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ABSTRACT 
Some previous work began studying the relationship between 
application domains and quality, in particular through the 
prevalence of code and design smells (e.g., anti-patterns). Indeed, 
it is generally believed that the presence of these smells degrades 
quality but also that their prevalence varies across domains. 
Though anecdotal experiences and empirical evidence gathered 
from developers and researchers support this belief, there is still a 
need to further deepen our understanding of the relationship 
between application domains and quality. Consequently, we 
present a large-scale study that investigated the systematic 
relationships between the presence of smells and quality-related 
metrics computed over the bytecode of 1,343 Java Mobile Edition 
applications in 13 different application domains. Although, we did 
not find evidence of a correlation between smells and quality-
related metrics, we found (1) that larger differences exist between 
metric values of classes exhibiting smells and classes without 
smells and (2) that some smells are commonly present in all the 
domains while others are most prevalent in certain domains. 

Categories and Subject Descriptors 

D.2.7 [Software Engineering]: Distribution, Maintenance, and 
Enhancement 

General Terms 
Measurement, Design, Theory 

Keywords 
Anti-patterns, Internal metrics, Software quality, Domain 
categories, Java Mobile Edition 

1. INTRODUCTION 
An open (and controversial) question in software engineering 
relates to the relationship between software practices and software 
quality. The concept of design patterns—structured, reusable 

solutions to recurring design problems, typical example of good 
practices, was introduced in software engineering by the “Gang of 
Four” (GoF) [23]. Following the GoF, since their introduction, the 
conventional lore among both researchers and practitioners has 
been that the use of design patterns improves some quality 
characteristics, e.g., maintainability, by making source code easier 
to understand, more stable, and with fewer faults. Conversely, 
code smells and anti-patterns—recurring solutions to code and 
design problems, i.e., poor practices, are assumed to decrease 
quality [11]. In general, code smells are symptoms of the presence 
of anti-patterns in the code. In the following, we use the word 
“smells” to refer to both code smells and anti-patterns, as in 
previous work [40]. 

However, the relationships among smells, application domains, 
and quality have been little studied so far. In general, following 
Zhang and Budgen and their mapping study [56] for design 
patterns, we argue that much of the research on the presence of 
smells and their relationships to application domains and quality-
related metrics has been small-scale and frequently anecdotal: 
experience reports, case studies, developers’ opinions. A notable 
exception is the work by Fontana et al. [22], which studied the 
relationships between anti-patterns and application domains and 
concluded that no relationship could be found in the curated 
Qualitas Corpus, contrary to the lore. While this previous 
research work is useful for practitioners and researchers by 
discussing the relationships between anti-patterns and application 
domains, we believe that the following general question remains 
unanswered: “Are applications in different domains negatively 
impacted by smells in different ways?” The answer to this 
question, coupled with concrete knowledge on the relationships 
that smells have with software quality, is of interest to researchers 
and practitioners. A related question—the relationship between 
domain and quality—also has interpretive significance. On the 
one hand, if the prevalence of smells and software quality 
significantly varies by domains, then it is important to report such 
variations and to understand why they occur: practitioners should 
be wary of the smells most prevalent in their application domains 
while researchers should take into account the domains of the 
applications under analysis in their algorithms. Also, different 
prevalence among domains would show that opportunistic 
programming [7] and applications developed by domain experts 
(who may not be software experts) can have poor quality and, 
thus, should be used with caution. On the other hand, the absence 
of any relationship between domain and quality would imply that 
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the presence of smells does degrade quality per se and would 
warrant further studies on their impact. 

With the purpose of providing answers to the general question, we 
follow previous works and study the relationships among smells, 
application domains, and quality on a large scale. We obtain 
empirical results on the relationships between the presence of 
smells, source-code metrics, and application domains, using two 
correlation measures (Spearman and Kendall) and the Cliffs’s d 
effect size [24]. We use DECOR [40] to identify occurrences of 
smells and POM [26] to compute quality-related metrics from the 
bytecode of 1,343 Java Mobile Edition Applications belonging to 
13 domains in a closed-source repository. We assess whether the 
presence of smells had any relationship with the values of the 
metrics and the domains. We show that (1) some smells are 
common in all the domains while others are more common in 
certain domains and (2) the presence of smells increases the 
values of fault-related metrics, although there is no evidence of a 
correlation between smells and metrics. Thus, we contribute to the 
researchers’ and practitioners’ knowledge about the relationships 
among smells, application domains, and quality.  

2. RELATED WORK 
Object-oriented metrics (OO metrics) have been widely used to 
assess the internal quality of applications. Additionally, quality 
models define quality attributes as aggregation of lower-level 
attributes and code-level metrics [3; 4; 30]. Several works used 
OO metrics as indicators of quality, such as fault-proneness, 
testability, and change-proneness [1; 5; 6; 8; 10; 12; 15; 16; 21; 
29; 32; 36; 41; 47; 49-52; 55; 57]. They mostly focused on the 
well-known Chidamber and Kemerer (CK) metric suite of OO 
metrics [17]. Several other works used metrics to describe and 
detect occurrences of design patterns and–or anti-patterns, such as 
the works on detection strategies by Antoniol et al. [2], Lanza and 
Marinescu [35], and Marinescu [39]. 

Since their introduction in the field of software engineering, 
smells have been the subject of much work, either for their 
definition/formalization, the identification of their occurrences, or 
their categorization. However, previous work has not yet verified 
the relationships among smells, application domains, and quality 
on a large scale. Li and Shatnawi [37] analyzed the relationship 
between six anti-patterns and class fault-proneness in three 
versions of Eclipse. Bug reports severity was used as a proxy for 
fault-proneness. Shotgun Surgery, God Class, and God Methods 
were positively related to fault-proneness. Although we did not 
use fault-related data to identify the impact of smells in software 
quality, we used OO metrics as a proxy for quality and looked for 
occurrences of 18 anti-patterns in 1,343 apps. 

Khomh et al. [33] performed a study on the impact of 13 anti-
patterns in 54 releases of ArgoUML (0.10.1 – 0.26.2), Eclipse (1.0 
– 3.3.1), Mylyn (1.0.1 – 3.1.1), and Rhino (1.4R3 – 1.6R6), to 
identify the relationship between smells and class change- and 
fault-proneness as well as between the occurrences of the smells 
and the sizes of the classes having these smells. In our study, we 
complement the findings of Khomh et al. [33] by analyzing the 
impact of smells on fault-related metrics. 

Romano et al. [45], in a study of 16 Java systems, concluded that 
classes affected by smells are more change prone, in particular 
classes participating in the ComplexClass, SpaghettiCode, and 
SwissArmyKnife. According to our results, classes participating in 
these three smells have larger values of LCOM5 compared to 
classes without them. These results corroborate Romano et al. 

[45] findings: classes with low cohesion implement several and 
unrelated functionalities and then are change-prone. 

Yamashita and Moonen [54] and Yamashita and Counsell [53] 
analyzed the impact of 12 smells on the maintainability of four 
Java-based systems. Smells were detected using commercial tools 
that implemented the detection strategies by Lanza and Marinescu 
[35] and Marinescu [39]. The main conclusion of both studies is 
that smells are present in classes with maintainability issues; 
therefore smells could be used for assessing the maintainability of 
a system. 

Jaafar et al. [31] showed that, in several releases of ArgoUML, 
JFreeChart, and XercesJ, classes with smells are more fault-prone 
than other classes and that this observation is also true for classes 
with binary-class relationships with smelly classes. In our study, 
we did not analyze static relationships between smelly classes and 
other classes.  

Olbrich et al. [42] performed an empirical study that showed that 
God and Brain classes were more change and fault prone than 
other classes. However, when normalizing class metrics with 
respect to size, they observed that God and Brain classes were 
less change and fault prone than others. They concluded that God 
and Brain classes are not necessarily harmful because they 
contain as much functionality per line of code as others. 

Guo et al. [28] performed an empirical study to assess the benefit 
of including tailored domain-specific rules in metrics-based smell 
detection techniques. These specific-domain rules are obtained 
from domain experts and used to refine smell definitions by 
modifying some thresholds and–or rules. These tailored rules 
make the detection results more accurate. 

Fontana et al. [22] performed an empirical study to identify the 
most frequent smells in systems of different domains and 
investigate whether there are correlations between smells and 
metrics. The results showed that the most frequent smells are 
Duplicate Code, Data Class, God Class, Schizophrenic Class, and 
Long Method, but no specific domain contains more smells of a 
particular kind. The authors used the applications in the curated 
Qualitas Corpus for their study. We follow this study but argue 
that the size of the corpus is too small to observe an effect. 
Therefore, we design our study to use more than a thousand 
applications belonging to 13 domains. 

Palomba et al. [43] proposed an approach for detecting five 
different code smells (Divergent Change, Shotgun Surgery, 
Parallel Inheritance, Blob, and Feature Envy), by exploiting 
change history information mined from versioning systems. In 
particular they analyzed the versioning systems of eight software 
projects written in Java. 

3. EMPIRICAL STUDY DESIGN 
The goal of this study is to identify if a relationship exists 
between the presence of smells and quality-related metrics and 
between application domains and the presence of smells in Java 
Mobile Applications. The context consists of 1,343 Java Mobile 
Applications from ShareJar1 that belong to 13 domains (categories 
in the context of ShareJar) and the quality focus is the quality of 
the applications measured by 48 OO metrics. 
                                                                    
1  The Java Mobile Edition apps were downloaded in 2011 from 

http://www.sharejar.com. However, by the time we wrote this paper the 
domain was on sale and the download access was deactivated.  
Therefore, we could share the JAR files upon request. 



Table 1 lists the number of Java Mobile Applications per 
category2. We used free Java Mobile Applications because the 
bytecode (JAR files) of the apps was publicly available and 
ShareJar allowed us to download a set of apps that belongs to 
several application domains.  

The software repository that we used as representative of Java 
Mobile Applications, ShareJar, like other software repositories 
and code-search engines, provides a predefined list of categories 
that represent application domains. Therefore, we used ShareJar 
software categories as representative of application domains. 
Developers associate applications to categories to make the 
searching and browsing easier. Although the category of an 
application depends on the features provided by the application, 
developers must often choose from a predefined list. In some 
cases, the list does not reflect the developers’ intention; in some 
other cases, developers may have chosen by mistake categories 
that do not represent their applications. We assume that 
developers “correctly” assign categories to their applications and 
that the categories available in ShareJar comprehensively reflect 
the domain of the applications stored therein. Thus, we use 
categories according to the mappings supplied by ShareJar. 

3.1 Research Questions 
Following our general question in Section 1, we ask the following 
research questions:  

• RQ1: What relationship, if any, exists between the presence 
of anti-patterns and quality-related metrics in Java Mobile 
Applications? (Are certain anti-patterns more likely to 
impact software quality, in particular fault-proneness?) 

• RQ2: What relationship, if any, exists between the presence 
of code smells and quality-related-metrics in Java Mobile 
Applications? (Are certain code smells more likely to impact 
software quality, in particular fault-proneness?) 

• RQ3: What relationship, if any, exists between software 
categories in ShareJar and the presence of anti-patterns in 
Java Mobile Applications? (Are certain smells more likely to 
appear in particular categories?) 

• RQ4: What relationship, if any, exists between software 
categories and quality-related metrics in Java Mobile 
Applications? (Are applications in certain categories more 
likely to be characterized by certain metric values?) 

The dependent variable for RQ1, RQ2, and RQ4 is represented by 
the values of the OO metrics computed on the Java Mobile 
Applications. The dependent variable for RQ3 is represented by 
the occurrences of smells in the Java Mobile applications. 

The independent variable for RQ1 is the number of occurrences 
of anti-patterns in the applications; for RQ2, it is the number of 

                                                                    
2 Each application may belong to one or more category. 

occurrences of smells, i.e., roles in anti-patterns; for RQ3 and 
RQ4, it is the categories of the applications. 

With RQ1, we want to analyze whether some metrics are indeed 
correlated with the presence of occurrences of anti-patterns (one 
or more). RQ2 provides a complementary, interesting answer to 
that of RQ1, focusing on the code smells (anti-pattern roles) rather 
than on the anti-patterns. Similarly with RQ3, we want to identify 
if anti-patterns may be more or less prevalent depending on the 
category. Finally, with RQ4, we expect metric values to change 
across categories because each category may impose designing 
and programming styles, which will be captured by some of the 
metrics. 

3.2 Data Extraction Process 
Our data is from the ShareJar repository, a collection of 
applications for mobile devices. The applications in the repository 
belong to 13 categories (some of the applications are 
uncategorized), which are reported in Table 1. All of the 
applications are written in Java Mobile Edition and take the form 
of bytecode stored in JARs. Of all the applications that we 
collected from ShareJar, we were able to analyze 1,343. 
Unfortunately, ShareJar does not keep track of the different 
versions of a given JAR. Therefore, we cannot report an analysis 
of the evolution of the JARs in time in terms of occurrences of 
smells and internal metric values, as some previous work did on 
design patterns and smells [20; 33; 34] but with smaller numbers 
of systems. Also, ShareJar does not provide a bug-reporting tool, 
so we cannot analyze the fault-proneness of the studied 
applications. Therefore, we rely on previous work that studied the 
relationships between metrics and fault-proneness to discuss in 
Section 5 the presence of smells and its relationship to class fault-
proneness. 

An important property of the analyzed applications is that some of 
them belong to more than one category. The overlap introduces 
the possibility of correlations in the results among categories. We 
indirectly study and reject any effect of the overlapping categories 
on the results of our study when answering RQ3. Our study yields 
us to observe that there are significant differences among the 
categories in the frequency distribution of anti-patterns. These 
differences are significant and let us conclude that any 
observation made on a category cannot be due to the overlap 
because such observation would then be similar to that made for 
some other overlapping category, which is not the case as shown 
by our answer to RQ3. Therefore, even in the presence of overlap, 
the obtained results are sufficient to examine whether or not 
relationships with respect to category exist. Also, 650 of the 
applications are not categorized; we exclude their JARs from our 
analysis for the research questions related to software categories 
(RQ3 and RQ4). 

We rely on tools belonging to the Ptidej3 framework to create 
models of the applications, identify binary class relationships 
between model entities representing classes and interfaces [27], 
compute OO metrics from these models using the POM 
framework [26], and identify occurrences of smells in these 
models using the DECOR framework. POM allows computing 48 
OO metrics, which values are reported in the online appendix4 and 
definition can also be found on-line5. DECOR [40] has been 
reported to have reasonable precision and has been used in several 
                                                                    
3 http://www.ptidej.net 
4 http://www.cs.wm.edu/semeru/data/ICPC14_antipatterns/ 
5 http://wiki.ptidej.net/doku.php?id=pom 

TABLE 1. ShareJar categories represented in the data 
Category Label #Apps Category Label #Apps 

Chat&SMS A 290 Music H 77 
Dictionaries  B 58 Science I 30 
Education C 163 Utilities L 364 
Free Time D 211 Emulators M 66 
Internet E 333 Programming N 20 
Localization F 32 Sports&Health O 68 
Messengers G 96 Uncategorized U 650 

 



previous studies [20; 33; 34]. It uses rule cards to specify each 
code smell or anti-pattern based on properties of the classes 
according to their lexicon (i.e., names), structure (e.g., classes 
using global variables), and internal attributes using metrics. As 
shown by Khomh et al. [33], the use of metrics in smell detection 
does not lead to a correlation between code smells and anti-
patterns and metrics, because their detection involve other class 
properties, such as binary class relationships. The 18 smells 
available in DECOR are defined on-line6 and are: AntiSingleton 
(AS), BaseClassKnowsDerivedClass (BCKDC), BaseClass-
ShouldBeAbstract (BCSBA), Blob, ClassDataShouldBePrivate 
(CDSBP), ComplexClass (CC), FunctionalDecomposition (FD), 
LargeClass (LC), LazyClass (LZC), LongMethod (LM), 
LongParameterList (LPL), ManyFieldAttributesButNotComplex 
(MFABNC), MessageChain (MC), RefusedParentBequest (RPB), 
SpaghettiCode (SC), SpeculativeGenerality (SG), SwissArmyKnife 
(SAK), and TraditionBreaker (TB).  

3.3 Analytical Method 
We formalize the concept of a relationship between the presence 
of anti-patterns and the values of the OO metrics as the 
association where the occurrences of anti-patterns affect the 
distribution of particular OO metrics. The presences of anti-
patterns as well as the metric values are all computed at the class 
level. DECOR and POM use classes at their unit of interest to 
compute OO metrics; the former reports whether a particular class 
in an application plays some role(s) in some anti-pattern(s) while 
the latter reports the set of metric values associated with each 
class. We then use the role(s) played by a class in some anti-
pattern to state whether the class belongs to that anti-pattern—
indifferently of the number of (possibly different) roles that the 
class may play in this anti-pattern. Similar to previous works, we 
observed that classes may play no role, one role, or more than one 
role in anti-patterns. Consequently, we cannot use a dichotomous 
variable to describe the role played by a class in an anti-pattern or 
whether the class exhibits or not the anti-pattern (no matter its 
role). 

For RQ1 and RQ2, we decided to use correlation coefficients 
because these are descriptive statistical measures that demonstrate 
the strength or degree of a monotone association between two 
variables [48]. We used correlation coefficients to measure 
different aspects of the dependence structure in the data; in 
particular, without normality assumptions, we measured the 
strength and direction of non-linear relationship using Spearman 
and Kendall coefficients. To categorize the strength of a direction, 
we used the guidelines provided by [46  Page 37]: with |c| the 
absolute value of the correlation coefficient c: (1) a value for |c| 
around 0.8 means that the relationship is relatively strong; (2) a 
value for |c| around 0.3 means a relatively weak relation; and (3) 
the sign of c gives the direction of the relation. Additionally, we 
measured the difference between the means of the OO metrics in 
the presence and absence of anti-patterns using Cliff’s d (delta), a 
non-parametric effect size measure [24] for ordinal data. To 
interpret the difference, we follow the guidelines in [24]: small for 
d < 0.33 (positive as well as negative values), medium for 0.33 ≤ 
d < 0.474, and large for d ≥ 0.474. The procedures for RQ1 and 
RQ2 are described bellow: 

• RQ1: For each class in each JAR, we counted the number of 
times that it participates in each anti-pattern, and computed 
OO metrics. We then measured the correlation between these 

                                                                    
6 http://wiki.ptidej.net/doku.php?id=sad 

counts and OO metric values by computing Spearman's ρ and 
Kendall's τ for each pairing. To measure the size effect, we 
computed Cliff’s d between OO metric values of classes with 
a specific anti-pattern and metrics of classes without it. 

• RQ2: As with RQ1, for each class in each JAR, we counted 
the number of times that it participates in each code smells, 
i.e., roles in the anti-patterns. We then measured the 
correlation between the number of roles played by the class 
in each anti-pattern and OO metric values. We computed also 
the effect size between the metric values of classes playing a 
specific role and that of classes without that role. 

For RQ3 and RQ4, we used Kruskal-Wallis (always with 
Bonferroni correction [18]) to determine statistical significance 
using multiple tests, because the data (occurrences of anti-patterns 
and the OO metric values) are not drawn from normal 
distributions and the samples do not have the same sizes. For 
example, the number of classes with the AntiSingleton anti-pattern 
in Category A is different from Category B, and so on. Therefore, 
we tested whether the distributions of numbers of anti-patterns (or 
OO metric values) per category are drawn from the same 
distributions. The procedures for RQ3 and RQ4 are: 

• RQ3: We grouped the classes in each JAR by the category to 
which they belong. In cases where JARs belonged to 
multiple categories, we placed their classes in multiple 
categories. We then used the Kruskal-Wallis test to 
determine if the frequency distributions of anti-patterns are 
statistically significant different in the 13 categories (i.e., to 
determine if a category has a significant effect with an alpha 
level of 0.05 on the numbers of anti-patterns).  

• RQ4: As with RQ3, we grouped the classes by category and 
used the Kruskal-Wallis test to determine if the frequency 
distributions of the values of a particular metric are 
significantly different in the 13 categories (i.e., to determine 
if category has a significant effect with an alpha level of 0.05 
on the values of each metric). 

4. RESULTS 
For the sake of clarity and not to overload the paper with tables, 
we do not provide tables with all the results. These can be found 
in our online appendix4. 

4.1 RQ1: Anti-patterns and Metrics 
The results for the relationship between anti-patterns and the 
values of the OO metrics are summarized in Figure 1 and Table 2. 
In general, we found only weak correlations except for some 
outliers. The relationships with metrics are positive and weak, on 
average; only two anti-patterns (LazyClass and 
RefusedParentBequest) exhibit negative and weak correlations 
with the metrics. The only anti-pattern that exhibits a moderate 
correlation is MessageChain; there is a positive correlation with 
NOTI (Spearman=0.65, Kendall=0.57). However, according to 
Cliff’s d, several metrics have medium-large effects on at least 
seven anti-patterns: CAM, CBO, CBO-In, CBO-Out, DCC, DSC, 
LCOM5, NCM, NOM, NOParam, NOTI, RFC, and WMC1. 
Table 2 lists the top correlated metrics with anti-patterns. 

Previous studies [1; 5; 6; 8; 10; 12; 15; 16; 21; 29; 32; 36; 41; 47; 
49-52; 55; 57] claim that CK metrics impact quality but we did 
not found strong correlations with anti-patterns. In the case of CK 
metrics, none of the correlations with anti-patterns exceed 0.4. 
The strongest positive relationships are with CBO, RFC, and 
WMC. The only negative relationship was observed with the 



metric NOC. For Cliff's d, the magnitude of the difference is small 

for most of the anti-patterns when the metrics are NOC and DIT: 
for the former (i.e., NOC), we found only a medium difference for 
BaseClassShouldBeAbstract; for the latter we found 5 out of 15 
medium/large differences. However, CBO, LCOM5, and RFC 
have medium-large differences in at least 7 anti-patterns.  

Consequently, for RQ1, we conclude that, in general, there are 
no moderate or strong, only weak, correlations between the 
classes, in ShareJar applications, participating to anti-
patterns and the values of the OO metrics for the classes. 
However, we found that the differences between some metrics 
in classes with some anti-patterns and classes without these 
anti-patterns are medium and large. 

 
4.2 RQ2: Code Smells and Metrics 
There is a positive moderate relationship between the roles of 
MessageChain and NOTI and it is expressed by the two 
correlation coefficients (i.e., Spearman and Kendall). The rest of 
relationships between code smells and metrics are low, as in the 
analysis of the relationship between anti-patterns and metrics. 
Effect size confirms, at the granularity of roles, the results for 
RQ1. For example, there are positive moderate-large differences 
in the values of ten metrics in classes with LargeClass:Large-
ClassOnly and 23 metrics in classes with 
LargeClass:LowCohessionOnly. There are negative and large 
differences in the values of nine metrics in classes with the roles 
of ManyFieldAttributesButNotComplex. 

Therefore, for RQ2, we conclude that, in general, there are no 
moderate or strong correlations between classes, in 
ShareJar applications, playing roles in anti-patterns and 
OO metrics. 

 
4.3 RQ3: Anti-patterns and Categories 
Figure 2 depicts the distributions of average occurrences of anti-
patterns in each category using box-plots. The differences among 
the means for each anti-pattern are substantial in several cases; for 
example, meaningful differences exist even between larger 
categories with significant overlap; e.g., AntiSingleton occurs 
twice as frequently per class in Category L than in Category D. In 

 
Figure 2. Box-plot of average counts of anti-patterns in 

ShareJar categories.  

 

 
Figure 1. Spearman, Kendall and Cliff’s d between each 
anti-pattern and OO metrics. 



general, the distributions are different and the results of Kruskal-
Wallis test confirm these differences. 

Table 3 lists the p-values and the K statistic of the Kruskal-Wallis 
test for RQ3. For each anti-pattern (except for 
ManyFieldAttributesButNotComplex that only was detected in 
Category E), the values of the K statistic7 are greater than the χ2 
values for confidences levels of 0.05 and 0.01 with 12 degrees of 
freedom ( )21,2.26 2

12,05.0
2

12,01.0 == χχ . The differences between the 

numbers of occurrences of anti-patterns for each category are 
statistically significant with α = 0.01. 

ClassDataShouldBePrivate is the most frequent anti-pattern in our 
dataset (except for Category N⎯Programming⎯where the most 
used is LongMethod). Blob is the less frequent anti-pattern in 
Categories M (Emulators) and N (Programming), but not in the 
others (Figure 3). Again, frequency distributions are different and 
Kruskal-Wallis test confirms the differences. The values of K are 
greater than the χ2 values for confidences levels of 0.05 and 0.01 

with 12 degrees of freedom ( )21,2.26 2
12,05.0

2
12,01.0 == χχ  (except for 

ManyFieldAttributesButNotComplex that only was detected in 
Category E⎯Internet). The differences between the numbers of 

                                                                    
7 The K statistic is distributed χ2 with n-1 degrees of freedom; in our case 

n is equal to the number of categories, 13. 

occurrences of anti-patterns for each category are statistically 
significant with α = 0.01. 

Consequently, for RQ3, we conclude that in the applications 
that we analyzed, there are significant differences among the 
categories in the frequency distributions of the anti-
patterns. 

 
4.4 RQ4: Categories and Metrics 
Table 4 lists the p-values and the K statistic of the Kruskal-Wallis 
test for RQ4. The results indicate statistically significant 
differences among the categories for all of the OO metrics for α = 
0.01 (except for DCAEAC and DCMEC). As with anti-patterns, 
we infer that meaningful differences exist among the categories in 
the distribution of the metric values. 

Consequently, for RQ4, we conclude that in the applications 
that we analyzed, there are significant differences among 
the categories in the distributions of the OO metrics. 

5. ANALYSIS OF THE RESULTS 
In this section, we discuss the results of our research questions. 

RQ1. The correlation measures (Spearman and Kendall) indicated 
weak relationships between anti-patterns and OO metrics. 
However, Cliff’s d indicated that there are medium and large 
differences between the values of the OO metrics in classes with 
anti-patterns and classes without them. To analyze the relationship 
reported by Cliff’s d, we counted the number of metrics with 
medium and large effect size (|d|>=0.33), grouped by anti-pattern 
(in Table 5), and the number of anti-patterns in which the metrics 
have medium and large effect sizes (in Table 6). We computed 
Cliff’s d for each metric, comparing metrics of classes 
participating in particular anti-pattern and metrics of classes not 
participating in the particular anti-pattern. For example (Table 5), 
the effect size is large on 16, 19, and 30 metrics for classes with 
AntiSingleton, ComplexClass, and SwissArmyKnife. In addition, 
there is a medium difference of CAM and CBO-In (Table 6) 
between classes with six and five anti-patterns and classes without 

Table 3. Kruskal-Wallis results for RQ3 with a degree of 
freedom of 12 (number of categories - 1) 

Anti-pattern p-value K 
AntiSingleton 0 337.443 
BaseClassKnowsDerivedClass – – 
BaseClassShouldBeAbstract 0 92.464 
Blob 0 181.384 
ClassDataShouldBePrivate 0 586.629 
ComplexClass 0 118.692 
FunctionalDecomposition – – 
LargeClass 0 107.277 
LazyClass 0 278.313 
LongMethod 0 105.840 
LongParameterList 0 366.941 
ManyFieldAttributesButNotComplex 0.909 6.139 
MessageChains 0 639.969 
RefusedParentBequest 0 408.685 
SpaghettiCode 0.001 33.148 
SpeculativeGenerality 0.001 33.009 
SwissArmyKnife 0 156.033 
TraditionBreaker – – 

“–” means that no p-value or K statistic is available: no 
occurrences were detected in the categorized applications 

Table 2. Top positive and negative correlated metrics (in bold: 
moderate, strong correlations; medium, large effect sizes) 

Anti-pattern Spearman Kendall Cliff’s d 

AntiSingleton NAD (0.3219) 
DAM (-0.1399) 

NAD (0.2755) 
DAM (-0.1280) 

RFC (0.6617) 
MFA(-0.4658) 

BaseClassShould  
BeAbstract 

CLID (0.3632) 
IR (-0.0539) 

CLID (0.3605) 
DIT (-0.0484) 

CLID (0.9422) 
DIT(-0.4045) 

Blob DSC (0.1020) 
DAM (-0.0953) 

DSC (0.0837) 
DAM (-0.0871) 

CBO (0.5727) 
DAM (-0.5723) 

ClassDataShould  
BePrivate 

NAD (0.3441) 
DAM (-0.3855) 

NAD (0.2945) 
DAM (-0.3527) 

LCOM5 (0.3491) 
DAM(-0.9730) 

ComplexClass McCabe (0.3883) 
MFA (-0.1060) 

ICHClass (0.3290) 
MFA (-0.0870) 

RFC (0.6538) 
MFA (-0.3556) 

LargeClass CBO-Out (0.0813) 
CA (-0.0309) 

CBO-Out (0.0666) 
CA (-0.0256) 

DSC (0.7603) 
CA (-0.0434) 

LazyClass ANA (0.058) 
CBO-Out(-0.2565) 

ANA (0.0047) 
CBO-Out(-0.2102) 

No positive values 
CAM (-1.0641) 

LongMethod LOC (0.3854) 
NOC (-0.0578) 

LOC (0.3167) 
NOC (-0.0436) 

NOTI (0.964) 
MFA(-0.1259) 

LongParameter 
List 

NOParam(0.3202) 
CA (-0.0387) 

NOParam (0.2816) 
CA (-0.0320) 

NOParam(0.7681) 
MFA (-0.0366) 

ManyFieldAttr  
ButNotComplex 

CBO-In (0.0192) 
CAM (-0.0274) 

CBO-In (0.0158) 
CAM (-0.0274) 

CBO-In (0.5943) 
CAM (-2.8754) 

MessageChains NOTI (0.6536) 
NOC (-0.0578) 

NOTI (0.5730) 
NOC (-0.0565) 

NOTI (0.8469) 
CON(-0.00865) 

RefusedParent 
Bequest 

AID (0.1809) 
WMC (-0.1585) 

AID (0.1716) 
WMC (-0.1297) 

NOH (0.7863) 
CAM (-0.8987) 

SpaghettiCode WMC (0.0791) 
MFA (-0.0218) 

WMC (0.0648) 
MFA (-0.0180) 

RFC (0.7023) 
MFA (-0.3872) 

Speculative 
Generality 

CLID (0.2574) 
CA (-0.0561) 

CLID (0.2555) 
CA (-0.0464) 

CLID (0.9195) 
NOTI (-0.4483) 

SwissArmyKnife NOP (0.1184) 
CA (-0.0265) 

NOP (0.1143) 
CA (-0.0219) 

NOP (0.9989) 
CON (-0.1785) 

 



those anti-patterns. Therefore, although not correlated, some 
smells do impact negatively quality-related metrics. 

We expected many of the results that we obtained. Looking at the 
top metrics with medium/large effects from anti-patterns (Table 
6), we observe that those metrics are related to coupling (CBO, 
CBO-In, CBO-Out, DCC, and RFC), cohesion (CAM and 
LCOM5), and design size (DSC, NOParam). The top three 
metrics in the list (CAM, CBO-In, and LCOM5) have positive and 
negative effects from anti-patterns. The negative effects are due to 
the Blob (CAM), LazyClass (CAM, CBO-In, and LCOM5), 
ManyFieldAttributesButNotComplex (CAM and LCOM5), and 
RefusedParentBequest (CAM and LCOM5) anti-patterns. CAM 
and LCOM5 measure different aspects of cohesion, because the 
former is related to similarity of parameter types while the latter 
to accessing similar fields. These results are not surprising 
because, by definitions, the methods of classes with the four anti-
patterns have methods that do not use the same type of parameters 
and that do not access similar attributes. 

A particular anti-pattern is LazyClass. All the medium-large 
effects on metrics are negative (CAM, CBO-In, DSC, LCOM5, 
and NOParam). Yet, the values of these metrics are a consequence 
of the anti-pattern definition, i.e., a “lazy class” does very little 
and has a minimal definition. Intuitively, the occurrence of 
LazyClass degrades design by making it needlessly cluttered, 
which consequently may make faults more likely. 

The top metrics with medium/large effect sizes from the anti-
patterns (in Table 6) are CAM, CBO-In, LCOM5, CBO, DCC, 
DSC, LCOM5, NCM, NMD, NMDExtended, NOM and 
NOParam, and RFC. These results suggest that metrics for 
coupling, cohesion, and design size for classes with anti-patterns 
have medium/large differences with classes without any anti-
pattern. Also, the values of some OO metrics, such as coupling 
metrics, the CK suite, LOC, and McCabe, suggest that classes 
with some anti-patterns may also be more complex than others. 
According to other empirical studies [1; 5; 6; 8; 10; 12; 15; 16; 
21; 29; 32; 36; 41; 47; 49-52; 55; 57], CBO, RFC, LCOM, and 
LOC had significant effects on the number of faults in a class and 
are reliable predictors of fault-proneness. Coupling increases the 
probability of faults because the stronger the association between 
classes (inheritance, composition, or method invocations), the 
stronger the probability of collateral effects when classes are 
modified or repaired. Classes with high-frequency of outgoing 
coupling dependencies (out coupling) are more prone to cause 
surrounding dependent classes to become faulty [9; 13], and 
modifications or bugs in higher levels of an inheritance tree 
propagate without control to lower levels. Metrics such as CBO, 
RFC, and DCC measure those aspects of coupling. 

Our results suggest that classes with the AntiSingleton, 
ComplexClass, LargeClass, SpaghettiCode, and SwissArmyKnife 
anti-patterns have greater values of LCOM5 than classes without 
them. Classes with low cohesion are more likely to be fault-prone, 
because low cohesion indicates poor design, which is likely to be 
more fault-prone [10]. The LCOM5 metric measures the extent to 
which methods use the attributes defined in a class. A value of 1 
for LCOM5 indicates that each method of the class references 

Table 4. Kruskal-Wallis results  (with Bonferroni 
correction) for RQ4 with df =12 (number of categories - 1) 
Metric P-value K Metric P-value K 
ACAIC 0 43.458 MFA 0 953.141 

ACMIC 0 167.931 MOA 0 207.058 

AID 0 145.089 McCabe 0 375.512 

ANA 0 1228.144 NAD 0 254.852 

CA 0 585.445 NADExtended 0 255.024 

CAM 0 197.375 NCM 0 961.462 

CBO 0 1987.273 NMA 0 183.786 

CBO-In 0 2298.643 NMD 0 311.015 

CBO-Out 0 1143.478 NMDExtended 0 310.611 

CIS 0 395.056 NMI 0 1510.636 

CLID 0 68.903 NMO 0 486.851 

CON 0 219.648 NOA 0 168.308 

DAM 0 661.411 NOC 0 97.217 

DCAEAC 1 23.068 NOD 0 66.633 

DCC 0 1987.273 NOH 0 2502.116 

DCMEC 0.336 27.415 NOM 0 311.015 

DIT 0 161.278 NOP 0 123.82 

DSC 0 4268.073 NOParam 0 477.232 

ICHClass 0 267.7 NOTI 0 921.012 

IR 0 245.037 NPrM 0 185.899 

LCOM1 0 246.594 RFC 0 308.959 

LCOM2 0 235.893 SIX 0 302.989 

LCOM5 0 315.049 WMC 0 233.292 

LOC 0 234.877 WMC1 0 311.015 

 

 

Table 5.  Numbers of metrics where Cliff’s d effect sizes are 
medium and large, listed for each anti-pattern 

Anti-pattern 
Cliff`s d 

(-inf,-
0.47] 

(-0.47,-
0.33] 

[0.33,
0.47) 

[0.47, 
inf) Total 

SwissArmyKnife 0 0 1 30 31 

ComplexClass 0 1 7 19 27 

SpaghettiCode 0 1 16 5 22 

AntiSingleton 0 2 2 16 20 

ManyFieldAttributesButNotComplex 8 9 2 1 20 

LazyClass 4 14 0 0 18 

LargeClass 0 0 7 7 14 

LongParameterList 0 0 11 1 12 

RefusedParentBequest 4 1 3 4 12 

MessageChain 0 0 8 1 9 

BaseClassShouldBeAbstract 0 3 2 3 8 

Blob 1 0 3 3 7 

Speculative Generality 0 1 2 2 5 

ClassDataShouldBePrivate 1 0 1 0 2 

LongMethod 0 0 2 0 2 

 



only one attribute; a value of zero indicates that each method 
references every attribute [9]. Thus, classes with values of 
LCOM5 closer to 1 can be considered as classes that implement 
several, unrelated functionalities. As a consequence, these classes 
are more prone to changes and faults; their maintainability is 
affected by their many responsibilities. 

Design-size metrics have been also related to fault-proneness, 
especially LOC. There is a relationship because the greater the 
number of lines of code, the greater the probability of introducing 
a bug during maintenance. Several empirical studies [1; 5; 6; 8; 
10; 12; 15; 16; 21; 29; 32; 36; 41; 47; 49-52; 55; 57] provided 
evidence of a positive relationships between LOC and fault-
proneness. Moreover, complex interfaces tend to be more fault-
prone [19]. Highly complex interfaces are characterized by a high 
number of parameters and exit points. Complexity in interfaces 
introduces complex interaction patterns among classes, because 
more preconditions must be ensured before invoking methods and 
developers have more chance to overlook these preconditions. For 
example, using object types as parameters requires verifying that 
the parameter values are not null; thus, the longer the list of 
parameters, the higher the probability to call methods with invalid 
values. 

Thus, from RQ1, we infer that anti-patterns generally (though 
not uniformly) have a relationship with OO metrics, especially 
with coupling, cohesion, and design size, which suggests a 
positive relationship with fault-proneness. 

 

RQ2. The relationships expressed in the results for RQ2 are 
generally consistent with those that we obtained in RQ1 without 
taking roles into account. We found weak correlations between 
LOC and code smells. However, using Cliff’s d, we found large 
differences for the LOC metric values between classes with roles 
in some anti-patterns (AntiSingleton, ComplexClass, 
SpaghettiCode, and SwissArmyKnife) and classes without those 
anti-patterns. We believe that our findings have two reasons. First, 
the presence of these anti-patterns may be a sign of a general poor 
decomposition of responsibilities, in which fewer, larger classes 
have too many responsibilities when compared to other classes, 
i.e., with possible fewer responsibilities and, thus, smaller sizes. 
Second, our larger dataset may smooth LOC effects because the 
distribution of LOC values in our dataset with 1,343 applications 
is different to that from 14 applications used in [44]. 

Thus, from RQ2, we infer that code smells generally (though 
not uniformly) have a relationship with OO metrics, similarly 
to anti-patterns, with coupling, cohesion, and design size, 
which also suggests a positive relationship with fault-
proneness. 

 

For RQ3, our results show significant differences in the 
distribution of anti-patterns across categories. While participation 
in anti-patterns (as expected) is infrequent across all categories 
(Figure 3), the category to which a class belongs has a substantial 
impact on the particular anti-patterns that may afflict the classes. 
This observation answers positively our general question, whether 
applications in different domains are negatively impacted by 
smells in different ways. It shows that developers’ behavior varies 
by domain. Developers of certain kinds of applications may find it 
expedient for domain-related reasons to follow “lazy” 
conventions, yielding a larger distribution of anti-patterns in their 
code. These developers may have also less expertise in design and 
programming than developers in other domains. Developers most 
likely develop their applications to fulfill needs that no existing 
applications fulfill, either with respect to functionalities, prices, 
user-interfaces, availability, licensing, and so on. Thus, developers 
of applications in the Music category, for example, are more 
likely to be musicians while developers of applications in the 

Table  6. Number of anti-patterns where Cliff’s d effect 
sizes are medium and large - listed by metrics.  

Metric 
Cliff`s d 

(-inf,-0.47] (-0.47,-0.33] [0.33,0.47) [0.47, inf) Total 

CAM 4 0 6 0 10 
CBO-In 1 0 5 3 9 
LCOM5 3 0 1 5 9 
CBO 0 1 2 5 8 
DCC 0 1 2 5 8 
NCM 1 1 3 3 8 
NMD 0 2 3 3 8 
NMDExt. 0 2 3 3 8 
NOM 0 2 3 3 8 
NOParam 2 1 3 2 8 
RFC 2 1 1 4 8 
WMC1 0 2 3 3 8 
CBO-Out 0 0 3 4 7 
DSC 1 0 4 2 7 
NMO 0 2 3 2 7 
NOTI 2 1 2 2 7 
CIS 0 2 1 3 6 
DAM 4 2 0 0 6 
MFA 0 4 1 1 6 
NOH 0 1 3 2 6 
DIT 0 2 2 1 5 
NMA 0 1 1 3 5 
NOA 1 2 1 1 5 
SIX 1 1 2 1 5 
AID 0 2 1 1 4 
LOC 0 0 1 3 4 
McCabe 0 0 1 3 4 
NAD 0 0 1 3 4 
NADExt. 0 0 1 3 4 
WMC 0 0 0 4 4 
ANA 1 0 0 2 3 
CLID 0 0 1 2 3 
ICHClass 0 0 1 2 3 
LCOM1 0 0 2 1 3 
MOA 0 0 0 3 3 
NOD 0 0 2 1 3 
NOP 0 1 1 1 3 
ACAIC 0 0 2 0 2 
ACMIC 0 0 0 2 2 
IR 0 0 1 1 2 
LCOM2 0 0 1 1 2 
NPrM 0 0 1 1 2 
DCMEC 0 0 0 1 1 
NMI 0 0 0 1 1 
NOC 0 0 1 0 1 
DCAEAC 0 0 0 0 0 
CA 0 0 0 0 0 
CON 0 0 0 0 0 

	
  



Programming category are more likely to be software developers 
by profession. Thus, the former developers may be less proficient 
in design and programming than the latter developers, resulting in 
lower quality and increased presence of anti-patterns. 

A useful direction for future investigation is to study the actual 
occurrences of anti-patterns in particular domains. Our results 
indicate that some anti-patterns are more prevalent in some 
category of applications because of specificities of these 
applications and observing these categories is useful to warn 
developers working in such categories about common smells that 
they may encounter. Even if these smells may be the “best” way 
to implement these applications because of other constraints on 
the applications of such categories.  

Thus with RQ3, we show that applications in different domains 
are negatively impacted by anti-patterns in different ways and 
that developers of certain domains, e.g., music, should be wary 
of smells and–or strive to prevent them, possibly by associating 
with developers more expert in design and programming (even 
if less expert in the application domains). 

RQ4. Our results, reported in Table 4, show significant differences 
in the distribution of metric values across categories. This 
inference is not particularly surprising—developers’ discipline 
and design conventions are intuitively likely to vary by domain—
but this deserves more study. One unknown variable is the 
rationale for this variation. For example, these metrics may vary 
because of systematic differences in the nature of the problems 
solved in each domain, but systematic differences in developers’ 
“culture” may also be a factor. This is a question that requires 
further investigation. 

The answer to RQ4 confirms another intuitive observation from 
researchers and practitioners: code smells and anti-patterns are not 
the only factor influencing software quality as we have measured 

it. Application domain (i.e., the collection of variables associated 
with it) also has an impact, as do other variables identified in the 
literature. It is possible that other developers’ behaviors associated 
with the presence of anti-patterns yielded the distribution of 
metrics that we observed.  

Through RQ4, we show the relationship between categories 
and all the computed OO metrics: metric distributions vary 
across categories with statistical significance and point at 
differences between developers’ discipline and design 
conventions. 

6. THREATS TO VALIDITY 
The facts that the studied applications were developed for mobile 
devices and written uniformly in Java Mobile Edition introduce 
threats to external validity. Nonetheless, given the size of our 
dataset, we believe that the results that we obtained from these 
applications supply a reasonable foundation for future 
investigation into the impact of anti-patterns with other datasets. 

For the sake of simplicity, we computed the metrics, as well as the 
occurrences of anti-patterns, on the Java bytecode of the mobile 
applications at the class level. Consequently, any metric that is 
intrinsically based on the lines of code, such as LOC or WMC, 
uses the number of bytecodes in the methods of a class as proxy to 
the number of lines of source code of the class. Although this 
choice could introduce a bias and be a threat to the construct 
validity of our study (a LOC would not really represent a line of 
code), we accept this threat because it is systematic across our 
complete study and thus does not invalidate comparisons among 
anti-patterns, domains, and metrics. Compiler optimizations may 
change the bytecode such that it does not reflect the source code 
anymore but such changes are intrinsically limited to keep the 
semantics of the source code and, thus, analyses performed on 
bytecodes reflect phenomena existing in the source code. 

 
Figure 3.  Cumulative average of each anti-pattern per domain (category) 

 



We relied on DECOR for the detection of occurrences of smells. 
While DECOR has previously obtained 100 percent recall on 
some datasets and an average precision of 38.2%, its precision and 
recall cannot be guaranteed in our dataset [25; 40]; accordingly, 
DECOR constitutes a threat to the construct validity of our study. 
Its precision values depend on the smells being detected and the 
applications in which they are detected. Therefore, some reported 
and studied occurrences of the smells may not be true positive 
occurrences and may bias the results of our analyses. We mitigate 
this threat to the construct and conclusion of our study by 
discussing each role and category independently. We could not 
mitigate these threats by using versions of the applications 
because such versions are not currently available. Mäntylä et al.  
[38] report that smells are perceived differently by developers 
than tools. Therefore, the detected smells may not be relevant to 
developers and−or in agreement with developers’ assessment. We 
accept this threat to the construct validity of our study because 
there are no tools to detect developers’ perceived smells, and 
analyzing smells by hand consumes too much time and effort. 

We used metrics to assess the quality of the applications with 
respect to the occurrences (or not) of roles of some smells. We 
also partly used metrics to identify occurrences of smells, when 
using DECOR. Therefore, it could be possible that the results 
observed derived from the use of the same metrics to detect 
occurrences of smells and to measure quality. However, DECOR 
does not use only metrics to detect smells but also, among others, 
the binary-class relationships among classes and their method 
invocations. Also, a previous paper [33] showed that metrics 
alone could not explain that a class plays a role in an occurrence 
of a smell, not even LOC. 

The domain and programming language of the applications in our 
dataset may limit the generalizability of our inferences. Our 
dataset is comprised only of Java applications for mobile devices; 
the constraints on these applications (e.g., small memory 
footprint) presumably do not hold in many other domains, and the 
occurrences of smells in these applications may vary for practical 
reasons from that in other systems. However, our goal in this 
study is exploratory; we expect our study to be replicated on other 
systems. 

In our dataset, 650 out of 1,343 applications are not categorized. 
However, when investigating the relationships between 
categories, smells, and metrics (RQ3, RQ4), we assumed that the 
available categories for the applications in ShareJar are 
comprehensive and that developers “correctly” identified the 
categories to which their applications belong. Thus, we assumed 
that 650 applications were not categorized because available 
categories in ShareJar did not represent the application domains to 
which the applications belong. Though we believe that this 
assumption is reasonable, developers are capable of error and 
repositories are capable of omission; hence, these are threats to 
validity (external and internal). Again, because ours is an 
empirical study, we expect these assumptions to be validated via 
replication on other repositories. 

7. CONCLUSIONS 
Our study of the relationships among anti-patterns, software 
categories, and OO metrics shows some evidence that anti-
patterns are related to several fault-related metrics. We computed 
OO metrics on 1,343 Java Mobile Applications because (1) some 
metrics have known relationships with faults and other quality 
attributes and (2) they are suitable for computation on a large 
dataset. We also identified occurrences of code smells and anti-

patterns using DECOR [40]. Then, we analyzed the relationship 
between anti-patterns and metrics using Spearman, Kendall as 
well as Cliff’s d. The results showed that anti-patterns negatively 
impact software quality-related metrics in Java Mobile 
Applications, in particular metrics related to fault-proneness. 
Although we did not find a relationship through correlation 
analysis, we observed larger differences between metrics of 
classes, such as coupling, cohesion, and design size, with smells 
and classes without them. We also observed that anti-patterns 
have different frequency in the different application domains. 
Thus, the results of RQ1 through RQ4 and related discussions 
allow us to answer our general question: 

Are applications in different domain negatively impacted by 
anti-patterns in different ways? We answer positively this 
question for anti-patterns. Some anti-patterns are common 
in all the categories while others are more common in 
certain application domains.  

Understand the specific reasons for the occurrence of anti-patterns 
is future work: in some cases, it could be related to specific 
purposes, such as reducing the application size (i.e., the lower the 
number of classes, the lower the size of the application) or the 
memory required by dynamic linking when instantiating classes; 
in other cases, it could show a lack of developers’ knowledge in 
design concepts. However, independently of the reason, we found 
large differences between the values of fault-proneness-related 
metrics (such as coupling, cohesion, and design size) in classes 
with anti-patterns and classes without them. Thus, anti-patterns in 
a certain application domains impact negatively quality more than 
in others. This conclusion suggests a fruitful avenue for future 
study to determine the domains for which anti-patterns are most 
harmful. This information would likely be particularly useful to 
practitioners. Moreover, if systematic differences in quality 
indeed exist across application domains, it may be useful to 
develop ways of accounting for these variations, particularly in 
domains that generally suffer the most from poor quality. 

Other avenue involves relating the presence of patterns to fault-
proneness directly, which (presumably) entails mining substantial 
quantities of data from software repositories. Another avenue for 
investigation is also whether anti-patterns are related to 
readability, which can be assessed using automated techniques 
(e.g., [14]) and other quality attributes, such as understandability 
or reusability, that could be measured with dedicated quality 
models, such as that of Bansiya and Davis [4]. Yet another avenue 
is the analysis of a larger number of applications, such as ours, 
while taking into account their evolution and change-proneness 
(typically computed by differencing versions). In addition, 
applications written with other technologies, such as Android and 
iOS apps, should be studied but downloading and decompiling 
these apps require a major effort when compared to analyzing 
apps already bundled as JAR files. Finally, the root causes for the 
presence of more smells in some software categories than in 
others should be investigated to, possibly, provide means to 
reduce their prevalence. 
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