods, which were computed externally. A feature of
TraceLab is being developed that would allow access to
powerful frameworks and libraries such as GenSim8 or R9,
which would allow TraceLab experiments to benefit from the
complex functionality implemented in these libraries.

The other two templates combine information retrieval and
dynamic analysis and are similar to the SITIR approach [8].
These FLTs are VSMDyn (see Figure 1 (c)) and LSIDyn.

Our online appendix provides more resources on how to get
started with developing new components and using existing
ones.

3) Metrics. In addition to the datasets and the FL
templates and components, we provide metrics in the form of
TraceLab components that can be used to evaluate FLTs.

2 http://argouml.tigris.org/
3 http://www.eclipse.org/
4 http://jabref.sourceforge.net/
5 http://www.jedit.org/
6 http://www.mucommander.com/
7 http://www.cs.wm.edu/semeru/data/benchmarks/
8 http://radimrehurek.com/gensim/
9 http://www.r-project.org/

Figure 3 The results of the evaluation of the effectiveness measure between
the VSM and LSI FLTs: box plots (left), descriptive statistics (middle right)
and statistical test (lower right). The datasets can be chosen from the combo
box at the top, and the different metrics can be chosen using the tabs. Note

that 10 of the data points with highest scores (i.e., outliers) for the jEdit
dataset were eliminated from the results to properly display the box plots

These metrics are the effectiveness of all ranks and the
effectiveness of best ranks. The effectiveness of all ranks
returns the rank of all the methods from the gold set associated
with a feature, whereas the effectiveness of best ranks returns
the first position (i.e., the best) among all the methods from the
gold set for each feature.

Moreover, we created components that would allow for a
fair comparison between different FLTs evaluated on the same
datasets (see Figure 3). These components can compare the
effectiveness of FLTs based on box plots (see Figure 3, left),
descriptive statistics (see Figure 3, middle right) and statistical
tests, such as the Wilcoxon signed-ranked test (see Figure 3,
lower right). The developer can also choose to see the results
from different datasets (see combo box in upper left corner of
Figure 3), or the results of different metrics (see tabs in upper
left corner of Figure 3).

The components related to metrics and comparisons
between FLTs are currently in beta version, but we are working
closely with TraceLab’s development team to ensure that those
components are available by June 2012.

IV. CONCLUSIONS

In this paper we presented a TraceLab-based solution for
facilitating rapid advancements in feature location research.
More specifically, we provided the details for an environment
that allows researchers to create, conduct, compare, and share
feature location techniques in the form of TraceLab
experiments. We made available an initial set of templates and
components that can be easily adapted or used to create new
FLTs, as well as datasets and metrics that can be used to
reproduce previous work and/or evaluate new FLTs. We
envision TraceLab as a framework that can be used to conduct
feature location research, and facilitate the progress in the
feature location area. Hence, we will continually expand the
repository from our online appendix with new datasets and
components. In addition, we see a great potential for TraceLab
to be used in support of other software engineering areas, such
as impact analysis, detection of duplicate bug reports,
recommending expert developers, etc.

ACKNOWLEDGMENT

This work is supported in part by the United States NSF
CNS-0959924 grant. Any opinions, findings and conclusions
expressed herein are the authors’ and do not necessarily reflect
those of the sponsors. We would also like to acknowledge the
team of researchers from DePaul University: Jane Cleland-
Huang, Ed Keenan, Adam Czauderna, Greg Leach, and
Yonghee Shin. This work would not have been possible
without their continuous support on the TraceLab project.

REFERENCES
[1] T. Menzies and M. Shepperd, "Special Issue on Repeatable Results in

Software Engineering Prediction", Empirical Software Engineering
(ESE), vol. 17, no. 1-2, 2012, pp. 1-17.

[2] A. Arcuri and L. C. Briand, "A Practical Guide for Using Statistical Tests
to Assess Randomized Algorithms in Software Engineering", in
Proceedings of 33rd IEEE/ACM International Conference on Software
Engineering (ICSE'11), Honolulu, Hawaii, USA, May 21-28 2011, pp. 1-
10.

[3] T. J. Biggerstaff, B. G. Mitbander, and D. E. Webster, "The Concept
Assignment Problem in Program Understanding", in Proceedings of 15th
IEEE/ACM International Conference on Software Engineering (ICSE'94)
May 17-21 1994, pp. 482-498.

[4] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk, "Feature Location in
Source Code: A Taxonomy and Survey", Journal of Software
Maintenance and Evolution: Research and Practice (JSME), vol. doi:
10.1002/smr.567, 2012, pp. to appear.

[5] J. Cleland-Huang, A. Czauderna, A. Dekhtyar, G. O., J. Huffman Hayes,
E. Keenan, G. Leach, J. Maletic, D. Poshyvanyk, Y. Shin, A. Zisman, G.
Antoniol, B. Berenbach, A. Egyed, and P. Maeder, "Grand Challenges,
Benchmarks, and TraceLab: Developing Infrastructure for the Software
Traceability Research Community", in Proceedings of 6th ICSE2011
International Workshop on Traceability in Emerging Forms of Software
Engineering (TEFSE2011), Honolulu, HI, USA, May 23 2011.

[6] J. Cleland-Huang, Y. Shin, E. Keenan, A. Czauderna, G. Leach, E.
Moritz, M. Gethers, D. Poshyvanyk, J. H. Hayes, and W. Li, "Toward
Actionable, Broadly Accessible Contests in Software Engineering", in
Proceedings of 34th IEEE/ACM International Conference on Software
Engineering (ICSE'12), New Ideas and Emerging Results Track, Zurich,
Switzerland, June 2-9 2012, pp. to appear 4 pages.

[7] E. Keenan, A. Czauderna, G. Leach, J. Cleland-Huang, Y. Shin, E.
Moritz, M. Gethers, D. Poshyvanyk, J. Maletic, J. H. Hayes, A. Dekhtyar,
D. Manukian, S. Hussein, and D. Hearn, "TraceLab: An Experimental
Workbench for Equipping Researchers to Innovate, Synthesize, and
Comparatively Evaluate Traceability Solutions", in Proceedings of 34th
IEEE/ACM International Conference on Software Engineering (ICSE'12),
Zurich, Switzerland, June 2-9 2012, pp. to appear 4 pages.

[8] D. Liu, A. Marcus, D. Poshyvanyk, and V. Rajlich, "Feature Location via
Information Retrieval based Filtering of a Single Scenario Execution
Trace", in Proceedings of 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE'07), Atlanta, Georgia, November
5-9 2007, pp. 234-243.

[9] B. Dit, M. Revelle, and D. Poshyvanyk, "Integrating Information
Retrieval, Execution and Link Analysis Algorithms to Improve Feature
Location in Software", Empirical Software Engineering, vol. doi:
10.1007/s10664-011-9194-4, 2012, pp. to appear.

[10] M. Revelle, B. Dit, and D. Poshyvanyk, "Using Data Fusion and Web
Mining to Support Feature Location in Software", in Proceedings of 18th
IEEE International Conference on Program Comprehension (ICPC'10),
Braga, Portugal, June 30 - July 2 2010, pp. 14-23.

[11] M. Gethers, B. Dit, H. Kagdi, and D. Poshyvanyk, "Integrated Impact
Analysis for Managing Software Changes", in Proceedings of 34th
IEEE/ACM International Conference on Software Engineering (ICSE'12),
Zurich, Switzerland, June 2-9 2012, pp. to appear 10 pages.

[12] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and R.
Harshman, "Indexing by Latent Semantic Analysis", Journal of the
American Society for Information Science, vol. 41, no. 6, 1990, pp. 391-
407.

