
Domain Matters: Bringing Further Evidence of the
Relationships among Anti-patterns, Application Domains,

and Quality-Related Metrics in Java Mobile Apps
Mario Linares-Vásquez1, Sam Klock1, Collin McMillan2, Aminata Sabané3, Denys Poshyvanyk1,

Yann-Gaël Guéhéneuc3

1Department of Computer Science
 The College of William and Mary

Williamsburg, VA 23185
{mlinarev, skkloc, denys}@cs.wm.edu

2Department of Computer Science
 University of Notre Dame

Notre Dame, IN 46556
cmc@nd.edu

3 Département de génie informatique
École Polytechnique de Montréal

Montréal, Québec, Canada
{aminata.sabane, yann-

gael.gueheneuc}@polymtl.ca

ABSTRACT
Some previous work began studying the relationship between
application domains and quality, in particular through the
prevalence of code and design smells (e.g., anti-patterns). Indeed,
it is generally believed that the presence of these smells degrades
quality but also that their prevalence varies across domains.
Though anecdotal experiences and empirical evidence gathered
from developers and researchers support this belief, there is still a
need to further deepen our understanding of the relationship
between application domains and quality. Consequently, we
present a large-scale study that investigated the systematic
relationships between the presence of smells and quality-related
metrics computed over the bytecode of 1,343 Java Mobile Edition
applications in 13 different application domains. Although, we did
not find evidence of a correlation between smells and quality-
related metrics, we found (1) that larger differences exist between
metric values of classes exhibiting smells and classes without
smells and (2) that some smells are commonly present in all the
domains while others are most prevalent in certain domains.

Categories and Subject Descriptors

D.2.7 [Software Engineering]: Distribution, Maintenance, and
Enhancement

General Terms
Measurement, Design, Theory

Keywords
Anti-patterns, Internal metrics, Software quality, Domain
categories, Java Mobile Edition

1. INTRODUCTION
An open (and controversial) question in software engineering
relates to the relationship between software practices and software
quality. The concept of design patterns—structured, reusable

solutions to recurring design problems, typical example of good
practices, was introduced in software engineering by the “Gang of
Four” (GoF) [23]. Following the GoF, since their introduction, the
conventional lore among both researchers and practitioners has
been that the use of design patterns improves some quality
characteristics, e.g., maintainability, by making source code easier
to understand, more stable, and with fewer faults. Conversely,
code smells and anti-patterns—recurring solutions to code and
design problems, i.e., poor practices, are assumed to decrease
quality [11]. In general, code smells are symptoms of the presence
of anti-patterns in the code. In the following, we use the word
“smells” to refer to both code smells and anti-patterns, as in
previous work [40].

However, the relationships among smells, application domains,
and quality have been little studied so far. In general, following
Zhang and Budgen and their mapping study [56] for design
patterns, we argue that much of the research on the presence of
smells and their relationships to application domains and quality-
related metrics has been small-scale and frequently anecdotal:
experience reports, case studies, developers’ opinions. A notable
exception is the work by Fontana et al. [22], which studied the
relationships between anti-patterns and application domains and
concluded that no relationship could be found in the curated
Qualitas Corpus, contrary to the lore. While this previous
research work is useful for practitioners and researchers by
discussing the relationships between anti-patterns and application
domains, we believe that the following general question remains
unanswered: “Are applications in different domains negatively
impacted by smells in different ways?” The answer to this
question, coupled with concrete knowledge on the relationships
that smells have with software quality, is of interest to researchers
and practitioners. A related question—the relationship between
domain and quality—also has interpretive significance. On the
one hand, if the prevalence of smells and software quality
significantly varies by domains, then it is important to report such
variations and to understand why they occur: practitioners should
be wary of the smells most prevalent in their application domains
while researchers should take into account the domains of the
applications under analysis in their algorithms. Also, different
prevalence among domains would show that opportunistic
programming [7] and applications developed by domain experts
(who may not be software experts) can have poor quality and,
thus, should be used with caution. On the other hand, the absence
of any relationship between domain and quality would imply that

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ICPC’14, June 2–3, 2014, Hyderabad, India.
Copyright 2014 ACM 978-1-4503-2879-1/14/06... $15.00.

the presence of smells does degrade quality per se and would
warrant further studies on their impact.

With the purpose of providing answers to the general question, we
follow previous works and study the relationships among smells,
application domains, and quality on a large scale. We obtain
empirical results on the relationships between the presence of
smells, source-code metrics, and application domains, using two
correlation measures (Spearman and Kendall) and the Cliffs’s d
effect size [24]. We use DECOR [40] to identify occurrences of
smells and POM [26] to compute quality-related metrics from the
bytecode of 1,343 Java Mobile Edition Applications belonging to
13 domains in a closed-source repository. We assess whether the
presence of smells had any relationship with the values of the
metrics and the domains. We show that (1) some smells are
common in all the domains while others are more common in
certain domains and (2) the presence of smells increases the
values of fault-related metrics, although there is no evidence of a
correlation between smells and metrics. Thus, we contribute to the
researchers’ and practitioners’ knowledge about the relationships
among smells, application domains, and quality.

2. RELATED WORK
Object-oriented metrics (OO metrics) have been widely used to
assess the internal quality of applications. Additionally, quality
models define quality attributes as aggregation of lower-level
attributes and code-level metrics [3; 4; 30]. Several works used
OO metrics as indicators of quality, such as fault-proneness,
testability, and change-proneness [1; 5; 6; 8; 10; 12; 15; 16; 21;
29; 32; 36; 41; 47; 49-52; 55; 57]. They mostly focused on the
well-known Chidamber and Kemerer (CK) metric suite of OO
metrics [17]. Several other works used metrics to describe and
detect occurrences of design patterns and–or anti-patterns, such as
the works on detection strategies by Antoniol et al. [2], Lanza and
Marinescu [35], and Marinescu [39].

Since their introduction in the field of software engineering,
smells have been the subject of much work, either for their
definition/formalization, the identification of their occurrences, or
their categorization. However, previous work has not yet verified
the relationships among smells, application domains, and quality
on a large scale. Li and Shatnawi [37] analyzed the relationship
between six anti-patterns and class fault-proneness in three
versions of Eclipse. Bug reports severity was used as a proxy for
fault-proneness. Shotgun Surgery, God Class, and God Methods
were positively related to fault-proneness. Although we did not
use fault-related data to identify the impact of smells in software
quality, we used OO metrics as a proxy for quality and looked for
occurrences of 18 anti-patterns in 1,343 apps.

Khomh et al. [33] performed a study on the impact of 13 anti-
patterns in 54 releases of ArgoUML (0.10.1 – 0.26.2), Eclipse (1.0
– 3.3.1), Mylyn (1.0.1 – 3.1.1), and Rhino (1.4R3 – 1.6R6), to
identify the relationship between smells and class change- and
fault-proneness as well as between the occurrences of the smells
and the sizes of the classes having these smells. In our study, we
complement the findings of Khomh et al. [33] by analyzing the
impact of smells on fault-related metrics.

Romano et al. [45], in a study of 16 Java systems, concluded that
classes affected by smells are more change prone, in particular
classes participating in the ComplexClass, SpaghettiCode, and
SwissArmyKnife. According to our results, classes participating in
these three smells have larger values of LCOM5 compared to
classes without them. These results corroborate Romano et al.

[45] findings: classes with low cohesion implement several and
unrelated functionalities and then are change-prone.

Yamashita and Moonen [54] and Yamashita and Counsell [53]
analyzed the impact of 12 smells on the maintainability of four
Java-based systems. Smells were detected using commercial tools
that implemented the detection strategies by Lanza and Marinescu
[35] and Marinescu [39]. The main conclusion of both studies is
that smells are present in classes with maintainability issues;
therefore smells could be used for assessing the maintainability of
a system.

Jaafar et al. [31] showed that, in several releases of ArgoUML,
JFreeChart, and XercesJ, classes with smells are more fault-prone
than other classes and that this observation is also true for classes
with binary-class relationships with smelly classes. In our study,
we did not analyze static relationships between smelly classes and
other classes.

Olbrich et al. [42] performed an empirical study that showed that
God and Brain classes were more change and fault prone than
other classes. However, when normalizing class metrics with
respect to size, they observed that God and Brain classes were
less change and fault prone than others. They concluded that God
and Brain classes are not necessarily harmful because they
contain as much functionality per line of code as others.

Guo et al. [28] performed an empirical study to assess the benefit
of including tailored domain-specific rules in metrics-based smell
detection techniques. These specific-domain rules are obtained
from domain experts and used to refine smell definitions by
modifying some thresholds and–or rules. These tailored rules
make the detection results more accurate.

Fontana et al. [22] performed an empirical study to identify the
most frequent smells in systems of different domains and
investigate whether there are correlations between smells and
metrics. The results showed that the most frequent smells are
Duplicate Code, Data Class, God Class, Schizophrenic Class, and
Long Method, but no specific domain contains more smells of a
particular kind. The authors used the applications in the curated
Qualitas Corpus for their study. We follow this study but argue
that the size of the corpus is too small to observe an effect.
Therefore, we design our study to use more than a thousand
applications belonging to 13 domains.

Palomba et al. [43] proposed an approach for detecting five
different code smells (Divergent Change, Shotgun Surgery,
Parallel Inheritance, Blob, and Feature Envy), by exploiting
change history information mined from versioning systems. In
particular they analyzed the versioning systems of eight software
projects written in Java.

3. EMPIRICAL STUDY DESIGN
The goal of this study is to identify if a relationship exists
between the presence of smells and quality-related metrics and
between application domains and the presence of smells in Java
Mobile Applications. The context consists of 1,343 Java Mobile
Applications from ShareJar1 that belong to 13 domains (categories
in the context of ShareJar) and the quality focus is the quality of
the applications measured by 48 OO metrics.

1 The Java Mobile Edition apps were downloaded in 2011 from

http://www.sharejar.com. However, by the time we wrote this paper the
domain was on sale and the download access was deactivated.
Therefore, we could share the JAR files upon request.

Table 1 lists the number of Java Mobile Applications per
category2. We used free Java Mobile Applications because the
bytecode (JAR files) of the apps was publicly available and
ShareJar allowed us to download a set of apps that belongs to
several application domains.

The software repository that we used as representative of Java
Mobile Applications, ShareJar, like other software repositories
and code-search engines, provides a predefined list of categories
that represent application domains. Therefore, we used ShareJar
software categories as representative of application domains.
Developers associate applications to categories to make the
searching and browsing easier. Although the category of an
application depends on the features provided by the application,
developers must often choose from a predefined list. In some
cases, the list does not reflect the developers’ intention; in some
other cases, developers may have chosen by mistake categories
that do not represent their applications. We assume that
developers “correctly” assign categories to their applications and
that the categories available in ShareJar comprehensively reflect
the domain of the applications stored therein. Thus, we use
categories according to the mappings supplied by ShareJar.

3.1 Research Questions
Following our general question in Section 1, we ask the following
research questions:

• RQ1: What relationship, if any, exists between the presence
of anti-patterns and quality-related metrics in Java Mobile
Applications? (Are certain anti-patterns more likely to
impact software quality, in particular fault-proneness?)

• RQ2: What relationship, if any, exists between the presence
of code smells and quality-related-metrics in Java Mobile
Applications? (Are certain code smells more likely to impact
software quality, in particular fault-proneness?)

• RQ3: What relationship, if any, exists between software
categories in ShareJar and the presence of anti-patterns in
Java Mobile Applications? (Are certain smells more likely to
appear in particular categories?)

• RQ4: What relationship, if any, exists between software
categories and quality-related metrics in Java Mobile
Applications? (Are applications in certain categories more
likely to be characterized by certain metric values?)

The dependent variable for RQ1, RQ2, and RQ4 is represented by
the values of the OO metrics computed on the Java Mobile
Applications. The dependent variable for RQ3 is represented by
the occurrences of smells in the Java Mobile applications.

The independent variable for RQ1 is the number of occurrences
of anti-patterns in the applications; for RQ2, it is the number of

2 Each application may belong to one or more category.

occurrences of smells, i.e., roles in anti-patterns; for RQ3 and
RQ4, it is the categories of the applications.

With RQ1, we want to analyze whether some metrics are indeed
correlated with the presence of occurrences of anti-patterns (one
or more). RQ2 provides a complementary, interesting answer to
that of RQ1, focusing on the code smells (anti-pattern roles) rather
than on the anti-patterns. Similarly with RQ3, we want to identify
if anti-patterns may be more or less prevalent depending on the
category. Finally, with RQ4, we expect metric values to change
across categories because each category may impose designing
and programming styles, which will be captured by some of the
metrics.

3.2 Data Extraction Process
Our data is from the ShareJar repository, a collection of
applications for mobile devices. The applications in the repository
belong to 13 categories (some of the applications are
uncategorized), which are reported in Table 1. All of the
applications are written in Java Mobile Edition and take the form
of bytecode stored in JARs. Of all the applications that we
collected from ShareJar, we were able to analyze 1,343.
Unfortunately, ShareJar does not keep track of the different
versions of a given JAR. Therefore, we cannot report an analysis
of the evolution of the JARs in time in terms of occurrences of
smells and internal metric values, as some previous work did on
design patterns and smells [20; 33; 34] but with smaller numbers
of systems. Also, ShareJar does not provide a bug-reporting tool,
so we cannot analyze the fault-proneness of the studied
applications. Therefore, we rely on previous work that studied the
relationships between metrics and fault-proneness to discuss in
Section 5 the presence of smells and its relationship to class fault-
proneness.

An important property of the analyzed applications is that some of
them belong to more than one category. The overlap introduces
the possibility of correlations in the results among categories. We
indirectly study and reject any effect of the overlapping categories
on the results of our study when answering RQ3. Our study yields
us to observe that there are significant differences among the
categories in the frequency distribution of anti-patterns. These
differences are significant and let us conclude that any
observation made on a category cannot be due to the overlap
because such observation would then be similar to that made for
some other overlapping category, which is not the case as shown
by our answer to RQ3. Therefore, even in the presence of overlap,
the obtained results are sufficient to examine whether or not
relationships with respect to category exist. Also, 650 of the
applications are not categorized; we exclude their JARs from our
analysis for the research questions related to software categories
(RQ3 and RQ4).

We rely on tools belonging to the Ptidej3 framework to create
models of the applications, identify binary class relationships
between model entities representing classes and interfaces [27],
compute OO metrics from these models using the POM
framework [26], and identify occurrences of smells in these
models using the DECOR framework. POM allows computing 48
OO metrics, which values are reported in the online appendix4 and
definition can also be found on-line5. DECOR [40] has been
reported to have reasonable precision and has been used in several

3 http://www.ptidej.net
4 http://www.cs.wm.edu/semeru/data/ICPC14_antipatterns/
5 http://wiki.ptidej.net/doku.php?id=pom

TABLE 1. ShareJar categories represented in the data
Category Label #Apps Category Label #Apps

Chat&SMS A 290 Music H 77
Dictionaries B 58 Science I 30
Education C 163 Utilities L 364
Free Time D 211 Emulators M 66
Internet E 333 Programming N 20
Localization F 32 Sports&Health O 68
Messengers G 96 Uncategorized U 650

previous studies [20; 33; 34]. It uses rule cards to specify each
code smell or anti-pattern based on properties of the classes
according to their lexicon (i.e., names), structure (e.g., classes
using global variables), and internal attributes using metrics. As
shown by Khomh et al. [33], the use of metrics in smell detection
does not lead to a correlation between code smells and anti-
patterns and metrics, because their detection involve other class
properties, such as binary class relationships. The 18 smells
available in DECOR are defined on-line6 and are: AntiSingleton
(AS), BaseClassKnowsDerivedClass (BCKDC), BaseClass-
ShouldBeAbstract (BCSBA), Blob, ClassDataShouldBePrivate
(CDSBP), ComplexClass (CC), FunctionalDecomposition (FD),
LargeClass (LC), LazyClass (LZC), LongMethod (LM),
LongParameterList (LPL), ManyFieldAttributesButNotComplex
(MFABNC), MessageChain (MC), RefusedParentBequest (RPB),
SpaghettiCode (SC), SpeculativeGenerality (SG), SwissArmyKnife
(SAK), and TraditionBreaker (TB).

3.3 Analytical Method
We formalize the concept of a relationship between the presence
of anti-patterns and the values of the OO metrics as the
association where the occurrences of anti-patterns affect the
distribution of particular OO metrics. The presences of anti-
patterns as well as the metric values are all computed at the class
level. DECOR and POM use classes at their unit of interest to
compute OO metrics; the former reports whether a particular class
in an application plays some role(s) in some anti-pattern(s) while
the latter reports the set of metric values associated with each
class. We then use the role(s) played by a class in some anti-
pattern to state whether the class belongs to that anti-pattern—
indifferently of the number of (possibly different) roles that the
class may play in this anti-pattern. Similar to previous works, we
observed that classes may play no role, one role, or more than one
role in anti-patterns. Consequently, we cannot use a dichotomous
variable to describe the role played by a class in an anti-pattern or
whether the class exhibits or not the anti-pattern (no matter its
role).

For RQ1 and RQ2, we decided to use correlation coefficients
because these are descriptive statistical measures that demonstrate
the strength or degree of a monotone association between two
variables [48]. We used correlation coefficients to measure
different aspects of the dependence structure in the data; in
particular, without normality assumptions, we measured the
strength and direction of non-linear relationship using Spearman
and Kendall coefficients. To categorize the strength of a direction,
we used the guidelines provided by [46 Page 37]: with |c| the
absolute value of the correlation coefficient c: (1) a value for |c|
around 0.8 means that the relationship is relatively strong; (2) a
value for |c| around 0.3 means a relatively weak relation; and (3)
the sign of c gives the direction of the relation. Additionally, we
measured the difference between the means of the OO metrics in
the presence and absence of anti-patterns using Cliff’s d (delta), a
non-parametric effect size measure [24] for ordinal data. To
interpret the difference, we follow the guidelines in [24]: small for
d < 0.33 (positive as well as negative values), medium for 0.33 ≤
d < 0.474, and large for d ≥ 0.474. The procedures for RQ1 and
RQ2 are described bellow:

• RQ1: For each class in each JAR, we counted the number of
times that it participates in each anti-pattern, and computed
OO metrics. We then measured the correlation between these

6 http://wiki.ptidej.net/doku.php?id=sad

counts and OO metric values by computing Spearman's ρ and
Kendall's τ for each pairing. To measure the size effect, we
computed Cliff’s d between OO metric values of classes with
a specific anti-pattern and metrics of classes without it.

• RQ2: As with RQ1, for each class in each JAR, we counted
the number of times that it participates in each code smells,
i.e., roles in the anti-patterns. We then measured the
correlation between the number of roles played by the class
in each anti-pattern and OO metric values. We computed also
the effect size between the metric values of classes playing a
specific role and that of classes without that role.

For RQ3 and RQ4, we used Kruskal-Wallis (always with
Bonferroni correction [18]) to determine statistical significance
using multiple tests, because the data (occurrences of anti-patterns
and the OO metric values) are not drawn from normal
distributions and the samples do not have the same sizes. For
example, the number of classes with the AntiSingleton anti-pattern
in Category A is different from Category B, and so on. Therefore,
we tested whether the distributions of numbers of anti-patterns (or
OO metric values) per category are drawn from the same
distributions. The procedures for RQ3 and RQ4 are:

• RQ3: We grouped the classes in each JAR by the category to
which they belong. In cases where JARs belonged to
multiple categories, we placed their classes in multiple
categories. We then used the Kruskal-Wallis test to
determine if the frequency distributions of anti-patterns are
statistically significant different in the 13 categories (i.e., to
determine if a category has a significant effect with an alpha
level of 0.05 on the numbers of anti-patterns).

• RQ4: As with RQ3, we grouped the classes by category and
used the Kruskal-Wallis test to determine if the frequency
distributions of the values of a particular metric are
significantly different in the 13 categories (i.e., to determine
if category has a significant effect with an alpha level of 0.05
on the values of each metric).

4. RESULTS
For the sake of clarity and not to overload the paper with tables,
we do not provide tables with all the results. These can be found
in our online appendix4.

4.1 RQ1: Anti-patterns and Metrics
The results for the relationship between anti-patterns and the
values of the OO metrics are summarized in Figure 1 and Table 2.
In general, we found only weak correlations except for some
outliers. The relationships with metrics are positive and weak, on
average; only two anti-patterns (LazyClass and
RefusedParentBequest) exhibit negative and weak correlations
with the metrics. The only anti-pattern that exhibits a moderate
correlation is MessageChain; there is a positive correlation with
NOTI (Spearman=0.65, Kendall=0.57). However, according to
Cliff’s d, several metrics have medium-large effects on at least
seven anti-patterns: CAM, CBO, CBO-In, CBO-Out, DCC, DSC,
LCOM5, NCM, NOM, NOParam, NOTI, RFC, and WMC1.
Table 2 lists the top correlated metrics with anti-patterns.

Previous studies [1; 5; 6; 8; 10; 12; 15; 16; 21; 29; 32; 36; 41; 47;
49-52; 55; 57] claim that CK metrics impact quality but we did
not found strong correlations with anti-patterns. In the case of CK
metrics, none of the correlations with anti-patterns exceed 0.4.
The strongest positive relationships are with CBO, RFC, and
WMC. The only negative relationship was observed with the

metric NOC. For Cliff's d, the magnitude of the difference is small

for most of the anti-patterns when the metrics are NOC and DIT:
for the former (i.e., NOC), we found only a medium difference for
BaseClassShouldBeAbstract; for the latter we found 5 out of 15
medium/large differences. However, CBO, LCOM5, and RFC
have medium-large differences in at least 7 anti-patterns.

Consequently, for RQ1, we conclude that, in general, there are
no moderate or strong, only weak, correlations between the
classes, in ShareJar applications, participating to anti-
patterns and the values of the OO metrics for the classes.
However, we found that the differences between some metrics
in classes with some anti-patterns and classes without these
anti-patterns are medium and large.

4.2 RQ2: Code Smells and Metrics
There is a positive moderate relationship between the roles of
MessageChain and NOTI and it is expressed by the two
correlation coefficients (i.e., Spearman and Kendall). The rest of
relationships between code smells and metrics are low, as in the
analysis of the relationship between anti-patterns and metrics.
Effect size confirms, at the granularity of roles, the results for
RQ1. For example, there are positive moderate-large differences
in the values of ten metrics in classes with LargeClass:Large-
ClassOnly and 23 metrics in classes with
LargeClass:LowCohessionOnly. There are negative and large
differences in the values of nine metrics in classes with the roles
of ManyFieldAttributesButNotComplex.

Therefore, for RQ2, we conclude that, in general, there are no
moderate or strong correlations between classes, in
ShareJar applications, playing roles in anti-patterns and
OO metrics.

4.3 RQ3: Anti-patterns and Categories
Figure 2 depicts the distributions of average occurrences of anti-
patterns in each category using box-plots. The differences among
the means for each anti-pattern are substantial in several cases; for
example, meaningful differences exist even between larger
categories with significant overlap; e.g., AntiSingleton occurs
twice as frequently per class in Category L than in Category D. In

Figure 2. Box-plot of average counts of anti-patterns in

ShareJar categories.

Figure 1. Spearman, Kendall and Cliff’s d between each
anti-pattern and OO metrics.

general, the distributions are different and the results of Kruskal-
Wallis test confirm these differences.

Table 3 lists the p-values and the K statistic of the Kruskal-Wallis
test for RQ3. For each anti-pattern (except for
ManyFieldAttributesButNotComplex that only was detected in
Category E), the values of the K statistic7 are greater than the χ2
values for confidences levels of 0.05 and 0.01 with 12 degrees of
freedom ()21,2.26 2

12,05.0
2

12,01.0 == χχ . The differences between the

numbers of occurrences of anti-patterns for each category are
statistically significant with α = 0.01.

ClassDataShouldBePrivate is the most frequent anti-pattern in our
dataset (except for Category N⎯Programming⎯where the most
used is LongMethod). Blob is the less frequent anti-pattern in
Categories M (Emulators) and N (Programming), but not in the
others (Figure 3). Again, frequency distributions are different and
Kruskal-Wallis test confirms the differences. The values of K are
greater than the χ2 values for confidences levels of 0.05 and 0.01

with 12 degrees of freedom ()21,2.26 2
12,05.0

2
12,01.0 == χχ (except for

ManyFieldAttributesButNotComplex that only was detected in
Category E⎯Internet). The differences between the numbers of

7 The K statistic is distributed χ2 with n-1 degrees of freedom; in our case

n is equal to the number of categories, 13.

occurrences of anti-patterns for each category are statistically
significant with α = 0.01.

Consequently, for RQ3, we conclude that in the applications
that we analyzed, there are significant differences among the
categories in the frequency distributions of the anti-
patterns.

4.4 RQ4: Categories and Metrics
Table 4 lists the p-values and the K statistic of the Kruskal-Wallis
test for RQ4. The results indicate statistically significant
differences among the categories for all of the OO metrics for α =
0.01 (except for DCAEAC and DCMEC). As with anti-patterns,
we infer that meaningful differences exist among the categories in
the distribution of the metric values.

Consequently, for RQ4, we conclude that in the applications
that we analyzed, there are significant differences among
the categories in the distributions of the OO metrics.

5. ANALYSIS OF THE RESULTS
In this section, we discuss the results of our research questions.

RQ1. The correlation measures (Spearman and Kendall) indicated
weak relationships between anti-patterns and OO metrics.
However, Cliff’s d indicated that there are medium and large
differences between the values of the OO metrics in classes with
anti-patterns and classes without them. To analyze the relationship
reported by Cliff’s d, we counted the number of metrics with
medium and large effect size (|d|>=0.33), grouped by anti-pattern
(in Table 5), and the number of anti-patterns in which the metrics
have medium and large effect sizes (in Table 6). We computed
Cliff’s d for each metric, comparing metrics of classes
participating in particular anti-pattern and metrics of classes not
participating in the particular anti-pattern. For example (Table 5),
the effect size is large on 16, 19, and 30 metrics for classes with
AntiSingleton, ComplexClass, and SwissArmyKnife. In addition,
there is a medium difference of CAM and CBO-In (Table 6)
between classes with six and five anti-patterns and classes without

Table 3. Kruskal-Wallis results for RQ3 with a degree of
freedom of 12 (number of categories - 1)

Anti-pattern p-value K
AntiSingleton 0 337.443
BaseClassKnowsDerivedClass – –
BaseClassShouldBeAbstract 0 92.464
Blob 0 181.384
ClassDataShouldBePrivate 0 586.629
ComplexClass 0 118.692
FunctionalDecomposition – –
LargeClass 0 107.277
LazyClass 0 278.313
LongMethod 0 105.840
LongParameterList 0 366.941
ManyFieldAttributesButNotComplex 0.909 6.139
MessageChains 0 639.969
RefusedParentBequest 0 408.685
SpaghettiCode 0.001 33.148
SpeculativeGenerality 0.001 33.009
SwissArmyKnife 0 156.033
TraditionBreaker – –

“–” means that no p-value or K statistic is available: no
occurrences were detected in the categorized applications

Table 2. Top positive and negative correlated metrics (in bold:
moderate, strong correlations; medium, large effect sizes)

Anti-pattern Spearman Kendall Cliff’s d

AntiSingleton NAD (0.3219)
DAM (-0.1399)

NAD (0.2755)
DAM (-0.1280)

RFC (0.6617)
MFA(-0.4658)

BaseClassShould
BeAbstract

CLID (0.3632)
IR (-0.0539)

CLID (0.3605)
DIT (-0.0484)

CLID (0.9422)
DIT(-0.4045)

Blob DSC (0.1020)
DAM (-0.0953)

DSC (0.0837)
DAM (-0.0871)

CBO (0.5727)
DAM (-0.5723)

ClassDataShould
BePrivate

NAD (0.3441)
DAM (-0.3855)

NAD (0.2945)
DAM (-0.3527)

LCOM5 (0.3491)
DAM(-0.9730)

ComplexClass McCabe (0.3883)
MFA (-0.1060)

ICHClass (0.3290)
MFA (-0.0870)

RFC (0.6538)
MFA (-0.3556)

LargeClass CBO-Out (0.0813)
CA (-0.0309)

CBO-Out (0.0666)
CA (-0.0256)

DSC (0.7603)
CA (-0.0434)

LazyClass ANA (0.058)
CBO-Out(-0.2565)

ANA (0.0047)
CBO-Out(-0.2102)

No positive values
CAM (-1.0641)

LongMethod LOC (0.3854)
NOC (-0.0578)

LOC (0.3167)
NOC (-0.0436)

NOTI (0.964)
MFA(-0.1259)

LongParameter
List

NOParam(0.3202)
CA (-0.0387)

NOParam (0.2816)
CA (-0.0320)

NOParam(0.7681)
MFA (-0.0366)

ManyFieldAttr
ButNotComplex

CBO-In (0.0192)
CAM (-0.0274)

CBO-In (0.0158)
CAM (-0.0274)

CBO-In (0.5943)
CAM (-2.8754)

MessageChains NOTI (0.6536)
NOC (-0.0578)

NOTI (0.5730)
NOC (-0.0565)

NOTI (0.8469)
CON(-0.00865)

RefusedParent
Bequest

AID (0.1809)
WMC (-0.1585)

AID (0.1716)
WMC (-0.1297)

NOH (0.7863)
CAM (-0.8987)

SpaghettiCode WMC (0.0791)
MFA (-0.0218)

WMC (0.0648)
MFA (-0.0180)

RFC (0.7023)
MFA (-0.3872)

Speculative
Generality

CLID (0.2574)
CA (-0.0561)

CLID (0.2555)
CA (-0.0464)

CLID (0.9195)
NOTI (-0.4483)

SwissArmyKnife NOP (0.1184)
CA (-0.0265)

NOP (0.1143)
CA (-0.0219)

NOP (0.9989)
CON (-0.1785)

those anti-patterns. Therefore, although not correlated, some
smells do impact negatively quality-related metrics.

We expected many of the results that we obtained. Looking at the
top metrics with medium/large effects from anti-patterns (Table
6), we observe that those metrics are related to coupling (CBO,
CBO-In, CBO-Out, DCC, and RFC), cohesion (CAM and
LCOM5), and design size (DSC, NOParam). The top three
metrics in the list (CAM, CBO-In, and LCOM5) have positive and
negative effects from anti-patterns. The negative effects are due to
the Blob (CAM), LazyClass (CAM, CBO-In, and LCOM5),
ManyFieldAttributesButNotComplex (CAM and LCOM5), and
RefusedParentBequest (CAM and LCOM5) anti-patterns. CAM
and LCOM5 measure different aspects of cohesion, because the
former is related to similarity of parameter types while the latter
to accessing similar fields. These results are not surprising
because, by definitions, the methods of classes with the four anti-
patterns have methods that do not use the same type of parameters
and that do not access similar attributes.

A particular anti-pattern is LazyClass. All the medium-large
effects on metrics are negative (CAM, CBO-In, DSC, LCOM5,
and NOParam). Yet, the values of these metrics are a consequence
of the anti-pattern definition, i.e., a “lazy class” does very little
and has a minimal definition. Intuitively, the occurrence of
LazyClass degrades design by making it needlessly cluttered,
which consequently may make faults more likely.

The top metrics with medium/large effect sizes from the anti-
patterns (in Table 6) are CAM, CBO-In, LCOM5, CBO, DCC,
DSC, LCOM5, NCM, NMD, NMDExtended, NOM and
NOParam, and RFC. These results suggest that metrics for
coupling, cohesion, and design size for classes with anti-patterns
have medium/large differences with classes without any anti-
pattern. Also, the values of some OO metrics, such as coupling
metrics, the CK suite, LOC, and McCabe, suggest that classes
with some anti-patterns may also be more complex than others.
According to other empirical studies [1; 5; 6; 8; 10; 12; 15; 16;
21; 29; 32; 36; 41; 47; 49-52; 55; 57], CBO, RFC, LCOM, and
LOC had significant effects on the number of faults in a class and
are reliable predictors of fault-proneness. Coupling increases the
probability of faults because the stronger the association between
classes (inheritance, composition, or method invocations), the
stronger the probability of collateral effects when classes are
modified or repaired. Classes with high-frequency of outgoing
coupling dependencies (out coupling) are more prone to cause
surrounding dependent classes to become faulty [9; 13], and
modifications or bugs in higher levels of an inheritance tree
propagate without control to lower levels. Metrics such as CBO,
RFC, and DCC measure those aspects of coupling.

Our results suggest that classes with the AntiSingleton,
ComplexClass, LargeClass, SpaghettiCode, and SwissArmyKnife
anti-patterns have greater values of LCOM5 than classes without
them. Classes with low cohesion are more likely to be fault-prone,
because low cohesion indicates poor design, which is likely to be
more fault-prone [10]. The LCOM5 metric measures the extent to
which methods use the attributes defined in a class. A value of 1
for LCOM5 indicates that each method of the class references

Table 4. Kruskal-Wallis results (with Bonferroni
correction) for RQ4 with df =12 (number of categories - 1)
Metric P-value K Metric P-value K
ACAIC 0 43.458 MFA 0 953.141

ACMIC 0 167.931 MOA 0 207.058

AID 0 145.089 McCabe 0 375.512

ANA 0 1228.144 NAD 0 254.852

CA 0 585.445 NADExtended 0 255.024

CAM 0 197.375 NCM 0 961.462

CBO 0 1987.273 NMA 0 183.786

CBO-In 0 2298.643 NMD 0 311.015

CBO-Out 0 1143.478 NMDExtended 0 310.611

CIS 0 395.056 NMI 0 1510.636

CLID 0 68.903 NMO 0 486.851

CON 0 219.648 NOA 0 168.308

DAM 0 661.411 NOC 0 97.217

DCAEAC 1 23.068 NOD 0 66.633

DCC 0 1987.273 NOH 0 2502.116

DCMEC 0.336 27.415 NOM 0 311.015

DIT 0 161.278 NOP 0 123.82

DSC 0 4268.073 NOParam 0 477.232

ICHClass 0 267.7 NOTI 0 921.012

IR 0 245.037 NPrM 0 185.899

LCOM1 0 246.594 RFC 0 308.959

LCOM2 0 235.893 SIX 0 302.989

LCOM5 0 315.049 WMC 0 233.292

LOC 0 234.877 WMC1 0 311.015

Table 5. Numbers of metrics where Cliff’s d effect sizes are
medium and large, listed for each anti-pattern

Anti-pattern
Cliff`s d

(-inf,-
0.47]

(-0.47,-
0.33]

[0.33,
0.47)

[0.47,
inf) Total

SwissArmyKnife 0 0 1 30 31

ComplexClass 0 1 7 19 27

SpaghettiCode 0 1 16 5 22

AntiSingleton 0 2 2 16 20

ManyFieldAttributesButNotComplex 8 9 2 1 20

LazyClass 4 14 0 0 18

LargeClass 0 0 7 7 14

LongParameterList 0 0 11 1 12

RefusedParentBequest 4 1 3 4 12

MessageChain 0 0 8 1 9

BaseClassShouldBeAbstract 0 3 2 3 8

Blob 1 0 3 3 7

Speculative Generality 0 1 2 2 5

ClassDataShouldBePrivate 1 0 1 0 2

LongMethod 0 0 2 0 2

only one attribute; a value of zero indicates that each method
references every attribute [9]. Thus, classes with values of
LCOM5 closer to 1 can be considered as classes that implement
several, unrelated functionalities. As a consequence, these classes
are more prone to changes and faults; their maintainability is
affected by their many responsibilities.

Design-size metrics have been also related to fault-proneness,
especially LOC. There is a relationship because the greater the
number of lines of code, the greater the probability of introducing
a bug during maintenance. Several empirical studies [1; 5; 6; 8;
10; 12; 15; 16; 21; 29; 32; 36; 41; 47; 49-52; 55; 57] provided
evidence of a positive relationships between LOC and fault-
proneness. Moreover, complex interfaces tend to be more fault-
prone [19]. Highly complex interfaces are characterized by a high
number of parameters and exit points. Complexity in interfaces
introduces complex interaction patterns among classes, because
more preconditions must be ensured before invoking methods and
developers have more chance to overlook these preconditions. For
example, using object types as parameters requires verifying that
the parameter values are not null; thus, the longer the list of
parameters, the higher the probability to call methods with invalid
values.

Thus, from RQ1, we infer that anti-patterns generally (though
not uniformly) have a relationship with OO metrics, especially
with coupling, cohesion, and design size, which suggests a
positive relationship with fault-proneness.

RQ2. The relationships expressed in the results for RQ2 are
generally consistent with those that we obtained in RQ1 without
taking roles into account. We found weak correlations between
LOC and code smells. However, using Cliff’s d, we found large
differences for the LOC metric values between classes with roles
in some anti-patterns (AntiSingleton, ComplexClass,
SpaghettiCode, and SwissArmyKnife) and classes without those
anti-patterns. We believe that our findings have two reasons. First,
the presence of these anti-patterns may be a sign of a general poor
decomposition of responsibilities, in which fewer, larger classes
have too many responsibilities when compared to other classes,
i.e., with possible fewer responsibilities and, thus, smaller sizes.
Second, our larger dataset may smooth LOC effects because the
distribution of LOC values in our dataset with 1,343 applications
is different to that from 14 applications used in [44].

Thus, from RQ2, we infer that code smells generally (though
not uniformly) have a relationship with OO metrics, similarly
to anti-patterns, with coupling, cohesion, and design size,
which also suggests a positive relationship with fault-
proneness.

For RQ3, our results show significant differences in the
distribution of anti-patterns across categories. While participation
in anti-patterns (as expected) is infrequent across all categories
(Figure 3), the category to which a class belongs has a substantial
impact on the particular anti-patterns that may afflict the classes.
This observation answers positively our general question, whether
applications in different domains are negatively impacted by
smells in different ways. It shows that developers’ behavior varies
by domain. Developers of certain kinds of applications may find it
expedient for domain-related reasons to follow “lazy”
conventions, yielding a larger distribution of anti-patterns in their
code. These developers may have also less expertise in design and
programming than developers in other domains. Developers most
likely develop their applications to fulfill needs that no existing
applications fulfill, either with respect to functionalities, prices,
user-interfaces, availability, licensing, and so on. Thus, developers
of applications in the Music category, for example, are more
likely to be musicians while developers of applications in the

Table 6. Number of anti-patterns where Cliff’s d effect
sizes are medium and large - listed by metrics.

Metric
Cliff`s d

(-inf,-0.47] (-0.47,-0.33] [0.33,0.47) [0.47, inf) Total

CAM 4 0 6 0 10
CBO-In 1 0 5 3 9
LCOM5 3 0 1 5 9
CBO 0 1 2 5 8
DCC 0 1 2 5 8
NCM 1 1 3 3 8
NMD 0 2 3 3 8
NMDExt. 0 2 3 3 8
NOM 0 2 3 3 8
NOParam 2 1 3 2 8
RFC 2 1 1 4 8
WMC1 0 2 3 3 8
CBO-Out 0 0 3 4 7
DSC 1 0 4 2 7
NMO 0 2 3 2 7
NOTI 2 1 2 2 7
CIS 0 2 1 3 6
DAM 4 2 0 0 6
MFA 0 4 1 1 6
NOH 0 1 3 2 6
DIT 0 2 2 1 5
NMA 0 1 1 3 5
NOA 1 2 1 1 5
SIX 1 1 2 1 5
AID 0 2 1 1 4
LOC 0 0 1 3 4
McCabe 0 0 1 3 4
NAD 0 0 1 3 4
NADExt. 0 0 1 3 4
WMC 0 0 0 4 4
ANA 1 0 0 2 3
CLID 0 0 1 2 3
ICHClass 0 0 1 2 3
LCOM1 0 0 2 1 3
MOA 0 0 0 3 3
NOD 0 0 2 1 3
NOP 0 1 1 1 3
ACAIC 0 0 2 0 2
ACMIC 0 0 0 2 2
IR 0 0 1 1 2
LCOM2 0 0 1 1 2
NPrM 0 0 1 1 2
DCMEC 0 0 0 1 1
NMI 0 0 0 1 1
NOC 0 0 1 0 1
DCAEAC 0 0 0 0 0
CA 0 0 0 0 0
CON 0 0 0 0 0

	

Programming category are more likely to be software developers
by profession. Thus, the former developers may be less proficient
in design and programming than the latter developers, resulting in
lower quality and increased presence of anti-patterns.

A useful direction for future investigation is to study the actual
occurrences of anti-patterns in particular domains. Our results
indicate that some anti-patterns are more prevalent in some
category of applications because of specificities of these
applications and observing these categories is useful to warn
developers working in such categories about common smells that
they may encounter. Even if these smells may be the “best” way
to implement these applications because of other constraints on
the applications of such categories.

Thus with RQ3, we show that applications in different domains
are negatively impacted by anti-patterns in different ways and
that developers of certain domains, e.g., music, should be wary
of smells and–or strive to prevent them, possibly by associating
with developers more expert in design and programming (even
if less expert in the application domains).

RQ4. Our results, reported in Table 4, show significant differences
in the distribution of metric values across categories. This
inference is not particularly surprising—developers’ discipline
and design conventions are intuitively likely to vary by domain—
but this deserves more study. One unknown variable is the
rationale for this variation. For example, these metrics may vary
because of systematic differences in the nature of the problems
solved in each domain, but systematic differences in developers’
“culture” may also be a factor. This is a question that requires
further investigation.

The answer to RQ4 confirms another intuitive observation from
researchers and practitioners: code smells and anti-patterns are not
the only factor influencing software quality as we have measured

it. Application domain (i.e., the collection of variables associated
with it) also has an impact, as do other variables identified in the
literature. It is possible that other developers’ behaviors associated
with the presence of anti-patterns yielded the distribution of
metrics that we observed.

Through RQ4, we show the relationship between categories
and all the computed OO metrics: metric distributions vary
across categories with statistical significance and point at
differences between developers’ discipline and design
conventions.

6. THREATS TO VALIDITY
The facts that the studied applications were developed for mobile
devices and written uniformly in Java Mobile Edition introduce
threats to external validity. Nonetheless, given the size of our
dataset, we believe that the results that we obtained from these
applications supply a reasonable foundation for future
investigation into the impact of anti-patterns with other datasets.

For the sake of simplicity, we computed the metrics, as well as the
occurrences of anti-patterns, on the Java bytecode of the mobile
applications at the class level. Consequently, any metric that is
intrinsically based on the lines of code, such as LOC or WMC,
uses the number of bytecodes in the methods of a class as proxy to
the number of lines of source code of the class. Although this
choice could introduce a bias and be a threat to the construct
validity of our study (a LOC would not really represent a line of
code), we accept this threat because it is systematic across our
complete study and thus does not invalidate comparisons among
anti-patterns, domains, and metrics. Compiler optimizations may
change the bytecode such that it does not reflect the source code
anymore but such changes are intrinsically limited to keep the
semantics of the source code and, thus, analyses performed on
bytecodes reflect phenomena existing in the source code.

Figure 3. Cumulative average of each anti-pattern per domain (category)

We relied on DECOR for the detection of occurrences of smells.
While DECOR has previously obtained 100 percent recall on
some datasets and an average precision of 38.2%, its precision and
recall cannot be guaranteed in our dataset [25; 40]; accordingly,
DECOR constitutes a threat to the construct validity of our study.
Its precision values depend on the smells being detected and the
applications in which they are detected. Therefore, some reported
and studied occurrences of the smells may not be true positive
occurrences and may bias the results of our analyses. We mitigate
this threat to the construct and conclusion of our study by
discussing each role and category independently. We could not
mitigate these threats by using versions of the applications
because such versions are not currently available. Mäntylä et al.
[38] report that smells are perceived differently by developers
than tools. Therefore, the detected smells may not be relevant to
developers and−or in agreement with developers’ assessment. We
accept this threat to the construct validity of our study because
there are no tools to detect developers’ perceived smells, and
analyzing smells by hand consumes too much time and effort.

We used metrics to assess the quality of the applications with
respect to the occurrences (or not) of roles of some smells. We
also partly used metrics to identify occurrences of smells, when
using DECOR. Therefore, it could be possible that the results
observed derived from the use of the same metrics to detect
occurrences of smells and to measure quality. However, DECOR
does not use only metrics to detect smells but also, among others,
the binary-class relationships among classes and their method
invocations. Also, a previous paper [33] showed that metrics
alone could not explain that a class plays a role in an occurrence
of a smell, not even LOC.

The domain and programming language of the applications in our
dataset may limit the generalizability of our inferences. Our
dataset is comprised only of Java applications for mobile devices;
the constraints on these applications (e.g., small memory
footprint) presumably do not hold in many other domains, and the
occurrences of smells in these applications may vary for practical
reasons from that in other systems. However, our goal in this
study is exploratory; we expect our study to be replicated on other
systems.

In our dataset, 650 out of 1,343 applications are not categorized.
However, when investigating the relationships between
categories, smells, and metrics (RQ3, RQ4), we assumed that the
available categories for the applications in ShareJar are
comprehensive and that developers “correctly” identified the
categories to which their applications belong. Thus, we assumed
that 650 applications were not categorized because available
categories in ShareJar did not represent the application domains to
which the applications belong. Though we believe that this
assumption is reasonable, developers are capable of error and
repositories are capable of omission; hence, these are threats to
validity (external and internal). Again, because ours is an
empirical study, we expect these assumptions to be validated via
replication on other repositories.

7. CONCLUSIONS
Our study of the relationships among anti-patterns, software
categories, and OO metrics shows some evidence that anti-
patterns are related to several fault-related metrics. We computed
OO metrics on 1,343 Java Mobile Applications because (1) some
metrics have known relationships with faults and other quality
attributes and (2) they are suitable for computation on a large
dataset. We also identified occurrences of code smells and anti-

patterns using DECOR [40]. Then, we analyzed the relationship
between anti-patterns and metrics using Spearman, Kendall as
well as Cliff’s d. The results showed that anti-patterns negatively
impact software quality-related metrics in Java Mobile
Applications, in particular metrics related to fault-proneness.
Although we did not find a relationship through correlation
analysis, we observed larger differences between metrics of
classes, such as coupling, cohesion, and design size, with smells
and classes without them. We also observed that anti-patterns
have different frequency in the different application domains.
Thus, the results of RQ1 through RQ4 and related discussions
allow us to answer our general question:

Are applications in different domain negatively impacted by
anti-patterns in different ways? We answer positively this
question for anti-patterns. Some anti-patterns are common
in all the categories while others are more common in
certain application domains.

Understand the specific reasons for the occurrence of anti-patterns
is future work: in some cases, it could be related to specific
purposes, such as reducing the application size (i.e., the lower the
number of classes, the lower the size of the application) or the
memory required by dynamic linking when instantiating classes;
in other cases, it could show a lack of developers’ knowledge in
design concepts. However, independently of the reason, we found
large differences between the values of fault-proneness-related
metrics (such as coupling, cohesion, and design size) in classes
with anti-patterns and classes without them. Thus, anti-patterns in
a certain application domains impact negatively quality more than
in others. This conclusion suggests a fruitful avenue for future
study to determine the domains for which anti-patterns are most
harmful. This information would likely be particularly useful to
practitioners. Moreover, if systematic differences in quality
indeed exist across application domains, it may be useful to
develop ways of accounting for these variations, particularly in
domains that generally suffer the most from poor quality.

Other avenue involves relating the presence of patterns to fault-
proneness directly, which (presumably) entails mining substantial
quantities of data from software repositories. Another avenue for
investigation is also whether anti-patterns are related to
readability, which can be assessed using automated techniques
(e.g., [14]) and other quality attributes, such as understandability
or reusability, that could be measured with dedicated quality
models, such as that of Bansiya and Davis [4]. Yet another avenue
is the analysis of a larger number of applications, such as ours,
while taking into account their evolution and change-proneness
(typically computed by differencing versions). In addition,
applications written with other technologies, such as Android and
iOS apps, should be studied but downloading and decompiling
these apps require a major effort when compared to analyzing
apps already bundled as JAR files. Finally, the root causes for the
presence of more smells in some software categories than in
others should be investigated to, possibly, provide means to
reduce their prevalence.

8. ACKNOWLEDGEMENTS
This work is supported in part by the NSF CCF-1016868 grant.
Any opinions, findings, and conclusions expressed herein are the
authors' and do not necessarily reflect those of the sponsors.

9. REFERENCES
[1] AGGARWAL, K.K., SINGH, Y., KAUR, A., and MALHOTRA,

R., 2009. Empirical Analysis for Investigating the Effect of Object-
Oriented Metrics on Fault Proneness: A Replicated Case Study.
Software Process: Improvement and Practice 14, 1 (January), 39-
62.

[2] ANTONIOL, G., FIUTEM, R., and CRISTOFORETTI, L., 1998.
Design pattern recovery in object-oriented software. In 6th IEEE
International Workshop on Program Understanding (IWPC 1998),
153-160.

[3] BAKOTA, T., HEGEDUS, P., KÖRTVÉLYESI, P., FERENC, R.,
and GYIMÓTHY, T., 2011. A Probabilistic Software Quality
Model. In 27th IEEE International Conference on Software
Maintenance (ICSM'11), Williamsburg, Virginia, USA, 243-252.

[4] BANSIYA, J. and DAVIS, C.G., 2002. A Hierarchical Model for
Object-Oriented Design Quality Assessment. IEEE Transactions on
Software Engineering (TSE) 28, 1 (January), 4-17.

[5] BASILI, V.R., BRIAND, L.C., and MELO, W.L., 1996. A
Validation of Object-Oriented Design Metrics as Quality Indicators.
IEEE Transactions on Software Engineering (TSE) 22, 10
(October), 751-761.

[6] BINKLEY, A. and SCHACH, S., 1998. Validation of the Coupling
Dependency Metric as a Predictor of Run-Time Failures and
Maintenance Measures. In 20th International Conference on
Software Engineering (ICSE'98), Kyoto, 452-455.

[7] BRANDT, J., GUO, P.J., LEWENSTEIN, J., KLEMMER, S.R.,
and DONTCHEVA, M., 2009. Opportunistic Programming:
Writing Code to Prototype, Ideate, and Discover. IEEE Software
26, 5, 18-24.

[8] BRIAND, L.C., DALY, J.W., PORTER, V., and WÜST, J., 1998.
A Comprehensive Empirical Validation of Design Measures for
Object-Oriented Systems. In 5th International Software Metrics
Symposium (METRICS'98) IEEE Computer Science, Bethesda, MD,
43-53.

[9] BRIAND, L.C., DALY, J.W., and WÜST, J., 1998. A Unified
Framework for Cohesion Measurement in Object-Oriented
Systems. Empirical Software Engineering 3, 1, 65-117.

[10] BRIAND, L.C., WÜST, J., DALY, J.W., and PORTER, V.D.,
2000. Exploring the Relationship between Design Measures and
Software Quality in Object-Oriented Systems. Journal of System
and Software (JSS) 51, 3 (May), 245-273.

[11] BROWN, W.J., MALVEAU, R.C., MCCORMICK III, H.W., and
MOWBRAY, T.J., 1998. AntiPatterns. John Willey & Sons.

[12] BRUNTINK, M. and VAN DEURSEN, A., 2006. An empirical
study into class testability. Systems and Software 79, 9 (September),
1219-1232.

[13] BURROWS, R., FERRARI, F., LEMOS, O., GARCIA, A., and
TAÏANI, F., 2010. The Impact of Coupling on the Fault-Proneness
of Aspect-Oriented Programs: An Empirical Study. In IEEE 21st
International Symposium on Software Reliability Engineering, San
Jose, CA, USA, 329-338.

[14] BUSE, R.P.L. and WEIMER, W.R., 2010. Learning a Metric for
Code Readability. IEEE Transacttions on Software Engineering
(TSE) 35, 4 (July-August 2010), 546-558.

[15] CARTWRIGHT, M. and SHEPPERD, M., 2000. An Empirical
Investigacion of an Object-Oriented System. IEEE Transacttions
Software Engineering (TSE) 26, 7, 786-796.

[16] CHIDAMBER, S., DARCY, D., and KEMERER, C., 1998.
Managerial Use of Metrics for Object-Oriented Software: An
Exploratory Analysis. IEEE Transactions on Software Engineering
(TSE) 24, 8 (August), 629-639.

[17] CHIDAMBER, S.R. and KEMERER, C.F., 1994. A Metrics Suite
for Object Oriented Design. IEEE Transactions on Software
Engineering (TSE) 20, 6, 476-493.

[18] CORDER, G.W. and FOREMAN, D.I., 2009. Nonparametric
Statistics for Non-Statisticians. John Wilet and Sons.

[19] DENARO, G., MORASCA, S., and PEZZÈ, M., 2002. Deriving
models of software proneness. In 14th international conference on
Software engineering and knowledge engineering (SEKE'02),
Ischia, Italy, 361-368.

[20] DI PENTA, M., CERULO, L., GUÉHÉNEUC, Y.-G., and
ANTONIOL, G., 2008. An empirical study of the relationships
between design pattern roles and class change proneness. In 24th
IEEE International Conference on Software Maintenance (ICSM
2008), Beijing, China, 217-226.

[21] EL-EMAM, K., BENLARBI, S., GOEL, N., and RAI, S.N., 2001.
The Confounding Effect of Class Size on the Validity of Object-
Oriented Metrics. IEEE Transactions on Software Engineering
(TSE) 27, 7, 630-650.

[22] FONTANA, F., FERME, V., MARINO, A., WALTER, B., and
MARTENKA, P., 2013. Investigating the Impact of Code Smells
on System's Quality: An Empirical Study on Systems of Different
Application Domains. In IEEE International Conference on
Software Maintenance (ICSM '13), 260-269.

[23] GAMMA, E., HELM, R., JOHNSON, R., and VLISSIDES, J.,
1995. Design Patterns. Addison-Wesley Professional.

[24] GRISSOM, R.J. and KIM, J.J., 2005. Effect Sizes for Research: A
Broad Practical Approach. Lawrence Earlbaum Associates.

[25] GUÉHÉNEUC, Y.-G. and ANTONIOL, G., 2008. DeMIMA: A
Multilayered Approach for Design Pattern Identification. IEEE
Transacttions on Software Engineering (TSE) 34, 5, 667-684.

[26] GUÉHÉNEUC, Y.-G., SAHRAOUI, H., and ZAIDI, F., 2004.
Fingerprinting Design Patterns. In 11th Working Conference on
Reverse Engineering (WCRE), 172-181.

[27] GUÉHÉNEUC, Y.G. and HERVÉ, A.A., 2004. Recovering Binary
Class Relationships: Putting Icing on the UML Cake. In 19th
Conference on Object-Oriented Programming, Systems, Languages
and Applications (OOPSLA'04) ACM Press, 301--314.

[28] GUO, Y., SEAMAN, C., ZAZWORKA, N., and SHULL, F., 2010.
Domain-specific tailoring of code smells: an empirical study. In
ACM/IEEE 32nd International Conference on Software
Engineering (ICSE'10), 167-170.

[29] GYIMÓTHY, T., FERENC, R., and SIKET, I., 2005. Empirical
Validation of Object-Oriented Metrics on Open Source Software for
Fault Prediction. IEEE Transactions on Software Engineering
(TSE) 31, 10 (October), 897-910.

[30] ISO/IEC, 2001. ISO/IEC 9126. Software Engineering - Product
Quality.

[31] JAAFAR, F., GUÉHÉNEUC, Y.-G., HAMEL, S., and F., K., 2013.
Mining the Relationship between Anti-patterns Dependencies and
Fault-Proneness. In Working Conference on Reverse Engineering
(WCRE'13), To appear.

[32] JANES, A., SCOTTO, M., PEDRYCZ, W., RUSSO, B.,
STEFANOVIC, M., and SUCCI, G., 2006. Identification of defect-
prone classes in telecommunication software systems using design
metrics. Information Sciences 177, 2 (December 15), 3711-3734.

[33] KHOMH, F., DI PENTA, M., GUÉHÉNEUC, Y.-G., and
ANTONIOL, G., 2011. An Exploratory Study of the Impact of
Antipatterns on Class Change- and Fault-Proneness. Empirical
Software Engineering (EMSE).

[34] KHOMH, F., GUÉHÉNEUC, Y.-G., and ANTONIOL, G., 2009.
Playing roles in design patterns: An empirical descriptive and
analytic study. In 25th IEEE International Conference on Software
Maintenance (ICSM 2009), Edmonton, AB, 83-92.

[35] LANZA, M. and MARINESCU, R., 2006. Object-Oriented Metrics
in Practice. Springer.

[36] LI, W. and HENRY, S., 1993. Object-oriented metrics that predict
maintainability. Journal of Systems and Software 23, 2, 111-122.

[37] LI, W. and SHATNAWI, R., 2007. An empirical study of the bad
smells and class error probability in the post-release object-oriented
system evolution. Journal of Systems and Software 80, 7.

[38] MÄNTYLÄ, M.V., VANHANEN, J., and LASSENIUS, C., 2004.
Bad Smells - Humans as Code Critics. In International Conference
on Software Maintenance (ICSM'04), 399-408.

[39] MARINESCU, A., 2004. Detection Strategies: Metrics-Based Rules
for Detecting Design Flaws. In 20th IEEE International Conference
on Software Maintenance (ICSM 2004), 350-359.

[40] MOHA, N., GUÉHÉNEUC, Y.-G., DUCHIEN, L., and MEUR, A.-
F., 2010. DECOR: A Method for the Specification and Detection of
Code and Design Smells. IEEE Transacttions on Software
Engineering (TSE) 36, 2 (January 2010), 20-26.

[41] OLAGUE, H., ETZKORN, L., GHOLSTON, S., and
QUATTLEBAUM, S., 2007. Empirical Validation of Three
Software Metrics Suites to Predict Fault-Proneness of Object-
Oriented Classes Developed Using Highly Iterative or Agile
Software Development Processes. IEEE Transactions on Software
Engineering (TSE) 33, 6 (June), 402-419.

[42] OLBRICH, S.M., CRUZES, D.S., and SJOBERG, D.I.K., 2010.
Are all code smells harmful? A study of God Classes and Brain
Classes in the evolution of three open source systems. In IEEE
International Conference on Sofftware Maintenance (ICSM'10), 1-
10.

[43] PALOMBA, F., BAVOTA, G., DI PENTA, M., OLIVETO, R., DE
LUCIA, A., and POSHYVANYK, D., 2013. Detecting Bad Smells
in Source Code Using Change History Information. In Proceedings
of the 28th IEEE/ACM International Conference on Automated
Software Engineering (ASE'13) (Palo Alto, CA, November 11-15
2013).

[44] POSNETT, D., BIRD, C., and DÉVANBU, P., 2011. An Empirical
Study on the Influence of Pattern Roles on Change-Proneness.
Empirical Software Engineering (EMSE) 16, 3 (June 2011), 396-
423.

[45] ROMANO, D., RAILA, P., PINZGER, M., and F., K., 2012.
Analyzing the Impact of Antipatterns on Change-Proneness Using
Fine-Grained Source Code Changes. In 19th Working Conference
on Reverse Engineering (WCRE'12), 437-446.

[46] ROSS, S., 2009. Introduction to Probability and Statistics for
Engineers and Scientists. Elsevier Academic Press.

[47] SHATNAWI, R., 2008. The effectiveness of software metrics in
identifying error-prone classes in post-release software evolution
process. Systems and Software 81, 11 (November), 1868-1882.

[48] SHESKIN, D.D., 2000. Handbook of Parametric and
Nonparametric Statistical Procedures. Chapman & Hall/CRC.

[49] SINGH, Y., ARVINDER, K., and MALHOTRA, R., 2010.
Empirical validation of object-oriented metrics for predicting fault
proneness models. Software Quality 18, 1, 3-35.

[50] SUBRAMANYAM, R. and KRISHNAN, M.S., 2003. Empirical
Analysis of CK Metrics for Object-Oriented Design Complexity:
Implications for Software Defects. IEEE Transactions on Software
Engineering (TSE) 29, 4 (April), 297-310.

[51] SUCCI, G., PEDRYCZ, W., STEFANOVIC, M., and MILLER, J.,
2003. Practical assessment of the models for identification of
defect-prone classes in object-oriented commercial systems using
design metrics. Systems and Software 65, 1 (January 15), 1-12.

[52] TANG, M.-H., KAO, M.-H., and CHEN, M.-H., 1999. An
empirical study on object-oriented metrics. In 6th International
Software Metrics Symposium (METRICS'99), 242-249.

[53] YAMASHITA, A. and COUNSELL, S., 2013. Code smells as
system-level indicators of maintainability: An empirical study.
Journal of Systems and Software 86, 2639-2653.

[54] YAMASHITA, A. and MOONEN, L., 2013. To what extent can
maintenance problems be predicted by code smell detection? – An
empirical study. Information and Software Technology 55, 2223-
2242.

[55] YU, P., SYSTA, T., and MULLER, H., 2002. Predicting fault-
proneness using OO metrics. An industrial case study. In 6th
European Conference on Software Maintenance and Reengineering
(CSMR'02), 99-107.

[56] ZHANG, C. and BUDGEN, D., 2011. What do we Know about the
Effectiveness of Software Design Patterns? IEEE Transacttions on
Software Engineering (TSE) 99(July).

[57] ZHOU, Y. and LEUNG, H., 2006. Empirical Analysis of Object-
Oriented Design Metrics for Predicting High and Low Severity
Faults. IEEE Transacttions on Software Engineering (TSE) 32, 10
(October), 771-789.

