
Overcoming Language Dichotomies: Toward E�ective Program
Comprehension for Mobile App Development

Kevin Moran
College of William and Mary

Department of Computer Science
kpmoran@cs.wm.edu

Carlos Bernal-Cárdenas
College of William and Mary

Department of Computer Science
cebernal@cs.wm.edu

Mario Linares-Vásquez
Universidad de los Andes

Systems and Computing Engineering Department
m.linaresv@uniandes.edu.co

Denys Poshyvanyk
College of William and Mary

Department of Computer Science
denys@cs.wm.edu

ABSTRACT
Mobile devices and platforms have become an established target
for modern software developers due to performant hardware and
a large and growing user base numbering in the billions. Despite
their popularity, the software development process for mobile apps
comes with a set of unique, domain-speci�c challenges rooted in
program comprehension. Many of these challenges stem from de-
veloper di�culties in reasoning about di�erent representations of
a program, a phenomenon we de�ne as a “language dichotomy".
In this paper, we re�ect upon the various language dichotomies
that contribute to open problems in program comprehension and
development for mobile apps. Furthermore, to help guide the re-
search community towards e�ective solutions for these problems,
we provide a roadmap of directions for future work.

CCS CONCEPTS
• Software and its engineering → Software notations and
tools;

KEYWORDS
ProgramComprehension, Mobile, Android, Natural Language, Code
ACM Reference Format:
Kevin Moran, Carlos Bernal-Cárdenas, Mario Linares-Vásquez, and Denys
Poshyvanyk. 2018. Overcoming Language Dichotomies: Toward E�ective
Program Comprehension for Mobile App Development. In ICPC ’18: ICPC
’18: 26th IEEE/ACM International Conference on Program Comprehension ,
May 27–28, 2018, Gothenburg, Sweden. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3196321.3196322

1 INTRODUCTION
Mobile computing has become a centerpiece of modern society.
Smartphones and tablets continue to evolve at a rapid pace and
the computational prowess of these devices is approaching parity
with laptop and desktop systems for high-end mobile hardware.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICPC ’18, May 27–28, 2018, Gothenburg, Sweden
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5714-2/18/05.
https://doi.org/10.1145/3196321.3196322

This facilitates new categories of engaging software that aim to
improve the ease of use and utility of computing tasks. Additionally,
commodity smartphones are ushering in a completely new popula-
tion of users from developing markets, many of whom are using a
computer and accessing the internet for the �rst time. These factors,
combined with the ease of distributing mobile apps onmarketplaces
like Apple’s App Store [6] or Google Play [9] have made the devel-
opment of mobile software a major focus of engineers around the
world. In fact, according to Stack Over�ow’s 2018 survey of over
100,000 developers [1], nearly a quarter of respondents identi�ed
themselves as mobile developers.

While the importance and prevalence of mobile in the mod-
ern software development ecosystem is clear, many of the unique
attributes that make mobile platforms attractive to both develop-
ers and users contribute a varied set of challenges that serve as
obstacles to producing high-quality software. For example, while
rich platform APIs facilitate development of advanced features, the
change-prone nature of these APIs can adversely a�ect the quality
of the apps they support [24, 73]. Another example of a mobile
speci�c challenge relates to the touch-based, event driven nature of
mobile apps. Because the core functionality of many apps is driven
mainly by the user interface, testing is typically performed at the
GUI-level. However, manual GUI-testing is a time-consuming task
and developers need automated support to help reduce testing costs
[77, 79]. While a sizable amount of work has been conducted to
help automate mobile testing [31], many developers �nd that these
approaches do not meet their needs [77].

When examining the current challenges that exist in mobile
software development, maintenance, and testing one can observe a
common thread weaved throughout these problems, contributing to
a fabric of interconnected di�culties. Incidentally, this thread is not
something speci�c to mobile development, but rather stems from
a fundamental trait of computer science more generally, namely
abstraction. In their text “Foundations of Computer Science" Aho and
Ullman state that “fundamentally, computer science is a science of ab-
straction – creating the right model for thinking about a problem and
devising the appropriate mechanizable techniques to solve it." Indeed,
abstraction is a powerful concept in the engineering of software,
allowing developers to design and implement complex programs.
However, there is also an associated cost that manifests itself when
engineers must reason across multiple layers of abstraction. In



ICPC ’18, May 27–28, 2018, Gothenburg, Sweden K. Moran, C. Bernal Cardenas, M. Linares Vasquez et al.

the domain of mobile development, abstractions contribute to and
underlie many of the unique challenges experienced by developers.

In particular, foundational abstractions between languages prove
to be particularly troublesome. Herewhenwe refer to the notion of a
language we are not targeting programming languages speci�cally,
but rather the broader de�nition of language as a medium by which
an idea or information is conveyed. In this sense, there are several
di�erent languages, or modalities, of information that developers
must navigate during the software development process for mobile
applications, including natural language and code, just to name a
few. In essence, the bridging of the knowledge gap between these
information modalities constitutes a set of principal challenges in
program comprehension for mobile apps.

Speci�c development challenges can be viewed as arising from
di�culties navigating di�erent pairs of language types. For instance,
when considering challenges related to change-prone APIs, devel-
opers must reason between program representations related to
natural language and code, interpreting changes delineated in API
documentation and how they may a�ect the use of those APIs in
a particular app. In GUI-based testing of mobile apps, developers
and testers must reason between several di�erent juxtaposed infor-
mation modalities, including code and pixel-based representations
of the app via the GUI. In this paper we refer to these pairs of
contrasting information modalities as language dichotomies. Devel-
oping solutions to help developers more e�ectively reason between
various language dichotomies will help facilitate the resolution of
many mobile development challenges.

In this paper, we o�er a brief introduction to mobile development
paradigms (Section 2), survey the major categories of research con-
ducted to date on mobile software engineering (Section 3), examine
open challenges through the lens of language dichotomies (Section
4), and outline a roadmap of potential future work aimed at aiding
mobile developers in e�ectively navigating these dichotomies (Sec-
tion 5). It should be noted that this paper is by no means meant to
be an exhaustive guide to the past research, processes or challenges
related to developing mobile apps, but rather to prime the reader
to think critically about the future research trends on the topic.
We hope that by examining key existing program comprehension
problems related to mobile development from the viewpoint of
language dichotomies, we can spur new, creative directions of work
aimed at helping to solve these fundamental problems, which will
in turn result in new processes and techniques for automating and
facilitating software engineering for mobile apps.

2 A BRIEF INTRODUCTION TO MOBILE
SOFTWARE DEVELOPMENT

In this section, we provide a brief overview of mobile development
paradigms, as well as some of the attributes that make the mo-
bile development process unique. Mobile applications are typically
developed on top of an existing mobile platform. These platforms
consist of several di�erent parts and these parts can vary between
platforms, however at a minimum usually include: (i) a kernel and
an operating system (OS) that runs on mobile hardware such as
a smartphone, (ii) an application framework consisting of a set
of platform speci�c APIs and libraries, and (iii) a set of tools and
software to aid in developing apps, including IDEs or user interface

builders. Mobile apps are typically written using a target program-
ming language supported for a particular platform (e.g., Java and
Kotlin for Android, and Objective-C and Swift for iOS), in combi-
nation with the APIs from the platform’s application framework.
There are a shrinking set of platforms upon which developers can
create and publish their apps. These platforms include Android,
iOS, BlackBerry 101, Firefox OS, Ubuntu Touch, and Windows 10
Mobile1. However, currently Android and iOS comprise the major-
ity of the market, accounting for 87.7% and 12.1% of the market
share respectively for the 2nd quarter of 2017[14].

2.1 Unique Aspects of the Mobile Development
Process

2.1.1 Platform Evolution and Instability. Generally, the software
development lifecycle typically follows a cyclic set of activities
that include (i) requirement engineering, (ii) design, (iii) develop-
ment, (iv) testing, and (v) maintenance. Modern agile development
practices typically iterate quickly through these activities with the
goal of delivering working software in a continuous manner where
features are added and bugs are �xed during each iterative devel-
opment cycle. However, the rapid evolution of mobile platforms
shapes the mobile development process in unique ways. As mobile
hardware evolves, platforms evolve to keep pace with technological
advancements, and new more convenient software features and
capabilities are included with each iteration. For instance, Android
has had over 15 major version releases since its inception in 2008
that have dramatically reshaped the underlying platform APIs [91],
leading to support for advanced features such as Augmented Reality
(AR). This iterative process puts immense pressure on developers
to evolve their apps with the mobile hardware and platforms to
satisfy the expectations of users that their apps take advantage of
the latest features [51, 57]. This pressure leads to accelerated devel-
opment cycles with a focus on adapting to changes in platform APIs.
Adapting to these changes can be di�cult and may adversely a�ect
app quality [24, 73]; because developers must cope with adding
additional app functionality based on new platform features, or on
�xing bugs that arise due to changes in APIs currently used in an
app. This may detract from time that could be spent on other activi-
ties such as �xing general regressions, refactoring, or improving the
performance of an app, while also leading to undue technical debt.
Thus, platform evolution has a clear a�ect on mobile development.

2.1.2 GUI-Centric, Event Driven Applications. Perhaps one of
the most important features of mobile devices is the ease of use
provided by high-�delity, touch-enabled displays. Users primarily
interact with their smartphones, tablets, and wearable devices and
by extension the apps that run on these devices, through a touch-
screen interface. This means that mobile apps are centered around
the graphical user interface, and are driven by touch events on this
interface. While other types of apps such as web apps, are also
heavily event-driven, the unique touch based gestures and interac-
tivity provided by mobile apps help to shape the software design,
development and testing processes in unique ways. For example,
the user interface (UI) and user experience in mobile apps must be

1Support will end at the end of 2019



Overcoming Language Dichotomies: Toward E�ective Program
Comprehension for Mobile App Development ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

well-designed for an app to be successful in highly competitive mar-
ketplaces. As such design and development tools for constructing
UIs are a core part of IDEs catering to mobile developers such as
Xcode and Android Studio. Developers must constantly be aware of
how application is connected to and impacts the GUI of their apps.

The event-driven nature of mobile apps also impacts testing.
While developers can test small pieces of their code using practices
such as unit testing, ultimately testing must be done through the
GUI. Manually testing applications is a time consuming practice
that is fundamentally at odds with the rapid pace of mobile devel-
opment practices. Thus, mobile developers and testers will often
utilize automation frameworks that either allow for reusable or
fully automated test input generation.

2.1.3 App Marketplaces. The primary (and some cases only)
method of distribution for mobile apps is through “app market-
places" such as Google Play or Apple’s App Store. These digital
storefronts are unique to mobile applications, in that they provide
users with easy access to purchase, download, and update apps,
while providing mechanisms for users to review apps and provide
feedback to developers. In recent years, these marketplaces have
become increasingly competitive as the number of available apps
numbers in the millions. App marketplaces incentivize develop-
ers to ensure their apps are of the highest possible quality, and to
take into account the feedback of users. Developers need to ensure
the quality of their apps by adhering to proper platform design
principles and performing extensive testing, or risk being passed
over for competitors. Likewise developers need to react to feed-
back communicated through user reviews by gathering an updating
requirements and updating their app’s implementation.

2.1.4 Market, Device, and Platform Fragmentation. The large
and growing user base of smartphones and tablets is one of the
most alluring aspects for many developers and companies hoping to
reach users. Unfortunately, targeting these users can be di�cult due
to multiple levels of fragmentation. The �rst level of fragmentation
is at the market-level, which is currently dominated by Android
and iOS. Thus, developers hoping to reach the maximum num-
ber of users must target both of these platforms. Second, there
is fragmentation at the device level [49], as there is a large and
growing number of hardware options for consumers to choose
from with more devices being introduced each year. Finally, there
is platform fragmentation, as users on the same mobile platform
may be running di�erent versions of mobile OSes. For instance,
the latest version of iOS, iOS11, is currently running on 65% of
devices whereas iOS10 currently encompasses 28% of the install
base [21]. However, in Android fragmentation is more severe where
the two latest versions of Google’s OS, Android 8 and 7, make up
only 1.1% and 28.5% of the Android install base respectively. In
order to create e�ective apps, developers must ensure that their
applications function properly across a wide of combinations of
di�erent platforms, devices, and platform versions. This can make
the process of developing and testing mobile apps challenging, as
developers need to maintain concurrent codebases and test across
a dizzying array of device and platform version con�gurations.

Naturally, these di�culties have led to creation of platform-
independent development tools such as Xamarin [15], where a
single codebase can be compiled to multiple platforms, eliminating

the need for parallel codebases. Alternatively, there exist tools and
frameworks like Ionic [11] for creating hybrid applications which
use a combination of web technologies that interface with under-
lying platform APIs. In addition to hybrid applications, another
framework created by Facebook called React Native [12] facilitates
the development of native mobile apps using javascript and React.
Applications built using react native are fully native to the target
platform, the framework simply assembles the native code accord-
ing to the javascript written by a developer. All of these approaches
can help ease the burden of fragmentation when creating mobile
apps. However, multi-platform development solutions come with
their own set of compromises. For instance, hybrid apps are known
to su�er from performance issues in terms of user interface inter-
activity, which can frustrate users. Furthermore, frameworks like
Xamarin or React Native require their own learning curve, and de-
velopers are highly dependent upon the multi-platform framework
keeping up with the latest features of modern mobile platforms.

3 THE STATE OF RESEARCH IN MOBILE
SOFTWARE DEVELOPMENT

This section presents an overview of research related to software
development in mobile ecosystems. We have segmented the current
landscape of related work into seven major topics. Note that the
purpose of this section is to provide the reader with a primer on
general research areas related to software development for mobile
apps, we leave an in-depth systematic review as future work.

3.1 App Store Analysis
App stores provide valuable information for users and developers.
From user reviews to install base information, work on applying
“app store analytics" to help aid in the development process for
mobile apps has seen great interest in recent years. Recent work by
Martin et al. [90] surveyed papers considering any type of technical
or non-technical information from mobile markets. The authors
categorized the papers into 7 di�erent categories representing the
underlying goal of empirical studies or new approaches for aiding
the development process. The �rst of these is API analysis which
constitutes papers that examine API usages in mobile apps. The
second category, feature analysis, represents papers that extract
and model both technical and non-technical information extracted
from app stores. The third category, release engineering, ana-
lyzes release data and how this data can be used to help guide
developers toward more e�ective release engineering. Fourth, re-
view analysis considers all papers that analyze user reviews to
extract information with the intention of using it to augment dif-
ferent parts of the mobile development process. App store analyses
have also been conducted in relation to security, and this cate-
gory describes papers that investigate how information from app
stores can aid in security and the identi�cation of malware, faults,
permissions, plagiarism, vulnerabilities, and privacy concerns on
app stores. The sixth category, store ecosystem, includes papers
analyzing the di�erences between app marketplaces. Last but not
least is size and e�ort prediction which describes approaches
that predict the e�ort or size of the functionalities. Recently there
has been work on integrating information from user reviews to
help aid in the testing process for mobile apps [44].



ICPC ’18, May 27–28, 2018, Gothenburg, Sweden K. Moran, C. Bernal Cardenas, M. Linares Vasquez et al.

3.2 App Security Analysis
Mobile markets perform internal validations of apps to minimize
the proliferation of malicious software and protect users privacy.
In addition to the measures taken by application marketplaces,
researchers have been actively engaged in using program analy-
sis techniques to design new approaches for detecting malicious
apps, analyzing security properties of applications, and assisting
developers in creating apps with strong security principles. Sadeghi
et al. [117] performed a systematic literature review resulting in
a taxonomy of research topics based on several complimentary
dimensions that include the positioning of proposed approaches
(e.g., what problems are they trying to solve?), the characteristics
of the approach (e.g., how do they solve the purported problem?),
and �nally the assessment of the approach (e.g., How was it evalu-
ated). While we will refer readers to the full survey for more details,
we examine the positioning of the examined papers here to pro-
vide an overview of the active research topics. The authors found
the three main analysis objectives dominated the examined re-
search, including malware detection, vulnerability detection,
and gray-ware detection. Of these analysis objectives the exam-
ined papers targeted threemajor types of security threats, spoo�ng,
elevation of privilege, and information disclosure. These ap-
proaches used a variety of underlying program analysis techniques
utilizing both static and dynamic information.

3.3 Mobile Testing
Quality assurance is an important metric to be maintained in soft-
ware development. This attribute is particularly important for mo-
bile applications that will compete on �ercely competitive app
marketplaces. Performing e�ective testing is one of the best ways
to ensure the quality of software produced and this topic has seen
great interest from the software engineering research community.
The largest area of work is focused on automated test input gen-
eration for mobile apps, and research in this area can be generally
grouped into three categories [31]. The �rst category is, random-
based input generation that randomly selects input events from a
set of potential candidates[5, 10, 85, 119, 129]. These random-based
techniques may rely on a purely random event selection or gen-
eration function, or may bias the random selection based on the
history of events with the aim of more e�ectively exploring an app
under test. The next type of approach, systematic-based input
generation, follows a structured or well de�ned strategy for gener-
ating input events based upon a pre-de�ned heuristic for interacting
with observable GUI-elements in an application. [19, 20, 23, 45, 97].
Finally,model-based input generation strategies create a model-
based representation of a an application, which is then used to
generate input events with one according to one of several goals
such as uncovering crashes or covering the maximum number of
program statements [19, 23, 30, 50, 81, 88, 89, 128, 130].

In addition to these strategies, there has also been work done on
record and replay tools that allow developers to easily record GUI-
level testing scenarios and replay them later as a form of regression
testing [41, 43, 52, 93]. Evaluating the e�cacy of an automated
test input generation technique can be challenging, as the practical
utility of test adequacy criteria such as method or statement-level
code coverage have come under scrutiny by the software testing

research community. One potential alternative to these more tradi-
tional adequacy criteria is known asmutation analysis. This process
purposefully injects faults into a software project and measures a
test suite’s ability to detect these faults. However, for such a pro-
cess to be e�ective, the fault injection techniques must seed faults
representative of real errors that are likely to occur for a given
software domain. Thus, recent work has attempted to contextualize
mutation testing for mobile apps, focusing on both functional and
non-functional software quality attributes [35, 36, 76, 98].

3.4 Building E�ective User Interfaces
Creating e�ective UIs for mobile applications is a long and often
tedious process that begins with UI mock-ups created by designers
which are then given to development team to transfer these mock-
ups into code that can be interpreted by mobile platforms [94].
However, translating a mock-up of user interface into code can be
a di�cult undertaking. Because developers can introduce errors
when implementing the intended design of a mobile UI, there is
a need for validation approaches to ensure the proper quality of
mobile GUIs, and recent research has helped to enable such ap-
proaches. Joorabchi et al. [59] presented an approach that validates
the consistency between apps that are multi-platform, whereas
Moran et al. [94] focus on automatically reporting instances where
the implementation of an Android GUI violates it’s intended design
speci�cations in an industrial context. Similarly, Fazzini et al. [42]
conducted work that focuses on GUI validation in the context of
comparing the behavior of the same app across platforms.

In addition to these approaches, there is a growing body of work
that aims to automate the process of implementing a GUI from a
mock-up outright, as any automation that can be introduced into
the process can dramatically increase the e�ciency of the overall
mobile development process. REMAUI [104] is a tool that aims
at reverse engineering mobile interfaces by leveraging computer
vision techniques. However, this only supports the generation for
two types of UI components (text and images). Beltramelli et al. [26]
proposed and approach based on an encoder/decoder model for
translating images into a Domain Speci�c Language (DSL) which
can then be converted into code. However, this approach was only
tested on a small set of synthetic apps, and has yet to be proven on
real applications. ReDraw [92], aims to overcome the limitations
of both pix2code and REMAUI, by mining GUI-related informa-
tion from app stores and using machine learning approaches to
help build a realistic GUI-hierarchy which can be automatically
translated into code.

3.5 Static Program Analysis for Mobile Apps
Li et al. [71] conducted a systematic literature review taxonomiz-
ing work done on static analysis for Android applications. This
review found that the most popular aims of static analysis tools
for Android were: (i) data leak detection, (ii) vulnerability de-
tection, (iii), permission analysis, (iv) energy analysis, and (v)
clone detection. Moreover, the Smali and Jimple intermediate rep-
resentations were the most widely used program representations.
Regarding the analysis methods used by these techniques, there
have been approaches that use abstract interpretation, taint analy-
sis, symbolic execution, program slicing, code instrumentation, and



Overcoming Language Dichotomies: Toward E�ective Program
Comprehension for Mobile App Development ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

type/model checking. Several of these approaches target Android
speci�c program constructs including the component lifecycle, UI
callbacks, entry points, inter-component communication, inter-app
communication, and XML layout.

3.6 Energy & Performance Analysis
Nearly all mobile devices operate in a resource constrained context
and draw power from a battery. Thus, the non-functional attributes
of mobile software, such as performance and energy e�ciency,
have been a popular topic of study among researchers. This body
of work is comprised of empirical studies that study these topics
in depth and approaches for improving non-functional aspects of
mobile apps during the development process. This work can gener-
ally be classi�ed into the following categories: (i) estimation and
prediction of energy consumption [32, 37, 105, 115] (ii) energy
consumption of GUIs [18, 39, 40, 70, 75, 82, 121, 123] (iii) energy
bugs and hot spots [47, 66–69, 74, 83, 109–112, 127] (iv) energy
consumption considering other factors such as memory, obfus-
cation, CPU usage among others [53, 116, 118].

Other approaches have focused on measuring the performance
on mobile apps. For instances, Linares-Vásquez et al. [80] surveyed
developers to determine best practices and tools that could be used
to avoid performance bottlenecks. Similarly, Lin et al. [72] imple-
mented a tool to refactor AsynTask to avoid memory leaks and
reduce energy consumption. Moreover, Linares-Vásquez et al. [17]
studied micro-optimizations opportunities, reductions on mem-
ory and CPU performance, and developers’ practices on micro-
optimizations on Android.

3.7 Mobile Fragmentation
As overviewed earlier (Section 2) fragmentation is a well known
problem by developers of mobile applications. Han et al. [49] give an
excellent overview on a topic-model based analysis evidencing the
lack of portability and fragmentation considering multiple vendors.
Moreover, McDonnell et al. [91] analyzed change prone Android
APIs and examined how quickly these changes are adopted in apps.
The results of this study demonstrated slow adoption in several
cases. Other approaches have focused on providing strategies to
prioritize the devices upon which a developer should focus app test-
ing [60, 84]. In contrast to these approaches, Wei et al. [125] focused
their attention on detecting and understanding compatibility issues
at code level. Finally, Linares-Vásquez et al. [73] and Bavota et al.
[24] analyzed the impact of rapid changes in the Android platform
to application ratings on Google Play.

4 CHALLENGES IN PROGRAM
COMPREHENSION FOR MOBILE APPS

There is no doubt that signi�cant progress on understanding and im-
proving the mobile development process has been made due to the
large and growing body of research from the software engineering
community. However, there still exist sizable challenges that must
be properly investigated and solved in future work [99]. As stated
at the outset of this paper, many of these open challenges share a
common trait; they arise due to various language dichotomies that
developers must reason about in order to build, test, and maintain
successful apps. More speci�cally, a language dichotomy can be

de�ned as a di�culty in program comprehension resulting from rea-
soning about di�erent representations or modalities of information
that describe a program. In the domain of mobile applications there
are several language dichotomies that contribute to a varied set of
problems. In this section we will examine the problems resulting
from dichotomies involving four major modalities of information:

(1) Natural Language: This modality represents languages
that humans typically use to convey ideas or information to
one another, such as English.

(2) Code: This modality represents the languages that humans
utilize to construct a program, such as Java or Swift.

(3) Graphical User Interfaces (GUIs): Much of today’s user
facing software is graphical, and mobile apps are no excep-
tion. This information modality is highly visual, consisting
of pixel-based representations of a program typically com-
prised of a logical set of building blocks often referred to as
GUI-widgets or GUI-components.

(4) Dynamic Program Event Sequences: As a mobile applica-
tion is executed, the series of inputs, events, and program
responses to these events represents a rich modality of in-
formation that describes program behavior.

Each of the representations described above have their own
powerful uses, often serving to facilitate program abstractions. For
example, a GUI is an extremely powerful abstraction of program
code that allows for seamless interaction and use of features. How-
ever, for a developer, it is often critical to e�ectively understand and
navigate how information represented in one modality translates
to another. This is, at its core, a program comprehension task. For
instance, a developer must reason about how di�erent parts of the
GUI correspond to di�erent sections of code in a mobile app. How-
ever, bridging this gap between representations can be an arduous
task, and thus underlies many open problems in mobile software
development.

In this section we overview �ve language dichotomies consisting
of the information modalities listed above and the mobile develop-
ment problems that stem from them. Note that this is not meant
to be an exhaustive list of language dichotomies or problems, but
rather a curated list based upon our research observations of the
past several years. We encourage readers to seek out and de�ne
new problems which we may not have discussed in detail.

4.1 Natural Language vs. Code
Perhaps one of the most well-known language dichotomies for de-
velopers is that between natural language and code. This dichotomy
often surfaces when software requirements or speci�cations are
stipulated in natural language before being implemented in code. In
this instance, developers must bridge this language gap and reason
about the code-based representation of the information encoded
into the natural language. In the context of mobile development,
reasoning about this dichotomy is exacerbated. This is not due
to the size or relative complexity of mobile apps, but instead to
their event driven nature and varying contextual states. Tracing
features to code constructs in a mobile app can be di�cult due to
the disconnect between event-handlers, platform APIs, functional
code, context (e.g., network and sensor data) and connection to the



ICPC ’18, May 27–28, 2018, Gothenburg, Sweden K. Moran, C. Bernal Cardenas, M. Linares Vasquez et al.

GUI-code. Thus, implementing and reasoning about features repre-
sented in natural language can quickly become an intensive task. In
our experience, this dichotomy has contributed to two important
open problems in mobile app development.

4.1.1 Feature Location and Traceability. Feature Location has
been de�ned as “the activity of identifying an initial location in the
source code that implements functionality in a software system" [38].
Feature location is an important program comprehension task in
software development and maintenance, as it is one of the most
frequent developer activities. A wealth of research has been con-
ducted related to feature location techniques, however, few of these
techniques have been contextualized and applied to the domain of
mobile applications. The most closely related work on feature loca-
tion for mobile apps stems from work conducted by Palomba et al.
that recommends and localizes code changes based on information
from user reviews [108]. However, little work has been conducted
that attempts to link requirements or features, stipulated in natural
language, to code-related program constructs for the purpose of
supporting developer comprehension.

Feature Location is particularly relevant in the context of mo-
bile software due to constant pressure for developers for frequent
releases to keep up with the rapid evolution of mobile platforms
and hardware [24, 51, 57, 73]. Because developers are changing the
source code often, they will have to continually locate and under-
stand features in the source code. Due to the event driven nature
of mobile apps, developers need adequate support for this intellec-
tually intensive task. Such support for developers has the potential
to greatly increase productivity and improve the e�ciency and
e�ectiveness of the software maintenance and evolution processes.

Software traceability generally describes the process of establish-
ing relationships between software requirements and code. While
there has been a large body of work devoted to enabling e�ec-
tive software traceability, few of these techniques have speci�cally
targeted the domain of mobile applications. Traceability is impor-
tant during the mobile development process for developers to en-
sure that requirements are properly implemented and tested in the
source code. However, mobile apps present a set of unique chal-
lenges for traditional software traceability approaches. For instance,
mobile applications have access to sensitive user information that
can be collected from a diverse set of sensors such as location,
or user audio. Most popular mobile platforms, including iOS and
Android, implement a permission system that allows a user to
grant access potentially sensitive user information or hardware
sensors. Given the importance of these permission systems in user
privacy, they must be e�ectively taken into account by traceability
approaches, and security and privacy related requirements should
consider the permissions systems and other security measures im-
plemented in code. This requires reasoning between natural lan-
guage descriptions of permissions and security principles while
linking this information to relevant areas of code. Another unique
attribute of mobile applications that must be taken into consider-
ation is the heavily used set of platform APIs used to implement
large amounts of the app functionality. Traceability approaches
must be cognizant of the natural language documentation and API
code to establish accurate trace links.

4.1.2 Bug and Error Reporting. Bug and Error reporting is an
important activity for any type of software system, and techniques
for bug triaging [22, 54, 62, 63, 78, 101, 120], duplicate report detec-
tion [46, 48, 58, 103, 124, 131], summarization [27, 34, 64, 87, 113,
126], and reporting of in-�eld failures [25, 28, 33, 55, 56, 61, 132]
have been devised to help improve this process. In the domain of
mobile apps, the primary mechanism by which feedback and bug
reports are communicated to developers is through user reviews on
app stores. These user reviews have been shown to be incredibly
noisy [29] and a large body of work has been dedicated to extract-
ing e�ective information from these reviews and operationalizing
it to help aid in software development and testing tasks. While this
research has proven to be valuable, little work has been conducted
to help improve the relatively rudimentary mechanisms employed
by App Stores to provide feedback.

At its core, the process of bug reporting and resolution requires
bridging a knowledge gap between high-level program features
(often described in natural language) and program information
represented in code. Our past work on the F����� bug reporting
system [95, 96] aims to help bridge this gap by improving the un-
derlying mechanism by which users report bugs. Furthermore, our
work on C����S���� has helped to automate the bug reporting
process outright for program crashes. While this work showed
that automating and reinventing the the bug reporting process has
great promise, much more work needs to be done in bridging the
language dichotomy that exists in bug reports. This is particularly
important for mobile apps, as their event driven nature and varying
contextual states can contribute to bug reproduction scenarios that
are di�cult to stipulate in natural language, and thus may need
more advanced reporting mechanisms.

4.2 Code vs. Graphical User Interfaces
As with most modern user-facing software, mobile applications
are heavily centered around their graphical user interfaces (GUIs).
While GUIs may not be considered a traditional language or modal-
ity in which program information is encoded, they contain a wealth
of practical data that can be used to help reason about software
properties. GUI information is intrinsically linked with an appli-
cations’ higher level functional and non-functional features. Fur-
thermore, the GUI speci�cations are typically stipulated in source
code (e.g., the /res/layout/ folder of Android apps) and thus
is inherently linked to code constructs. While mappings between
program features and code exist, the ambiguities that exist between
these representations can often be di�cult to overcome. In mod-
ern mobile development, GUIs must be dynamic and reactive to
adapt to an increasing number of hardware con�gurations and
screen technologies. However, this means that GUIs are often ad-
justed dynamically at runtime, decoupling runtime GUIs from code
speci�cations. Furthermore, most modern mobile apps also rely
upon network connectivity features to pull information from the
internet, and thus a majority of the content displayed by a mobile
app’s GUI is dynamic and directly stipulated in code. These are just
two examples of existing ambiguities that complicate the language
dichotomy between GUIs and code. GUI-related information is of-
ten underutilized in research related to solving practical program
comprehension problems, and we highlight two instances of open



Overcoming Language Dichotomies: Toward E�ective Program
Comprehension for Mobile App Development ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

challenges in mobile apps that could be mitigated by working to
close the abstraction gap between code and user interfaces.

4.2.1 Visualizing the A�ects of Code Changes on the GUI. Due to
the GUI-centric nature of mobile apps, developers must constantly
reason about how their code a�ects and is connected to the GUI.
However, this process can be incredibly tedious, as developers must
switch contexts between code, visual representations, and markup-
like code that stipulates the visual properties of the user interface.
Currently, IDEs for the two most popular platforms provide support
within the IDE for building GUIs and visualizing the layout of an
application during development [4, 16]. However, such features are
typically limited to illustrating the properties of the GUI-related
code only (e.g., xml markup �les in Android), or to event handlers
(e.g., XCode). Developers need further support for visualizing how
logical code is linked to di�erent parts of the GUI during the mobile
application development process.

4.2.2 Ensuring the Proper Implementation of GUIs from Design
Specifications. The UI/UX design for mobile applications is becom-
ing increasingly important in competitive app marketplaces. As
many applications target similar core functionality (e.g., weather
apps, task managers) they must di�erentiate themselves with attrac-
tive user interfaces and intuitive user experiences. As such, many
companies employ a dedicated team of designers with domain ex-
pertise in creating visually striking and easy to use GUIs. Even
independent developers not part of a large corporation will often
create user interface mockups to prove out design ideas and test UI
concepts before committing to implementing them. In both cases,
these professionals will often use design software such as Sketch
[13] or Photoshop [2], generally due to the �exibility o�ered by
these tools. Once these mock-ups have been created, they must be
implemented in code by developers, a process that has been shown
to be time consuming and error-prone [65, 94, 100, 102, 122].

Developers and designers need support throughout this process
in order to enable e�ective prototyping of mobile application user
interfaces, which involves bridging an abstraction gap between
graphical and code-based representations of a program. Initial
work on this problem has been done from two viewpoints: (i) auto-
matically reporting instances where an implementation of a GUI
does not match its intended design speci�cations [42, 86, 94], and
(ii) automating the process of prototyping a GUI from a mock-up
[26, 92, 104]. However, there are still several problems to be solved
to aid in facilitating and automating the process of implementing
a GUI, and the underlying app functionality, from a mock-up or
series of mock-ups. For instance, little work has been conducted in
automatically implementing transitions between related screens, or
generating code related to the underlying functionality of di�erent
GUI-components.

4.2.3 Augmented Reality. Smartphones have evolved to become
incredibly capable devices, with computational prowess that is be-
ginning to rival more traditional laptop computers. This combined
with the rapid advancement of many sensors, most notably cam-
eras, has ushered in new use cases that take unique advantage of
increasingly capable hardware. Perhaps the most notable of these
new use cases is commonly referred to as Augmented Reality (AR).
AR applications typically aim to enhance or “augment" a users

physical world by simulating projections of useful information or
graphics into the real world using a camera and a display. This can
facilitate, for example, digital projections of furniture onto a video
stream of a users home or apartment using a smartphone camera
and display. Apple and Google have both recently supported this
technology with the release of ArKit for iOS [8] and ARCore for
Android [7]. While this new category of applications brings with it
exciting new use cases, the development challenges of such types of
applications have yet to be explored thoroughly. Surely applications
implementing such unique features will o�er unique challenges
from the point of view of user interface design and testing, however,
researchers need to better understand such challenges and develop
techniques and tools to help facilitate the creation of AR apps.

4.3 Natural Language vs. Graphical User
Interfaces

While GUIs are inherently interconnected with code, they also
form dichotomy with natural language. Since much of an app’s
functionality is associated with the actions a user can perform on
the GUI, there is clear link between natural language describing
app features and GUI-based representations of an app. Bridging
this gap is a necessary task for developers, and there has been little
work to help facilitate this process.

4.3.1 Use Case-Based Testing. One area that could greatly ben-
e�t from bridging the abstraction gap between natural language
and GUIs is automated testing. Due to the centrality of the GUI in
exposing most program functionality for mobile apps, testing is
typically conducted at the GUI level. However, mobile developers
have speci�c testing needs, and while automated approaches for
�nding crashes exhibit some utility, many mobile developers prefer
to organize their tests around use-cases [77]. However, automating
test case generation around use cases can be di�cult, even if the
use-cases are stipulated in natural language. This di�culty stems
from the fact that the test generation approach must e�ectively
navigate the language dichotomy between features and use cases
stipulated in natural language, and information displayed by an
application’s GUI to generate a sensible sequence of test input
events. In the absence of existing natural language use cases, an
automated approach would have to infer, online, the use cases of
the app in natural language so that they could be documented and
e�ectively understood by a developer. Initial work on modeling app
events have been conducted through the M�����L�� project [81],
however, such work needs to be taken further in order to enable
practical use-case based testing for developers.

4.3.2 Protecting User Privacy in Mobile Apps. In the last few
years, privacy become an even more critical component of the soft-
ware development process as users store more sensitive information
in digital spaces than ever before. Mobile developers also need to
be continuously aware of the security implications of the software
they create, as the capabilities of mobile phones can enable the
collection of intimate, sensitive user data such as user location and
audio/visual recordings. A large component of the security and
privacy of mobile apps involves informing users how their data is
being utilized by software. However, in practice this can be di�cult



ICPC ’18, May 27–28, 2018, Gothenburg, Sweden K. Moran, C. Bernal Cardenas, M. Linares Vasquez et al.

or cumbersome for developers to implement, as it involves reason-
ing between natural language descriptions of privacy information
and e�ective incorporation into the GUI. Further work needs to be
conducted to better support and automate the process of informing
the user about the use of security or privacy related features of
mobile apps.

4.4 Event Sequences vs. Natural Language &
GUIs

Modeling the behavior of mobile applications has been a popular
topic related to automated testing approaches for mobile apps [81,
89]. Many of these approaches use event sequences traces to help
model application behavior and generate more useful testing se-
quences. However, the representative power of these models su�ers
due to language dichotomies that exist between the event traces
and code as well as between event traces and natural language. For
instance, relating event sequences to natural language descriptions
of features or bugs could help guide automated test generation
towards certain testing goals more e�ectively.

4.4.1 Cross Platform and Cross Device Testing. One well under-
stood problem in mobile development, and more speci�cally for
Android development, is that of device and platform fragmenta-
tion [49]. Due to the plethora of devices running various versions
of underlying platform software, developing an mobile application
that functions seamlessly across all of these platforms is a major
challenge for developers. One of the biggest challenges related to
the development process is testing an application across a large
combinatorial matrix of physical devices and hardware versions.
Ideally, developers could write a single test case and have this test
case e�ectively operate across multiple devices, platforms (e.g., iOS
and Android), and platform versions (e.g., iOS 10 vs. iOS 11). While
some existing work has been done toward enabling such testing
approaches [41], this remains an open problem and general pain
point for mobile development and testing. To help mitigate this
problem, event sequences need to be translated across applications
with varying di�erences automatically, which involves abstracting
or modeling the event sequences across di�ering GUIs, and perhaps
relating these changes to code di�erences as well.

4.4.2 Understanding the A�ect of So�ware Evolution on Use
Cases. Due to the highly iterative nature of underlying platform
APIs and hardware, mobile applications tend to evolve at a rapid
pace. However, timelines for app releases are tight and often devel-
opers do not have su�cient time or resources to properly document
all aspects of an application’s evolution. One such property of apps
that can di�cult to document are changes in the use cases, or
changes to the event sequences required for a user to carry out
existing use cases. Properly documenting these software develop-
ment artifacts carries implications for enabling e�ective testing,
traceability, and feature location. Thus, this topic deserves ample
attention from researchers.

5 FUTURE TRENDS IN PROGRAM
COMPREHENSION FOR MOBILE APPS

We expect future research in mobile software engineering to be
driven by need to deal with language dichotomies and the afore-
mentioned challenges. Thus, in this section we discuss likely future
trends in mobile software engineering research that share a com-
mon goal of helping to solve language dichotomies that contribute
to challenges in program comprehension.
Natural Language vs. Code: While app marketplaces continue to
be the preferred platform for app distribution, short release cycles
will continue to burden mobile developers as they consistently at-
tempt to appease the collective voice of users. Thus, the current and
future mechanisms for gathering user feedback must be oriented
to reduce the language gap between the changes that users request,
and the incorporation of these "change requests" into codebases
and tests. Automated linking of user reviews and bug reports to
source code is a �rst step partially achieved by current research
[106–108]; next steps should be devoted to enable automated gen-
eration, prioritization, and execution of test cases but triggered by
incoming user reviews and crashlytic data collected at run-time,
without human intervention [79].

However, the larger challenge here is related to understand-
ing user needs that are expressed in very short snippets of text
which may include very personal expressions, jargon, acronyms, or
domain-speci�c language. One potential solution here is to move
from text-based reviews/requests/reports to augmented representa-
tions that remove the ambiguities in natural language. Some poten-
tial options for such representations might include on-device data
collection, behavior-driven speci�cations, sketch-based reviews,
or video-based bug reporting. Another potential solution might
be to include advanced machine learning mechanisms that learn
from user reviews and are able to extract high level concepts and
relationships (e.g., by using deep learning) that can be automatically
translated into code or tests.

Another developer need that is closely aligned with shorter De-
vOps cycles in mobile apps is automated source code generation
assisted by high-level representations. The recent introduction of
software architecture components in Android [3] makes it easier
to create applications that are designed to follow well established
patterns (Views, Controllers, ViewModels, DAOs, entities, etc); in
the case of iOS, the usage of the MVC architectural pattern is well
established. New techniques for automated code generation could
leverage these architectural design patterns, in combination with
models of code and natural language mined from software reposito-
ries to enable practical code generation. Another challenge here is
to automatically handle API breaking changes that can be di�cult
for developers to identify due to the continuous releases of new
API versions (as in the case of Android), and also because current
mechanisms for reporting changes in the APIs are detached from
the app development process. Future work should examine better
methodologies for incorporating information about API changes
into the development work�ow.

In summary, enabling automated generation of source code that
follows the architectural patterns proposed by each platform, and
that is up-to-date with the latest API versions will be an important
trend in coming years. Having such approaches/tools will help



Overcoming Language Dichotomies: Toward E�ective Program
Comprehension for Mobile App Development ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

developers to be more focused on designing mobile apps with better
UX/UI and less prone to issues imposed by the fragmentation.
GUIs vs. Code and Natural Language: Designing for a multi-
device experience (sequential and complementary) is becoming
more common today as users demand more intricate integration
of mobile apps/devices with di�erent devices/appliances available
across a range of di�erent contexts (o�ce, home, public transporta-
tion, etc.). For example, users may utilize an application across
a smartphone, tablet, wearable device, and digital voice assistant.
Enabling such multi-device experiences by default necessitates
cross-platform applications. Current approaches for multi-device
or multi-platform mobile app development and testing still leave
much to be desired from a developers point of view, as nearly all
current approaches come with undesirable trade-o�s. For example,
UI performance issues related to hybrid applications. However, this
phenomenon represents a ripe research opportunity, in particular
for dealing with language dichotomies between functional code,
GUI-code, and pixel-based representations of GUIs. Developers des-
perately needmodels and frameworks that are able to express the in-
teraction of apps across multiple-devices and multiple-platforms in
such a manner that allows for designing-once-running-everywhere
and designing-once-testing-everywhere. Research should focus on
converging upon such a solution, as this would help mitigate several
key challenges in program comprehension for mobile apps.
Event Traces vs. Code andNatural Language:Asmulti-platform
and multi-device apps become a more necessary part of mobile
development, it is important that event-sequences are properly
modeled across di�erent contexts. This means that mobile devel-
opers and testers need a method of abstracting the individualized
event-sequences that exist for a given platform or device, to a more
general representation, linked to natural language descriptions, that
are portable between devices and platforms. This would allow for a
uni�ed understanding of high-level functional use cases across apps
expressed in natural language, while having positive implications
for test case generation and maintenance. Researchers should exam-
ine new methods of modeling such relationships to help make such
a uni�ed representation of application events sequences a reality.
One potentially promising modeling technique might come by the
way of emerging deep learning algorithms for machine translation.
All Dichotomies: Finally, we see the On-Demand Developer Docu-
mentation (OD3) paradigm [114] as a vision supporting the goal of
reducing the gaps in language dichotomies. OD3 systems could be
used to generate documentation able to serve as the linking points
between language GUI, code, and event sequences. Therefore, we
support the OD3 vision, and encourage mobile software engineer-
ing researchers to propose systems that are aligned with goals set
forth in OD3 and tailored to mobile development challenges.

6 CONCLUSION
In this paper, we introduced the idea of a language dichotomy as
an abstraction gap between contrasting information modalities
in software that contribute to challenges in program comprehen-
sion. We then provided a brief summary of the unique aspects of
the mobile development process, as well as the research that has
been conducted to help understand issues and improve the pro-
cess as a whole. Using the notion of a language dichotomy as a

guide, we examined several open challenges related to program
comprehension during the development of mobile apps. Finally,
we reviewed a potential research agenda aimed at overcoming the
fundamental language dichotomies that contribute to a wide range
of challenges in program comprehension for mobile apps, with the
hope that researchers will use this as starting point for working
towards bridging the gap between di�erent information modalities
of mobile software.

ACKNOWLEDGMENTS
This work is supported in part by the NSF CCF-1218129, NSF CCF-
1253837, and NSF CCF-1525902 grants. Any opinions, �ndings, and
conclusions expressed herein are the authors’ and do not necessarily
re�ect those of the sponsors.

REFERENCES
[1] 2018 stack over�ow developer survey https://insights.stackover�ow.com/

survey/2018/.
[2] Adobe Photoshop http://www.photoshop.com.
[3] Android architecture components https://developer.android.com/topic/libraries/

architecture/index.html.
[4] Android studio layout editor https://developer.android.com/studio/write/

layout-editor.html.
[5] Android UI/Application Exerciser Monkey

http://developer.android.com/tools/help/monkey.html.
[6] Apple App Store https://www.apple.com/ios/app-store/.
[7] Arcore https://developers.google.com/ar/discover/.
[8] Arkit https://developer.apple.com/arkit/.
[9] Google Play Store https://play.google.com/store?hl=en.
[10] Intent Fuzzer https://www.isecpartners.com/tools/mobile-security/intent-

fuzzer.aspx.
[11] ionic framework https://ionicframework.com/.
[12] React native https://facebook.github.io/react-native/.
[13] The Sketch Design Tool https://www.sketchapp.com.
[14] Statista -MobileMarket Share https://www.statista.com/statistics/266136/global-

market-share-held-by-smartphone-operating-systems/.
[15] Xamarin Test Cloud https://www.xamarin.com.
[16] Xcode interface builder https://developer.apple.com/xcode/interface-builder/.
[17] How developers micro-optimize android apps. J. Syst. Softw., 130(C):1–23, Aug.

2017.
[18] T. Agolli, L. Pollock, and J. Clause. Investigating decreasing energy usage in

mobile apps via indistinguishable color changes. In 2017 IEEE/ACM 4th Interna-
tional Conference on Mobile Software Engineering and Systems, MobileSoft’17,
pages 30–34, May 2017.

[19] D. Amal�tano, A. R. Fasolino, P. Tramontana, S. De Carmine, and A. M. Memon.
Using GUI Ripping for Automated Testing of Android Applications. In Pro-
ceedings of the 27th IEEE/ACM International Conference on Automated Software
Engineering, ASE’12, pages 258–261, Essen, Germany, 2012. ACM.

[20] S. Anand, M. Naik, M. J. Harrold, and H. Yang. Automated Concolic Testing
of Smartphone Apps. In Proceedings of the ACM SIGSOFT 20th International
Symposium on the Foundations of Software Engineering, FSE ’12, pages 59:1–59:11,
Cary, North Carolina, 2012. ACM.

[21] Apple. App Store - Support. https://developer.apple.com/support/app-store/.
[22] J. Aranda and G. Venolia. The secret life of bugs: Going past the errors and

omissions in software repositories. In 31st International Conference on Software
Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada, Proceedings, pages
298–308, 2009.

[23] T. Azim and I. Neamtiu. Targeted and Depth-�rst Exploration for Systematic
Testing of Android Apps. In Proceedings of the 2013 ACM SIGPLAN Interna-
tional Conference on Object Oriented Programming Systems Languages &#38;
Applications, OOPSLA ’13, pages 641–660, Indianapolis, Indiana, USA, 2013.
ACM.

[24] G. Bavota, M. Linares-Vásquez, C. Bernal-Cárdenas, M. Di Penta, R. Oliveto,
and D. Poshyvanyk. The Impact of API Change- and Fault-Proneness on the
User Ratings of Android Apps. Software Engineering, IEEE Transactions on,
41(4):384–407, Apr. 2015.

[25] J. Bell, N. Sarda, and G. Kaiser. Chronicler: Lightweight Recording to Reproduce
Field Failures. In Proceedings of the 2013 International Conference on Software
Engineering, ICSE’13, pages 362–371, San Francisco, CA, USA, 2013. IEEE Press.

[26] T. Beltramelli. Pix2code: Generating Code from a Graphical User Interface
Screenshot. CoRR, abs/1705.07962, 2017.



ICPC ’18, May 27–28, 2018, Gothenburg, Sweden K. Moran, C. Bernal Cardenas, M. Linares Vasquez et al.

[27] N. Bettenburg, R. Premraj, T. Zimmermann, and S. Kim. Extracting Structural
Information from Bug Reports. In Proceedings of the 2008 International Working
Conference on Mining Software Repositories, MSR ’08, pages 27–30, Leipzig,
Germany, 2008. ACM.

[28] Y. Cao, H. Zhang, and S. Ding. SymCrash: Selective Recording for Reproducing
Crashes. In Proceedings of the 29th ACM/IEEE International Conference on Auto-
mated Software Engineering, ASE ’14, pages 791–802, Vasteras, Sweden, 2014.
ACM.

[29] N. Chen, J. Lin, S. C. H. Hoi, X. Xiao, and B. Zhang. AR-miner: Mining Informa-
tive Reviews for Developers from Mobile App Marketplace. In Proceedings of the
36th International Conference on Software Engineering, ICSE’14, pages 767–778,
Hyderabad, India, 2014. ACM.

[30] W. Choi, G. Necula, and K. Sen. Guided GUI Testing of Android Apps with
Minimal Restart and Approximate Learning. In Proceedings of the 2013 ACM
SIGPLAN International Conference on Object Oriented Programming Systems
Languages &#38; Applications, OOPSLA ’13, pages 623–640, Indianapolis, Indiana,
USA, 2013. ACM.

[31] S. R. Choudhary, A. Gorla, and A. Orso. Automated Test Input Generation for
Android: Are We There Yet? (E). In 2015 30th IEEE/ACM International Conference
on Automated Software Engineering (ASE), ASE’15, pages 429–440, Nov. 2015.
ISSN:.

[32] S. A. Chowdhury and A. Hindle. Characterizing Energy-aware Software Projects:
Are They Di�erent? In Proceedings of the 13th International Conference on Mining
Software Repositories, MSR ’16, pages 508–511, Austin, Texas, 2016. ACM.

[33] J. Clause and A. Orso. A Technique for Enabling and Supporting Debugging of
Field Failures. In Proceedings of the 29th International Conference on Software En-
gineering, ICSE ’07, pages 261–270, Washington, DC, USA, 2007. IEEE Computer
Society.

[34] K. Czarnecki, Z. Malik, and R. Lotufo. Modelling the &#8216;Hurried&#8217;
Bug Report Reading Process to Summarize Bug Reports. In Proceedings of the
2012 IEEE International Conference on Software Maintenance (ICSM), ICSM ’12,
pages 430–439, Washington, DC, USA, 2012. IEEE Computer Society.

[35] L. Deng, N. Mirzaei, P. Ammann, and J. O�utt. Towards mutation analysis of
Android apps. In ICSTW ’15, ICSTW ’15, pages 1–10, Apr. 2015.

[36] L. Deng, J. O�utt, P. Ammann, and N. Mirzaei. Mutation Operators for Testing
Android Apps. Inf. Softw. Technol., 81(C):154–168, Jan. 2017.

[37] D. Di Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and A. De Lucia.
PETrA: A software-based tool for estimating the energy pro�le of android
applications. In Proceedings of the 39th International Conference on Software
Engineering Companion, ICSE-C’17, pages 3–6, Piscataway, NJ, USA, 2017. IEEE
Press.

[38] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk. Feature location in source
code: a taxonomy and survey. Journal of Software: Evolution and Process, 25(1):53–
95.

[39] M. Dong and L. Zhong. Chameleon: A color-adaptive web browser for mobile
OLED displays. IEEE Transactions on Mobile Computing, 11(5):724–738, May
2012.

[40] M. Dong and L. Zhong. Power modeling and optimization for OLED displays.
IEEE Transaction on Mobile Computing, 11(9):September, 2012.

[41] M. Fazzini, E. N. D. A. Freitas, S. R. Choudhary, and A. Orso. Barista: A Technique
for Recording, Encoding, and Running Platform Independent Android Tests. In
2017 IEEE International Conference on Software Testing, Veri�cation and Validation
(ICST), ICST’17, pages 149–160, Mar. 2017. ISSN:.

[42] M. Fazzini and A. Orso. Automated cross-platform inconsistency detection for
mobile apps. In 2017 32nd IEEE/ACM International Conference on Automated
Software Engineering (ASE), ASE’17, pages 308–318, Oct. 2017. ISSN:.

[43] L. Gomez, I. Neamtiu, T. Azim, and T. Millstein. RERAN: Timing- and Touch-
sensitive Record and Replay for Android. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE’13, pages 72–81, San Francisco, CA,
USA, 2013. IEEE Press.

[44] G. Grano, A. Ciurumelea, S. Panichella, S. Palomba, and H. Gall. Exploring
the integration of user feedback in automated testing of android applications.
In Proceedings of the 25th IEEE International Conference on Software Analysis,
Evolution and Reengineering, SANER ’18, 2018.

[45] T. Gu, C. Cao, T. Liu, C. Sun, J. Deng, X. Ma, and J. Lü. AimDroid: Activity-
Insulated Multi-level Automated Testing for Android Applications. In 2017
IEEE International Conference on Software Maintenance and Evolution (ICSME),
ICSME’17, pages 103–114, Sept. 2017. ISSN:.

[46] Z. Gu, E. Barr, D. Hamilton, and Z. Su. Has the bug really been �xed? In Software
Engineering, 2010 ACM/IEEE 32nd International Conference On, volume 1 of
ICSE’10, pages 55–64, May 2010.

[47] J. Gui, S. Mcilroy, M. Nagappan, and W. G. J. Halfond. Truth in Advertising: The
Hidden Cost of Mobile Ads for Software Developers. In Proceedings of the 37th
International Conference on Software Engineering - Volume 1, ICSE ’15, pages
100–110, Florence, Italy, 2015. IEEE Press.

[48] P. J. Guo, T. Zimmermann, N. Nagappan, and B. Murphy. Characterizing and
Predicting Which Bugs Get Fixed: An Empirical Study of Microsoft Windows.

In Proceedings of the 32Nd ACM/IEEE International Conference on Software En-
gineering - Volume 1, ICSE ’10, pages 495–504, Cape Town, South Africa, 2010.
ACM.

[49] D. Han, C. Zhang, X. Fan, A. Hindle, K. Wong, and E. Stroulia. Understanding
android fragmentationwith topic analysis of vendor-speci�c bugs. In Proceedings
of the 2012 19th Working Conference on Reverse Engineering, WCRE ’12, pages
83–92, Washington, DC, USA, 2012. IEEE Computer Society.

[50] S. Hao, B. Liu, S. Nath, W. G. Halfond, and R. Govindan. PUMA: Programmable
UI-automation for Large-scale Dynamic Analysis of Mobile Apps. In Proceedings
of the 12th Annual International Conference on Mobile Systems, Applications, and
Services, MobiSys ’14, pages 204–217, Bretton Woods, New Hampshire, USA,
2014. ACM.

[51] G. Hu, X. Yuan, Y. Tang, and J. Yang. E�ciently, E�ectively Detecting Mobile
App Bugs with AppDoctor. In Proceedings of the Ninth European Conference on
Computer Systems, EuroSys ’14, pages 18:1–18:15, Amsterdam, The Netherlands,
2014. ACM.

[52] Y. Hu, T. Azim, and I. Neamtiu. Versatile Yet Lightweight Record-and-replay for
Android. In OOPSLA’15, OOPSLA 2015, pages 349–366, Pittsburgh, PA, USA,
2015. ACM.

[53] R. Jabbarvand, A. Sadeghi, J. Garcia, S. Malek, and P. Ammann. Ecodroid: An
approach for energy-based ranking of android apps. In Proceedings of the Fourth
International Workshop on Green and Sustainable Software, GREENS ’15, pages
8–14, Piscataway, NJ, USA, 2015. IEEE Press.

[54] G. Jeong, S. Kim, and T. Zimmermann. Improving Bug Triage with Bug Tossing
Graphs. In Proceedings of the the 7th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The Foundations
of Software Engineering, ESEC/FSE ’09, pages 111–120, Amsterdam, The Nether-
lands, 2009. ACM.

[55] W. Jin and A. Orso. BugRedux: Reproducing Field Failures for In-house Debug-
ging. In Proceedings of the 34th International Conference on Software Engineering,
ICSE ’12, pages 474–484, Zurich, Switzerland, 2012. IEEE Press.

[56] W. Jin and A. Orso. F3: Fault Localization for Field Failures. In Proceedings of
the 2013 International Symposium on Software Testing and Analysis, ISSTA’13,
pages 213–223, Lugano, Switzerland, 2013. ACM.

[57] N. Jones. Seven best practices for optimizing mobile testing e�orts. Technical
Report G00248240, Gartner.

[58] M. Joorabchi, M. Mirzaaghaei, and A. Mesbah. Works for Me! Characterizing
Non-reproducible Bug Reports. In Proceedings of the 11th Working Conference
on Mining Software Repositories, MSR’14, pages 62–71, Hyderabad, India, 2014.
ACM.

[59] M. E. Joorabchi, M. Ali, and A. Mesbah. Detecting inconsistencies in multi-
platform mobile apps. In 2015 IEEE 26th International Symposium on Software
Reliability Engineering (ISSRE), ISSRE’15, pages 450–460, Nov. 2015.

[60] H. Khalid, M. Nagappan, E. Shihab, and A. E. Hassan. Prioritizing the Devices
to Test Your App on: A Case Study of Android Game Apps. In Proceedings of
the 22Nd ACM SIGSOFT International Symposium on Foundations of Software
Engineering, FSE’14, pages 610–620, Hong Kong, China, 2014. ACM.

[61] F. M. Kifetew, W. Jin, R. Tiella, A. Orso, and P. Tonella. Reproducing Field
Failures for Programs with Complex Grammar-Based Input. In 2014 IEEE Seventh
International Conference on Software Testing, Veri�cation and Validation, ICST’14,
pages 163–172, Mar. 2014.

[62] D. Kim, Y. Tao, S. Kim, and A. Zeller. Where Should We Fix This Bug? A Two-
Phase Recommendation Model. Software Engineering, IEEE Transactions on,
39(11):1597–1610, Nov. 2013.

[63] S. Kim, T. Zimmermann, and N. Nagappan. Crash graphs: An aggregated view
of multiple crashes to improve crash triage. In Dependable Systems Networks
(DSN), 2011 IEEE/IFIP 41st International Conference On, DSN’11, pages 486–493,
June 2011.

[64] A. G. Koru and J. Tian. Defect Handling in Medium and Large Open Source
Projects. IEEE Softw., 21(4):54–61, July 2004.

[65] V. Lelli, A. Blouin, and B. Baudry. Classifying and Qualifying GUI Defects.
In 2015 IEEE 8th International Conference on Software Testing, Veri�cation and
Validation (ICST), ICST’15, pages 1–10, Apr. 2015.

[66] D. Li andW. G. J. Halfond. Optimizing energy of http requests in android applica-
tions. In Proceedings of the 3rd International Workshop on Software Development
Lifecycle for Mobile, DeMobile 2015, pages 25–28, 2015.

[67] D. Li, S. Hao, J. Gui, and W. G. J. Halfond. An Empirical Study of the Energy
Consumption of Android Applications. In 2014 IEEE International Conference on
Software Maintenance and Evolution, ICSME’14, pages 121–130, Sept. 2014.

[68] D. Li, S. Hao, W. G. J. Halfond, and R. Govindan. Calculating Source Line
Level Energy Information for Android Applications. In Proceedings of the 2013
International Symposium on Software Testing and Analysis, ISSTA’13, pages 78–89,
Lugano, Switzerland, 2013. ACM.

[69] D. Li, Y. Lyu, J. Gui, and W. G. J. Halfond. Automated Energy Optimization of
HTTP Requests for Mobile Applications. In Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16, pages 249–260, New York, NY,
USA, 2016. ACM.



Overcoming Language Dichotomies: Toward E�ective Program
Comprehension for Mobile App Development ICPC ’18, May 27–28, 2018, Gothenburg, Sweden

[70] D. Li, A. H. Tran, and W. G. J. Halfond. Making Web Applications More Energy
E�cient for OLED Smartphones. In Proceedings of the 36th International Confer-
ence on Software Engineering, ICSE’14, pages 527–538, Hyderabad, India, 2014.
ACM.

[71] L. Li, T. F. BissyandÃľ, M. Papadakis, S. Rasthofer, A. Bartel, D. Octeau, J. Klein,
and L. Traon. Static analysis of android apps: A systematic literature review.
Information and Software Technology, 88:67 – 95, 2017.

[72] Y. Lin, S. Okur, and D. Dig. Study and Refactoring of Android Asynchronous
Programming (T). In 2015 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), ASE’15, pages 224–235, Nov. 2015. ISSN:.

[73] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta, R. Oliveto,
and D. Poshyvanyk. API Change and Fault Proneness: A Threat to the Success
of Android Apps. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, FSE’13, pages 477–487, Saint Petersburg, Russia, 2013.
ACM.

[74] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, R. Oliveto, M. Di Penta, and
D. Poshyvanyk. Mining Energy-greedy API Usage Patterns in Android Apps:
An Empirical Study. In Proceedings of the 11th Working Conference on Mining
Software Repositories, MSR’14, pages 2–11, Hyderabad, India, 2014. ACM.

[75] M. Linares-Vásquez, G. Bavota, C. E. B. Cárdenas, R. Oliveto, M. Di Penta, and
D. Poshyvanyk. Optimizing Energy Consumption of GUIs in Android Apps:
A Multi-objective Approach. In Proceedings of the 2015 10th Joint Meeting on
Foundations of Software Engineering, FSE’15, pages 143–154, Bergamo, Italy,
2015. ACM.

[76] M. Linares-Vásquez, G. Bavota, M. Tufano, K. Moran, M. Di Penta, C. Vendome,
C. Bernal-Cárdenas, and D. Poshyvanyk. Enabling Mutation Testing for Android
Apps. In Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering, FSE’17, pages 233–244, Paderborn, Germany, 2017. ACM.

[77] M. Linares-Vásquez, C. Bernal-Cardenas, K. Moran, and D. Poshyvanyk. How
do Developers Test Android Applications? In 2017 IEEE International Conference
on Software Maintenance and Evolution (ICSME), ICSME’17, pages 613–622, Sept.
2017. ISSN:.

[78] M. Linares-Vásquez, K. Hossen, H. Dang, H. Kagdi, M. Gethers, and D. Poshy-
vanyk. Triaging incoming change requests: Bug or commit history, or code
authorship? In Software Maintenance (ICSM), 2012 28th IEEE International Con-
ference On, pages 451–460, Sept. 2012.

[79] M. Linares-Vásquez, K. Moran, and D. Poshyvanyk. Continuous, Evolutionary
and Large-Scale: A New Perspective for Automated Mobile App Testing. In 2017
IEEE International Conference on Software Maintenance and Evolution (ICSME),
ICSME’17, pages 399–410, Sept. 2017. ISSN:.

[80] M. Linares-Vásquez, C. Vendome, Q. Luo, and D. Poshyvanyk. How developers
detect and �x performance bottlenecks in Android apps. In 2015 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME), ICSME’15,
pages 352–361, Sept. 2015. ISSN:.

[81] M. Linares-Vásquez, M. White, C. Bernal-Cárdenas, K. Moran, and D. Poshy-
vanyk. Mining Android App Usages for Generating Actionable GUI-based
Execution Scenarios. In Proceedings of the 12th Working Conference on Mining
Software Repositories, MSR ’15, pages 111–122, Florence, Italy, 2015. IEEE Press.

[82] M. Linares-VÃąsquez, C. Bernal-CÃąrdenas, G. Bavota, R. Oliveto, M. D. Penta,
and D. Poshyvanyk. Gemma: Multi-objective optimization of energy consump-
tion of guis in android apps. In 2017 IEEE/ACM 39th International Conference on
Software Engineering Companion (ICSE-C), ICSE-C’17, 2017.

[83] Y. Liu, C. Xu, S. Cheung, and J. Lu. GreenDroid: Automated diagnosis of en-
ergy ine�ciency for smartphone applications. IEEE Transactions on Software
Engineering, Preprint, 2014.

[84] X. Lu, X. Liu, H. Li, T. Xie, Q. Mei, D. Hao, G. Huang, and F. Feng. PRADA:
Prioritizing Android Devices for Apps by Mining Large-scale Usage Data. In
Proceedings of the 38th International Conference on Software Engineering, ICSE
’16, pages 3–13, New York, NY, USA, 2016. ACM.

[85] A. Machiry, R. Tahiliani, and M. Naik. Dynodroid: An Input Generation System
for Android Apps. In Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, FSE’13, pages 224–234, Saint Petersburg, Russia, 2013.
ACM.

[86] S. Mahajan, N. Abolhasani, P. McMinn, and W. G. Halfond. Automated repair
of mobile friendly problems in web pages. In Proceedings of the International
Conference on Software Engineering (ICSE), May 2018. To Appear.

[87] S. Mani, R. Catherine, V. S. Sinha, and A. Dubey. AUSUM: Approach for Unsu-
pervised Bug Report Summarization. In Proceedings of the ACM SIGSOFT 20th
International Symposium on the Foundations of Software Engineering, FSE ’12,
pages 11:1–11:11, Cary, North Carolina, 2012. ACM.

[88] K. Mao, M. Harman, and Y. Jia. Sapienz: Multi-objective Automated Testing
for Android Applications. In Proceedings of the 25th International Symposium
on Software Testing and Analysis, ISSTA’16, pages 94–105, Saarbr&#252;cken,
Germany, 2016. ACM.

[89] K. Mao, M. Harman, and Y. Jia. Crowd intelligence enhances automated mobile
testing. In 2017 32nd IEEE/ACM International Conference on Automated Software
Engineering (ASE), ASE’17, pages 16–26, Oct. 2017. ISSN:.

[90] W. Martin, F. Sarro, Y. Jia, Y. Zhang, and M. Harman. A survey of app store
analysis for software engineering. IEEE transactions on software engineering,
43(9):817–847, 2017.

[91] T. McDonnell, B. Ray, and M. Kim. An Empirical Study of API Stability and
Adoption in the Android Ecosystem. In Proceedings of the 2013 International
Conference on Software Maintenance, ICSM’13, pages 70–79, 2013.

[92] K. Moran, C. Bernal-Cárdenas, M. Curcio, R. Bonett, and D. Poshyvanyk. Ma-
chine Learning-Based Prototyping of Graphical User Interfaces for Mobile Apps.
ArXiv e-prints, Feb. 2018.

[93] K. Moran, R. Bonett, C. Bernal-Cárdenas, B. Otten, D. Park, and D. Poshyvanyk.
On-Device Bug Reporting for Android Applications. In MobileSOFT’17, Mobile-
Soft’17, May 2017.

[94] K. Moran, B. Li, C. Bernal-Cárdenas, D. Jelf, and D. Poshyvanyk. Automated
Reporting of GUI Design Violations in Mobile Apps. In Proceedings of the 40th
International Conference on Software Engineering Companion, ICSE ’18, page to
appear, Gothenburg, Sweden, 2018. IEEE Press.

[95] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, and D. Poshyvanyk. Auto-
completing Bug Reports for Android Applications. In Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, FSE’15, pages 673–686,
Bergamo, Italy, 2015. ACM.

[96] K.Moran,M. Linares-Vásquez, C. Bernal-Cárdenas, andD. Poshyvanyk. FUSION:
A Tool for Facilitating and Augmenting Android Bug Reporting. In ICSE’16,
ICSE’16, May 2016.

[97] K. Moran, M. Linares-Vásquez, C. Bernal-Cárdenas, C. Vendome, and D. Poshy-
vanyk. Automatically Discovering, Reporting and Reproducing Android Ap-
plication Crashes. In 2016 IEEE International Conference on Software Testing,
Veri�cation and Validation (ICST), ICST’16, pages 33–44, Apr. 2016. ISSN:.

[98] K. Moran, M. Tufano, C. Bernal-Cárdenas, M. Linares-Vásquez, G. Bavota, C. Ven-
dome, M. Di Penta, and D. Poshyvanyk. Mdroid+: A mutation testing framework
for android. In Proceedings of the 40th International Conference on Software Engi-
neering Companion, ICSE ’18, page to appear, Gothenburg, Sweden, 2018. IEEE
Press.

[99] H. Muccini, A. Di Francesco, and P. Esposito. Software testing of mobile ap-
plications: Challenges and future research directions. In Proceedings of the 7th
International Workshop on Automation of Software Test, AST ’12, pages 29–35,
Piscataway, NJ, USA, 2012. IEEE Press.

[100] B. Myers. Challenges of HCI Design and Implementation. Interactions, 1(1):73–
83, Jan. 1994.

[101] H. Naguib, N. Narayan, B. Brügge, and D. Helal. Bug Report Assignee Recom-
mendation Using Activity Pro�les. In Proceedings of the 10th Working Conference
on Mining Software Repositories, MSR ’13, pages 22–30, San Francisco, CA, USA,
2013. IEEE Press.

[102] A. T. Nguyen, T. T. Nguyen, and T. N. Nguyen. Divide-and-Conquer Approach
for Multi-phase Statistical Migration for Source Code (T). In 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE), ASE’15, pages
585–596, Nov. 2015. ISSN:.

[103] A. T. Nguyen, T. T. Nguyen, T. N. Nguyen, D. Lo, and C. Sun. Duplicate Bug
Report Detection with a Combination of Information Retrieval and Topic Model-
ing. In Proceedings of the 27th IEEE/ACM International Conference on Automated
Software Engineering, ASE 2012, pages 70–79, Essen, Germany, 2012. ACM.

[104] T. A. Nguyen and C. Csallner. Reverse Engineering Mobile Application User
Interfaces with REMAUI. In Proceedings of the 2015 30th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE’15, pages 248–259,
Washington, DC, USA, 2015. IEEE Computer Society.

[105] D. D. Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and A. D. Lucia.
Software-based energy pro�ling of android apps: Simple, e�cient and reliable?
In 2017 IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering, SANER’17, pages 103–114, Feb 2017.

[106] F. Palomba, M. Linares-Vásquez, G. Bavota, R. Oliveto, M. D. Penta, D. Poshy-
vanyk, and A. D. Lucia. User reviews matter! Tracking crowdsourced reviews
to support evolution of successful apps. In 2015 IEEE International Conference
on Software Maintenance and Evolution (ICSME), ICSME’15, pages 291–300, Sept.
2015. ISSN:.

[107] F. Palomba, M. Linares-VÃąsquez, G. Bavota, R. Oliveto, M. D. Penta, D. Poshy-
vanyk, and A. D. Lucia. Crowdsourcing user reviews to support the evolution
of mobile apps. Journal of Systems and Software, 137:143 – 162, 2018.

[108] F. Palomba, P. Salza, A. Ciurumelea, S. Panichella, H. Gall, F. Ferrucci, and A. D.
Lucia. Recommending and Localizing Code Changes for Mobile Apps based on
User Reviews. In ICSE’17, 2017.

[109] A. Pathak, Y. Hu, and M. Zhang. Bootstrapping Energy Debugging on Smart-
phones: A First Look at Energy Bugs in Mobile Devices. In Hotnets’11, Hot-
nets’11.

[110] A. Pathak, Y. Hu, and M. Zhang. Where is the energy spent inside my app?
Fine Grained Energy Accounting on Smartphones with Eprof. In EuroSys’12,
EuroSys’12, pages 29–42, 2012.

[111] A. Pathak, A. Jindal, Y. Hu, and S. P. Midki�. What is keeping my phone awake?
Characterizing and Detecting No-Sleep Energy Bugs in Smartphone Apps. In
MobiSys’12, MobiSys’12, pages 267–280, 2012.



ICPC ’18, May 27–28, 2018, Gothenburg, Sweden K. Moran, C. Bernal Cardenas, M. Linares Vasquez et al.

[112] K. Rasmussen, A. Wilson, and A. Hindle. Green mining: energy consumption of
advertisement blocking methods. In GREENS’14, pages 38–45, 2014.

[113] S. Rastkar, G. C. Murphy, and G. Murray. Summarizing Software Artifacts: A
Case Study of Bug Reports. In Proceedings of the 32Nd ACM/IEEE International
Conference on Software Engineering - Volume 1, ICSE ’10, pages 505–514, Cape
Town, South Africa, 2010. ACM.

[114] M. P. Robillard, A. Marcus, C. Treude, G. Bavota, O. Chaparro, N. Ernst, M. A.
Gerosa, M. Godfrey, M. Lanza, M. Linares-Vásquez, G. C. Murphy, L. Moreno,
D. Shepherd, and E. Wong. On-demand Developer Documentation. In 2017
IEEE International Conference on Software Maintenance and Evolution (ICSME),
ICSME’17, pages 479–483, Sept. 2017. ISSN:.

[115] S. Romansky, N. C. Borle, S. Chowdhury, A. Hindle, and R. Greiner. Deep Green:
Modelling Time-Series of Software Energy Consumption. In 2017 IEEE Interna-
tional Conference on Software Maintenance and Evolution (ICSME), ICSME’17,
pages 273–283, Sept. 2017. ISSN:.

[116] R. Saborido, F. Khomh, A. Hindle, and E. Alba. An app performance optimization
advisor for mobile device app marketplaces. CoRR, abs/1709.04916, 2017.

[117] A. Sadeghi, H. Bagheri, J. Garcia, and S. Malek. A taxonomy and qualitative
comparison of program analysis techniques for security assessment of android
software. IEEE Transactions on Software Engineering, 43(6):492–530, June 2017.

[118] C. Sahin, M. Wan, P. Tornquist, R. McKenna, Z. Pearson, W. G. J. Halfond, and
J. Clause. How does code obfuscation impact energy usage? Journal of Software:
Evolution and Process, pages n/a–n/a, 2016.

[119] R. Sasnauskas and J. Regehr. Intent Fuzzer: Crafting Intents of Death. In Proceed-
ings of the 2014 Joint International Workshop on Dynamic Analysis and Software
and System Performance Testing, Debugging, and Analytics, WODA+PERTEA’14,
pages 1–5, San Jose, CA, USA, 2014. ACM.

[120] R. Shokripour, J. Anvik, Z. M. Kasirun, and S. Zamani. Why So Complicated?
Simple Term Filtering andWeighting for Location-based Bug Report Assignment
Recommendation. In Proceedings of the 10th Working Conference on Mining
Software Repositories, MSR ’13, pages 2–11, San Francisco, CA, USA, 2013. IEEE
Press.

[121] P. Stanley-Marbell, V. Estellers, and M. Rinard. Crayon: saving power through
shape and color approximation on next-generation displays. In Proceedings of
the Eleventh European Conference on Computer Systems, page 11. ACM, 2016.

[122] A. B. Tucker. Computer Science Handbook, Second Edition. Chapman & Hall/CRC,
2004.

[123] M. Wan, Y. Jin, D. Li, and W. G. J. Halfond. Detecting Display Energy Hotspots
in Android Apps. In 2015 IEEE 8th International Conference on Software Testing,
Veri�cation and Validation (ICST), ICST’15, pages 1–10, Apr. 2015.

[124] X. Wang, L. Zhang, T. Xie, J. Anvik, and J. Sun. An Approach to Detecting
Duplicate Bug Reports Using Natural Language and Execution Information. In
Proceedings of the 30th International Conference on Software Engineering, ICSE
’08, pages 461–470, Leipzig, Germany, 2008. ACM.

[125] L. Wei, Y. Liu, and S. C. Cheung. Taming Android fragmentation: Characterizing
and detecting compatibility issues for Android apps. In 2016 31st IEEE/ACM
International Conference on Automated Software Engineering (ASE), ASE’16, pages
226–237, Sept. 2016. ISSN:.

[126] C. Weiss, R. Premraj, T. Zimmermann, and A. Zeller. How Long Will It Take to
Fix This Bug? In Proceedings of the Fourth International Workshop on Mining
Software Repositories, MSR ’07, pages 1–, Washington, DC, USA, 2007. IEEE
Computer Society.

[127] H. Wu, S. Yang, and A. Rountev. Static detection of energy defect patterns
in android applications. In Proceedings of the 25th International Conference on
Compiler Construction, CC’16, pages 185–195, New York, NY, USA, 2016. ACM.

[128] W. Yang, M. R. Prasad, and T. Xie. A Grey-box Approach for Automated GUI-
model Generation of Mobile Applications. In Proceedings of the 16th International
Conference on Fundamental Approaches to Software Engineering, FASE’13, pages
250–265, Rome, Italy, 2013. Springer-Verlag.

[129] H. Ye, S. Cheng, L. Zhang, and F. Jiang. DroidFuzzer: Fuzzing the Android Apps
with Intent-Filter Tag. In Proceedings of International Conference on Advances
in Mobile Computing &#38; Multimedia, MoMM ’13, pages 68:68–68:74, Vienna,
Austria, 2013. ACM.

[130] R. N. Zaeem, M. R. Prasad, and S. Khurshid. Automated Generation of Oracles
for Testing User-Interaction Features of Mobile Apps. In Proceedings of the 2014
IEEE International Conference on Software Testing, Veri�cation, and Validation,
ICST ’14, pages 183–192, Washington, DC, USA, 2014. IEEE Computer Society.

[131] J. Zhou and H. Zhang. Learning to Rank Duplicate Bug Reports. In Proceed-
ings of the 21st ACM International Conference on Information and Knowledge
Management, CIKM ’12, pages 852–861, Maui, Hawaii, USA, 2012. ACM.

[132] J. Zhou, H. Zhang, and D. Lo. Where Should the Bugs Be Fixed? - More Accu-
rate Information Retrieval-based Bug Localization Based on Bug Reports. In
Proceedings of the 34th International Conference on Software Engineering, ICSE
’12, pages 14–24, Zurich, Switzerland, 2012. IEEE Press.


